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Abstract We compute the next-to-next-to-leading order
(NNLO) QCD corrections to event shape distributions and
their mean values in deep inelastic lepton–nucleon scattering.
The magnitude and shape of the corrections varies consid-
erably between different variables. The corrections reduce
the renormalization and factorization scale uncertainty of
the predictions. Using a dispersive model to describe non-
perturbative power corrections, we compare the NNLO QCD
predictions with data from the H1 and ZEUS experiments.
The newly derived corrections improve the theory descrip-
tion of the distributions and of their mean values.

1 Introduction

Event shape variables allow various kinematical properties
of hadronic final states to be analysed. The resulting event
shape distributions were measured extensively in e+e− [1]
and ep [2] collisions, enabling a variety of precision QCD
studies, including measurements of the strong coupling con-
stant, resummation and parton-shower effects, investigations
of non-perturbative power corrections, and tuning of multi-
purpose event simulation models.

Precision studies of event shapes distributions demand
that their theoretical description is of comparable accuracy
to the experimental measurements, requiring the calculation
of higher order contributions in perturbative QCD. For e+e−
event shapes, an appropriate level of theory precision was
achieved already some time ago with the calculation of the
next-to-next-to-leading order (NNLO) QCD corrections [3–
9] in the form of generic parton-level event generators that
allow any infrared-safe event shape distribution to be com-
puted. These fixed-order NNLO results can be combined with
resummation of large logarithmic corrections to next-to-next-
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to-leading logarithmic level (NNLL) and beyond for specific
event shape variables [10–15].

For event shapes in deeply inelastic ep scattering (DIS),
the currently available level of theoretical accuracy is lower,
with fixed-order results only known to next-to-leading order
(NLO) [16–18] and resummation at next-to-leading logarith-
mic level (NLL) [19–22]. The theory uncertainty (as quanti-
fied through variation of the renormalization and factoriza-
tion scales) on these predictions is often comparable to or
larger than the experimental errors on the event shape mea-
surements from H1 [23] and ZEUS [24], thereby limiting the
extraction of fundamental QCD parameters from these data.
To overcome this limitation requires an improvement of the
fixed-order predictions to NNLO, which is presented in the
following.

This paper is structured as follows. In Sect. 2, we sum-
marise the definitions of the most common DIS event shape
variables, and the kinematical ranges covered by the H1 [23]
and ZEUS [24] measurements. The calculation of NNLO
corrections to event shape distributions is performed in the
NNLOJET framework [25] and follows closely the related
NNLO calculations of jet production in DIS [26,27] and is
documented in Sect. 3. To compare the resulting parton-level
NNLO predictions with experimental hadron-level data, we
employ a dispersive model [28–30], described in Sect. 4,
determining the non-perturbative power corrections to the
event shape distributions. We perform detailed comparisons
of the hadron-level predictions to event shape data from H1
and ZEUS in Sect. 5. Our findings are summarized in Sect. 6.

2 Event shape variables

Event shapes in DIS are measured in the Breit frame, defined
by the momentum directions of the virtual photon (current
axis) and the proton (remnant axis), and boosted such that the
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energy component of the virtual photon momentum vanishes.
The Breit frame provides a separation in pseudorapidity η

between the proton remnant (remnant hemisphere, η > 0)
and the hard scattering process (current hemisphere, η < 0).
The event shape variables are dimensionless quantities that
are determined from the four-momenta ph = (Eh,ph) of
all particles in the current hemisphere. The different vari-
ables [22], which are generically denoted as F , are defined
as follows.

The thrust τγ measures the longitudinal momentum com-
ponents projected onto the current axis:

τγ = 1 − Tγ , with Tγ =
∑

h |pz,h |
∑

h |ph | . (1)

Thrust τT is the thrust with respect to the thrust axis in the
direction nT which maximizes the longitudinal momentum
components projected onto this axis:

τT = 1 − TT , with TT = max
nT

∑
h |ph · nT |
∑

h |ph | . (2)

This is analogous to the definition of thrust in e+e− colli-
sions.

The jet mass parameter ρ is the squared invariant mass
in the current hemisphere, normalized to four times the total
energy squared:

ρ = (
∑

h ph)2

(2
∑

h Eh)2 . (3)

The jet broadening Bγ measures the sum of the transverse
momenta with respect to the current axis:

Bγ =
∑

h |pt,h |
2

∑
h |ph | . (4)

As with thrust, the jet broadening can also be defined with
respect to the thrust axis:

BT =
∑

h |ph × nT |
2

∑
h |ph | . (5)

Finally, the C-parameter is derived from the linear
momentum tensor �i j :

�i j = 1
∑

h |ph |
∑

h

pih p
j
h

|ph | . (6)

with the eigenvalues λ1, λ2, λ3 of �i j yielding

C = 3(λ1λ2 + λ2λ3 + λ3λ1) . (7)

Equivalently, it can be expressed as

C = 3

2

∑
h,h′ |ph ||ph′ | sin2 θhh′

(
∑

h |ph |)2 , (8)

where θhh′ is the angle between particles h and h′.
In the experimental analysis, the event shapes are com-

puted from the hadron momenta in the current hemisphere,
while the theoretical calculation uses the parton momenta.
For the Born-level contribution to inclusive DIS, lepton-
quark scattering, only the final state quark is produced in the
current hemisphere, with thrust axis and current axis coin-
ciding. Consequently, all event shape variables defined above
become trivially zero. The first non-trivial contribution to the
event shape distributions arises from two-parton final states:
eq → eqg or eg → eqq̄ , such that the leading-order (LO)
perturbative contribution is O(αs). The event shape distribu-
tions are thus closely related to DIS two-jet production in the
Breit frame.

In higher-multiplicity final states, it is possible that all par-
tons scatter into the remnant hemisphere, leaving the current
hemisphere empty. To ensure infrared safety of the observ-
ables, these events are not accepted by demanding that the
total energy in the current hemisphere of an event exceeds
some minimum value εlim

∑

h

Eh > εlim . (9)

Event shapes in deep inelastic scattering have been mea-
sured at HERA by the H1 [23] and ZEUS [24] experi-
ments, based on the analysis of electron-proton scattering
data taken at a centre-of-mass energy of

√
s = 319 GeV

(the H1 data set also contains a small fraction of data taken
at

√
s = 301 GeV). The DIS kinematics in the process

e(k) + p(p) → e(k′) + X (pX ), with momentum trans-
fer q = k′ − k is described by the variables Q2 = −q2,
x = Q2/(2q · p) and y = Q2/(xs).

The H1 analysis [23] selects events with

0.1 < y < 0.7, 196 GeV2 < Q2 < 40000 GeV2, (10)

which are then classified into bins in Q = √
Q2, as listed in

Table 1. For the event shape determination, εlim = Q/10 is
used.

The ZEUS analysis [24] covers the kinematic range

0.0024 < x < 0.6 , 0.04 < y < 0.9,

80 GeV2 < Q2 < 20480 GeV2, (11)

with events binned into in (Q2, x), described in Table 2.
The energy cut in the current hemisphere used by ZEUS is
εlim = Q/4.

123



Eur. Phys. J. C          (2019) 79:1022 Page 3 of 14  1022 

Table 1 Kinematic boundaries
of the bins in Q in the H1
analysis [23]

Bin Q(GeV)

1 14 16

2 16 20

3 20 30

4 30 50

5 50 70

6 70 100

7 100 200

Table 2 Kinematic boundaries of the bins in Q2 and x in the ZEUS
analysis [24]

Bin Q2(GeV2) x

1 80 160 0.0024 0.010

2 160 320 0.0024 0.010

3 320 640 0.01 0.05

4 640 1280 0.01 0.05

5 1280 2560 0.025 0.150

6 2560 5120 0.05 0.25

7 5120 10240 0.06 0.40

8 10240 20480 0.10 0.60

Both experiments normalize the event shape distributions
to the DIS cross section integrated over the kinematical bin
under consideration, which is determined without applying
the εlim cut.

Both experiments performed measurements [23,24] of the
event shape distributions for F = τγ , τT , ρ, Bγ , C . In addi-
tion, they also measured the mean values 〈F〉 for these vari-
ables, supplemented in the ZEUS study by a measurement of
the mean value 〈BT 〉 of the jet broadening with respect to the
thrust axis. The measurements of the mean values are done
for the same kinematical bins, Tables 1 and 2, as used for the
distributions.

3 QCD corrections to event shapes

The event shape variables defined above assume non-trivial
values only for final states containing two or more partons.
Consequently, the event shape distributions in DIS receive
the same parton-level contributions as two-jet production in
DIS. Higher-order QCD corrections to event shape distribu-
tions can thus be obtained from the corresponding calcula-
tion for di-jet production by replacing the jet reconstruction
algorithm by computations of the event shape variables.

We calculate the differential distributions and mean values
for the DIS event shapes with the parton-level Monte Carlo
event generator NNLOJET, by extending the existing calcula-
tion of NNLO corrections to di-jet production in DIS [26,27].

It combines the contributions from four-parton production at
tree-level [31–33], three-parton production at one loop [34–
37] and two-parton production at two loops [38–41], using
the antenna subtraction method [42–44] to isolate infrared
singular terms from the different contributions, which are
then combined to yield numerically finite predictions for
arbitrary infrared-safe observables constructed from the par-
ton momenta. Besides for di-jet production at NNLO, the
same ingredients and setup have been used previously in the
computation of N3LO corrections to single jet production
in DIS [45], in extractions of the strong coupling constant
from DIS jet data [46,47], and in studies of diffractive di-jet
production [48]. The calculations have also been extended
to jet production in charged current DIS [49,50] at the same
perturbative orders.

We compute the event shapes for electron-proton colli-
sions with

√
s = 319 GeV, using the NNPDF3.1 parton

distributions with αs(MZ ) = 0.118 and for NF = 5 mass-
less quark flavours. Central renormalization and factorization
scales are fixed to μF = μR = Q, and theory uncertainties
are estimated by the envelope of varying these scales inde-
pendently by a factor two up and down, avoiding the pairings
of variations in opposite directions (seven-point scale vari-
ation). Event selection cuts on the lepton variables and on
∑

h Eh are applied according to the H1 [23] and ZEUS [24]
analyses, and events are then classified into the different kine-
matical bins of Tables 1 and 2. The total hadronic DIS cross
section for each kinematical bin (required for the normal-
ization of the event shape distributions and mean values)
is obtained to NNLO from NNLOJET, based on the one-jet
calculation to this order [45]. Central renormalization and
factorization scales are used for the normalization.

3.1 Event shape distributions

The event shape distributions are computed as histograms in
the event shape variables. We use a considerably finer bin
resolution than in the experimental analyses [23,24], which
will subsequently allow us to apply hadronization corrections
that result in a dynamical shift of the event shape variables.
The histograms are defined in terms of variable ranges and
number of equal-sized bins:

τγ : [0, 1], 100 ,

τT : [0, 0.5], 100 ,

ρ : [0, 0.25], 80(H1)/100(ZEUS) ,

Bγ : [0, 0.5], 100 ,

C : [0, 1], 100 . (12)

The fixed-order calculation for an event shape F diverges
in the limit F → 0, where all-orders resummation of large
log(F)-terms is required. In this limit, the fixed-order expres-
sions become meaningless, and we accordingly apply cuts on
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Fig. 1 Fixed-order predictions for the event shape distribution for H1
kinematics [23] in Q = 30–50 GeV bin: LO (green), NLO (blue) and
NNLO (red), for H1 kinematics [23]. The lower frames display the ratio
to the NLO predictions for the central scale μ2 = Q2

the minimum values of each shape variable, which set the first
few bins of the distributions to zero:

τγ ≥ τ cut
γ = 0.05,

τT ≥ τ cut
T = 0.025,

ρ ≥ ρcut = 0.01,

Bγ ≥ Bcut
γ = 0.05,

C ≥ Ccut = 0.05. (13)

These cuts are typically within the first bin of the experi-
mental analysis, which should anyhow be discarded in the
comparison of fixed-order theory and experimental data.

Figure 1 displays the fixed-order predictions (re-binned
from the initial histograms by combining four adjacent bins
each) for the H1 kinematics in the Q = 30 − 50 GeV bin.
Since the qualitative behaviour of the higher-order correc-
tions to the distributions is similar for all kinematical bins,
we show the fixed-order distributions without power correc-
tions only for one representative bin. The quantitative size
of the corrections and of their uncertainties decreases with
increasing Q, mainly due to the decrease in the running cou-
pling constant αs .

In general, we observe that the NNLO corrections in
the bulk of all distributions are typically positive (up to
+ 20%), often displaying only a marginal or no overlap of the
uncertainty bands at NLO and NNLO. The scale uncertainty
decreases from NLO (∼10%) to NNLO (∼5%). Even in the
bulk, the higher-order corrections are not uniform between
the distributions, each displaying a non-trivial shape in the
NNLO/NLO ratio.

Towards the kinematical edges F → 0 and F → Fmax,
the higher-order corrections behave differently for each dis-
tribution, often displaying large effects well beyond the scale
uncertainty estimates. For F → Fmax, these features are
caused by two different but related issues. For some of the
shape variables, Fmax can not yet be realised in the Born pro-
cess, owing to its low multiplicity. This is the case for the
C-parameter which has a Born-level upper limit of 3/4 and
for τT with an upper limit of 0.293. Higher order real radi-
ation corrections allow to attain larger values of F , thereby
resulting in a kinematical mismatch between real and vir-
tual contributions (Sudakov shoulder, [51]), which (although
finite) produces large perturbative corrections in the vicinity
of the Born-level kinematical limit.

In the case of DIS event shape variables, the kinemat-
ical constraints of the Born process produce further struc-
tures that narrow down the dimensionality of the final state
phase space for specific values of different variables. These
ridges in the multi-dimensional phase space were investi-
gated in detail in [21] and produce kinks and spikes in the
one-dimensional event shape distributions. These are some-
times already present at leading order, and go along with
large and unstable higher order corrections in the immedi-
ate vicinity of the exceptional points, which are visible in
particular in the distributions in C and τT in Fig. 1. These
features are typically localised in small patches of the phase
space. For sufficiently large bin sizes, their impact is diluted
to an invisible level. High-resolution measurements of event
shape distributions, for example at a future electron-ion col-
lider [52] or at the LHeC [53] will be able to resolve these
features, thereby potentially necessitating resummation of
large corrections associated with them.

At low values of F , the fixed-order predictions contain
logarithmic terms log F at each order in perturbation theory,
which spoil the convergence of the fixed-order perturbative
expansion. In Fig. 1, the onset of these effects is visible in
particular in the Bγ distribution, while its onset takes place
only at lower values of F in all other distributions. A descrip-
tion of the event shape distributions over the full kinematical
range, and extending towards lower values of F than probed
by currently available measurements [23,24] will need to
include the resummation of these log F terms, which is cur-
rently known to next-to-leading logarithmic level [19–22] for
all distributions.
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Fig. 2 Fixed-order predictions for the mean value of the event shapes
at LO (green), NLO (blue) and NNLO (red) compared to H1 data [23]

3.2 Mean values

The mean values of the different event shapes variables are
computed using NNLOJET by weighting each event with the
reconstructed value of the event shape variable under con-
sideration. The phase space integrations are performed by
imposing only a very low technical cut-off of Fmin = 10−4

on the event shape variables, since the weighting with the
shape variable regulates the divergent behaviour of the inte-
grals for F → 0, rendering the mean value integrals finite.
The numerical stability of the mean value integrals has been
checked with an even lower technical cut-off of Fmin = 10−5,
from which we conclude that Fmin = 10−4 is already suffi-
cient for a stable result. The mean values are also normalized
to the inclusive hadronic cross sections.

The fixed-order predictions for the mean values are dis-
played in Figs. 2 and 3, for the H1 [23]and ZEUS [24] kine-
matics. With the exception of the broadenings 〈Bγ 〉 and 〈BT 〉,
the NNLO corrections to the mean values are positive for
all event shapes, and decrease in magnitude with increasing
Q2. The NNLO predictions are often at the upper boundary
of the NLO theory uncertainty band, for the lowest Q2 bins
they are even outside the NLO band. For the broadenings,
the NNLO corrections to 〈Bγ 〉 are positive at low Q2, and

Fig. 3 Fixed-order predictions for the mean value of the event shapes at
LO (green), NLO (blue) and NNLO (red) compared to ZEUS data [24]

become negative at large Q2, to 〈BT 〉 they display the oppo-
site behaviour, and are smaller in absolute magnitude. For all
mean values, inclusion of the NNLO corrections leads to a
reduction of the scale uncertainty compared to NLO, which
is most pronounced for the broadenings, whereas being more
modest for the other shape variables. For large values of
Q2 > 2500 GeV2, the NNLO theory uncertainty is limited
to below 5%.

Comparing the fixed-order predictions to the measure-
ments of the mean values from H1 and ZEUS, we observe
that the data are considerably above the theory predictions
throughout all shape variables and for all values of Q2,
although the discrepancy is most pronounced at low Q2. This
behaviour indicates the relevance of power corrections from
hadronization effects, which can have large effects on the
mean values [28–30].

4 Hadronization effects

In the previous section, we computed higher-order correc-
tions to the DIS event shape distributions and mean values
at parton level. To compare these predictions with hadron-
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level data requires accounting for the impact of the parton–
hadron transition, which is a non-perturbative process. Con-
sequently, these hadronization effects cannot be computed
in perturbation theory, but require a non-perturbative model
description. The hadronization corrections are expected to be
suppressed by positive powers of �/Q, such that their rela-
tive numerical impact is decreasing with increasing Q. In the
following, we employ the dispersive model [28] to estimate
the leading power corrections at order (�/Q) to event shape
distributions. This model has been worked out in detail for
the DIS event shapes in Ref. [29], and its implications are
briefly summarized in the following.

In the dispersive model, an effective coupling αeff is intro-
duced at low scales, which is matched to the running QCD
coupling αs(μ) at a scale μI = 2 GeV. This gives a con-
stant α0 which is defined as the first moment of the effective
coupling below the scale μI ,

α0(μI ) = 1

μI

∫ μI

0
dμαeff (μ) . (14)

The power corrections are suppressed by powers of 1/Q, and
result in a shift of the perturbative differential distribution

dσ hadron(F)

dF
= dσ parton(F − aF P)

dF
, (15)

where the power correction P is universal for all the event
shape variables. The perturbative ingredients to the disper-
sive model are the running of the coupling constant and the
relation between the MS-coupling and the effective coupling,
whose definition [54] absorbs universal correction terms
from the cusp anomalous dimension. It can be expanded in
αs(Q), and its expression up to NNLO is given by [55,56]:

P = 8CF

π2 MμI

Q

{

α0(μI ) − αs(Q)

− β0

2π

(

log
Q

μI
+ K

β0
+ 1

)

α2
s (Q)

−
[
β1

2

(

log
Q

μI
+ 2L

β1
+ 1

)

+2β2
0

(

log
Q

μI
+ K

β0
+ 1

)

+β2
0 log

Q

μI

(

log
Q

μI
+ 2K

β0

) ]
α3
s (Q)

4π2

}

, (16)

with M = 1.49 a constant normalization factor (Milan fac-
tor [30,57]) accounting for higher-order contributions. In our
numerical results, we use α0(μI ) = 0.5 at μI = 2 GeV,
which has been estimated from fits to event shape moments
in DIS [23,24,58] and e+e− annihilation [56]. The beta-
function coefficient and cusp anomalous dimension [59] in
the above expression are:

β0 = 11

3
CA − 4

3
TF NF ,

β1 = 34

3
C2

A − 20

3
CATF NF − 4CFTF NF ,

K =
(

67

18
− π2

6

)

CA − 10TF NF

9
,

L = C2
A

(
245

24
− 67

9

π2

6
+ 11

6
ζ3 + 11

5

(
π2

6

)2
)

+CANF

(

−209

108
+ 10

9

π2

6
− 7

3
ζ3

)

+CF NF

(

−55

24
+ 2ζ3

)

+ N 2
F

(

− 1

27

)

, (17)

with CA = 3, CF = 4/3, TF = 1/2. The coefficients aF
depend on the event shape variable, they were computed
in [29] and are tabulated in [58]. Their values are repeated
here:

aτγ = 1 , aτT = 1 , aρ = 1

2
,

aBγ = 1

2
a′
B , aBT = 1

2
a′
B , aC = 3

2
π , (18)

where the shift of the jet broadening has an additional
enhancement [60] given by

a′
B = π

2
√

2CFαs(1 + K
2π

αs)

+ 3

4
− β0

12CF
+ η0, (19)

with αs evaluated at the scale μ = e− 3
4 μR and η0 = −0.614.

For this analysis a′
B varies from 1.6 to 2.3.

The dispersive model is based on an analytic treatment of
hadronization effects on a two-parton correlator [28], which
corresponds to the mean value integral of each event shape.
The effect of the dispersive power correction on the mean
values is additive:

〈F〉 = 〈F〉pert. + aF P, (20)

where 〈F〉pert. is the mean value obtained in fixed-order per-
turbation theory, described in Sect. 3.2 above.

When applied to differential event shape distributions, the
power correction P in the shift (15) can in principle depend
on the numerical value of F . Using a constant shift P for the
full distribution amounts to an approximation, which may be
overcome by an improved treatment of the non-perturbative
corrections.

In combining the fixed-order predictions derived in the
previous section with the power corrections, we truncate the
factor P in (16) to α2

s (Q) for NLO, and to α3
s (Q) for NNLO.

Inclusion of the α3
s (Q) terms leads to a substantial reduc-

tion of P , with PNNLO ≈ 0.60 PNLO at Q = 15 GeV and
PNNLO ≈ 0.75 PNLO at Q = 100 GeV.

123



Eur. Phys. J. C          (2019) 79:1022 Page 7 of 14  1022 

Fig. 4 Event shape distribution for thrust with respect to boson axis: τγ

fixed-order predictions at NLO (dashed cyan), NNLO (dashed brown),
and corrected for hadronization effects at NLO (blue) and NNLO (red),
compared to H1 data [23]. The lower frames display the ratio to the
NLO prediction for the central scale μ2 = Q2

5 Results

With the inclusion of power corrections, the fixed-order
parton-level predictions can now be compared to hadron-
level data from the HERA experiments on event shape dis-
tributions and mean values.

5.1 Event shape distributions

Figures 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13 display the theory
predictions obtained by combining the fixed-order predic-
tions up to NNLO with power corrections computed using
the dispersive model as described in the previous section
to the experimental data from H1 [23] and ZEUS [24]. To
illustrate the magnitude of the power corrections, the uncor-
rected fixed-order predictions for central scales μ = Q are
indicated by blue lines at NLO and brown lines at NNLO.
The shift (15) is applied on the high-resolution histograms
(12) which were computed with a lower cut-off affecting
their first bin (where all-order resummation of large log-
arithmic corrections [19–22] is required to obtain a finite
prediction). The shifted high-resolution histograms are then

Fig. 5 Event shape distribution for thrust with respect to boson axis:
τγ fixed-order predictions at NLO (dashed cyan) and NNLO (dashed
brown), and corrected for hadronization effects at NLO (blue) and
NNLO (red), compared to ZEUS data [24]. The lower frames display
the ratio to the NLO prediction for the central scale μ2 = Q2

combined to the number of bins used in the experimental
measurements:

τγ : [0, 1], 10 ,

τT : [0, 0.5], 10 ,

ρ : [0, 0.25], 8(H1)/10(ZEUS) ,

Bγ : [0, 0.5], 10 ,

C : [0, 1], 10 . (21)

Owing to the interplay of the lower cut-off on the dis-
tributions and the power correction shift, the prediction for
the left-most non-vanishing bin of each distribution is unre-
liable, and should not be taken into account when comparing
the experimental data with the theory predictions. A predic-
tion for F → 0 will have to include resummation in order to
become meaningful. This limitation should be kept in mind
in the following comparisons.

For the thrust distribution τγ , Figs. 4 and 5, we observe
that the NNLO corrections at low and moderate values of Q2

are leading to an increase of the distribution in the bulk, and
a slight decrease at high and low τγ . At the highest values
of Q2, the NNLO corrections become very small and nega-
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Fig. 6 Event shape distribution for jet mass: ρ fixed-order predic-
tions at NLO (dashed cyan), NNLO (dashed brown), and corrected for
hadronization effects at NLO (blue) and NNLO (red), compared to H1
data [23]. The lower frames display the ratio to the NLO prediction for
the central scale μ2 = Q2

tive even in the bulk. Overall, the NNLO corrections improve
the description of the data. Compared to NLO, inclusion of
the NNLO correction leads to a reduction of the scale uncer-
tainty. This reduction is only moderate at the lowest values
of Q2, where the NNLO scale uncertainty remains at the
6% level. At higher Q2, the reduction of scale uncertainty
at NNLO is more pronounced, leading to predictions with
residual uncertainty below 4%. These uncertainties should
be compared to the experimental errors. The ZEUS data [24]
are slightly more precise than the H1 data [23], and also reach
to lower values of Q2. In the low-Q2 bins, the NNLO scale
uncertainty remains larger than the experimental errors, as
was also observed [61] for jet production in DIS at low Q2.
For moderate and high values of Q2, the scale uncertainty
is now well below the experimental errors, thereby allowing
for the use of the event shape distributions in precision QCD
studies.

A similar pattern is also observed in the jet mass distribu-
tion, Figs. 6 and 7: positive NNLO corrections in the bulk at
moderate Q2, which turn negative when going to large values
of ρ or to large Q2. At the lowest values of Q2, the NNLO
corrections are negative throughout the distribution (despite

Fig. 7 Event shape distribution for jet mass: ρ fixed-order predictions
at NLO (dashed cyan) and NNLO (dashed brown), and corrected for
hadronization effects at NLO (blue) and NNLO (red), compared to
ZEUS data [24]. The lower frames display the ratio to the NLO predic-
tion for the central scale μ2 = Q2

positive corrections at parton-level) due to the reduced size
of the power correction at NNLO. The NNLO corrections
lead to an improved description of the shape of the experi-
mental data. This improvement is particularly visible at large
ρ for all values of Q2, where negative NNLO contributions
lead to a considerably better description of the kinematical
shape of the data. Overall, the agreement between data and
theory is however somewhat worse for ρ than it was for τγ .
The NNLO scale uncertainties also follow a similar pattern
as for τγ : compared to NLO only a modest reduction at low
Q2 and a substantial reduction to the level of a few per cent at
high Q2. Again, the experimental errors are larger than the
scale uncertainty for moderate and high Q2, thus enabling
precision QCD studies.

In the C-parameter, Figs. 8 and 9, we must distinguish
the region below and above the Sudakov shoulder, which is
located at C = 0.75 in the perturbative parton-level expres-
sion. The dispersive power corrections shift the location of
this shoulder to higher values of C . This shift is largest at
low Q2, and decreases in magnitude towards higher Q2.
The region above the Sudakov shoulder is kinematically for-
bidden at LO, and receives contributions only from NLO
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Fig. 8 Event shape distribution for C-parameter: C fixed-order pre-
dictions at NLO (dashed cyan), NNLO (dashed brown), and corrected
for hadronization effects at NLO (blue) and NNLO (red), compared to
H1 data [23]. The lower frames display the ratio to the NLO prediction
for the central scale μ2 = Q2

onwards. Already for values of C below the Sudakov shoul-
der, the pattern of NNLO corrections is more intricate than
what was observed in τγ and ρ. The observed structure is due
to presence of a kinematical ridge [21] in the perturbative
expressions at C ≈ 0.515, which destabilizes the perturba-
tive convergence of the distribution in its vicinity, clearly vis-
ible in the high-resolution C-parameter distribution, Fig. 1.
The perturbative predictions for the C-parameter distribu-
tions become quite precise at NNLO, with scale uncertain-
ties of typically less than 8% below the Sudakov shoulder and
away from the kinematical ridge. They are however affected
by large hadronization corrections, which shift the whole dis-
tribution by more than two bins in C at low Q2. Compared
to all other event shape distributions, these power correc-
tions are particularly large in the C-parameter distributions,
see (18). For the lower values of Q2, we also observe that the
shape of the distribution is poorly described. For medium and
large values of Q2, the power corrections are much smaller,
NNLO corrections are relatively small and uniform, and a
satisfactory description of the experimental data is observed.

The thrust distribution with respect to the thrust axis
τT , Figs. 10 and 11, displays a similar pattern, with non-

Fig. 9 Event shape distribution forC-parameter:C fixed-order predic-
tions at NLO (dashed cyan) and NNLO (dashed brown), and corrected
for hadronization effects at NLO (blue) and NNLO (red), compared to
ZEUS data [24]. The lower frames display the ratio to the NLO predic-
tion for the central scale μ2 = Q2

trivial structures in its perturbative expressions around the
Sudakov shoulder at τT = 0.293 and the kinematical ridge
around τT ≈ 0.13, which are both nicely visible in the
τT -distribution at high resolution, Fig. 1. These exceptional
points are shifted to larger values of τT by the power correc-
tions. The NNLO corrections are negative and small through-
out almost the whole distribution for all values of Q2, except
in the bin with the highest τT , which is already well above
the Sudakov shoulder, and where the cross section is already
very small. As for τγ , we note that the smallness of the
NNLO effect is mainly due to a cancellation between posi-
tive parton-level corrections and a decrease in the power cor-
rections. The corrections are typically within the NLO scale
uncertainty band. The overall agreement between experimen-
tal data and theory predictions is satisfactory only at higher
Q2. Substantial discrepancies at low Q2 are observed espe-
cially in the vicinity of the kinematical ridge, where the the-
ory predictions are systematically and considerably below
the data. This behaviour may be indicative of the need of
an re-consideration of the perturbative expansion and of the
hadronization corrections in regions around the kinematical
ridges.
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Fig. 10 Event shape distribution for thrust with respect to thrust axis:
τT fixed-order predictions at NLO (dashed cyan), NNLO (dashed
brown), and corrected for hadronization effects at NLO (blue) and
NNLO (red), compared to H1 data [23]. The lower frames display the
ratio to the NLO prediction for the central scale μ2 = Q2

Finally, for the jet broadening with respect to the boson
axis Bγ , Figs. 12 and 13, the NNLO corrections assume a
non-trivial shape, changing from negative at small Bγ to
positive at large Bγ , thereby leading to a considerably bet-
ter description of the data. In these distributions, the onset
of large logarithmic terms at low Bγ is well visible, indicat-
ing the need for their resummation. The NNLO corrections
lead to a considerable reduction of the scale uncertainty in
the bulk of the distributions, which is more pronounced at
low Q2 than in most other event shape distributions. The
NNLO scale uncertainty ranges from 8% at low Q2 to 3% at
high Q2, which is comparable to or below the experimental
uncertainties throughout.

Across the different event shape distributions, several
common features are observed. The NNLO corrections are
typically moderate, and fall usually within the NLO scale
uncertainty bands. This is particularly remarkable since the
NLO corrections were typically large (often comparable in
size to the LO predictions), and well outside the LO scale
uncertainty bands. The numerical smallness of the NNLO
effect is often due to a partial cancellation between the parton-

Fig. 11 Event shape distribution for thrust with respect to thrust axis:
τT fixed-order predictions at NLO (dashed cyan) and NNLO (dashed
brown), and corrected for hadronization effects at NLO (blue) and
NNLO (red), compared to ZEUS data [24]. The lower frames display
the ratio to the NLO prediction for the central scale μ2 = Q2

level correction and modification of the power corrections at
this order. Except in the low-F region, where large logarith-
mic corrections require an all-order resummation, and in the
vicinity of Sudakov shoulders and kinematical ridges, we
observe the onset of a good convergence of the perturbative
fixed-order expansion. The corrections at low values of Q2

are inevitably larger (due to the larger expansion parameter),
which also translates in a sizeable scale uncertainty remain-
ing at NNLO of about 10%. At larger values of Q2, this
scale uncertainty improves considerably to the typically 4%
or below, clearly highlighting the potential of precision QCD
studies with event shapes based on existing HERA data [23,
24], or with much larger data sets for hadronic final states
that could be obtained at a future electron-ion collider [52]
or at the LHeC [53]. The non-perturbative power corrections
that we obtained in the dispersive model induce large shifts
in some of the distributions, especially at low Q2, where the
statistical quality of the data is largest. Moreover, their appli-
cation to the distributions in the form of a constant shift is
only an approximation, which should be revisited carefully
as soon as more precise data are becoming available.
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Fig. 12 Event shape distribution for jet broadening with respect to
thrust axis: Bγ fixed-order predictions at NLO (dashed cyan), NNLO
(dashed brown), and corrected for hadronization effects at NLO (blue)
and NNLO (red), compared to H1 data [23]. The lower frames display
the ratio to the NLO prediction for the central scale μ2 = Q2

5.2 Mean values

The power corrections to the mean values result in an additive
shift of the perturbative predictions, see (20). As for the event
shape distributions, we truncate P in (16) to order α2

s (Q) for
the power corrections to the NLO fixed order predictions
and to α3

s (Q) for power corrections applied to the NNLO
predictions. Applying this shift to the perturbative results of
Sect. 3.2, we obtain hadron-level predictions for the mean
values, which are compared to the data from H1 [23] and
ZEUS [24] in Figs. 14 and 15. The fixed-order predictions
for central scales μ = Q are indicated by blue lines at NLO
and brown lines at NNLO, showing that the power corrections
are sizeable for all mean values. Their inclusion eliminates
the tension between data and purely perturbative results seen
in Figs. 2 and 3 above.

Comparing the mean values with and without power cor-
rections, we observe that the large positive NNLO correc-
tions at low Q2 that are seen in Figs. 2 and 3 are more than
compensated by the decrease in the numerical magnitude of
the power correction in going from NLO to NNLO in P .
The combined effect of the NNLO contributions to the fixed

Fig. 13 Event shape distribution for jet broadening with respect to
thrust axis: Bγ fixed-order predictions at NLO (dashed cyan) and NNLO
(dashed brown), and corrected for hadronization effects at NLO (blue)
and NNLO (red), compared to ZEUS data [24]. The lower frames dis-
play the ratio to the NLO prediction for the central scale μ2 = Q2

order predictions and the power corrections is typically a
small reduction of the mean values at low Q2, thereby lead-
ing to an improved description of the H1 and ZEUS data. At
larger Q2, this combined effect results in a very small change
of the predictions from NLO to NNLO, which comes with
a substantial reduction of the perturbative scale uncertainty,
which is almost halved.

Both the H1 [23] and ZEUS [24] studies used their mea-
surements of event shape distributions for a simultaneous
fit of the QCD coupling constant αs(MZ ) and the effective
coupling α0 that appears in the power correction, performed
using NLO fixed-order results. While ZEUS lists only the
results obtained for the individual event shape variables (dis-
playing a substantial scatter), H1 also performed a combined
fit, resulting in αs(MZ ) = 0.1198 ± 0.0012(exp)+0.0056−0.0043(th)

and α0 = 0.476 ± 0.008(exp)+0.018−0.059(th). Especially the the-
ory error on αs(MZ ) is largely dominated by the NLO scale
uncertainty.

A similar NNLO study has been performed previously on
event shape moments in e+e− annihilation [56], resulting in
decreased scatter between different shape variables, and in
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Fig. 14 Mean value of the event shapes at NLO (blue) and NNLO (red)
including power corrections, compared to H1 data [23]. The fixed-order
NLO and NNLO predictions (dashed cyan and brown lines) are included
to illustrate the magnitude of the power corrections

lower theory uncertainties. Also, a slight increase in the fit-
ted central value of α0 from NLO to NNLO was observed
in e+e−, resulting in an NNLO value of α0 = 0.5132 ±
0.0115(exp) ± 0.0381(th). Our predictions in Figs. 14 and
15 use α0 = 0.5 throughout. They result in a very good
description of the data at NNLO, and we notice that the
NLO curves could be brought into better agreement with
the data by a slight lowering of α0, towards its H1 fit
value.

With the newly derived NNLO corrections, the combined
fit of αs(MZ ) and α0 to event shape distributions and their
mean values can now be repeated fully consistently to NNLO
accuracy. It can be anticipated that the main effect of the
NNLO corrections will be in a reduction of the theory-
induced uncertainty on the extracted value of αs(MZ ), which
was found to be about 5% in the NLO-based study by H1 [23].
This reanalysis of the experimental data will require our
fixed-order results to be re-cast into convolution grids [47]
that enable an efficient re-evaluation for multiple parameter
values and parton distributions, which is beyond the scope
of the present paper.

Fig. 15 Mean value of the event shapes at NLO (blue) and NNLO
(red) including power corrections, compared to ZEUS data [24]. The
fixed-order NLO and NNLO predictions (dashed cyan and brown lines)
are included to illustrate the magnitude of the power corrections

6 Conclusions

In this paper, we computed the NNLO QCD corrections
to event shape distributions and their mean values in deep
inelastic lepton–proton scattering. Our calculation was per-
formed in the NNLOJET framework, and is largely based on
the NNLO corrections [26,27] to di-jet production in DIS.
The NNLO corrections to the distributions are not uniform,
although some general trends are observed: positive correc-
tions in the bulk of the distributions at low and medium Q2,
negative corrections in the bulk at high Q2 and at the upper
kinematical boundaries of the shape variables for all Q2. Sev-
eral perturbative instabilities due to Sudakov shoulders [51]
or kinematical ridges [21] were observed in C and τT . Pre-
dictions in the kinematic vicinity of these exceptional points
will require novel resummation approaches to overcome the
associated instabilities of the fixed-order predictions. More-
over, at low values of the event shape variables, we observed
the onset of large logarithmic corrections at each order in
perturbation theory. These were particularly pronounced in
Bγ . Resummation of these corrections is currently under-
stood to next-to-leading logarithmic accuracy [22]. Aiming
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for a matching between fixed order and resummation in a
form where the fixed-order expansion of the resummation
formula reproduces all logarithmically enhanced terms up to
NNLO (as was done for e+e− event shapes [10,12,15]) will
require two more logarithmic orders in the resummation.

To compare our parton-level predictions with hadron-level
data, we used the dispersive model [28] to estimate the lead-
ing power correction effects from hadronization. The model
is based on the study of two-point correlators which relate to
the mean values of the event shape distributions. On the event
shape distributions, additional assumptions must be made
concerning the kinematical dependence of the power cor-
rections. The power correction factors receive higher order
contributions in the strong coupling constant, which we trun-
cate to the same level as used in the fixed-order parton-level
predictions.

Our resulting hadron-level predictions were compared to
data from the H1 [23] and ZEUS [24] experiments. On the
event shape distributions, we observe that inclusion of the
NNLO corrections leads in general to an improved descrip-
tion of their kinematical shapes. Especially at medium and
high Q2, the NNLO corrections result in a substantial reduc-
tion of the scale uncertainties of the predictions, to the level
of a few per cent. A similar reduction of scale uncertainty is
also observed on the mean values. On these mean values, we
observe a compensation between the positive NNLO correc-
tions to the fixed-order parton-level predictions and the neg-
ative NNLO contributions to the power corrections, resulting
in a relatively small net effect at NNLO. Our newly derived
NNLO results yield predictions with scale uncertainties that
are typically below the experimental errors of the available
HERA data on event shape distributions. They motivate a
full NNLO-based reanalysis of event shape distributions and
mean values. This should be leading to an improved deter-
mination of αs(MZ ) and α0, which was previously limited
by the uncertainty on the NLO theory.

With high-resolution measurements of event shape dis-
tributions in deep inelastic scattering at a future electron-
ion collider [52] or at the LHeC [53], our results will
enable a broad spectrum of precision QCD studies, aiming
for an improved understanding of its perturbative and non-
perturbative aspects.
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