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In-service turbine monitoring is essential for maximizing the wind energy contribution to the global
energy budget. Measurement of turbine shaft torque under transient wind conditions is fundamental
to develop reliable condition monitoring techniques. Contact based measurements bring their own dis-
advantages and non-contactless measurements have many potential advantages. However, their perfor-
mance needs to be validated against standard methods. This paper focuses on the development of an
enhanced transient Feature Selective Validation (FSV) techniques to undertake this analysis with an
emphasis on transient data processing. The nature of FSV makes it a natural technique to consider for this
problem space. Open questions have existed as to how transients should be dealt with in FSV. This paper
overcomes the limitations of previous approaches for step-function transient comparison and presents
analytical methods to ensure the transient feature itself is considered, irrespective of how much pre-
and post- transient data happens to be included.

� 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

As large-scale wind farms move further offshore, cost effective
Condition Monitoring (CM) plays a crucial role in minimizingWind
Turbine (WT) operations and maintenance costs for a competitive
development of wind energy [1,2]. WTs experience a broader range
of dynamic loads than most other large conventional rotating
machines. Transient events, occurring during control actions or
anomalous wind speed behaviour, cause high loads and can lead
to significant torque reversals that are harmful to drive train com-
ponents and reduce their expected life [3,4]. Premature gearbox
bearing failures have been associated with overloading experi-
enced by the drive train [5,6]. As the loading on the WT drive train
components is highly variable, the study of transient conditions is
fundamental to the development of reliable CM techniques.
Mechanical torque measurements offer a holistic CM view by pro-
viding an insight into WT energy conversions and are excellent
candidates for improving condition monitoring. The potential of
monitoring different WT drive train components using direct mea-
surements of the shaft mechanical torque signal is significant, as it
contains information on the machine mechanical response to wind
before any generator effects.
WT component faults have usually distinguishable mechanical
torque signatures and therefore can be diagnosed by using torque
signals [7]. Shaft torque directly reflects force exchanges in the
drivetrain, as well as their effect on the main drivetrain compo-
nents. This is a significant advantage when compared to indirect
parameters related to the reaction of components to forces, such
as vibration measurements on bearings or gears. The potential ben-
efits of adopting CM techniques based on WT mechanical torque
measurement have been shown for the detection of generator elec-
trical faults [8,9], drive train mass imbalance [10], gearbox failures
[11], blade mass imbalance and aerodynamic asymmetry [12,13].
Besides enhancing WT CM capabilities, direct high-frequency
real-time reliable measurements of drive train loads can improve
confidence in drive train design as well as allow the adoption of
proactive solutions for extreme load mitigation. However, torque
measurement on such large, inaccessible machines is impractical
and economically infeasible, mainly due to limitations of the spe-
cialized equipment currently available. Methods for shaft torque
measurements are complex and tend to lack robustness when used
in a long term configuration. Direct methods use in-line torque
transducers, already calibrated by the manufacturer, which are
integrated into the drive shaft. These sensors have some suscepti-
bility to noise and require bearings for support, which also implies
maintenance. The major obstacle to the industrial application of
direct measurement systems is the costly and intrusive nature of
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the equipment, which is impractical on large systems. Measure-
ments of shaft torque in industrial applications are today most
often done by strain gauges directly bonded on the rotating shaft.
The main limitations of this method are the complexity of instal-
ling sensors and electronics on the rotating shaft as well as the
transfer of the measured signals through a wireless connection or
slip rings. Moreover, unwanted forces can create unintended direc-
tional disturbance, such as crosstalk phenomena, that can increase
the uncertainty in the measured loads and reduce accuracy [14]. A
novel contactless measurement system for direct, low-cost real-
time measurement of WT drive train loads and speed has been pre-
sented and experimentally validated in [15]. The proposed tech-
nique is based on the measurement of the shaft angle of twist
between two points on the shaft, separated by a suitable distance,
through optical angular position sensing. The principle of the pro-
posed method is to quantify the shaft relative twist angle due to
torsional effects by measuring the phase difference between two
pulse signals recorded by the optical sensors and hence deriving
the applied torque. The twist angle-torque characteristic can either
be mechanically calibrated or calculated. Unlike conventional in-
line torque transducers [16–18], the proposed contactless mea-
surement system can be designed to be fitted or retrofitted on
any shaft diameter and material without mechanical interference.
Unlike conventional strain gauge techniques, the proposed torque
meter does not require costly embedded sensors, electronics or
wires on the rotating shaft. Its performance and accuracy have
been experimentally demonstrated under dynamic, transient loads
through conventional visual comparison and signal Root Mean
Square Error (RMSE) calculations against measurements from an
intrusive reference state-of-the art transducer [19]. The principal
issue here is that a visual comparison is still a key part of the
assessment process. This paper further validates the proposed con-
tactless technique through an objective, quantified, comparison of
the transient load and speed measurements based on an enhanced
transient Feature Selective Validation (FSV) approach.

FSV was chosen for this work because it has been shown to pro-
vide a quantitative comparison of visually non-trivial, graphically
presented, data that emulates the range of qualitative opinions of
a group of experts. Thus reducing the reliance on visual assessment
of an individual expert, with the inherent variation between indi-
viduals not being accounted for, by providing a proxy for a panel
of experts and giving an indication of the range of opinions that
such a panel might come to. As such, it has been demonstrated
to provide support for quality-of-results decisions similar to having
a team of experts look at the data. It does this through a heuristic
approach rather than an artificial intelligence approach. The pri-
mary applications for FSV have been in Electromagnetic Compati-
bility (EMC) and signal / power integrity, but with a hitherto
unsolved problem of how to adequately compare step transient
data, such as that occurring for power or logic switching. This
EMC related data is structurally very similar to that of the torque
data of interest to the wind turbine design and maintenance com-
munity and, hence, a natural approach to use: if a method to com-
pare step transient data can be introduced and verified. This paper
presents this solution.

It is known that visual evaluation is the most subtle and widely
used method of data comparison and validation [20,21]. However,
visual assessment is prone to many types of physical and psycho-
logical influences. For these reasons, the FSV method was estab-
lished to support the validation of electromagnetic models by
quantifying the agreement between the reference and the numer-
ical results. Where the aim was to mirror, as far as possible, the
opinion of a large group of expert users as a whole. This method
has been incorporated as the central technique of IEEE Standard
(STD) 1597.1 and its associated Recommended Practice Guide,
1597.2 [22,23]. The details of the FSV method and its latest appli-
cations can be found in [24,25].

The FSV method was developed using a reliability function phi-
losophy to overcome some of the key problems associated with
validation of computational electromagnetic simulations for EMC
problems. Key amongst those problems is that the complexity of
the systems being analysed resulted in visually complex graphical
data with a definable envelope and many fast-moving resonant
like features. The challenge was increased by the need for simula-
tions to be much simpler than the measurement environment. One
of the most significant difficulties was that many of the experts
would interpret the data differently based on their backgrounds
and expectations (for example, someone from an EMC measure-
ment background may have a different interpretation of what
‘good agreement’ might be compared to someone from a radiofre-
quency design background). As a result, the FSV method was devel-
oped to provide a ‘probability’ density function that closely
resembles that derived from a group of experts. From this, a mean
or mode can be obtained to summarize the view of experts [21].
The original formulation was based on the comparison of x-y data
with no meaning derived from the units of either axis. A significant
short-coming of the original FSV formulation was that, when
applied to transient data, the length of time included in the pre-
and post-transient phases could inadvertently (or purposely) dom-
inate the transient itself. A further shortcoming was identifying the
start and end of the transient (for the purposes of comparison). A
transient FSV algorithm was developed which looked at
impulsive-like transients but was insufficient to adequately cap-
ture the effects of switching or step-like transients. However, for
the emulated torque data of wind turbines, the comparison
between step-function transients is essential and a new challenge
for the FSV method. This paper develops the generalized FSV
method to include an approach that satisfies the step-function
requirements to allow transient data to be compared.

The structure of this paper is as follows. In Section 2, the basic
algorithms of FSV and the problems of transient FSV are reviewed.
The generalized transient FSV approach is presented and validated
in Section 3. The proposed method is applied to emulated wind
turbine torque data in Section 4.
2. Overview of the FSV technique

2.1. Standard FSV method

The FSV method provides detailed, point-by-point comparisons
of the ‘envelope’ of the two data sets being considered and the fine-
grained detail as two separate comparisons. These are then com-
bined into a ‘global’ comparison. This point-by-point data can then
be used to generate a probability distribution, which is useful for
statistical analysis of data comparisons, histogram charts related
to expert opinion or single goodness-of-fit values for more deter-
ministic quantitative use.

A graphical demonstration of the FSV ‘data flow’ is provided in
Fig. 1. The original data for comparison (Fig. 1(a)) was obtained
from coupling measurements in a mode-stirred reverberation
chamber with slightly different positions of the mechanical stirrer.
The axes are arbitrary units in that the x-axis is the frequency point
number (not the actual frequency, as FSV works on points not fre-
quencies) and the y-axis is the S21 parameter in linear units, effec-
tively the proportion of signal that was transmitted that couples
back into the measuring equipment (a vector network analyser).
It should be noted that the method is domain-agnostic, so no infor-
mation is derived from the axes units. Three figures of merit are
obtained to demonstrate data agreement from different



(a) Original data for comparison (axes are 
arbitrary units)

(b) Amplitude Difference Measures

(c) Feature Difference Measure (d) Global Difference Measures

(e) GDM histogram
(f) GDM histogram compared to (group) visual 

assessment

(g) GDM density function (h) GDM cumulative density function, showing maximum 
‘D’ parameter for Kolmogorov-Smirnov analysis
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Fig. 1. Summary of FSV.
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perspectives in the FSV method. The Amplitude Difference Mea-
sure (ADM) shows the ‘trend’ difference (Fig. 1(b)), while the Fea-
ture Difference Measure (FDM) denotes the differences of details
(Fig. 1(c)). Then the ADM and FDM are combined to give the Global
Difference Measure (GDM) (Fig. 1(d)). Further, in order to provide a
direct link with visual assessment, the point-by-point FSV outputs
are binned into a confidence histogram (usually labelled ADMc,
FDMc and GDMc). The GDMc is shown in Fig. 1(e). This data can
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be used as a proxy for the qualitative assessment of a group of
experts relating the quantitative FSV output to qualitative natural
language descriptors (excellent, very good, good, fair, poor, very
poor). The FSV output is compared with the opinions of a group
of 50 engineers in Fig. 1(f). The FSV data can also be represented
as a density function (Fig. 1(g)) which enables a statistical analysis
of the comparison data [26] or can be useful for further meta-
comparisons, such as in Fig. 1(d), where the cumulative density
function is being used to verify with a Kolmogorov-Smirnov test
the hypothesis that the visual and FSV data are from the same dis-
tribution. For this data Dcrit, the value at which the difference in
amplitude is such as to reject the null hypothesis, for 90% confi-
dence is 0.17, so the null hypothesis can be accepted – a common
trend when comparing FSV data and visual assessment, and hence
one reason for considering FSV for the analysis of WT transient
data.

The formulation of FSV was heavily influenced by the
approaches used by Zanazzi and Jona, van Hove, and Pendy [27].
The standard FSV procedures are as follows.

1) Data segmentation

The purpose of this action is to filter the data from each data set
to be compared into low pass, band bass and high pass compo-
nents. Other approaches may be used but the method here, and
commonly used in the community, is to Fourier Transform the
data, mask it into the three regions and then Inverse Fourier Trans-
form into the original working domain. This can be applied to any
working domain (time, frequency, distance, angle, etc.) To achieve
this, the working datasets under comparison are first Fourier trans-
formed. Then, the filter shown in Fig. 2 is applied to the trans-
formed working datasets to obtain the DC, Low-, and High-
frequency components. The ‘break-point’ location, Nbp, is decided
by

XN40%

i¼NDCþ1

TDWSðiÞ � 0:4S ð1Þ

Nbp ¼ N40% þ 5 ð2Þ
where TDWSðiÞ is the value of the ith independent variable within
the Fourier transformed data set; S is the sum of the values of the
independent variable; N is the sum of the values of the independent
variable; N40% is the element containing the ‘40% location’. The
‘break-point’ location Nbp is five data points higher than the ‘40%
location’. NDC is set to 4. A ‘‘breakpoint” at five data points above
N40% allows a comfortable transition window between the low
and the high results. The windowed frequency components are then
inverse transformed to obtain DC, Low and High components,
labeled as DC, Lo and Hi, respectively.
Fig. 2. Filter used in the original FSV method [28].
2) The calculation of ADM

The ADM is calculated to show the difference between DC and
low-frequency information in both of the datasets under
comparison.

ADM nð Þ ¼ Lo1ðnÞj j � Lo2ðnÞj jj jPN
i¼1 Lo1ðiÞj j þ Lo2ðiÞj jð Þ þ ODM ð3aÞ

where

ODM nð Þ ¼ v
d

���
���exp v

d

���
���

n o
ð3bÞ

v ¼ DC1ðnÞj j � DC2ðnÞj jð Þ ð3cÞ

d ¼ 1
N

XN

i¼1

DC1ðiÞj j þ DC2ðiÞj jð Þ ð3dÞ

where N is the sum of the values of the independent variable; n is
the nth data point. The FSV measures are generally based on a ‘dif-
ference over sum’ approach, except the ODM: the use of the expo-
nential reflects the non-linear interpretation of offsets in data,
where a small offset is frequently ignored but a large offset is
regarded as significant, even if the original data is highly similar
in shape.

3) The calculation of FDM

The scaling factors 2, 6, and 7.2 in Eqs. (4), (5) and (6) are used
to balance the internal sub-measures of the FDM, emphasizing
either low level trends (broad peaks/troughs) or higher level fea-
tures (narrow peaks/troughs).

FDM1 nð Þ ¼
Lo

0
1ðnÞ

���
���� Lo

0
2ðnÞ

���
���

2
N

PN
i¼1 Lo

0
1ðiÞ

�� ��þ Lo
0
2ðiÞ

�� ��� � ð4Þ

FDM2 nð Þ ¼
Hi
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1ðnÞ

���
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0
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���
���

6
N

PN
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0
1ðiÞ

���
���þ Hi

0
2ðiÞ

���
���

� � ð5Þ

FDM3 nð Þ ¼
Hi

0 0
1ðnÞ

���
���� Hi

0 0
2ðnÞ

���
���

7:2
N

PN
i¼1 Hi

0 0
1ðiÞ

���
���þ Hi

0 0
2ðiÞ

���
���

� � ð6Þ

FDM nð Þ ¼ 2ð FDM1 nð Þ þ FDM2 nð Þ þ FDM3 nð Þj j ð7Þ
where Lo

0
1;2f g and Hi

0
1;2f g are the first derivatives of the Lo 1;2f g and

Hi 1;2f g components, respectively; Hi
0 0
1;2f g is the second derivative of

the Hi 1;2f g component. The sub-level difference measures in Eqs.
(4), (5), and (6) emphasize independent areas of the compared
signals.

4) The Global Difference Measure (GDM) is obtained through
combination of the ADM and FDM. The GDM gives an indica-
tion of the overall goodness-of-fit of both amplitude and fea-
ture differences between compared signals, quantifying the
overall assessment of a comparison.

GDM nð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ADM nð Þ2 þ FDMðnÞ2

q
ð8Þ

5) The original development of FSV looked to bridge the gap
between a quantitative assessment and the subjective, qual-
itative, assessment common in papers, presentations and



Fig. 3. Illustration of the regions of transient event.
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reports thought the use of a natural language interpretations
scale. The FSV interpretation scale is shown in Table 1. In
this way, the form of qualitative result, xDMc (where x is
A, F or G), becomes a six-category confidence histogram.

To some extent, this approach is being superseded by the use of
density functions and distributions, which provide more options
for analysis, particularly meta-comparison. However, the interpre-
tation scale is still widely used and it is common to see such inter-
pretations in papers where FSV is used. The qualitative
interpretations are not intended to be absolute definitions of qual-
ity, they are merely a means to aid human communication.

2.2. Transient FSV method

The comparison of transient data is made more difficult by the
indeterminate nature of the ‘pre’ and ‘post’ transient regions, as
shown in Fig. 3(a). In essence, a comparison could be dominated
by the selection of the length of the tails either side of the transient
event. This has recently received some attention [29–31] with the
identification of weighting regimes to ensure that the transient
event itself dominates any comparison and such a comparison is
not skewed by arbitrary choice of duration. Reference [29] also
provided some indication of where experienced users of transient
data would place those boundaries.

A segment approach was proposed in [29], algorithms were
designed to divide the transient into three regions: pre-transient
event, transient event and post-transient event. FSV is applied in
each region separately. Then, the values of the three regions are
combined and each region is weighted according to its importance
in the analysis. The transient region was originally considered as
ranging from the end of the pre-transient up to a point that con-
tains 65% of the signal’s energy. The energy is calculated by

Energy 1;2f g nð Þ ¼
Xn

i¼1

Data 1;2f g ið Þ� �2
;n ¼ 1;2;3; � � � ::N ð9Þ

where Data 1;2f g is the set of the data to be compared (‘‘100 is the first
dataset and ‘‘2” the second dataset) and N is the length of Data 1;2f g.

It is clear that this approach is valid for the transient in Fig. 3(a),
but is invalid for the step transient in Fig. 3(b) since the energy will
be concentrated in the pre-transient region rather than the tran-
sient region (or vice versa). The approach to transients used in
Fig. 3(a) is based on the energy being concentrated in the transient
region, something that does not happen with a step-function type
transient.

3. Generalized transient data method

To overcome the problems of transient FSV in applications, such
as torque data comparison, a generalized transient FSV approach is
required. Such an approach is proposed and tested here. This gen-
eralized approach aims to compare the transient data using the
standard FSV method after pre-processing. Meanwhile, the pro-
posed approach is expected to be applicable to a wide variety of
transient types, including those in Fig. 3. The key is to develop a
Table 1
FSV interpretation scale in [23].

FSV value y (quantitative) FSV interpretation (qualitative)

y � 0.1 Excellent
0.1 < y � 0.2 Very Good
0.2 < y � 0.4 Good
0.4 < y � 0.8 Fair
0.8 < y � 1.6 Poor
y > 1.6 Very Poor
pre-processing method that allows a clear identification of the
boundaries between the pre-transient/transient and the
transient/post-transient regions.
3.1. Generalized transient FSV method

Step 1: The boundaries of pre-transient, transient and post-
transient regions are identified. To find the boundaries of ‘‘step
transient signals”, such as that shown in Fig. 3(b), the derivative
of datasets under comparison are calculated and the boundaries
are determined according to the Cumulative Distribution Function
(CDF) of data 1 and data 2.

1. The cumulative distribution is calculated by
E nð Þ ¼
Xn

i¼1

Data1 0 ið Þ2 þ Data2 0 ið Þ2
� �

;n ¼ 1;2;3; � � � ::N ð10Þ

where Data 1;2f g0 is the derivative of the data to be compared (‘‘100 is
the first dataset and ‘‘2” the second dataset). N is the length of
Data 1;2f g0.

2. Then the least-squares fit of a straight line to the cumulative
distribution, E nð Þ, is calculated. E nð Þ is then de-trended by sub-
tracting the resulting least-squares function from the original
data. E nð Þ is de-trended by
Edetrend nð Þ ¼ E nð Þ � ðanþ bÞ;n ¼ 1;2;3; � � � ::N ð11Þ

where a and b are the coefficients of a straight-line function (an + b)
that fits E nð Þ.
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3. Subsequently, the positions of the turning point (crest and
trough of the de-trended data Edetrend nð Þ), Nbp1 andNbp2, are found
and they are chosen as the pre- and post-transient boundaries.
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The process to identify the breakpoints of a pair of step tran-
sient data and a pair of normal transient data is shown in Fig. 4
and Fig. 5, respectively.
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Step 2: Instead of theweighting approach proposed in [29], a pre-
emphasisapproachthat isbasedoninterpolationofpoints inthethree
regions tomatch the weighting functions is proposed. Effectively the
pre-transient, transient and post-transient regions are expanded or
contracted to match the influence the regions have on the overall
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the authors would welcome further research and contribution to
this from the wider community. The ‘‘companded” data sets are
then compared using the standard FSV method. The ADM and
FDM results are shown in Fig. 7, which also shows the re-
mapping used to provide the emphasis of the regions just
described. Hence, the pre-transient region is compressed (or
expanded) to occupy 5% of the data points. In the example of
Fig. 7, this will be 50 points. The transient region is expanded (or
compressed) to occupy 75% of the data points (750 points in this
case) and the post-transient region will occupy the remaining
20% of the points. This approach has the benefit of not requiring
separate comparisons that are then ‘stitched’ back together but
treats the overall comparison as a single uniform whole which
can then be interpolated back to the original point distribution.

Step 3: Re-mapping point by point data back to the original data
point distribution using the interpolation in reverse. The recon-
structed ADM and FDM are obtained by expanding (or compress-
ing) the FSV results in pre-transient and post-transient regions to
return to the original point density. The amplitude of the ADM
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Fig. 8. Comparison between 2011 survey and FSV results, (
and FDM in pre-transient and post-transient regions are propor-
tionally varied. The proportionality factor is obtained by

P ¼ Nc
No

ð12Þ

where Nc is the length of the compressed (expanded) region and No
is the length of the original region. Then the GDM is calculated by
(8).

3.2. Performance test

The standard and transient FSV has used visual assessment sur-
veys to verify its performance [29,31]. Since the survey results are
qualitatively presented by natural language descriptors, the survey
results are first transformed into quantitative results according to
Table 1. After that, the statistics, mean and standard deviation, of
GDM and survey results are calculated. The comparison between
standard deviations indicates whether FSV and the visual assess-
ments are within each other’s range of expectation.
(c)
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a) standard FSV, (b) transient FSV, (c) generalized FSV.



Table 2
Comparison of mean and standard deviation values of GDM for 2011 survey data.

Statistics of GDM Methods Transient data sets

1 2 3 4 5 6 7

Mean value Visual assessment 1.15 2.44 2.44 2.85 2.77 2.63 2.15
Standard FSV 1.83 3.59 2.76 2.90 3.68 5.27 1.90
Transient FSV 1.24 2.62 2.25 2.21 2.83 2.24 1.47
Generalized FSV 1.84 2.39 2.09 2.04 3.15 2.92 1.99

Standard deviation Visual assessment 0.59 0.54 0.24 0.76 0.77 0.50 0.68
Standard FSV 1.03 1.04 0.95 0.98 1.08 1.34 1.91
Transient FSV 1.00 1.11 0.96 0.95 1.28 2.43 1.92
Generalized FSV 1.25 0.86 0.85 0.71 0.94 1.76 1.17
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The generalized transient FSV method is tested using the tran-
sient data in [29] that comprises 7 typical (non-step) transient
structures. The results of standard FSV, transient FSV and the gen-
eralized transient FSV method proposed in this paper are com-
pared in Fig. 8 (in the same y-axis range). The mean and
standard deviation values are presented by error bars.

It is demonstrated in Fig. 8 that both the transient FSV and gen-
eralized FSV method could reduce the disagreement between FSV
and visual assessment. Overall, there is little difference in the
means of the comparisons between the original transient and the
generalized transient approaches, which supports the generality
of use proposition. Both are significantly better than the standard
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Fig. 9. Comparison between 2014 survey and FSV

Table 3
Comparison of mean and standard deviation values of GDM for 2014 survey data.

Statistics of GDM Methods Data sets

1 2

Mean value Visual assessment 0.50 2.28
Standard FSV 0.28 2.87
Generalized FSV 0.28 2.25

Standard deviation Visual assessment 0.00 0.69
Standard FSV 0.30 1.46
Generalized FSV 0.30 1.59
FSV approach itself. Relevant data including average value and
standard deviation are given in Table 2 to show the experimental
results more specifically.

Also, the performance of the new transient FSV method for the
ordinary datasets in [32] were also tested, as shown in Fig. 9.
Specifically, the average and standard deviation values are outlined
in Table 3. It is noted that the generalized FSV method has little
influence on the assessment of the ordinary datasets, further sup-
porting the thesis that the method proposed in this paper can be
more widely applied irrespective of the nature of the original data.
This is attributed to the fact that the pre-processing of the general-
ized FSV has little influence on the ordinary datasets.
(b)
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results, (a) generalized FSV, (b) standard FSV.

3 4 5 6 7 8

2.50 5.44 4.01 2.91 1.72 4.72
1.96 5.41 3.78 2.92 1.68 4.01
1.95 5.20 3.65 2.78 1.58 3.90

1.14 0.24 0.96 1.17 0.85 0.61
0.79 0.36 0.83 1.13 1.23 0.77
0.79 0.41 0.81 1.16 1.36 0.81
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4. Results

Step transient speed and torque data was experimentally
obtained by emulating shaft dynamic transient loads experienced
by a WT drive train on a small-scale test bench equipped with
the contactless torque meter shown in Fig. 10 and described in
detail in [19]. The rig features a 4-pole 5 kW Induction Motor
(IM) driving a 4-pole 5 kW grid-connected Induction Generator
(IG). The shaft speed profile is controlled by an ABB drive. The IG
stator voltage, and hence the torque acting along the shaft, are var-
ied using a variable transformer connected to the IG. The main
Fig. 10. Experiment

(a)

Fig. 11. (a) Experimental torque measurem

(a)

Fig. 12. (a) Experimental speed measurem
shaft is instrumented at each end with a barcode with eight equal
black–white segments. The barcode stripe pair number was
selected as a trade-off between measurement uncertainty and
computational cost. In correspondence to each bar code, an Optek
reflective line reader sensor is mounted on a stationary rigid sup-
port, placed at the optimum distance of 0.76 mm from the target.
The distance between the two optical sensors is 45.8 cm. shaft.
As the shaft rotates, each optical sensor generates a pulse train sig-
nal proportional to the light intensity reflected by the barcode
stripes. When a torque acts on the shaft, the relative rotation of
the ends of the shaft section results in a time shift between the
al test rig [19].

(b)
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Table 4
Comparison of GDMtot and KS-test results given by different FSV algorithms.

Methods GDMtot KS-test results (statistic D)

Torque Speed Torque Speed

Standard FSV Transient FSV Generalized FSV Standard FSV Transient FSV Generalized FSV

Standard FSV 0.26 0.13 – 0.31 0.13 – 0.01 0.67
Transient FSV 0.14 0.13 0.31 – 0.24 0.01 – 0.67
Generalized FSV 0.18 0.04 0.13 0.24 – 0.67 0.67 –

Fig. 13. Comparison of PDFs of GDM for (a) torque measurements; (b) speed measurements.
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two pulse train signals. Torque and speed measurement is
achieved by estimating the shaft twist angle through analysis of
the barcode pulse train time shifts [15]. An in-line Magtrol TMB
313/431 torque transducer is mounted on the test bench and,
being a well-established state-of-the-art technique, it has been
assumed as the reference measurement system during the experi-
mental campaign. Signals from the optical probes and the refer-
ence torque transducer are acquired by a PicoScope 4824
oscilloscope, with 100 kHz sampling frequency.

Experiments have been performed to emulate shaft dynamic
transient loads experienced by a WT drive train, during anomalous
wind speed fluctuations and control actions. The effects of torque
reversal due to a drastic reduction of the shaft load, as typically
occurring in WT stopping events, are shown in Fig. 11(a). The cor-
responding changes in speed, shown in Fig. 12(a), are the result of
the applied torque that was not countered by the variable speed
drive connected to the rig induction motor. Both figures show
the contactless torque meter measurements (in blue) compared
with those of a reference in-line torque transducer (in red). In both
cases, the data comparison visual evaluation shows good agree-
ment between measurements with signal RMSE values of 0.53
Nm and 0.45 rpm, respectively.

The torque and speed data comparison when applying the stan-
dard FSV, transient FSV and generalized FSV method, are shown in
Fig. 11(b) and 12(b), respectively. The lower values of the general-
ized FSV, compared with the standard and transient FSV approach
in the pre- and post-transient regions, show that the influence of
noise is minimized in the comparison (as it is clearly the case for
the speed FSV and (original) Transient FSV results in Fig. 12(b)).
The GDMtot (the mean value of the GDM representing a single
value goodness-of-fit measurement) of these methods is compared
in Table 4. It is noted that the standard and generalized FSV
method could identify that the agreement between speed data is
better than that of torque data, which could be verified by visual
comparison of Fig. 11(a) and 12(a) as well as by the RMSE signal
analysis results. However, the generalized FSV method results in
FSV values that recognize the difference between the comparison
between the speed and torque data. In contrast, the original tran-
sient FSV method is not as clear.

Also, the Probability Density Functions (PDFs) of GDM values
given by different FSV algorithms are given in Fig. 13. The
Kolmogorov-Smirnov test (KS-test) is applied to check if the distri-
butions of two datasets are from the same distribution. The null
hypothesis is that they are from the same distributions. The null
hypothesis would be rejected if the test statistic, D, is greater than
the critical value decided by significance level. The statistic D is
determined by the maximum vertical deviation between the two
curves of the Cumulative Distribution Functions (CDFs) of the data-
sets. In our case, the critical D value is 0.19 when significance level
is set to 5%. The D values are outlined in Table 4. It is shown that
the generalized FSV method outputs similar result with traditional
FSV method for torque data. In contrast, the result of transient FSV
method follows the same distribution with that of traditional FSV
for speed data.
5. Conclusions

A generalized FSV approach is proposed to validate step-
function transient data in WT measurement along with other data
families. The approach is developed to overcome the limitations of
previous standard and transient FSV methods. It is demonstrated
that the proposed approach improves the performance of standard
FSV method in the comparison of transient datasets and can be
directly used in the comparison of ordinary (non-transient) data-
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sets. Compared with to the transient FSV method, the generalized
FSV method has been shown to adequately compare step-function
transients. Further, the proposed approach ensures that the com-
parison is dominated by the transient function itself and not the
length of the pre- and post-transient periods.

The proposed generalized FSV approach proves successful for an
objective, quantified comparison of the speed and torque measure-
ments from the innovative contactless torquemeter presented in
this paper against measurements from a state-of-the art commer-
cial intrusive sensor. This further validates and strengthen the out-
comes from previously performed conventional visual and RMSE
signal analysis. From the perspective of wind turbine data the
use of FSV in the way suggested in this paper could improve con-
dition monitoring via speed and torque data. The implementation
of the contactless torquemeter in the field would allow to over-
come the majority of problems currently limiting the industrial
direct real-time measurements of WT drive train loads for CM pur-
poses. Measurements at any point in time can be compared with a
reference baseline measurement (perhaps installation conditions).
This can be used to show if there is a drift by looking at the GDM
and the size of the 1 standard deviation error bars over time. That
possible variation over time can also be tested by undertaking a
meta-comparison and applying something like the KS-test to pro-
vide a view on the level of significance to the differences in speed
and torque measurements.
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