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Abstract The development of a simulator for homogeneous reservoirs with application in producer wells
(represented by a sink) and the aquifer analysis is obtained by combining the Boundary Element Method
(BEM), the Isogeometric Formulation using NURBS (Non Uniform Rational B-Spline) as shape functions,
and also the Axisymmetric Formulation.

The Isogeometric Formulation makes the discretization of geometric model (mesh generation), which is
the step of numerical analysis that is more time consuming for the engineer, be no longer necessary, since the
same functions that describe the geometry also approximate the field variables in the BEM. In other words,
the same discretization used in the geometric model, generated in CAD (Computer Aided Design) modeling
programs, also is used by the BEM.

The oil and water reservoirs, as simplified models for validation of the new mathematical methodology,
can be fully represented by the analysis of a plane passing through the axis of rotational (axial) symmetry.
The dimension of the problem is reduced from three to two dimensions: radial and axial directions only, and
all variables in the circumferential direction are assumed to be constant. When the geometry and the problem
variables are both axisymmetric, then the problem is considered fully axisymmetric.

The isogeometric and axisymmetric formulations are coupled to obtain the well simulator for the single and
double phase case, i.e. one or two incompressible fluids inside the reservoir. The determination of boundary
conditions for the model, including the analysis of fluids interface movement, is also presented. The final code
is a new tool for the analysis of gas/water coning phenomenon and quick drawdown problem in homogeneous
reservoirs, as validation models. Validation of the results is carried out by comparing with others numerical
methods and analytical results.
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1 Introduction

The cost of implanting an oil production plant (onshore or offshore) is quite high, even by the standards of a
consolidated member company of this market. High productivity is always desired, regardless of the prospect-
ing conditions. This means producing the largest quantity of a ”clean” oil and gas with lower concentration of
methane. Only for optimum conditions, however, it is possible to obtain extraction at the desired speed and pu-
rity. There are several factors that limit production in a real case scenario, from the extraction through the well
in the reservoir characterized by the multiphase flow in porous media, as the multiphase flow in the transport
line, the pipeline-riser system, as well as insurgent problems in separators, manifold and others.

The present work proposes a well simulator in order to study formations of the gas and water coning,
conditions detrimental to the production since there is infiltration of other fluids with greater mobility than
petroleum, flowing toward the well in form of a cone, according to the potential gradient. The same simulator
is also applied in aquifer (water reservoir) analysis to study a quick drawdown problem. It is constructed
using the Isogeometric Boundary Element Method (IGA-BEM), which has numerical advantages not only
with respect to other numerical methods such as the Finite Difference Method (FDM), Finite Volume Method
(FVM), Finite Element Method (FEM), but also to the conventional Boundary Element Method (BEM). The
IGA-BEM uses NURBS (Non Uniform Rational B-Spline) geometries that brings greater smoothness to the
curves of the elements in question and ensure the continuity of the variables of field, derived and geometry.

The phenomena of the gas or water coning are limiting factors in the productivity of an oil well, as they
occur due to the pressure gradient applied by the well in order to extract the oil from the reservoir. Figure 1
shows an example of oil reservoir coexisting water and gas coning. The pressure gradient reaches all the fluids
present in the reservoir (oil, water, natural gas). As water and gas have greater mobility than oil, they tend to
flow towards the well, taking the form of a cone. For certain extraction flow values, the water coning and/or gas
coning reach the end of well causing water and/or gas production along with oil, thereby reducing productivity.

Fig. 1: Oil reservoir coexisting water and gas coning

Analytical treatments with severe approximations and restrictions were used in the formulation of several
models and correlations that are used to estimate the behavior of water and gas coning in order to overcome
the great complexity of the problem (Dake [1], Fortaleza et al. [2]). Nowadays there are advanced numerical
analysis tools that allow the study of these phenomena through computer simulation, e.g., OPM (Open Porous
Media), BOAST, MRST (Matlab Reservoir Simulation Tool), Reveal, tNavigator, IX, Eclipse, etc.; minimizing
the simplifications in models used and increasing the accuracy of results obtained. In this work, the new tool
developed is applied for gas and water coning simulator in homogeneous reservoirs and quick drawdown
in aquifers, as a proposal for simple models, to validate the Isogeometric Boundary Element Method with
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application in axisymmetric problems. Axisymmetric geometries are formed by rotating 360◦ from a two-
dimensional plane on a given axis, known as the rotational symmetry axis. The z axis is the rotational or
axial symmetry axis, while r and θ are the radial and circumferential directions, respectively, used in the
cylindrical coordinates. The oil or water reservoir, as simplified models for validation of the new mathematical
methodology, can be considered as an axisymmetric geometry.

The main aim of this work leads to the implementation of a new mathematical methodology through the
Isogeometric Formulation in conjunction with the Axisymmetric Formulation, to achieve the fundamental so-
lutions of the simplified problem and present as a model for validation - the phenomenons of the gas and
water coning in homogeneous reservoirs and quick drawdown problem in aquifers. The efficiency of the code
compiling, from this new mathematical tool, is still being implemented through an ACA (Adaptive Cross Ap-
proximation) accelerator. Therefore, it is not the scope of this work to deal with simulation efficiency, but rather
to present the functioning of the new mathematical methodology within BEM.

A possibility to expand the formulation for heterogeneous media, that is been analyzed, it is the use of
multiple domains as suggested by Ramsak and Skerget [3].The basic idea of the multi domain method is to
write the integral equations for each sub domain individually and then couple the sub domains under interface
boundary conditions. The resulting system matrix will be sparse and block-banded, similar to the FEM. In this
manner, heterogeneous media can be easily modeled. Apart from this, the memory and CPU demands could be
reduced significantly as shown by Ramsak and Skerget [3].

2 Theoretical model

In this work, the formulation of Isogeometric Boundary Element Method with axisymmetric fundamental so-
lutions is presented for problems governed by the Laplace equation; model adopted to the analysis of potential
flow. The fundamental solution applied corresponds to the potential response in an infinite medium when the
sink (or source) is concentrated at a point on the domain.

In order to obtain the oil extraction formulation and aquifer (water reservoir) analysis, it is used a simple
yet powerful tool is used in the qualitative evaluation of the factors affecting multiphase flow in porous media,
Darcy’s Law. For two-dimensional or three-dimensional flow, one has:

q =−K∇Φ (1)

where Φ is the fluid column height and K is the hydraulic conductivity of the medium, defined by Bear [4] as:

K =
κρg

µ
(2)

From Eq. (2), κ is the absolute permeability of the porous media, ρ is the specific mass of the fluid, µ is
the dynamic viscosity of the fluid and g is the gravity acceleration. The permeability κ is a characteristic of
the porous media and it is independent of the fluid that is filling it. The hydraulic conductivity K involves the
specific mass and the dynamic viscosity of the fluid, ρ and µ, respectively, and therefore it is dependent on the
fluid that is flowing.

The limiting factors of Darcy’s Law lie in the permeability of porous media that can undergo considerable
changes as a function of the void volume of material and the fluid temperature at the time of testing. The same
soil may have, according to its situation, a different permeability.

By Eq. (1), it can be seen that the apparent velocity vector of the fluid, q, is linearly related (through
the hydraulic conductivity of the medium) to the gradient of a potential function. This function is called the
flow velocity potential. Liggett and Liu [5] define it through the piezometric height, given by the following
expression:

Φ =
p

ρg
+ z (3)
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The first term of Eq. (3) is therefore known as piezometric height; the second term being the height that
is associated with a referential or, still, as the energy associated with the position of fluid in the gravitational
field.

Liggett and Liu [5] further define the real average velocity vector of the fluid inside pores u as:

u =
q
n

(4)

where n is the porosity of medium.
The fluids, as well as the medium, are considered incompressible in the adopted potential flow model. The

porous media is homogeneous with constant permeability and isotropic in the region of flow, and also, the
dynamic viscosity of the fluids is considered to be constant. In this model, the pores are saturated with only
one fluid at a time.

From the Eq. (1) and the incompressible continuity equation, considering yet the flow to be irrotational, it
has:

∇ · (−K∇Φ) = 0 (5)

Considering the medium as being homogeneous, the hydraulic conductivity K is assumed to be constant.
Therefore, Eq. (5) becomes:

∇
2
Φ = 0 (6)

Equation (6) is defined as the Laplace Equation, which governs the flow in a porous media. In the present
work, a point sink must be added to be counted in the hydrodynamics of the oil reservoir problem. Thus,
applying the principle of mass conservation, it is obtained:

∇ ·q =−Qδ(x−xs) (7)

Rearranging Eq. (7) from Eq. (1), it becomes:

∇
2
Φ =

Q
K

δ(x−xs) (8)

where δ is the Dirac delta function and xs is the position vector of the sink.
Equation (8) defines the laplacian of potential function to be equal 0 in the entire domain, thus becoming

the Laplace equation. At the point where sink is located, the Laplace equation becomes the Poisson equation.
Compressible flow is not considered in this work. Therefore, the governing equation of compressible flow

in porous media, i.e, the hydraulic diffusivity equation, is not analyzed. In flow regions where the irrotational
approach is adequate, the solution to the problem is valid for any incompressible fluid, where its specific mass
or viscosity has no influence. Time does not appear in the incompressible continuity equation, thus, the solution
is valid even instantaneously for non-permanent flow. To satisfy the Laplace equation and boundary conditions
existing at that moment, the incompressible flow field is adjusted instantly. This approach can be applied to the
interface movement problem studied in this work, where the Laplace equation is calculated step by step at each
time instant.

The solutions obtained for irrotational flows are therefore approximations to complete solutions of the
Navier-Stokes equation. When this approach is not adequate is needed to solve the Navier-Stokes through
numerical methods as the CFD (Computational Fluid Dynamics).
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2.1 Isogeometric formulation

The Isogeometric Analysis is an attempt to eliminate the generation of mesh using the discretization of Com-
puter Aided Design (CAD) software, where the BEM has significant advantages. The predominant technology
used by CAD in the representation of complex geometries is the Non-Uniform Rational B-Spline (Lin [6]). This
makes possible to accurately reproduce entities that would only be approximated by polynomial functions, in-
cluding circular conic sections, cylinders, spheres, ellipsoids, paraboloids, etc. There is a vast literature dealing
with the different aspects of NURBS (e.g. Piegl and Tiller [7], Rogers [8], Farin [9], Piegl [10], Lamousin [11],
Hughes, Reali and Sangalli [12], Temizer, Wriggers and Hughes [13]). NURBS have been used successfully in
fluid mechanics problems by Nielsen [14] et al., Bazilevs [15] et al., Bazilevs and Akkerman [16]. The years
of research have resulted in several efficient algorithms for fast assessment and refinement.

The main concept presented in Hughes, Cottrell and Bazilevs [17] is to use NURBS not only as a discretiza-
tion of geometry, but also as a discretization tool in the analysis, assigning the denomination of isogeometric
analysis to this characteristic of methods. In the BEM, a formulation using B-Splines is presented initially in
Cabral et al. [18] and Cabral, Wrobel and Brebbia [19], but still without concern for integration into CAD. This
integration was later observed in Simpson et al. [20] and Simpson et al. [21]. The Isogeometric concept is also
present in mesh-free methods, creating spline-based methods, as presented in Wang and Zhang [22], Shaw and
Roy [23], Kim and Youn [24].

Campos et al. [25] presents an Adaptive Cross Approximation (ACA) accelerated Isogeometric Boundary
Element Method (IGA-BEM) using Non-Uniform Rational B-Splines (NURBS) as shape and interpolation
functions. The developed formulations are implemented and applied in the analysis of several numerical ex-
amples and their results are compared with the Boundary Element Method with the use of polynomial shape
functions. Unlike conventional BEM, the boundary conditions in the isogeometric formulation can not be ap-
plied directly to the problem, since the control points are typically outside the boundary. To overcome this
problem, it uses a transformation matrix E for B-Splines that can relate the values between the control points
and the collocation points.

NURBS can represent exact conic sections: circles, hyperboles, ellipses, and parables. Since the usual
Lagrangian shape functions are not able to describe more complex geometries in a exact way, NURBS are better
suited to represent the geometries and can also be used to approximate the field variables. The main application
of the NURBS functions in this work is presenting a new analysis of the gas/water coning at the interface
for critical flows. In future works, high heterogeneous media could be modeled with the implementation of
multiple domains as a more complex case of application.

The NURBS can be calculated by the following expression:

C (t) =
∑

n+1
i=1 BiNi,k (t)ωi

∑
n+1
i=1 Ni,k (t)ωi

=
n+1

∑
i=1

BiRi,k (t) (9)

where t is the curve parameter and Ri,k (t) is the rational basis function given by:

Ri,k (t) =
Ni,k (t)ωi

∑
n+1
i=1 Ni,k (t)ωi

(10)

∑
n+1
i=1 BiNi,k (t) is the B-Spline curve, where Bi are the control points, Ni,k (t) are the basis functions of order k

and degree k−1, and ωi is the weight function associated with the specific control point i. The basis function
is defined as:

Ni,k (t) =
(t−ui)

ui+k−1−ui
Ni,k−1 (t)+

(ui+k− t)
ui+k−ui+1

Ni+1,k−1 (t) (11)

where ui are the values of U knots vector, defined by a series of increasing real parameters and has a strong
influence on the basis functions of a B-Spline.

B-Splines are a generalized form of the Bezier curves. Therefore, NURBS is a generalization of B-Spline,
replacing the polynomial base with a polynomial ratio.
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2.2 Axisymmetric formulation

In axisymmetric problems, the dimension of problem is reduced from three to two dimensions: radial and axial
directions only, and all variables in the circumferential direction are assumed as constant. A large number of
engineering applications (structures or components) are axisymmetric or can be approximated as axisymmetric,
for example pressure vessels, mechanical seals, pipelines and even an oil or water reservoir. Lucas [26] studied
the phenomenon of water coning in an oil reservoir through the solutions of Axisymmetric Boundary Integral
Equation. Some axisymmetric geometries may be under nonaxisymmetric loading, such as wind forces on a
cooling tower. In these cases special treatment is required to solve the problem.

Unlike other numerical methods (such as the Finite Element Method), the Boundary Element Method for
axisymmetric problems is not a simple transformation of the two-dimensional formulation. It requires a greater
mathematical effort when compared to two and three-dimensional formulations. There are basically two types
of approximations for axisymmetric formulations: (I) derive from axisymmetric fundamental solutions based
on circular loads as opposed to loads point; (II) from the integral in relation to the circumferential direction of
the three-dimensional solutions. Both approaches lead to identical solutions and have been discussed in detail
for potential, elastic, thermoelastic, and centrifugal problems since Bakr [27] and Becker [28]. In this work
only the second approximation is detailed, that is, from the three-dimensional solutions.

There are three directions of cylindrical or curvilinear coordinates: radial (r), axial (z) and circumferential
(θ). To reduce the system by one dimension, the three-dimensional solution is then transformed from the
Cartesian coordinates (x,y,z) into cylindrical coordinates (r,θ,z) and then integrates analytically with respect
to the circumferential direction, θ , in order to produce cores and functions with radial and axial components
only.

The Laplace equation, Eq. (6), can be written in cylindrical coordinates for three-dimensional domain as
follows:

∇
2
Φ3D =

∂2Φ

∂r2 +
1
r

∂Φ

∂r
+

1
r2

∂2Φ

∂θ2 +
∂2Φ

∂z2 = 0 (12)

and polar coordinates, for two-dimensional domain, as:

∇
2
Φ2D =

1
r

∂

∂r

(
r

∂Φ

∂r

)
+

1
r2

∂2Φ

∂θ2 = 0 (13)

All variables are constant with respect to the circumferential direction for axisymmetric problems, thus all
derivatives with respect to θ are equal zero. Thus Eq. (12) and Eq. (13), respectively, becomes:

∇
2
Φaxi =

∂2Φ

∂r2 +
1
r

∂Φ

∂r
+

∂2Φ

∂z2 = 0 (14)

∇
2
Φ2D =

1
r

∂

∂r

(
r

∂Φ

∂r

)
= 0 (15)

where 3D, 2D and axi are the subscripts referring to the three-dimensional, two-dimensional and axisymmetric
solutions, respectively.

The axisymmetric fundamental solution for the velocity potential Φ∗axi is based on an arc of potentials
placed along the point p, as opposed to a potential point for the three-dimensional solution. Therefore, the
expression for axisymmetric fundamental solution is given by:

Φ
∗
axi =

∫ 2π

0
Φ
∗
3DdθQ (16)

The three-dimensional fundamental solution, Φ∗3D, corresponding to the potential response in an infinite
porous media is given by the following expression according Becker [28]:

Φ
∗
3D =

1
4πK

1
r (p,Q)

(17)
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where r (p,Q) is the corresponding distance between the load point p, and the field point Q, K is the hydraulic
conductivity of the porous media.

After suitable mathematical steps, the axisymmetric fundamental solution to the velocity potential can be
rewritten as:

Φ
∗
axi =

1
πKC

Ke (m,π/2) (18)

where C and m are parameters related to the load point and field point coordinates and Ke (m,π/2) is the elliptic
integral of the first kind (Becker [28]).

From Eq. (18) is possible to obtain the axisymmetric fundamental solution of velocity through its derivative
with respect to the normal direction multiplied by the hydraulic conductivity of the porous media, defined as:

q∗axi =−K
∂Φ∗axi

∂n
(19)

The expression for two-dimensional fundamental solution of the velocity potential Φ∗2D for same problem
conditions, after a few more mathematical steps, is given according Katsikadelis [29]:

Φ
∗
2D =− 1

2πK
lnr (p,Q) (20)

Equation (20) is also applied for the Eq. (19) to obtain the two-dimensional fundamental solution of veloc-
ity. It becomes:

q∗2D =−K
∂Φ∗2D

∂n
=

1
2πr2 (p,Q)

[rx (p,Q)nx + rz (p,Q)nz] (21)

where rx (p,Q) and rz (p,Q) are the components of distance between load point and field point; nx and nz are
components of the normal vector.

3 Well Simulator

By applying the NURBS to shape functions, the BEM is now referred as Isogeometric Boundary Element
Method. The sum of all the Isogeometric Boundary Elements will then be a representation that, in most cases,
it will be the actual representation of the boundary, denoted by Γ.

Each part of the boundary is approximated by one or more Bezier curves with a continuity mechanism
between the segments. Knowing that Ri,k (t) is the rational basis function of order k (that influences a given
region of a NURBS curve), the approximation with isogeometric boundary elements becomes:

cΦ(xd ,yd) =
∫

Γ

n+1

∑
i=1

Φ
c
i Ri,k (t)q∗ (xd ,yd)dΓ−

∫
Γ

n+1

∑
i=1

qc
i Ri,k (t)Φ

∗ (xd ,yd)dΓ (22)

where Φc
i and qc

i are the potential and velocity, respectively, at the control point i and the therm c is a multiplying
constant.

Equation (22) takes two different forms: two-dimensional and axisymmetric domain. For the two-dimensional
domain becomes:

cΦ(xd ,yd) =
n+1

∑
i=1

(
Φ

c
i

∫
Γ

Ri,k (t)q∗2D (xd ,yd)dΓ

)
−

n+1

∑
i=1

(
qc

i

∫
Γ

Ri,k (t)Φ
∗
2D (xd ,yd)dΓ

)
(23)

Equation. (23) is called discretized Isogeometric Boundary Integral Equation for two-dimensional domain.
For axisymmetric problems, where the fundamental solutions for potential and velocity are axisymmetric, the
discretized Isogeometric Boundary Integral Equation is given by:
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cΦ(xd ,yd) =
n+1

∑
i=1

(
Φ

c
i

∫
Γ

Ri,k (t)q∗axi (xd ,yd)x dΓ

)
−

n+1

∑
i=1

(
qc

i

∫
Γ

Ri,k (t)Φ
∗
axi (xd ,yd)x dΓ

)
(24)

After the boundary is parameterized by t and the use of Gauss quadrature, Eq. (23) and Eq. (24) can be
rearranged with the terms of H matrix on one side and the terms of G matrix on the other:

n+1

∑
i=1

Hi,kΦ
c
i =

n+1

∑
i=1

Gi,kqc
i (25)

or by the matrix form:
HΦ

c = Gqc (26)

The superscript c have influence on k elements of matrix H, which does not occur in conventional BEM.
Equation (26) is the discretized Boundary Integral Equation, represented in matrix form. In the case where
governing equation has a point sink, that is, the governing equation is not Laplace’s, but Poisson’s, Eq. (26)
becomes:

HΦ
c = Gqc− s (27)

where s is the vector that holds the contribution of each point sink. Each element of this vector corresponds to
the effect of sinks at a given source point d, represented by:

sd =
ns

∑
j=1

Q jΦ
∗ (28)

where ns is the number of punctual sinks of the problem, Q j is the intensity of sink, and Φ∗ is the fundamental
solution of the potential, ranging in magnitude for axisymmetric problems.

In order to separate the known variables from the unknown, it is necessary to reorganize the equation
through a matrix system. Therefore, it can be written as:

Ax = b− s (29)

or
x = A−1 (b− s) (30)

Through the linear system given by Eq. (30), it is possible to obtain the unknown values of the potential
Φ and the velocity q on the control points. However, it should be noted that the control points are typically
outside the boundary, i.e., the boundary conditions cannot be applied directly. A transformation matrix E for
B-Splines is then used to overcome this problem (Cabral et al., [18]). This matrix uses the basis functions to
relate the values at control points to the values at collocation points, through the following:

Φ = EΦ
c (31)

q = Eqc (32)

where the vectors Φ and q contain the values for potential and velocity, respectively, at the collocation points;
while Φc and qc contain the values for potential and velocity, respectively, at the control points. The same idea
can be applied to NURBS.

Replacing the Eq. (31) and (32) in the Eq. (27), it has:

HE−1
Φ = GE−1q− s (33)

Equation (33) can be solved in the usual manner as conventional BEM.
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3.1 New positions of control points

Through the phenomena of gas/water coning in oil reservoir and aquifer analysis, a moving interface between
the fluids is present in the problem. In order to quantify this movement, the method of control points reposi-
tioning (Piegl and Tiller, [10]) is used. The repositioning of control points takes place in a NURBS curve. From
Eq. (9) for the NURBS curve, an arbitrary control point Bi will undergo a translation to B̂i through a vector V,
given by:

V = B̂i−Bi (34)

Therefore, the new curve for the transferred arbitrary control point becomes:

Ĉ (t) = B1R1,k (t)+ . . .+(Bi +V)Ri,k (t)+ . . .+Bn+1Rn+1,k (t)

=C (t)+Ri,k (t)V
(35)

Equation (35) expresses the functional translation of all points of the curve C (t) in which t (curve param-
eter) ∈ [ti, ti+k). All points on the curve outside this range are not affected. Applying Eq. (35) to n+1 control
points, it is possible, therefore, to compute the total interface movement.

Considering that collocation points move only in z direction; there is a function F , defined by the interface
as a material line. The velocity at interface is the velocity of material points that defines it. As a function of this
calculated velocity, it is possible to deduce the equation that defines its position:

F = z−λ(x, t) = 0 (36)

where λ(x, t) is the function that expresses the height of interface for a given coordinate x and a certain time t.
Differentiating Eq. (36), it has:

DF
Dt

=
∂F
∂t

+
q
n
·∇F = 0 (37)

where q
n is the real average velocity vector of the fluid inside pores given by Eq. (4).

Replacing the Eq. (36) in the Eq. (37), it has:

DF
Dt

=−∂λ

∂t
+

q
n
· (∇z−∇λ) = 0 (38)

which can be written as

∂λ

∂t
=

1
n
(q · êz−q ·∇λ) (39)

Applying the Eq. (1), it is obtained:

∂λ

∂t
=−K

n

(
∂Φ

∂z
−∇Φ ·∇λ

)
(40)

A relation between ∂λ

∂t and ∂Φ

∂n is sought:

∂Φ

∂n
= ∇Φ · ên (41)

where the unit normal vector may be written as:

ên =
∇(z−λ)

|∇(z−λ)|
(42)

Replacing Eq. (42) at Eq. (41), it has:
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∂Φ

∂n
=

∂Φ

∂z −∇Φ ·∇λ

|∇(z−λ)|
(43)

where

∂Φ

∂z
=

∂Φ

∂n
|∇(z−λ)|+∇Φ ·∇λ (44)

Replacing Eq. (44) at Eq. (40), it comes:

∂λ

∂t
=−K

n
∂Φ

∂n
|∇(z−λ)| (45)

The quantity |∇(z−λ)| in Eq. (45) can be written as:

|∇(z−λ)|=

[
1+
(

∂λ

∂x

)2
]1/2

(46)

and

cosη =

[
1+
(

∂λ

∂x

)2
]−1/2

(47)

where tanη is defined as the free surface slope: ∂λ/∂x =− tanη.
Replacing Eq. (47) and Eq. (46) at Eq. (45), it arrives:

∂λ

∂t
=−K

n
∂Φ

∂n

[
1+
(

∂λ

∂x

)2
]1/2

=−K
∂Φ

∂n
1

ncosη
(48)

The information obtained is the normal velocity vector q to the collocation point. Thus, the Eq. (48) in
terms of this normal velocity vector projected on the z axis is:

∂λ

∂t
=

1
n

q
cosη

(49)

where η is the angle formed between the normal velocity vector to the collocation point and the z-axis.
Equation (49) is the equation for simulation of free surface movement. The implementation of this equation

must be made in such a way as to take into account the size of time step used in the iterations. Writing Eq. (49)
in terms of finite differences (Zhang et al., [30]), it has:

zm+1 = zm−
∆t

ncosη

[
β(q · êz)m+1 +(1−β)(q · êz)m

]
(50)

where β is a weighting factor; z is the height of interface; ∆t is the size of time step and the sub-indices m and
m+1 are, respectively, the current and next immediate time step.

The interface is considered abrupt where capillary stresses are admitted to be negligible.

3.2 Boundary conditions

As already described, the governing equation of potential flow is the Laplace Equation - Eq. (6), written in terms
of the potential Φ. The boundary conditions applicable to each knot are of known potential or known velocity.
The reservoir has two configurations: single phase, i.e. only one incompressible fluid inside the reservoir;
double phase, i.e. two incompressible fluids inside the reservoir.
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3.2.1 Potential Single Phase Flow

The well simulator for single phase flow (only one incompressible fluid inside the reservoir) is used to simulate
an oil extraction subject to the occurrence of a gas coning, that is, for the reservoir configuration where one
layer of oil and another layer of gas coexist. Figure 2 shows the general appearance of an oil reservoir problem.

Fig. 2: Gas Coning Phenomenon - Boundary Conditions: (1) impermeable boundary (q = 0); (2) and (4) known potential
boundary; (3) interface boundary

The parameters used in the code are set out in Table 1 below.

Table 1: Parameters used in the code

Quantities Nomenclature Measurement unit (SI)
Specific mass ρ kg/m3

Dynamic viscosity µ Pa.s
Medium porosity n −
Absolute permeability κ m2

Hydraulic conductivity K m/s
Potential Φ m
Well intensity Q m2/s
Well coordinates (xp,zp) m
Total time tt s
Running pump time tp s
Time step size ∆t s
Time step quantity npt −

In the potential single phase flow (only one incompressible fluid inside the reservoir), the height of oil zone
undisturbed by the flow, Ho, is equal to the height of entire simulated portion of the reservoir.

The potential is known on the two sides (2) and (4), and on the free surface (3). Its value is constant and
can be calculated through Eq. (3), where p is the total pressure given by:

p = po + pt (51)
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where po is the pressure relative to the weight of oil column above the knot and pt is the pressure at top of this
oil column, i.e., the pressure that gas makes on the free surface. Substituting Eq. (51) into Eq. (3) and setting
the pressures as relative heights, it has:

Φ =
pt

ρg
+Ho (52)

At the interface between oil and gas - free surface (3), the existing pressure is only that which the gas exerts
on the oil (pt ). The pressure on free surface can be assumed to be zero, without loss of generality. Therefore,
the entire domain has a constant potential and value equal to its height (Ho). All knots of the lateral boundaries
(2) and (4), and of the free surface (3) have known potential given by:

Φ2 = Φ3 = Φ4 = Ho (53)

where Ho is the height of oil zone measured by the z-coordinate of free surface undisturbed by the flow.

The lower limit (1) is the waterproof base of the reservoir. Consequently, there is no flow of oil in the
normal to edge direction. The existing boundary condition is:

q1 = 0 (54)

The same simulator and boundary conditions are also applied in an axisymmetric quick drawdown problem
where there is not a sink.

3.2.2 Potential Double Phase Flow

In this case, the domain of problem is defined as being homogeneous by parts, i.e., the numerical procedures,
presented in each of the sub-regions are applied, as if they were separated from each other (Liggett and Liu [5]).

The homogeneity condition by sub-regions often occurs in engineering problems. Heat conduction in a
solid composed of two distinct materials is an example where each material has a different thermal conductivity.
Katsikadelis [29] cites the application of sub-region formulation in modeling composite bodies, where each
component of the composite material is treated as a sub-region. For the case of double phase flow in porous
media, addressed in this paper, it is also treated as being homogeneous by parts, since each sub-region (media)
has different and homogeneous hydraulic conductivity K in all its extension according to the fluid that is
saturating (according to the adopted model). Figure 3 shows the general appearance for a water coning problem.
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Fig. 3: Water Coning Phenomenon - Boundary Conditions: (1) and (7) impermeable boundary (q = 0); (2), (4), (6) and (8)
known potential boundary; (3) and (5) interface boundary

The two sub-regions must share the same coordinate system as they form a single domain. However, each
sub-region must be treated independently of each other. They are separated by an abrupt interface.

Upper Sub-region

The potential is known on both sides (6) and (8). Its value is constant and has a value equal to the total height
of the simulated portion of the reservoir (Ho +Hw). Therefore, the potential for upper sub-region in which oil
is contained in the reservoir can be calculated as:

Φ6 = Φ8 = Ho +Hw (55)

The top pressure corresponding to the upper fluid column is assumed to be zero, without loss of generality.

Lower Sub-region

The potential is known on both sides (2) and (4). Its value is constant and related to the height values of
each reservoir sub-region (Ho and Hw) and to the specific mass ratio between the lower and upper fluid (α =
ρR1/ρR2 ).

The reservoir top pressure can be assumed zero without loss of generality. Lateral boundaries (2) and (4)
have known potential given by:

Φ2 = Φ4 = Hw +
1
α

Ho (56)

Impermeable Edges

The lower (1) and upper (7) edges are impermeable, i.e., there is no flow in the normal direction. Therefore,
the existing boundary condition is identical to the potential single phase flow.

Interface Analysis

The major difference in determining boundary conditions between the potential single and double phase sim-
ulators is in the interface. According to Bear [4], the model used considers the fluids to be immiscible and the
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approach to interface as being abrupt. The abrupt interface condition implies that for a point located on the
interface, the velocity must have the same magnitude but opposite directions from the point of view of either
fluid. The boundary conditions for the interface are the equations of pressure compatibility and velocity equi-
librium, given through the flow phenomenon that leads to the pressure continuity condition between the two
fluids, throughout the reservoir and, consequently, at the interface. Continuity means that pressure between two
fluids is the same. Hair strains are considered to be negligible.

The pressure continuity equation must be written in terms of Φ, since the integral equation is written in
terms of the potential Φ. Putting the pressure into evidence in Eq. (3), we have:

p = (Φ− z)ρg (57)

The pressure continuity equation between the two fluids corresponding to the sub-region R1 (lower sub-
region) and R2 (upper sub-region) at the interface is written as:

(ΦR1 − zR1)ρR1 g = (ΦR2 − zR2)ρR2 g (58)

From the ratio of specific masses (α) and knowing that for a point on the interface, zR1 = zR2 = z, we have:

ΦR2 −αΦR1 = (1−α)z (59)

or

Φ5−αΦ3 = (1−α)z (60)

that is the potential compatibility equation for interface edge (3) and (5).
The potential is continuous within each sub-region, but has interface discontinuity; unlike pressure that

is continuous throughout the domain. That is, the pressure is unique at each point of the interface, no matter
which sub-region is contained. The normal flow to the interface has the same magnitude for both sub-regions,
but opposite directions.

The velocity equilibrium equation at the interface is given by

q5 +q3 = 0 (61)

Equation (61) is applied to interface collocation points, starting at the velocity after second collocation
point and ending before last collocation point. Intermediate interface collocation points require extra equations
in addition to these “coupling” equations. The extra equations are the same to those of the free surface of single
phase simulators, given by Eq. (50) for each collocation point.

3.3 Solution method

At time t = 0, it is assumed that the interface is horizontal. The developed simulator solves the potential
problem arising from the initial scenario by calculating the potentials and velocities in the normal direction
throughout the boundary and at the interface collocation points. The next step is to calculate the new interface
position through the calculated velocity by applying it to Eq. (50). As a result, the coordinates of each interface
collocation point are obtained at the end of time step ∆t.

A new scenario is then established for the next iteration. The boundary conditions are the same as those
initially prescribed. The new interface position is no longer assumed as horizontal, but determined by the
calculated coordinates. The code solves potential problem arising from this new scenario and performs the
calculation of new interface position. This whole procedure is repeated until the flow at interface reaches a
value near to zero. Thus, the evolution of interface over time is obtained.
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4 Results

In this work, the results are presented for single phase potential simulator (only one incompressible fluid inside
the reservoir), that is, to simulate the phenomenon of gas coning in order to be compared and validated for the
Hele-Shaw cell. The results are also presented for double phase simulator (two incompressible fluids inside the
reservoir) to simulate the phenomenon of water coning and to add more complexity for the new methodology
validation. These results are applied in horizontal wells.

The axysimmetric geometries are also presented, demonstrating and validating the effectiveness of new
tool developed in this work to study gas coning phenomena in axisymmetric oil reservoirs from vertical wells
and quick drawdown problem in an aquifer (water reservoir); the Isogeometric Boundary Element Method for
axisymmetric problems.

4.1 Hele-Shaw cell

The Hele-Shaw cell simulator was developed for comparison and validation with the potential single phase
simulator (only one incompressible fluid inside the reservoir) that are inserted in Fortaleza et al. [2], in order
to replicate the analytically solved case.

The settings for the Hele-Shaw cell are: 2.0 m wide, 4.0× 10−1 m high liquid column and 4.0× 10−3 m
thick. The extracted fluid is glycerin, with specific mass ρ = 1.255× 103 kg/m3 and dynamic viscosity µ =
1.0255 Pa.s.

The simulator data are:

– Fluid potential Φ = 4.0×10−1 m
– Well intensity (sink) Q =−2.718×10−3 m2/s.
– Well coordinates (sink) (xp;zp) = (1.0;0.0) m.
– Total time analysis tt = 104 s.
– Pump time on tp = 104 s.
– Time step size ∆t = 1.0 s.
– Time step amount npt = 104.

The hydraulic conductivity of the porous media is given by Zhang et al. [30], as a function of Hele-Shaw
cell thickness, through the following expression:

K =
ρgb2

12µ
(62)

where b is the thickness of the Hele-Shaw cell and g is the gravity acceleration. Therefore, the calculated
hydraulic conductivity K = 1.601×10−2 m/s.

Figure 4 presents the result for potential gradient with stable interface position at critical flow, in the simu-
lated case (Hele-Shaw cell). That is, a single phase isogeometric potential simulator (only one incompressible
fluid inside the reservoir) for the study of gas coning phenomenon in reservoirs with horizontal wells.

Fig. 4: Potential gradient with mobile interface at time t = tb = 104 s (IGA-BEM). Hele-Shaw Cell
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The stable interface position at critical flow for the single phase isogeometric potential simulator is shown
in Fig. 5 with the others results from the Fortaleza et al. [2] work.

Fig. 5: Stable interface position at critical flow: Hele-Shaw cell. Comparing different results

Figure 5 shows the results for analytical, MATLAB Reservoir Simulation Toolbox (MRST), Boundary
Element Method (BEM) and Isogeometric Boundary Element Method (IGA-BEM). The new tool to study gas
coning - the single phase isogeometric potential simulator where only one incompressible fluid is inside the
reservoir - presented good agreement with the other tools for the stable interface position at critical flow. The
isogeometric formulation has a different behaviour close to the singularity due the imposing too high level of
continuity close to it.

Finally, the result for Hele-Shaw cell simulation can be compared with the other results in the literature
(Fortaleza et al., [2]), as well as for the analytically solved case, as can be seen from Table 2:

Table 2: Hele-Shaw Cell Simulator

Simulator Critical flow [m/s] Center knot height [m]
Analytical result 2.54×10−3 4.243×10−2

Potential single phase 2.59×10−3 4.228×10−2

Potential double phase 2.60×10−3 4.416×10−2

Isogeometric potential single phase 2.54×10−3 3.877×10−2

The result for the critical flow rate found by the simulator developed in this work showed exactly the same
value for the analytical result, thus validating the new proposed methodology: IGA-BEM for the study of the
gas coning phenomenon in homogeneous reservoirs with horizontal wells, through the use of a Hele-Shaw
cell. For the isogeometric potential single phase case, there is an agreement up to the third digit regarding
the analytical result. For the central knot height, however, it is showed an error of 8.6%. This difference can
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be explained by the fact that both the analytical formulation and the formulation of the standard boundary
elements (potential single phase and potential double phase), provide for the formation of a “spit”, with a sharp
corner indicating discontinuity in the derivative. Since the isogeometric formulation guarantees the continuity
of the first derivative, the “spit” is not formed and the surface of the midpoint presents smooth. Therefore, the
difference in the value of central knot height. A proposal to improve the agreement with analytical results, is
the enrichment of NURBS with functions that allow discontinuity of the derivatives. However, this enrichment
was outside the scope of this work.

The simulation validates the efficiency for the using of NURBS functions through the Boundary Element
Method, to analyse the gas/water coning phenomenon into a homogeneous reservoir as a new alternative tool
to study critical flows in wells.

4.2 Axisymmetric problems

This section presents results for the simulation of gas coning phenomenon through a new tool that was devel-
oped to study the behavior of oil extraction in an axisymmetric reservoir in a vertical well and, finally, for a
quick drawdown problem in an aquifer.

4.2.1 Gas Coning - Vertical well

The settings for first geometry, gas coning phenomena, are: 1.0 m wide and 1.0 m oil column high. The ex-
tracted fluid is oil with specific mass ρo = 1.245×103 kg/m3 and dynamic viscosity µo = 4.0×10−1 Pa.s.

The simulator data are:

– Hydraulic conductivity K = 5.725×10−3 m/s.
– Well intensity (sink) Q =−5.697×10−4 m2/s.
– Well coordinates (sink) (xp;zp) = (0.0;5.0×10−1) m.
– Total time analysis tt = 1.5×103 s.
– Pump time on tp = 1.5×103 s.
– Time step size ∆t = 5.0×10−1 s.
– Time step amount npt = 3.0×103.

Figure 6 shows the IGA-BEM code in an axisymmetric geometry - gas coning phenomena.
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Fig. 6: Potential gradient in an axisymmetric reservoir (gas coning)

Figure 7 shows the comparison between both codes, Isogeometric Boundary Element Method and conven-
tional Boundary Element Method, about variation of midpoint of the free surface in a reservoir with porosity
n = 0.2. When the medium porosity is considered, the convergence velocity for the stabilization of the mid-
point of the free surface is higher for both codes, since the real average velocity of the fluid inside pores
increases according to Eq. (4). They basically present the same value to height of cone edge: 7.826×10−1 m
and 7.832×10−1 m to AXI-BEM and AXI-IGA-BEM, respectively. A difference of 0.08 %.

Fig. 7: Comparison between vertical position of the midpoint on free surface for AXI-IGA-BEM and AXI-BEM codes

The results showed that the code developed in this work (AXI-IGA-BEM) leads a higher time to stabilize
than the AXI-BEM due the using of the NURBS functions. The reasons for the difference in the convergence
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time between the AXI-IGA-BEM and the AXI-BEM have been studied, but no conclusions have been reached
for this divergence. Since the formulation developed is quasi static, the time variable does not appear explicitly
in this one. However, the real reasons are under study.

4.2.2 Quick Drawdown - Aquifer

A numerical experiment was carried out for the quick drawdown problem in an axisymmetric aquifer (water
reservoir) for comparison with Rafiezadeh and Ashtiani [31] work using Boundary Element Method (BEM).
They validated their work with the Hall [32] experiment tested in a 3D-axisymmetric sand tank and through of
other researchers that solved it numerically. The present result is compared with Taylor and Luthin [33] work
using Finite Difference Method (FDM) and with Cooley [34] work using Finite Element Method (FEM).

The axisymmetric problem can be compared directly with 3D problem since the three-dimensional object
be developed through the rotation from a two-dimensional plane on an axial symmetry axis. If the loads are
axisymmetric, you can analyze the ring using only a two-dimensional section representation as it is showed in
this case for comparison.

For quick drawdown problems, the water level inside the axisymmetric well is dropped from He (external
height) to a constant value Hw (well height) at t = 0 and stays at that level for all time. There is not a sink (or
source) in quick drawdown problems.

The reservoir simulator data are:

– Hydraulic conductivity K = 4.051×10−3 m/s.
– Medium porosity n = 0.3.
– Well radius rw = 1.2192×10−1 m.
– Well height Hw = 3.048×10−1 m.
– External radius re = 1.9507 m.
– External height He = 1.2192 m.
– Time step size ∆t = 6 s.
– Time step amount npt = 3.0×102.
– Total time analysis tt = 1.8×103 s.

The boundary conditions are shown in Fig. 8.
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Fig. 8: Boundary conditions of the quick drawdown problem

1. Φ = He, r = re, 0≤ z≤ He.
2. Φ = Hw, r = rw, 0≤ z≤ Hw.
3. Φ = z, r = rw, Hw ≤ z≤ H.
4. λ(t = 0) = Φ = He, Hw (t = 0) = H (t = 0) = He.
5. q = 0, rw ≤ r ≤ re, z = 0.

The comparison of results are shown in the Fig. 9 through present axisymmetric modeling for the quick
drawdown analysis in a Hall’s well problem to isotropic case.



A well simulator for homogeneous reservoirs based on formulations of the isogeometric boundary element method 21

Fig. 9: Hall’s well problem for isotropic case. Present result through axisymmetric modeling. Comparing different numerical
methods for the quick drawdown analysis

The Hall’s well problem in this case is applied only for a isotropic media. The final steady-state point for
Rafiezadeh and Ashtiani [31] work is H = 8.763×10−1 m and for the present work is H = 8.890×10−1 m; a
difference of 1.4 %. The result presents a good agreement with the others results in the literature adding a new
contribution through axisymmetric modeling and Isogeometric Boundary Element Method (IGA-BEM) using
NURBS curves.

4.3 Water coning

The potential double phase simulator was used to obtain an available result in an oil extraction reservoir sce-
nario subject to the occurrence of water coning. The settings for the geometry are: 1.6 m wide, 2.0×10−1 m oil
column high and 2.0×10−1 m water column high. The extracted fluid is oil with specific mass ρo = 1.025×
103 kg/m3 and dynamic viscosity µo = 3.0× 10−4 Pa.s; the water has specific mass ρw = 6.888× 102 kg/m3

and dynamic viscosity µw = 3.0×10−3 Pa.s.
The simulator data are:

– Hydraulic conductivity (water sub-region) Kw = 3.319×10−5 m/s.
– Hydraulic conductivity (oil sub-region) Ko = 2.23×10−6 m/s.
– Well intensity (sink) Q =−7.241×10−7 m2/s.
– Well coordinates (sink) (xp;zp) = (8.0×10−1;3.0×10−1) m.
– Total time analysis tt = 3.0×104 s.
– Pump time on tp = 3.0×104 s.
– Time step size ∆t = 1.0 s.
– Time step amount npt = 3.0×104.

Figure 10 shows the evolution of deformed interface for the sub-critical flow found - last time step, 3.0×
104 s.
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Fig. 10: Deformed interface for the sub-critical flow found - last time step

The result shows water coning phenomena growing into the reservoir as time passes and the tip of cone
tends to touch the sink, as it is expected through literature (Ruiz et al., [35]). Therefore, this section adds one
more contribution to validate the new methodology through the isogeometric formulation on the boundary
elements method in a problem with more complexity.

5 Conclusions

The main characteristics and information regarding the simulator of horizontal and vertical wells (axisymmet-
ric problem) in homogeneous reservoirs were gathered in this work. The discretization was carried out for the
single and double phase potential flow model, in which it was developed through formulations of the Isoge-
ometric Boundary Elements Method with application in axisymmetric problems for the study of phenomena
of the gas/water coning in oil reservoirs, aquifers (water reservoirs) analysis as well as the existing boundary
conditions.

The isogeometric formulation has two characteristics that differentiate them from the traditional formula-
tion of the boundary element method, both arising from the fact that NURBS is used as shape functions instead
of Lagrange polynomials. The first is that the geometries most commonly used in engineering problems, such
as circumferences, ellipses, spheres, cylinders, among others, can be represented exactly. The second is that
in NURBS there is continuity of derivatives up to the order n−1, that is not obtained by the use of Lagrange
polynomials in the standard BEM.

An important contribution of this work was the development of an isogeometric formulation of the Bound-
ary Element Method for axisymmetric problems, where no formulation of this type applied to IGA-BEM was
found in the literature. The fundamental axisymmetric solution found in the literature in the implementations of
the standard BEM, is obtained through the integration of the fundamental 3D solution around the axis of axial
symmetry, which is used in the Isogeometric formulation presented in this work. The fundamental solutions are
written according to elliptical integrals and the treatment of singularities in the influence matrices was carried
out through the Telles Transform.

The union of NURBS type functions in the Integral Boundary Equation discretized together with funda-
mental axisymmetric solutions, has become a new tool used in simulation of axisymmetric problems. The
results for the well simulator were compared with the literature and showed a good agreement between the
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cases studied: Hele-Shaw cell (oil reservoir) and Hall well (water reservoir). The Axisymmetric formulation
was validated by modeling problems in the literature that present analytical solutions.

The work showed that the IGA-BEM with application in axisymmetric problems is a new competitive
tool not only for conventional BEM, but also for FDM, FVM and FEM. The method evidenced the efficacy
in treatment of simplified multiphase flow problems in porous media, that is, homogeneous, incompressible
and isotropic, where the dynamic viscosity of the fluids that saturate the rock are considered to be constant;
especially when there are movable borders involved. The axisymmetric and isogeometric formulations allied
to the BEM is an alternative to increase the precision of implemented algorithms. Besides, the amount of data
necessary to model is reduced, providing a small linear system, with few degrees of freedom.



24 Lúcio G. Nascimento et al.

6 List of symbols

Roman

A = Unknown variables vector

A = Cross-sectional area

b = Unknown variables vector

B = Control points

b = Thickness

c = Multiplying constant

C = Curve function

e = Unit normal vector

E = Transformation matrix

F = Interface function

g = Gravity acceleration

G = Matrix

H = Matrix

H = Height

K = Hydraulic conductivity

L = Length

m = Parameter

n = Normal vector

n = Porosity

N = Basis function

p = Pressure;Load point

q = Apparent velocity vector

q = Volumetric flow rate per unit cross-sectional area

Q = Volumetric flow rate;Field point

r = Radial coordinate;Radius

R = Rational basis function

s = Sink vector

t = Time;Curve parameter

u = Real average velocity vector;

u = Knot vector values

U = Knots vector

x = Variable vector;Position vector

V = Translation vector

x = Ordinate axis

y = Abscissa axis

z = Vertical and axial coordinate
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Greek

α = Specific mass ratio

β = Weighting factor

Γ = Boundary

δ = Dirac delta

∆ = Finite difference

∇ = Mathematical operator

η = Free surface slope angle

θ = Tangential direction

κ = Absolute permeability

λ = Interface height function

µ = Fluid dynamic viscosity

ρ = Fluid specific mass

Φ = Velocity potential (piezometric head)

ω = Weight function

Subscripts

axi = relative to the axial

d = relative to the source point

e = relative to the elliptic; relative to the external

g = relative to the gas

i = relative to the specific control point

j = relative to the quantity of sink

k = relative to the curve order

m = relative to the time step

o = relative to the oil

p = relative to the pump

s = relative to the sink

t = relative to the top; relative to the total

w = relative to the well; relative to the water

x = relative to the arbitrary control point

z = relative to the height of interface

2D = relative to the two-dimensional

3D = relative to the three-dimensional

Superscripts

c = relative to the control point
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