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1 Introduction

Multiloop Feynman integrals are a cornerstone of perturbative Quantum Field Theory, as

they are the main mathematical building blocks for the computation of higher-order correc-

tions to physical observables. For this reason, a lot of effort has been put in understanding

their mathematical structure and the class of special functions to which they evaluate. For

instance, unitarity dictates that Feynman integrals must be multivalued functions with

logarithmic branch cuts, and this must be reflected in the corresponding class of functions.

A lot of progress was made over the last decade in understanding the simplest class of

special functions that appear in multiloop computations. It was realised that many Feyn-

man integrals can be evaluated in terms of multiple polylogarithms [1–3]. These functions
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are by now well understood, including their analytic continuation to arbitrary kinematic

regions and their efficient numerical evaluation for arbitrary complex arguments [4–7].

While multiple polylogarithms are sufficient to express all one-loop integrals in four

space-time dimensions, it has been known for a long time that new classes of functions can

appear starting from two-loop order. This was noted for the first time in the calculation of

the two-loop corrections to the electron propagator in QED with massive electrons [8]. The

simplest two-loop integral which cannot be expressed in terms of multiple polylogarithms

is the so-called two-loop sunrise graph with three massive propagators, which has been

extensively studied over the last decades [9–27]. Recent interest in the sunrise graph was

fuelled to a large extend by the fact that the same type of functions appears in many higher-

order calculations for the Large Hadron Collider (LHC) at CERN where the mass of the top

quark cannot be neglected, see for example refs [28–36]. By now, several representations

of the sunrise graph in terms of different classes of special functions are known. They all

have in common that they involve functions related to elliptic curves, most prominently

elliptic multiple polylogarithms and iterated integrals of modular forms.

Since elliptic functions seem to be a feature of many two-loop diagrams with massive

propagators, it is natural to expect that these functions also prominently show up when

performing calculations in the electroweak sector of the Standard Model (SM), where the

gauge bosons and the fermions acquire a mass through the Higgs mechanism. In this paper

we consider one of the precision observables of the electroweak SM, namely the corrections

to the ρ parameter, defined as the difference between the vacuum polarisations of the W

and Z bosons. The ρ parameter is known through three-loop order in the SM in the limit

where all quarks but the top quark are massless [37–43]. In ref. [44], corrections from

three-loop diagrams were considered in the scenario where also the bottom quark has a

non-vanishing mass. The results of ref. [44] where presented as an expansion in the ratio

of the two quark masses. However, no closed analytic formula was presented, because the

corresponding loop integrals were observed to involve functions of elliptic type, and at the

time the theory of these functions was still largely underdeveloped.

While the series expansion of ref. [44] is sufficient to obtain reliable phenomenological

predictions, it is interesting to revisit the computation of ref. [44] in the light of the re-

cent developments in the understanding of elliptic Feynman integrals. In this way one can

obtain fully analytic results at high-loop order for one of the most fundamental precision

observables of the SM. First steps in this direction were taken in refs. [45, 46], where the el-

liptic Feynman integrals of ref. [44] were computed in terms of a class of new transcendental

functions, called iterative non-iterative integrals. The relationship between these functions

and the functions that appear in the different known representations of the sunrise graph

is not fully clear. It is an interesting question if completely new classes of elliptic-type

functions show up in the computation of the ρ parameter which are not covered by the

existing literature on the sunrise graph and on elliptic polylogarithms and iterated integrals

of modular forms.

The purpose of this paper is to show that all the Feynman integrals that contribute

to the three-loop corrections to the ρ parameter with two massive quark flavours can be

expressed in terms of exactly the same class of functions that appear in the sunrise graph.
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We show how all the elliptic Feynman integrals of ref. [44] can be performed in terms of

iterated integrals of modular forms for the same congruence subgroup as for the sunrise

integral. These iterated integrals can be analytically continued to the whole parameter

space in such a way that they admit fast-converging series representations for all values of

the quark masses.

Our paper is organised as follows: in section 2 we review the results of ref. [44] and we

identify the elliptic Feynman integrals that need to be computed. In section 3 we intro-

duce the mathematical background on elliptic curves and elliptic polylogarithms needed

throughout the paper. In section 4 we present our first main result, and we show how to

evaluate the Feynman parameter representation for the simplest elliptic Feynman integral

in terms of elliptic polylogarithms. In section 5 we review the connection between ellip-

tic polylogarithms and iterated integrals of modular forms, and in section 6 we use this

relationship to obtain analytic results for all elliptic Feynman integrals that contribute to

the three-loop ρ parameter in the region where the ratio of the quark masses is small. In

section 7 we discuss the analytic continuation of these integrals to the whole parameter

space. In section 8 we present our final analytic result for the ρ parameter at three loops,

and in section 9 we draw our conclusions. We include several appendices where we collect

formulas omitted throughout the main text.

2 Notations and computational setting

In this section we review the background to the three-loop QCD corrections to the elec-

troweak ρ parameter with two massive quark flavours. We closely follow the presentation

of ref. [44]. The ρ parameter can be written as:

ρ = 1 + δρ, (2.1)

where the higher-order corrections are given by

δρ =
ΣZ(0)

M2
Z

− ΣW (0)

M2
W

. (2.2)

ΣZ(0) and ΣW (0) are, respectively, the transverse parts of the Z and W boson propagators

at zero momentum. They are defined as

ΣZ/W (0) =
gµν
d

Πµν
Z/W , (2.3)

where Πµν
Z/W are the correlator functions for the Z and W bosons, and d is the space-time

dimension.

We will consider the three-loop QCD corrections to the ρ parameter in nf -flavour QCD

with nf − 2 massless quarks and two massive ones, whose masses we denote by m1 and

m2. In the SM, this corresponds to nf = 6, and m1 and m2 denote the masses of the top

and bottom quarks respectively. It is possible to write the higher-order corrections to the

ρ parameter as an expansion in the strong coupling constant αs:

δρ =
3GFm

2
t

16π2
√

2

(
δ(0) +

αs(µ)

π
δ(1) +

(
αs(µ)

π

)2

δ(2) +O(αs(µ)3)

)
, (2.4)
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where GF is the Fermi constant and mt is the top-quark MS-mass. We will choose the

renormalisation scale as µ2 = m2
t . The term δ(j) involves graphs with j + 1 loops, and this

paper is devoted to the calculation of certain three-loop masters appearing in δ(2).

Using Integration-By-Parts (IBP) identities [47, 48], it is possible to reduce all three-

loop integrals that contribute to δ(2) to the computation of a small set of master inte-

grals [44]. All but six of the master integrals were evaluated analytically in terms of multi-

ple polylogarithms. The remaining integrals were shown to involve elliptic functions. They

can be embedded in two six-propagator topologies which we call A and B, and which only

differ by exchanging the roles of m1 and m2 (see figure 1). Topology A can be written as

Ja1a2a3a4a5a6 =

∫
Dk1Dk2Dk3

1

Da1
1 D

a2
2 D

a3
3 D

a4
4 D

a5
5 D

a6
6

, (2.5)

where the propagators are defined as

D1 = m2
1 − k2

1 , D2 = m2
2 − k2

2 , D3 = −k2
3 , D4 = m2

1 − (k1 − k3)2 ,

D5 = −(k2 − k1)2 , D6 = m2
1 − (k3 − k2)2 .

(2.6)

We work in dimensional regularisation with d = 4− 2ε, and choose the measure

Dkl = eγEε
ddkl
iπd/2

. (2.7)

Topology A has ten master integrals, whose graphs we list in figure 1. It is convenient

to introduce a variable t defined as1

t =
m2

2

m2
1

. (2.8)

For concreteness, we will choose m2
2 < m2

1, i.e., 0 < t < 1. The case t > 1 can be obtained

by analytic continuation, and we will discuss this at the end of the paper. Note that

integrals from Topology B can be identified with integrals from Topology A with t > 1.

Hence, it is sufficient to compute Topology A and to understand the analytic continuation

to all positive values of t. We therefore only focus on Topology A with 0 < t < 1 in the first

sections of this paper, and we only comment on Topology B when we discuss the analytic

continuation of Topology A to t > 1. For the physical ρ parameter in the SM, we will be

interested in topologies A and B evaluated at tphys = m2
b/m

2
t , with

tphys = m2
b/m

2
t ∼ 5 · 10−4 . (2.9)

1Here we depart from the conventions of ref. [44] where the results are written in terms of x = m2/m1.
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(1) (2) (3) (4) (5)
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Figure 1. Master integrals for the family of integrals defined in eq. (2.5). Dots denote squared

propagators, blue (thick) lines denote propagators with mass m2
1, green (thin) lines denote propa-

gators with mass m2
2, and dashed lines denote massless propagators.

It is convenient to work with the following basis of master integrals:

f1(t) = ε3(m2
1)3εJ0,2,0,2,0,2 ,

f2(t) = ε3(m2
1)3εJ2,0,0,2,0,2 ,

f3(t) = ε3 (ε− 1) (m2
1)3εJ0,2,1,2,0,1 ,

f4(t) = ε3 (ε− 1) (m2
1)3εJ0,2,2,1,1,0 ,

f5(t) = ε3 (ε− 1) (m2
1)3εJ0,2,1,2,1,0 ,

f6(t) = ε3 (ε− 1) (m2
1)3εJ2,0,2,0,1,1 ,

f7(t) = ε3 (ε− 1) (m2
1)3εm2

2J2,1,1,0,1,2 ,

f8(t) = (m2
1)−2+3εJ1,1,0,1,0,1 ,

f9(t) = (m2
1)−1+3εJ1,2,0,1,0,1 ,

f10(t) = ε4(1− ε)(1− 2ε)(m2
1)3εJ1,1,1,1,1,1 .

(2.10)

We have normalised all master integrals to be dimensionless, i.e., the functions fi only

depend on t.

An efficient way to compute the master integrals is to use differential equations [3, 49–

52]. The master integrals f1 through f7 satisfy a system of differential equations in so-called

canonical form [53]:

∂tfa = ε
(A0)ak
t

fk + ε
(A1)ak
t− 1

fk , 1 ≤ a, k ≤ 7 . (2.11)

A0 and A1 are matrices of integer numbers, which we give explicitly in appendix A. The

canonical form of the differential equation in eq. (2.11) makes it manifest that the functions

(f1, . . . , f7) can be expressed in terms of a well-studied class of special functions called

multiple polylogarithms (MPLs) [1, 54]:

G(a1, · · · , an;x) =

∫ x

0

du

u− a1
G(a2, · · · , an;u) , G(;x) = 1, an 6= 0 . (2.12)
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In the case where an = 0, the naive recursive definition in eq. (2.12) is divergent, and we

define instead,

G(0, . . . , 0︸ ︷︷ ︸
n times

;x) =
1

n!
logn x . (2.13)

Since eq. (2.11) only has singularities at t ∈ {0, 1,∞}, we only need to consider the case

where ai ∈ {0, 1} in eq. (2.12), which defines a class of functions known as harmonic

polylogarithms [2]. Solving eq. (2.11) in terms of MPLs is standard, and the analytic

results can be found in ref. [44]. We will therefore not discuss these integrals any further,

and we only mention that we find complete agreement with the results of ref. [44].

Let us now turn to the remaining master integrals f8, f9 and f10. It was already ob-

served in ref. [44] that these integrals are not expressible in terms of MPLs. This can be

seen from the perspective of differential equations. Before we discuss the form of the differ-

ential equations, it is convenient to change the basis of master integrals. More precisely, we

consider the integrals f8 and f9 in d = 2− 2ε dimensions where they are finite. We denote

the corresponding master integrals in d = 2 dimensions by f
(2)
8 and f

(2)
9 . The results in

d = 4−2ε dimensions can be recovered from dimensional recurrence relations [55, 56], which

we give explicitly in appendix B. Here we only mention that the poles in ε of f8 and f9 only

involve MPLs, and the two-dimensional integrals f
(2)
8 and f

(2)
9 enter for the first time in the

coefficient of ε0. It is therefore sufficient to compute f
(2)
8 and f

(2)
9 (where we set ε = 0) to

obtain their four-dimensional analogues, which leads to simplifications in our computations.

Let us now have a closer look at the differential equations satisfied by f
(2)
8 and f

(2)
9 . The

differential equations remain coupled in the limit ε = 0. The corresponding homogeneous

2× 2 system has the form

∂tf
(2)
8,h = −f (2)

9,h ,

∂tf
(2)
9,h =

(
1

12(t− 9)
+

1

4(t− 1)
− 1

3 t

)
f

(2)
8,h −

(
1

t− 9
+

1

t− 1
+

1

t

)
f

(2)
9,h .

(2.14)

It is convenient to transform this system into a second-order equation satisfied by f
(2)
8,h ,

D2
t f

(2)
8,h = 0 , (2.15)

with

D2
t = ∂2

t +

(
1

t− 9
+

1

t− 1
+

1

t

)
∂t +

(
1

12(t− 9)
+

1

4(t− 1)
− 1

3t

)
. (2.16)

Remarkably, this differential operator is the same one as in the case of the sunrise integral

with a massive external leg and three massive propagators of equal mass [13]. As a con-

sequence, any element in the kernel of D2
t can be written as a linear combination of the

following two functions [13]:

Ψ1(t) =
8√

3 + 8
√
t+ 6t− t2

K(λ(t)), Ψ2(t) =
16i√

3 + 8
√
t+ 6t− t2

K(1− λ(t)), (2.17)
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where λ(t) is given by

λ(t) =
16
√
t

3 + 8
√
t+ 6t− t2

, (2.18)

and K is the complete elliptic integral of the first kind,

K(λ) =

∫ 1

0

dt√
(1− t2)(1− λt2)

. (2.19)

The functions in eq. (2.17) are respectively real and purely imaginary for 0 < t < 1. They

can be analytically continued outside of this range [24, 57]. We will return to the analytic

continuation in section 7.

Equation (2.17) is sufficient to construct the general solution to the homogeneous

system in eq. (2.14). The Wronskian matrix of the system is

W(t) =

(
Ψ1(t) Ψ2(t)

Φ1(t) Φ2(t)

)
≡

(
Ψ1(t) Ψ2(t)

∂tΨ1(t) ∂tΨ2(t)

)
. (2.20)

The general solution to the homogeneous equation then takes the form(
f

(2)
8,h

f
(2)
9,h

)
=W(t)

(
c1

c2

)
, ci ∈ C . (2.21)

While the solution of the homogeneous system in eq. (2.14) is well known, solving the

inhomogeneous system satisfied by f
(2)
8 , f

(2)
9 and f10 is not trivial. Here, we will compute

f
(2)
8 from its Feynman parametric representation. From their definition in eq. (2.10), we

see that f
(2)
9 is determined by the derivative of f

(2)
8 with respect to t. Once f

(2)
8 is known

in an appropriate form, we can thus compute f
(2)
9 by differentiating f

(2)
8 . Finally, we can

compute f10 from the differential equation that it satisfies which reads

∂tf10 = ε
2

1− t
f10 + ε4

[
2

t
(ζ3 − Li3(1− t))− 1

3

(
4

1− t
+

1

2

)
f

(2)
8 (2.22)

+
1

1− t

(
2Li3(t)− Li2(t) log t− π2

6
log t+

10

3
ζ3

)]
+O(ε5) ,

where Lin(t) denote the classical polylogarithms,

Lin(t) = −G(0, . . . , 0︸ ︷︷ ︸
n−1

, 1; t) , ζn = Lin(1) . (2.23)

We recall that f10 corresponds to the d = 4 − 2ε integral, see eq. (2.10). We see that the

homogeneous part of the differential equation in eq. (2.22) is in canonical form. Never-

theless, f10 cannot be expressed in terms of MPLs only, because it contains f
(2)
8 in the

inhomogeneous term. We can thus determine f10 once f
(2)
8 is known analytically. Note

that f
(2)
9 does not contribute to the differential equation for f10 through O(ε4), which is

the order through which f10 enters the three-loop corrections to the ρ parameter.
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Before we discuss the computation of f
(2)
8 , f

(2)
9 and f10 in the next section, let us

mention that the system of differential equations satisfied by f
(2)
8 and f

(2)
9 was also analysed

in refs. [45, 46]. There the corresponding second-order differential operator was not directly

in a form which matches the one for the sunrise graph in eq. (2.16). As a consequence,

the homogeneous solutions of refs. [45, 46] (i.e., the equivalent of our f
(2)
8,h and f

(2)
9,h) take a

different form, which cannot easily be recognised as being related to the sunrise graph.

3 eMPLs on the torus and on the elliptic curve

As mentioned in the previous section, our strategy for the computation of f
(2)
8 , f

(2)
9 and

f10 relies on obtaining an analytic solution for f
(2)
8 from its Feynman parametric represen-

tation. Before we discuss this in detail, we review in this section some of the mathematical

background needed to perform all the integrals analytically. We keep the review to a strict

minimum, and we refer to the literature for a more detailed discussion (see, e.g., refs. [58–60]

and references therein).

3.1 Elliptic curves and elliptic functions

Let Pn(x) be a polynomial of degree n. An elliptic curve can be defined (loosely) by the

equation y2 = Pn(x) for n = 3, 4. In this paper we are naturally led to an elliptic curve

defined by a cubic polynomial, so we will focus our discussion on the polynomial equation

y2 = P3(x) = (x− a1)(x− a2)(x− a3) . (3.1)

We call a1, a2 and a3 the branch points of the elliptic curve. Seen as points in CP2 and

using homogeneous coordinates, the elliptic curve is given by the points [x, y, 1] that satisfy

eq. (3.1), together with the point [0, 1, 0] on the infinity line. It is important to establish

our conventions for the branches of the square root. Throughout this paper we follow

ref. [58]: if the branch points are real and ordered as a1 < a2 < a3, then

y =
√
P3(x) =

√
|P3(x)| ×


−i, x ≤ a1 ,

1, a1 < x ≤ a2 ,

i, a2 < x ≤ a3 ,

−1, a3 < x .

(3.2)

Some ubiquitous quantities that appear in the study of elliptic curves are the periods ωi,

ω1 = 2c3

∫ a2

a1

dx

y
= 2 K(λ) , ω2 = 2c3

∫ a2

a3

dx

y
= 2iK(1− λ) , (3.3)

with K(λ) defined in eq. (2.19), and the quasi-periods ηi,

η1 =
1

4

∫ a2

a1

dx

c3y

(
s1(~a)

3
− x
)

= E(λ)− 2− λ
3

K(λ) ,

η2 =
1

4

∫ a2

a3

dx

c3y

(
s1(~a)

3
− x
)

= −i E(1− λ) +
1 + λ

3
K(1− λ) ,

(3.4)
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where

c3 =

√
a31

2
, aij = ai − aj , λ =

a12

a13
, s1(~a) = a1 + a2 + a3 . (3.5)

E(λ) denotes the complete elliptic integral of the second kind,

E(λ) =

∫ 1

0

√
1− λt2
1− t2

dt . (3.6)

The periods and quasi-periods are related by the Legendre relation:

ω1η2 − ω2η1 = −iπ . (3.7)

Every elliptic curve is isomorphic to a complex torus. More precisely, if we define

τ =
ω2

ω1
, (3.8)

then the points in CP2 that satisfy eq. (3.1) are isomorphic to the quotient C/Λτ where

the two-dimensional lattice Λτ is defined as

Λτ = Z + Z τ = {m+ n τ |m,n ∈ Z} . (3.9)

Note that τ can always be chosen to lie in the complex upper half-plane H = {τ ∈ C :

Im τ > 0}. We can construct a map from the torus to the elliptic curve with a function

µ (·,~a) : C/Λτ → C , (3.10)

which satisfies the differential equation (c3 µ
′ (z,~a))2 = P3 (µ (z,~a)). A point z on the torus

is then mapped to the point [µ (z,~a) , c3 µ
′ (z,~a) , 1] on the elliptic curve. The precise form

of µ (z,~a) is not relevant for this paper and we refer the reader to ref. [58] for a more

explicit definition. We can also define a map which assigns to a point [x0, y0, 1] on the

elliptic curve defined by y2 = P3(x) a point zx0 ∈ C/Λτ ,

zx0 ≡
c3

ω1

∫ x0

∞

dx

y
mod Λτ . (3.11)

3.2 Elliptic multiple polylogarithms

A natural class of functions to consider when working with Feynman integrals are elliptic

multiple polylogarithms (eMPLs). Loosely speaking, eMPLs can be thought of as a class of

iterated integrals that generalises the complete elliptic integrals of eqs. (2.19) and (3.6), in

the same way that the MPLs in eq. (2.12) generalise the logarithm.

Since we have two ways of describing an elliptic curve — as a torus C/Λτ or as a set

of points in CP2 — there are also two equivalent ways of defining eMPLs. We start by

defining them in terms of iterated integrals along a path on the torus as [61, 62]

Γ̃
(
n1 · · · nk
z1 · · · zk

; z, τ
)

=

∫ z

0
dz′g(n1)(z′ − z1, τ)Γ̃

(
n2 · · · nk
z2 · · · zk

; z′, τ
)
. (3.12)
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The integer k is called the length, ni ∈ N∗ and
∑

i ni is the weight. The integration kernels

g(ni)(z, τ) are defined through the Eisenstein-Kronecker series,

F (z, τ, α) =
1

α

∑
n≥0

g(n)(z, τ)αn =
θ′1(0, τ)θ1(z + α, τ)

θ1(z, τ)θ1(α, τ)
, (3.13)

where θ1 is the Jacobi theta function and θ′1 is its derivative with respect to the first

argument. We refer the reader to e.g. section 3.2.1 of ref. [62] for an explicit definition and

a discussion of some basic properties of θ1.

Unlike what happens for the MPLs in eq. (2.12), there is an infinite number of kernels

one must consider for eMPLs. While all these kernels are necessary for the study of this

class of functions, in any particular calculation of a Feynman integral only a limited set will

be relevant. As we will see below, only g(1)(z, τ) is relevant in our case. From now on we

focus on this kernel and refer the reader to ref. [61] for a more complete exposition. First,

we note that g(1)(z, τ) has a simple pole with unit residue at each point of Λτ . Iterated

integrals over this kernel will thus only have logarithmic singularities. In particular, some

of the integrals in eq. (3.12) may be divergent and require regularisation. We refer the

reader to ref. [62] for details on how this procedure can be implemented. Second, g(1)(z, τ)

is odd under z → −z, i.e., g(1)(−z, τ) = −g(1)(z, τ). Moreover g(1)(z, τ) is not periodic

under translations in both directions of the lattice Λτ :

g(1)(z + 1, τ) = g(1)(z, τ) , g(1)(z + τ, τ) = g(1)(z, τ)− 2πi . (3.14)

Finally, it is possible to write a closed form for the total differential of an eMPL. The total

differential for Γ̃
(
~A; z, τ

)
, where ~A = (A1 · · ·Ak) =

(
n1 · · · nk
z1 · · · zk

)
, is given by [60]

dΓ̃ (A1 · · ·Ak; z, τ) =
k−1∑
p=1

(−1)np+1Γ̃
(
A1 · · ·Ap−1

0

0
Ap+2 · · ·Ak; z, τ

)
ω

(np+np+1)
p,p+1 (3.15)

+

k∑
p=1

np+1∑
r=0

[(
np−1 + r − 1

np−1 − 1

)
Γ̃
(
A1 · · ·A[r]

p−1ÂpAp+1 · · ·Ak; z, τ
)
ω

(np−r)
p,p−1

−
(
np+1 + r − 1

np+1 − 1

)
Γ̃
(
A1 · · ·Ap−1ÂpA

[r]
p+1 · · ·Ak; z, τ

)
ω

(np−r)
p,p+1

]
,

with A
[r]
p ≡

(
np + r

zp

)
. The hat means that the corresponding argument Âp is removed,

and we use the conventions (z0, zk+1) = (z, 0), (n0, nk+1) = (0, 0). The ω
(n)
ij are differential

one-forms given by

ω
(n)
ij = (dzj − dzi)g(n)(zj − zi, τ) +

ndτ

2πi
g(n+1)(zj − zi, τ), with n ≥ 0 ,

ω
(−1)
ij = − dτ

2πi
. (3.16)

Since we can equivalently represent an elliptic curve as the zero set of some polynomial

equation in CP2, see eq. (3.1), there is an alternative definition of eMPLs which uses
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directly the coordinates (x, y) instead of the coordinate z on the torus. This representation

is important in the context of our current discussion because, in applications to Feynman

integral calculations, elliptic curves often arise via explicit polynomial equations. The

change of variables from z to x is given by eq. (3.10). Inserting it into the definition of

eMPLs in eq. (3.12) we arrive at the following class of iterated integrals [58, 59]

E3

(
n1 · · · nk
c1 · · · ck

;x,~a
)

=

∫ x

0
dt ψn1(c1, t,~a) E3

(
n2 · · · nk
c2 · · · ck

; t,~a
)
, E3(;x,~a) = 1 , (3.17)

where the integration kernels are related to the kernels in eq. (3.12) via

dxψ±n(c, x,~a) = dzx

(
g(n)(zx − zc, τ)± g(n)(zx + zc, τ)− 2δ±n,1g

(1)(zx, τ)
)
. (3.18)

Here, zx is the image of [x, y, 1] on the torus, see eq. (3.11). The length and the weight of

the eMPL in eq. (3.17) are respectively defined as k and
∑k

i=1 |ni|. Restricting ourselves

to the kernels that will be relevant in this paper, we have

ψ0(0, x,~a) =
c3

y ω1
, ψ1(c, x,~a) =

1

x− c
, ψ−1(c, x,~a) =

yc
y(x− c)

− c3

2 y
Z3(c,~a) , (3.19)

where

Z3(c,~a) =

∫ c

a3

dx

c3y

(
s1(~a)

3
− x− 8c2

3

η1

ω1

)
=

4g(1)(zc, τ)

ω1
. (3.20)

We note that some of the integrals in eq. (3.17) may diverge and require regularisation.

We refer to ref. [59] for a detailed discussion.

Let us make some comments about the iterated integrals defined in this section. First,

the functions defined in eqs. (3.12) and (3.17) satisfy the usual properties of iterated in-

tegrals. In particular, they form a shuffle algebra, i.e., any product of these functions

evaluated at the same value of the upper integration limit can be written as a linear com-

bination of the same class of functions. Second, using eq. (3.19) we can easily translate

between the eMPLs defined in eqs. (3.12) and (3.17). Every linear combination of iterated

integrals Γ̃ can be written as a linear combination of E3 functions, and vice-versa. Finally,

eMPLs contain MPLs as a subspace. Indeed, the kernel ψ1(c, x,~a) is precisely the kernel

that appears in the definition of MPLs (cf. eq. (2.12)) and thus

E3

(
1 · · · 1

c1 · · · ck
;x,~a

)
= G(c1, . . . , ck;x) . (3.21)

4 Evaluating f
(2)
8 in terms of eMPLs

In this section we describe the evaluation of f
(2)
8 in terms of eMPLs directly from its

Feynman parameter representation. The basic idea is to perform all integrations in terms

of MPLs, except for the last one which can be performed in terms of eMPLs, cf. refs. [63, 64].

The Feynman parameter representation for f
(2)
8 reads

f
(2)
8 =

∫ ∞
0

dx1 dx2 dx3 dx4

F
δ

(
1−

∑
i∈Σ

xi

)
. (4.1)
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where Σ can be any non-empty subset of {1, 2, 3, 4}, and

F = (x1 + tx2 + x3 + x4)(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4) . (4.2)

We recall that we can put ε = 0 because the integral is finite in d = 2 dimensions.

We find it convenient to choose Σ = {2}, which amounts to setting x2 = 1 in F . The

integrals over x1 and x3 can then be easily performed in terms of MPLs. After changing

variables to x̄4 = x4
1+x4

, we obtain

f
(2)
8 =

1

2
√

1− t

∫ 1

0
dx̄4

1

y

[
G±(χ, 0; 1)− log

(
x̄4(1− t) + t

1− x̄4

)
log±

(
1− 1

χ

)
(4.3)

+G±(χ, 1; 1)−G±
(
χ,

x̄4

x̄4 − 1
; 1

)
−G±

(
χ,

x̄4(1− t) + t

x̄4(2− t) + t− 1
; 1

)]
,

where we used a compact notation which we now explain. First, we define y as

y2 = (x̄4 − a1) (x̄4 − a2) (x̄4 − a3) , (4.4)

with

a1 =
t

t− 1
, a2 =

1

8

(
t+ 3−

√
(t− 1)(t− 9)

)
, a3 =

1

8

(
t+ 3 +

√
(t− 1)(t− 9)

)
.

(4.5)

We note that in the region 0 < t < 1 the ai are real and a1 < a2 < a3. Then we define χ± as

χ± =
2(t− 1)x̄2

4 − 3tx̄4 + t+ x̄4 ± 2
√

1− ty
2(t− 1)(x̄4 − 1)2

. (4.6)

Finally, we use the shorthand

f±(χ) ≡ f(χ+)− f(χ−) . (4.7)

While we were able to integrate over three Feynman parameters without leaving the

space of MPLs to reach eq. (4.3), the square-root y appearing in the x̄4 integration means

that the last integral will leave this space and should instead be carried in terms of eMPLs.

The elliptic curve is defined by eq. (4.4), and our first step is to recast the integrand of

eq. (4.3) in terms of eMPLs. We write the integrand of eq. (4.3) as

f
(2)
8 =

∫ 1

0
dx̄4

Ω(x̄4; t)

2
√

1− ty
, (4.8)

with

∂Ω(x; t)

∂x
=

[
1√

1− t(1− x)y
−
√

1− t
y

− t√
1− txy

]
×
[
G(0; t)−G(0;x)−G(1;x) +G

(
t

t− 1
;x

)]
. (4.9)

The MPLs appearing in this expression can be written as eMPLs using eq. (3.21). Fur-

thermore, since the kernels in eq. (4.9) are all of the form of the kernels in eq. (3.19), we
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can write Ω(x; t) in terms of eMPLs. This requires determining the boundary contribution

of Ω(x; t) at x = 0, which is given by

Ω(0; t) =
π2

3
+ log2 t . (4.10)

Starting from this representation, we can then compute the integral over the last Feynman

parameter x̄4 in terms of eMPLs simply using eq. (3.17), and we find

f
(2)
8 (t) = Ψ1(t)

{
E3

(
0 −1 1
0 0 0 ; 1,~a

)
+ E3

(
0 −1 1
0 0 1 ; 1,~a

)
(4.11)

−E3

(
0 −1 1
0 0 t

t−1
; 1,~a

)
− E3

(
0 −1 1
0 1 0 ; 1,~a

)
− E3

(
0 −1 1
0 1 1 ; 1,~a

)
+E3

(
0 −1 1
0 1 t

t−1
; 1,~a

)
− 2πi E3( 0 0 1

0 0 0 ; 1,~a)− 2πi E3( 0 0 1
0 0 1 ; 1,~a)

+2πi E3

(
0 0 1
0 0 t

t−1
; 1,~a

)
+ log t

[
E3

(
0 −1
0 1 ; 1,~a

)
− E3

(
0 −1
0 0 ; 1,~a

)
+6πi E3( 0 0

0 0 ; 1,~a)] + E3( 0
0 ; 1,~a)

[
π2

6
+

log2 t

2

]}
,

where the overall factor Ψ1(t) is defined in eq. (2.17).

Equation (4.11) is one of the main results of this paper and expresses the integral f
(2)
8

in terms of eMPLs. Let us make some comments about this result. First, we observe

that f
(2)
8 is proportional to the homogeneous solution Ψ1(t), which is a period of the

elliptic curve defined by the polynomial equation in eq. (4.4). The period is multiplied

by a linear combination of eMPLs of uniform weight two. If we assign weight one to the

period Ψ1(t) [59], then f
(2)
8 has uniform weight three. This is consistent with the fact

that f
(2)
8 can be interpreted as a banana graph in two dimensions with two distinct masses

evaluated at zero external momentum. The banana graph in two dimensions is known

analytically in the case of three equal masses, and it indeed evaluates to a function of

uniform weight three [65]. Second, we can also express f
(2)
8 in terms of the eMPLs Γ̃.

We start by noting that the eMPLs in eq. (4.11) are evaluated at x ∈ {0, 1, t
t−1}. Under

eq. (3.11) these points are mapped to

z0(t) =
1

3
+
τ(t)

2
, z1(t) =

1

3
, zt/(t−1)(t) =

τ(t)

2
, (4.12)

where τ denotes the ratio of the two periods of the elliptic curve (see eq. (2.17)),

τ(t) =
Ψ2(t)

Ψ1(t)
. (4.13)

Since there is never any ambiguity, we will in the following not explicitly write the depen-

dence of the zi and τ on t. We can then use this to rewrite the integration kernels (3.19)
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in terms of those found in the definition of the Γ̃, and we find

dxψ0(0, x,~a) = dz,

dxψ−1(0, x,~a) = dz

[
g(1)

(
z − 1

3
− τ

2
, τ

)
− g(1)

(
z +

1

3
+
τ

2
, τ

)]
,

dxψ−1(1, x,~a) = dz

[
g(1)

(
z − 1

3
, τ

)
− g(1)

(
z +

1

3
, τ

)]
,

dxψ1(0, x,~a) = dz

[
g(1)

(
z − 1

3
− τ

2
, τ

)
+ g(1)

(
z +

1

3
+
τ

2
, τ

)
− 2g(1)(z, τ)

]
,

dxψ1(1, x,~a) = dz

[
g(1)

(
z − 1

3
, τ

)
+ g(1)

(
z +

1

3
, τ

)
− 2g(1)(z, τ)

]
,

dxψ1

(
t

t− 1
, x,~a

)
= dz

[
g(1)

(
z − τ

2
, τ
)
− g(1)

(
z +

τ

2
, τ
)
− 2g(1)(z, τ)

]
. (4.14)

Using this change of variables in eq. (3.17), we can express all the E3 functions in eq. (4.11)

in terms of Γ̃ functions. The procedure is straightforward, but the result is lengthy and not

particularly illuminating, so we do not show it here explicitly. We only mention that since

all points in eq. (4.12) are rational points of the form zi = r
6 + s τ

6 , with r and s integers,

the Γ̃ functions will have a very special form, namely they will all have arguments that are

rational points.

Our next goal is to compute the master integrals f
(2)
9 and f10. As explained at the end

of section 2, this can be done by differentiating or integrating f
(2)
8 with respect to t. These

operations, however, are not straightforward to carry out on the expressions in eq. (4.11),

because the eMPLs depend on t in a highly non-trivial way. It would be desirably to have

a representation of f
(2)
8 in terms of iterated integrals with a simple dependence on the

kinematic variable. While in general such a form may not be easily obtained, the special

rational form of the points in eq. (4.12) allows one to find such a representation in this

case. This will be reviewed in the next section.

5 eMPLs and iterated Eisenstein integrals

In this section we review how eMPLs evaluated at rational points can be expressed in terms

of another class of iterated integrals, namely the so-called iterated Eisenstein integrals.

Eisenstein series are a special case of modular forms. In the first part of this section we

review modular forms and Eisenstein series, and in a second part we review the relationship

between iterated Eisenstein integrals and eMPLs.

5.1 Modular forms: a brief introduction

In section 3.2 we have seen that every elliptic curve is isomorphic to a torus C/Λτ , for

some value τ ∈ H. Different values of τ , however, do not necessarily describe different tori.

Indeed, we can replace the basis of periods (ω1, ω2) by an integer linear combination of

them without changing the lattice they generate. More precisely, let τ ′ ∈ H be obtained

from τ via a modular transformation, defined as

τ → τ ′ = γ · τ ≡ aτ + b

cτ + d
, γ =

(
a b
c d

)
∈ SL(2,Z), (5.1)
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where

SL(2,Z) =
{(

a b
c d

) ∣∣a, b, c, d ∈ Z, ad− bc = 1
}
. (5.2)

Then τ and τ ′ define the same lattice, Λτ = Λτ ′ , and so they also define the same elliptic

curve. In other words, τ and τ ′ define the same elliptic curve if and only if they are related

by a modular transformation. For this reason, modular transformations play a central role

in the study of elliptic curves.

In applications it is often specific subgroups of SL(2,Z) that are of interest. Particularly

important subgroups are the so-called congruence subgroups of level N , defined by

Γ0(N) =
{(

a b
c d

)
∈ SL(2,Z)

∣∣ c = 0 mod N
}
,

Γ1(N) =
{(

a b
c d

)
∈ SL(2,Z)

∣∣ c = 0 and a = d = 1 mod N
}
,

Γ(N) =
{(

a b
c d

)
∈ SL(2,Z)

∣∣ b = c = 0 and a = d = 1 mod N
}
,

(5.3)

with Γ(N) ⊆ Γ1(N) ⊆ Γ0(N) ⊆ SL(2,Z). Let Γ be any congruence subgroup of SL(2,Z).

It is clear that H maps onto itself under modular transformations for Γ. If we consider

the extended upper-half plane H = H ∪ Q ∪ {i∞}, then Γ acts separately on H and on

Q ∪{i∞}. The equivalence classes of Q ∪{i∞} are called the cusps of Γ (we recall that τ

and τ ′ are in the same equivalence class if τ = γ · τ ′ for some γ ∈ Γ). The equivalence class

that contains i∞ is called the cusp at infinity. As an example, for γ ∈ Γ(1) = SL(2,Z) we

find that γ · (i∞) = a/c and thus there is a single cusp for Γ(1), the cusp at infinity. For

any N , the number of cusps of the congruence subgroups of eq. (5.3) is finite.

Our goal is to construct functions that transform nicely under some congruence sub-

group Γ. A modular function for Γ is a meromorphic function f : H→ C that is invariant

under Γ. One can show that every modular function has at least one pole. If we want

to consider holomorphic functions, i.e., functions without poles, then we need to consider

more general transformations. A modular form of weight n for Γ is a function f : H → C
that is holomorphic on H and at the cusps of Γ such that

f (γ · τ) = (cτ + d)nf(τ) , γ =
(
a b
c d

)
∈ Γ . (5.4)

Let N be the smallest integer such that Γ(N) ⊆ Γ. Then translations by N are generated

by TN =
(

1 N
0 1

)
and so modular forms in Γ are N -periodic. In particular, this implies that

modular forms of level N admit a Fourier expansion of the form

f(τ) =
∞∑
m=0

ame
2πimτ
N =

∞∑
m=0

amq
m
N , (5.5)

where q = exp(2πiτ) and qN = q
1
N , and we used the fact that f(τ) is holomorphic at

τ → i∞ to start the summation at m = 0. This Fourier expansion is called the q-expansion

of the modular form f(τ).

Let us denote by Mn(Γ) the vector space generated by all modular forms of weight n

for Γ. One can show that Mn(Γ) is always finite-dimensional. Moreover, Mn(Γ) admits a

direct sum decomposition

Mn(Γ) = Sn(Γ)⊕ En(Γ) . (5.6)
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Here Sn(Γ) denotes the space of cusp forms of weight n, i.e., the modular forms of weight

n that vanish at all cusps of Γ. Its complement En(Γ) is the space of Eisenstein series. The

Eisenstein series are of particular interest when working with eMPLs, and so we discuss

them in detail in the remainder of this section.

Of special importance here will be the functions [66] (0 ≤ r, s < N),

a
(n)
N,r,s(τ) =

1

2

∑
(a,b)∈Z2

(a,b) 6=(0,0)

e−2πiar/N cos 2πsb
N

(aτ + b)n
,

b
(n)
N,r,s(τ) =

1

2i

∑
(a,b)∈Z2

(a,b) 6=(0,0)

e−2πiar/N sin 2πsb
N

(aτ + b)n
.

(5.7)

One can show that these functions are always Eisenstein series of weight n for Γ(N) [60, 66].

Moreover, they form a spanning set of En(Γ(N)), i.e., every element of En(Γ(N)) can be

written as a linear combination of the functions in eq. (5.7). Note that they do not form a

basis. The relations between them are however understood [60, 66]. We also mention that

these functions are real whenever τ is purely imaginary [66]. Finally, the Eisenstein series

in eq. (5.7) are closely related to the coefficients g(n)(z, τ) in eq. (3.13). More precisely, we

have the relation (0 ≤ r, s < N) [60, 66]

g(n)
( r
N

+
s

N
τ, τ
)

= −
n∑
k=0

(−2πis)k

k!Nk

[
a

(n−k)
N,r,s (τ) + ib

(n−k)
N,r,s (τ)

]
. (5.8)

The previous equation shows that there is a connection between Eisenstein series for Γ(N)

and eMPLs evaluated at rational points of the form z = r
N + s

N τ . We know from eq. (4.12)

that the arguments of the eMPLs that appear in f
(2)
8 have this form, with N = 6. Hence

we expect the integral f
(2)
8 to be closely connected to Eisenstein series. We review this

connection in the next section.

5.2 Iterated Eisenstein integrals

Consider a set of modular forms fj(τ) of weight nj for some congruence subgroup of level N .

We define their iterated integral as [67, 68]

I(f1, . . . , fk; τ) =

∫ τ

i∞

dτ ′

2πi
f1(τ ′)I(f2, . . . , fk; τ

′) , (5.9)

with I(; τ) ≡ 1. A precise definition of these integrals requires a careful regularisation of

divergences that can appear at the cusp at infinity τ ′ = i∞, and we refer to ref. [68] for

a detailed discussion. We define the length of I(f1, . . . , fk; τ) to be k and the weight is

−k+
∑k

j=1 nj . In the case where all the modular forms fj(τ) are Eisenstein series, we refer

to the integral in eq. (5.9) as an iterated Eisenstein integral.

In ref. [60] it was shown that whenever an eMPL of weight n is evaluated at rational

points of the form z = r
N + s

N τ , then this eMPL can be expressed as a linear combination

of uniform weight n of iterated Eisenstein integrals of level N . More precisely, we see from
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eq. (3.15) that the total differential of a length-k eMPL is given by eMPLs of length k− 1

and one-forms ω
(n)
ij . If all the arguments of the eMPL are rational, then we can write ω

(n)
ij

in terms of Eisenstein series using eq. (5.8). Hence, if we assume recursively that the claim

is true for eMPLs up to length k−1, we see that the total differential of an eMPL of length

k evaluated at rational points only involves iterated Eisenstein integrals and Eisenstein

series. We can then integrate back in τ to obtain the desired representation at length k.

This recursive consideration also provides an efficient algorithm to express eMPLs

evaluated at rational points in terms of iterated Eisenstein integrals. The starting point is to

write an eMPL evaluated at rational points as the integral of its derivative with respect to τ ,

Γ̃ (A1 · · ·Ak; z, τ) = Cusp
(

Γ̃ (A1 · · ·Ak; z, τ)
)

+

∫ τ

i∞
dΓ̃ (A1 · · ·Ak; z, τ) . (5.10)

Since the differential lowers the length by one, we can recursively express the integrand in

terms of iterated Eisenstein integrals and integrate back using eq. (5.9). The integration

constant is obtained by studying the behaviour at the cusp at infinity. For the cases of

interest here, it is possible to compute Cusp
(

Γ̃ (A1 · · ·Ak; z, τ)
)

by performing a series

expansion of the integrands in Γ̃ (A1 · · ·Ak; z, τ), and integrating only the leading terms

(see the example below). This algorithm is iterative in the length of the eMPLs, and the

starting point is the total differential of an eMPL of length one,

d Γ̃
(
n1

z1
; z, τ

)
=

n1+1∑
r=0

(
r − 1

−1

) [
ω

(n1−r)
1,0 − ω(n1−r)

1,2

]
(5.11)

where the differential one-forms ω
(n1−r)
ij can be expressed in terms of Eisenstein series via

eq. (5.8) whenever z1 and z are rational points.

To make the discussion more concrete, we illustrate this procedure on the example of

one of the eMPLs that appears in the analytic result for f
(2)
8 , namely Γ̃

(
0 1
0 2

3
; τ2 , τ

)
. We

start by computing its total differential using eq. (3.15). We get:

dΓ̃
(

0 1

0 2
3

;
τ

2
, τ
)

=

1∑
r=0

[(
r − 1

−1

)
Γ̃
(

1
2
3

;
τ

2
, τ
)
ω

(−r)
1,0 −

(
r

0

)
Γ̃
(

1 + r
2
3

;
τ

2
, τ
)
ω

(−r)
1,2

]
(5.12)

+
2∑
r=0

[(
r − 1

−1

)
Γ̃
(
r

0
;
τ

2
, τ
)
ω

(1−r)
2,1 −

(
r − 1

−1

)
Γ̃
(

0

0
;
τ

2
, τ
)
ω

(1−r)
2,3

]
− Γ̃

(
0

0
;
τ

2
, τ
)
ω

(1)
1,2

= Γ̃
(

0

0
;
τ

2
, τ
) [
ω

(1)
2,1 − ω

(1)
2,3 − ω

(1)
1,2

]
+ Γ̃

(
1
2
3

;
τ

2
, τ
) [
ω

(0)
1,0 − ω

(0)
1,2

]
− Γ̃

(
2
2
3

;
τ

2
, τ
)
ω

(−1)
1,2 .

Iterating this procedure, we find that the total differentials of the eMPLs in the right-hand

side of eq. (5.12) read:

dΓ̃
(

0

0
;
τ

2
, τ
)

= ω
(0)
1,0 − ω

(0)
1,2 , dΓ̃

(
1
2
3

;
τ

2
, τ
)

= ω
(1)
1,0 − ω

(1)
1,2 ,

dΓ̃
(

2
2
3

;
τ

2
, τ
)

= ω
(2)
1,0 − ω

(2)
1,2 .

(5.13)
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The next step is to rewrite the one-forms ω
(n)
ij that appear in eqs. (5.12) and (5.13) in terms

of the a
(nj)
Nj ,rj ,sj

(τ) and b
(nj)
Nj ,rj ,sj

(τ). Starting from eq. (3.16) and using eq. (5.8), we find

ω
(1)
2,1 = − dτ

2πi
a

(2)
6,2,0(τ) ,

ω
(1)
1,0 = − dτ

2πi

[
−π

2

2
− a

(2)
6,1,0(τ)− a

(2)
6,1,3(τ)

]
,

ω
(2)
1,0 = − dτ

2πi

[
iπ3dτ

2
+ iπ a

(2)
6,1,0(τ) + iπ a

(2)
6,1,3(τ) + 2 a

(3)
6,2,3(τ)

]
,

ω
(2)
1,2 = −2dτ

3πi

[
a

(3)
6,1,0(τ) + a

(3)
6,1,3(τ)− a

(3)
6,2,3(τ)

]
.

(5.14)

Inserting eq. (5.14) into eq. (5.13) and integrating back in τ , we find

Γ̃
(

0

0
;
τ

2
, τ
)

= i π I(1; τ) , (5.15)

Γ̃
(

1
2
3

;
τ

2
, τ
)

=
π2

2
I(1; τ) + I

(
a

(2)
6,1,0; τ

)
+ I
(
a

(2)
6,1,3; τ

)
+ I
(
a

(2)
6,2,0; τ

)
−G

(
e−

2iπ
3 ; 1

)
,

Γ̃
(

2
2
3

;
τ

2
, τ
)

= − i π
3

6
I(1; τ)− i πI

(
a

(2)
6,1,0; τ

)
− i πI

(
a

(2)
6,1,3; τ

)
+

4

3
I
(
a

(3)
6,1,0; τ

)
+

4

3
I
(
a

(3)
6,1,3; τ

)
− 10

3
I
(
a

(3)
6,2,3; τ

)
,

where we used boundary conditions:

Cusp
(

Γ̃
(

0

0
;
τ

2
, τ
))

= Cusp
(

Γ̃
(

2
2
3

;
τ

2
, τ
))

= 0 ,

Cusp
(

Γ̃
(

1
2
3

;
τ

2
, τ
))

= −G
(
e−

2iπ
3 ; 1

)
.

(5.16)

As previously said, the cusp values can be computed from the series expansion of the

integration kernels of the eMPLs. Let us consider Γ̃
(

1
2
3

; τ2 , τ
)

. The series expansion of

g(1)
(
z − 2

3 , τ
)

is given by:

g(1)

(
z − 2

3
, τ

)
=

iπ

e2πi(z+ 1
3

) − 1
+ iπ

e2πi(z+ 1
3

)

e2πi(z+ 1
3

) − 1
+O(q2) . (5.17)

Then, performing the change of variable

w = e2πiz, (5.18)

and integrating eq. (5.17) with respect to w we obtain:

Γ̃
(

1
2
3

;
τ

2
, τ
)

= G
(
e−

2πi
3 ; eiπτ

)
− 1

2
G
(
0; eiπτ

)
−G

(
e−

2πi
3 ; 1

)
+O(q2)

= −1

2
log q2 −G

(
e−

2πi
3 ; 1

)
+O(q2) .

(5.19)

The value of Cusp
(

Γ̃
(

1
2
3

; τ2 , τ
))

is defined as the constant term in the above equation (i.e.,

the term independent of q2), which gives the result in eq. (5.16).
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Substituting (5.16) into eq. (5.13) and using the fact that

Cusp
(

Γ̃
(

0 1

0 2
3

;
τ

2
, τ
))

=
i

2π
G
(

0, e−
2iπ
3 ; 1

)
, (5.20)

we finally find that

Γ̃
(

0 1

0 2
3

;
τ

2
, τ
)

=
i

2π
G
(

0, e−
2iπ
3 ; 1

)
− π iG

(
e−

2iπ
3 ; 1

)
I(1; τ) +

i π3

3
I (1, 1; τ)

+ i π I
(

1,a
(2)
6,2,0; τ

)
+

4

3
I
(

1,a
(3)
6,1,0; τ

)
+

4

3
I
(

1,a
(3)
6,1,3; τ

)
− 10

3
I
(

1,a
(3)
6,2,3; τ

)
+ i π I

(
a

(2)
6,2,0, 1; τ

)
.

(5.21)

Following exactly the same steps as in this example, we can express all the eMPLs that

appear in f
(2)
8 in terms of iterated Eisenstein integrals. The result will be presented in the

next section.

We finish this section by noting that the procedure that we just presented to relate

eMPLs and iterated Eisenstein integrals can be reformulated in terms of the coaction on

eMPLs [60, 69]. Indeed, the algorithm we presented is summarised by the relation

Γ̃
(
~A; z, τ

)
= m

[(
Cusp⊗

∫ τ

i∞
dτ ′
)

∆
(

Γ̃
(
~A; z, τ ′

))]
, (5.22)

where ∆
(

Γ̃
(
~A; z, τ

))
is the coaction on the eMPLs and we defined m[a⊗ b] ≡ ab.

6 The master integrals for topology A in the region 0 < t < 1

In this section we present our final result for the master integrals f
(2)
8 , f

(2)
9 and f10 in terms

of iterated Eisenstein integrals. We focus in this section on the region 0 < t < 1, and we

explore the analytic continuation to other regions in the next section.

We start by discussing f
(2)
8 . We can follow the steps outlined in the previous section

and express all the eMPLs that appear in the analytic expression for f
(2)
8 in eq. (4.11) in

terms of iterated Eisenstein integrals. We find

f
(2)
8 (t) = Ψ1(t) f

(2)
8,U (τ(t)) , (6.1)

with

f
(2)
8,U (τ) = 16 I

(
1, a

(3)
6,1,0, a

(2)
6,1,0; τ

)
+ 16 I

(
1, a

(3)
6,1,0, a

(2)
6,1,3; τ

)
+ 16 I

(
1, a

(3)
6,1,0, a

(2)
6,2,0; τ

)
+16 I

(
1, a

(3)
6,1,3, a

(2)
6,1,0; τ

)
+ 16 I

(
1, a

(3)
6,1,3, a

(2)
6,1,3; τ

)
+ 16 I

(
1, a

(3)
6,1,0, a

(2)
6,2,0; τ

)
−40 I

(
1, a

(3)
6,2,3, a

(2)
6,1,0; τ

)
− 40 I

(
1, a

(3)
6,2,3, a

(2)
6,1,3; τ

)
− 40 I

(
1, a

(3)
6,2,3, a

(2)
6,2,0; τ

)
+4 log 3

(
5 I
(

1, a
(3)
6,2,3; τ

)
− 2 I

(
1, a

(3)
6,1,0; τ

)
− 2 I

(
1, a

(3)
6,1,3; τ

))
−iCl2

(π
3

)
τ +

6

π
ImG

(
0, 1, 1, e

2iπ
3

)
+

2π2

27
, (6.2)
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where Cl2(x) denotes the Clausen function,

Cl2(x) =
i

2

[
Li2(e−ix)− Li2(eix)

]
. (6.3)

The variable τ(t) is defined in eq. (4.13) and is we recalled here for convenience,

τ(t) =
Ψ2(t)

Ψ1(t)
. (6.4)

Equation (6.4) can be inverted, and we find [17, 70, 71]

t(τ) = 9
η( τ2 )4η(3τ)8

η(τ)8η(3τ
2 )4

, (6.5)

where η(τ) is the Dedekind η-function

η(τ) = q
1
24

∞∏
n=1

(1− qn) , q = exp(2πiτ) . (6.6)

Next, let us discuss f
(2)
9 . Using its differential equation, we obtain

f
(2)
9 (t) = −∂tf (2)

8 (t) = −Φ1(t) f
(2)
8,U (τ(t))−Ψ1(t)J (t) ∂τf

(2)
8,U (τ(t)) , (6.7)

where Φ1(t) = ∂tΨ1(t) was defined in eq. (2.20) and J (t) denotes the Jacobian of the

change of variables from t to τ ,

J (t) = ∂tτ(t) = − 48iπ

(t− 9)(t− 1)tΨ2
1(t)

. (6.8)

The derivative of f
(2)
8,U with respect to τ can easily be carried out, as the iterated integrals

in eq. (6.2) only depend on τ through the upper integration limit. We find

f
(2)
9,U (τ) = 2πi ∂τf

(2)
8,U (τ)

= 16 I
(
a

(3)
6,1,0, a

(2)
6,1,0; τ

)
+ 16 I

(
a

(3)
6,1,0, a

(2)
6,1,3; τ

)
+ 16 I

(
a

(3)
6,1,0, a

(2)
6,2,0; τ

)
+16 I

(
a

(3)
6,1,3, a

(2)
6,1,0; τ

)
+ 16 I

(
a

(3)
6,1,3, a

(2)
6,1,3; τ

)
+ 16 I

(
a

(3)
6,1,3, a

(2)
6,2,0; τ

)
−40 I

(
a

(3)
6,2,3, a

(2)
6,1,0; τ

)
− 40 I

(
a

(3)
6,2,3, a

(2)
6,1,3; τ

)
− 40 I

(
a

(3)
6,2,3, a

(2)
6,2,0; τ

)
+4 log 3

[
5 I
(
a

(3)
6,2,3; τ

)
− 2 I

(
a

(3)
6,1,0; τ

)
− 2 I

(
a

(3)
6,1,3; τ

)]
+ 2πCl2

(π
3

)
. (6.9)

Finally, we discuss the calculation of f10. Aside from classical polylogarithms, the

differential equation for f10 in eq. (2.22) contains f
(2)
8 as an inhomogeneous term. In order

to solve the differential equation we follow the strategy of ref. [65]. We start by noting

that we have expressed f
(2)
8 in eq. (6.1) in terms of iterated Eisenstein integrals for the

congruence subgroup Γ(6), for which a spanning set is given by the functions in eq. (5.7).

It turns out that there is a smaller set of modular forms that is sufficient to express the
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result for f
(2)
8 , namely Eisenstein series for Γ1(6). In ref. [72] it was shown that a basis for

Mn(Γ1(6)) is

fn,p(τ) = t(τ)pΨ1(t(τ))n, 0 ≤ p ≤ n, f0,0(τ) = 1 . (6.10)

It is possible to write all polylogarithms that appear in eq. (2.22) in terms of iterated

Eisenstein integrals for Γ1(6). Here we only sketch the argument, and we refer to refs. [65,

71, 72] for details. If we express the iterated integrals in eq. (6.2) in terms of the kernels

in eq. (6.10), and we change variables from τ to t using eq. (6.4), we can write eq. (6.2) in

terms of iterated integrals in t, with integration kernels of the form

dt

t− t0
Ψ1(t)n−2 , t0 ∈ {0, 1, 9} . (6.11)

This class of iterated integrals contains at the same time MPLs (for n = 2) and iter-

ated Eisenstein integrals for Γ1(6) (through eq. (6.10)). In other words, all contributions in

eq. (2.22) can be expressed in terms of a unique class of iterated integrals, the iterated Eisen-

stein integrals for Γ1(6), and thus also in terms of Eisenstein series for Γ(6). Let us consider

as an example G(0; t). Using eq. (6.8) it is possible to verify that the following identity holds∫ t

0

dt

t
= c+

i

48π

[∫ τ

i∞
t2(τ)Ψ1(t(τ))2dτ − 10

∫ τ

i∞
t(τ)Ψ1(t(τ))2dτ + 9

∫ τ

i∞
Ψ1(t(τ))2dτ

]
,

(6.12)

where c is a boundary term associated with the regularisation of G(0; t). From the q-

expansion of the iterated integrals on the right-hand side of the above equation [65], it is

possible to write it in terms of iterated Eisenstein integrals:

G(0; t) = log 9− 4I
(
a

(2)
6,1,0; τ

)
− 4I

(
a

(2)
6,1,3; τ

)
− 4I

(
a

(2)
6,2,0; τ

)
, (6.13)

with c = log 9.

After this step, the inhomogeneous term of eq. (2.22) only involves Eisenstein series

and iterated Eisenstein integrals, and the differential equation for f10 can easily be solved.

We find

f10(t) = 384 I
(
a

(3)
6,1,0, 1, a

(3)
6,1,0, a

(2)
6,1,0; τ

)
+ 384 I

(
a

(3)
6,1,0, 1, a

(3)
6,1,0, a

(2)
6,1,3; τ

)
+384 I

(
a

(3)
6,1,0, 1, a

(3)
6,1,0, a

(2)
6,2,0; τ

)
+ 384 I

(
a

(3)
6,1,0, 1, a

(3)
6,1,3, a

(2)
6,1,0; τ

)
+384 I

(
a

(3)
6,1,0, 1, a

(3)
6,1,3, a

(2)
6,1,3; τ

)
+ 384 I

(
a

(3)
6,1,0, 1, a

(3)
6,1,3, a

(2)
6,2,0; τ

)
−960 I

(
a

(3)
6,1,0, 1, a

(3)
6,2,3, a

(2)
6,1,0; τ

)
− 960 I

(
a

(3)
6,1,0, 1, a

(3)
6,2,3, a

(2)
6,1,3; τ

)
−960 I

(
a

(3)
6,1,0, 1, a

(3)
6,2,3, a

(2)
6,2,0; τ

)
+ 384 I

(
a

(3)
6,1,3, 1, a

(3)
6,1,0, a

(2)
6,1,0; τ

)
+384 I

(
a

(3)
6,1,3, 1, a

(3)
6,1,0, a

(2)
6,1,3; τ

)
+ 384 I

(
a

(3)
6,1,3, 1, a

(3)
6,1,0, a

(2)
6,2,0; τ

)
+384 I

(
a

(3)
6,1,3, 1, a

(3)
6,1,3, a

(2)
6,1,0; τ

)
+ 384 I

(
a

(3)
6,1,3, 1, a

(3)
6,1,3, a

(2)
6,1,3; τ

)
+384 I

(
a

(3)
6,1,3, 1, a

(3)
6,1,3, a

(2)
6,2,0; τ

)
− 960 I

(
a

(3)
6,1,3, 1, a

(3)
6,2,3, a

(2)
6,1,0; τ

)
−960 I

(
a

(3)
6,1,3, 1, a

(3)
6,2,3, a

(2)
6,1,3; τ

)
− 960 I

(
a

(3)
6,1,3, 1, a

(3)
6,2,3, a

(2)
6,2,0; τ

)
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+192 I
(
a

(3)
6,2,3, 1, a

(3)
6,1,0, a

(2)
6,1,0; τ

)
+ 192 I

(
a

(3)
6,2,3, 1, a

(3)
6,1,0, a

(2)
6,1,3; τ

)
+192 I

(
a

(3)
6,2,3, 1, a

(3)
6,1,0, a

(2)
6,2,0; τ

)
+ 192 I

(
a

(3)
6,2,3, 1, a

(3)
6,1,3, a

(2)
6,1,0; τ

)
+192 I

(
a

(3)
6,2,3, 1, a

(3)
6,1,3, a

(2)
6,1,3; τ

)
+ 192I

(
a

(3)
6,2,3, 1, a

(3)
6,1,3, a

(2)
6,2,0; τ

)
−480 I

(
a

(3)
6,2,3, 1, a

(3)
6,2,3, a

(2)
6,1,0; τ

)
− 480 I

(
a

(3)
6,2,3, 1, a

(3)
6,2,3, a

(2)
6,1,3; τ

)
−480 I

(
a

(3)
6,2,3, 1, a

(3)
6,2,3, a

(2)
6,2,0; τ

)
+ log 3

[
480 I

(
a

(3)
6,1,0, 1, a

(3)
6,2,3; τ

)
−192 I

(
a

(3)
6,1,0, 1, a

(3)
6,1,3; τ

)
− 192 I

(
a

(3)
6,1,0, 1, a

(3)
6,1,0; τ

)
−192 I

(
a

(3)
6,1,3, 1, a

(3)
6,1,0; τ

)
− 192 I

(
a

(3)
6,1,3, 1, a

(3)
6,1,3; τ

)
+480 I

(
a

(3)
6,1,3, 1, a

(3)
6,2,3; τ

)
− 96 I

(
a

(3)
6,2,3, 1, a

(3)
6,1,0; τ

)
−96 I

(
a

(3)
6,2,3, 1, a

(3)
6,1,3; τ

)
+ 240 I

(
a

(3)
6,2,3, 1, a

(3)
6,2,3; τ

)]
+

[
72

π
ImG

(
0, 1, 1, e

2iπ
3

)
+

8π2

9

] [
2 I
(
a

(3)
6,1,0; τ

)
+ 2 I

(
a

(3)
6,1,3; τ

)
+ I
(
a

(3)
6,2,3; τ

)]
+24π Cl2

(π
3

) [
2 I
(
a

(3)
6,1,0, 1; τ

)
+ 2 I

(
a

(3)
6,1,3, 1; τ

)
+ I
(
a

(3)
6,2,3 , 1; τ

)]
+2G (0, 1, 1, 0; t)−G (1, 0, 1, 0; t) +

π2

6
G (1, 0; t)− π2

3
G (0, 1; t)− 22ζ3

3
G(1; t)

−6 Cl2

(π
3

)2
− π4

24
. (6.14)

Equations (6.2), (6.9) and (6.14) are among the main results of this paper. They

express all elliptic master integrals of Topology A in terms of a class of special functions

that is well studied in both the mathematics and physics literature, namely eMPLs and

iterated Eisenstein integrals for the congruence subgroup Γ(6). The discussion from the

previous paragraph shows that we can even restrict the analysis to the larger congruence

subgroup Γ1(6), at least through finite terms in the Laurent expansion in ε. This shows

that all master integrals for Topology A can be expressed in terms of exactly the same

class of functions as the well-known sunrise, kite and banana integrals with three or four

equal masses. This extends the observation of section 2 that f
(2)
8 and f

(2)
9 satisfy the

same homogeneous differential equation as the sunrise graph. In particular, we find that

there is no need to introduce new classes of transcendental functions beyond those already

encountered for the sunrise and kite graphs. This is at variance with the analytic results

for Topology A of refs. [45, 46], where new classes of functions were introduced.

Since the integrals considered here and the sunrise graph seem to be so closely related,

let us comment on the elliptic curves that appear in the computation of the two integrals.

As already mentioned in section 2, the second order differential operator in eq. (2.16) that

describes the homogeneous solution is identical for the two sets of integrals. The solutions

of eq. (2.16) are the two periods Ψ1(t) and Ψ2(t) of the family of elliptic curves parametrised

by t. While in the case of the integrals considered here this curve is most naturaly defined

by a cubic polynomial (cf. eq. (4.4)), the curve obtained from the Feynman parameter

integral for the sunrise is defined by a quartic polynomial, cf. e.g. refs. [16, 17, 26]. There
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is no contradiction: the same elliptic curve may be represented as the zero set of different

polynomial equations. An invariant that uniquely distinguishes different elliptic curves is

its j-invariant. The j-invariant of the family of elliptic curves in eq. (4.4) is

j(t) =
(t− 3)3(t((t− 9)t+ 3)− 3)3

1728(t− 9)(t− 1)3t2
. (6.15)

It is easy to check that eq. (6.15) agrees with the j-invariant for the family of elliptic curves

obtained from the Feynman parametrisation of the equal-mass sunrise graph, with t =
p2

m2 [17]. This shows that indeed the elliptic curves obtained from the Feynman parameter

integrals of the sunrise integrals and the integrals considered here are identical.

Finally, let us make a comment about the analytic structure of our results. We see

that we can cast our results in the form, f
(2)
8 (t)

f
(2)
9 (t)

f10(t)

 = S(t)

 f
(2)
8,U (t)

f
(2)
9,U (t)

f10,U (t)

 , (6.16)

where f
(2)
8,U (t), f

(2)
9,U (t) and f10,U (t) = f10(t) are defined in eqs. (6.2), (6.9) and (6.14). The

matrix S is given by

S(t) =

 Ψ1(t) 0 0

−Φ1(t) 24
(t−9)(t−1)tΨ1(t) 0

0 0 1

 . (6.17)

This form matches precisely the structure of elliptic Feynman integrals conjectured in

ref. [59]. In particular, we see that the functions f
(2)
8,U (t), f

(2)
9,U (t) and f10,U (t) are pure

functions in the sense of ref. [59], and they have uniform transcendental weight two, three

and four respectively.

7 Analytic continuation and numerical evaluation

7.1 Analytic continuation

As mentioned in section 2, for the calculation of the ρ parameter we do not only need

the integrals from Topology A (see figure 1), but also those from Topology B, obtained

by exchanging m1 and m2. These integrals can equivalently be obtained by analytically

continuing Topology A to the region t > 1. The analytic continuation of the non-elliptic

integrals can be done using standard techniques. In this section we discuss the analytic

continuation of the elliptic integrals f
(2)
8 , f

(2)
9 and f10.

The analytic continuation will be done following the steps described in ref. [66]. We

start by discussing the analytic continuation of the homogeneous solutions in eq. (2.17).

Given the singularities in the differential equation in eq. (2.16), there are four kinematic

regions to consider: t < 0, 0 < t < 1, 1 < t < 0, t > 9. The homogeneous solution

in eq. (2.17) is well behaved in the second region, by which we mean that they are local

solutions to the differential equation that are respectively real and imaginary for t ∈ [0, 1].

The first step in the analytic continuation procedure is to obtain similarly well behaved
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solutions in the other three regions. Since the differential equation in eq. (2.16) is the same

as that of the sunrise integral, we can simply reuse the results of refs. [24, 57]:

• Region 1, 0 < t < 1:

Ψ̃
(0,1)
1 (t) =

8 K(λ(t))√
(3−

√
t)(1 +

√
t)3
, Ψ̃

(0,1)
2 (t) =

16i K(1− λ(t))√
(3−

√
t)(1 +

√
t)3

; (7.1)

• Region 2, 1 < t < 9:

Ψ̃
(1,9)
1 (t) =

2

t
1
4

K

(
1

λ(t)

)
, Ψ̃

(1,9)
2 (t) =

4i

t
1
4

K

(
1− 1

λ(t)

)
; (7.2)

• Region 3, t > 9:

Ψ̃
(9,∞)
1 (t) =

8 K (λ9(t))√
(3 +

√
t)(
√
t− 1)3

, Ψ̃
(9,∞)
2 (t) =

16i K (1− λ9(t))√
(3 +

√
t)(
√
t− 1)3

; (7.3)

• Region 4, t < 0:

Ψ̃
(−∞,0)
1 (t) =

8 K (λ0(t))

((t− 9)(t− 1)3)
1
4

, Ψ̃
(−∞,0)
2 (t) =

4i K (1− λ0(t))

((t− 9)(t− 1)3)
1
4

; (7.4)

where λ(t) was defined in eq. (2.18) while λ9(t) and λ0(t) are given by:

λ9(t) =
(
√
t− 3)(

√
t+ 1)3

(3 +
√
t)(
√
t− 1)3

,

λ0(t) =
(t− 9)

(
3−

√
(t− 9)(t− 1) + t(6− t+

√
(t− 9)(t− 1))

)
2 ((t− 9)(t− 1))

3
2

.

(7.5)

The functions Ψ̃
(a,b)
j are local solutions to the differential equation in eq. (2.16), but

they do not extend individually to global solutions that define analytic functions with at

most logarithmic singularities at the regular singular points of eq. (2.16). We can, however,

construct a set of solutions with the desired analytic properties by patching together the

local solutions in the right way. This leads to the correct analytic continuation of the

functions in eq. (2.17) to all values of t, given by the piecewise definition

(Ψ1(t),Ψ2(t)) =



(
Ψ̃

(0,1)
1 (t), Ψ̃

(0,1)
2 (t)

) ( 1 0

0 1

)
for 0 ≤ t < 1 ,

(
Ψ̃

(1,9)
1 (t), Ψ̃

(1,9)
2 (t)

) ( 1 0
3
2 1

)
for 1 ≤ t < 9 ,

(
Ψ̃

(9,∞)
1 (t), Ψ̃

(9,∞)
2 (t)

) (−2 −2
3
2 1

)
for 9 ≤ t <∞ ,

(
Ψ̃

(−∞,0)
1 (t), Ψ̃

(−∞,0)
2 (t)

) ( 1 1

0 2

)
for −∞ < t < 0 .

(7.6)
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Having obtained the correct analytic continuation of the homogeneous solutions to all values

of t, we can also extend the definition of τ(t) in eq. (4.13) to arbitrary t, by replacing Ψj(t)

in eq. (4.13) by their piecewise definition in eq. (7.6). For the convenience of the reader,

we reproduce here the definition of τ(t) as a function of the homogeneous solutions:

τ(t) =
Ψ2(t)

Ψ1(t)
. (7.7)

With these definitions we can immediately evaluate the integrals f
(2)
8 , f

(2)
9 and f10 for

all real values of t, for both Topology A and B. Indeed, we can insert the global definitions

of Ψj and τ from eqs. (7.6) and (7.7) into eq. (6.16). Each iterated Eisenstein integral

admits a q-expansion (see eq. (5.5)), which is guaranteed to converge because Im τ(t) > 0

for all values of t. Therefore, we can obtain numerical results for all the integrals in

eq. (6.16) for arbitrary t. The convergence of the q-expansion, however, might be very

slow: it is controlled by the size of the imaginary part of τ which, depending on the value

of t, might be very small. In the next section we address this shortcoming.

7.2 Numerical evaluation of iterated integrals of modular forms

In this section we discuss how we can speed up the numerical convergence of the q expansion

of the iterated Eisenstein integrals. Indeed, for physical applications it is desirable to

have representations for the master integrals that can be evaluated efficiently. This may

however not be the case for our results, which are simply obtained by inserting the analytic

continuation of the homogenous solutions into eqs. (7.7) and (6.16), without care for the

convergence properties of the expression we obtain.

To make our point more concrete, let us consider the case where t takes its SM value

tphys (cf. eq. (2.9)). For Topology A, we then find τ(tphys) ' i 3.07. This corresponds to a

value of q6 = exp(πiτ(t)/3) ' 0.04 in the q-expansion of the iterated Eisenstein integrals

(see eq. (5.5)) and so all integrals admit a fast converging q-expansion. For Topology B,

however, the integrals are evaluated at τ(1/tphys) ' 0.94 + i 0.13, which gives |q6| ' 0.88.

The iterated Eisenstein integrals computed with τ(tphys) will then converge one order of

magnitude faster than those computed with τ(1/tphys).

The convergence of the q-expansion can be substantially accelerated, for instance fol-

lowing the procedure of ref. [66] which we now briefly summarise. In a nutshell, the idea is

to find a transformation γ ∈ SL(2,Z) that maximises the imaginary part of τ and thus the

speed of the convergence of the q-expansion. For example, we can map τ to the so-called

fundamental domain of SL(2,Z), defined as

F =

{
τ ∈ H : −1

2
≤ Re(τ) <

1

2
and |τ | > 1

}⋃
{τ ∈ H : Re(τ) ≤ 0 and |τ | = 1} .

(7.8)

All τ ∈ F have Im(τ) ≥
√

3/2 and for every value of t, i.e., for every τ(t) ∈ H, there is a

γt ∈ SL(2,Z) such that γ−1
t · τ(t) ∈ F .

While we might naively expect that the map to the fundamental domain in each of

the four different regions for t in eq. (7.6) is given by a single transformation, or in other
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words that the function γt is constant on each of the four regions in eq. (7.6), this is in fact

not the case. In ref. [66] it was observed that the points where γt changes are a subset of

the (real) solutions to the equations

j(t) = 0 , j(t) = 1 , or j(t) = ±∞ , (7.9)

where j(t) is the j-invariant introduced in eq. (6.15). Note that the solutions to j(t) = ±∞
are the singularities of the differential equation (2.14), which define the different regions

for analytic continuation, see eq. (7.6). By inspection, we then find that the points where

γt changes are

t1 = 3− 2
√

3 , t2 = 0 , t3 = 3 +
√

3−
√

9 + 6
√

3 , t4 = 1 ,

t5 = 3 , t6 = 3 + 2
3
√

2 + 25/3 , t7 = 3 +
√

3 +

√
9 + 6

√
3 , t8 =∞ .

(7.10)

For each of the eight regions bounded by the values of t in eq. (7.10) we can identify a

modular transformation γt whose inverse maps τ(t) to the fundamental domain. This can

be done algorithmically [66]. Through this procedure we obtain solutions for the master

integrals f
(2)
8 (t), f

(2)
9 (t) and f10(t) that can be efficiently evaluated for all real values of t.

This approach also allows one to obtain fast converging expansions for the master integrals

in Topology B starting from the expressions for Topology A, since one is obtained from

the other by the replacement t→ 1/t.

Before we delve into the details of how we obtain an expression for the masters f
(2)
8 (t),

f
(2)
9 (t) and f10(t) that is tailored for efficient numerical evaluation, we start with a com-

ment about the notation we will use. We will proceed by analogy with what we did in

the previous section for the analytic continuation, where the global solutions have piece-

wise definitions, constructed from local solutions that are well defined in each region (see

e.g. eqs. (7.6) and (7.7)). Here we will denote by an index A the quantities that are

associated with Topology A and admit a piecewise definition constructed from local rep-

resentations, which can be efficiently evaluated in each of the eight regions defined by the

points in eq. (7.10). For instance, in analogy with eq. (6.16), we define

~fA(t) =

 f
(2),A
8 (t)

f
(2),A
9 (t)

fA10(t)

 = SA(t)

 f
(2),A
8,U (t)

f
(2),A
9,U (t)

fA10,U (t)

 , (7.11)

where all quantities have a piecewise definition, and the pure integrals f
(2),A
8,U (t), f

(2),A
9,U (t)

and fA10,U (t) are evaluated at τA(t), which itself admits a piecewise definition. The remain-

der of this section is devoted to giving explicit representations for these quantities, at least

for the regions that are relevant for physical applications.

We first construct τA(t) ∈ F , defined as the image of the τ(t) given in eq. (7.7) under

the map to the fundamental domain,

τA(t) = γ−1
t · τ(t) . (7.12)
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In accordance with the previous discussion, τA(t) admits a piecewise definition: to each of

the eight regions bounded by the points tj in eq. (7.10) corresponds a different matrix γt.

We write

γt = γ(j,j+1) for t ∈ [tj , tj+1] , (7.13)

where the indices are understood to be cyclically defined and

γ(1,2) =

(
1 1

0 1

)
, γ(2,3) =

(
1 0

0 1

)
, γ(3,4) =

(
0 −1

1 0

)
, γ(4,5) =

(
0 −1

1 −2

)
,

γ(5,6) =

(
1 1

1 2

)
, γ(6,7) =

(
2 −1

3 −1

)
, γ(7,8) =

(
1 2

1 3

)
, γ(8,1) =

(
1 −1

1 0

)
.

(7.14)

While we gave an explicit definition for τA(t) for all values of t, doing the same for

the different quantities in eq. (7.11) would lead us towards a very lengthy and repetitive

discussion. Instead, we give these expressions as ancillary files2 and focus our discussion

in the remainder of this section on the two regions that are relevant for the calculation of

the ρ parameter: t ∈ [t2, t3] and t ∈ [t7, t8].

Note that γ(2,3) is the identity matrix. The value of τ(t) of eq. (7.7) is thus already in

the fundamental domain for t ∈ [t2, t3], and the integrals defined in eq. (6.16) are already

in a representation with the best possible convergence properties. In particular, we have(
ΨA

2 (t)

ΨA
1 (t)

)
=

(
Ψ2(t)

Ψ1(t)

)
and ~fA(t) =

 f
(2)
8 (t)

f
(2)
9 (t)

f10(t)

 for t ∈ [t2, t3] , (7.15)

with Ψj(t) as defined in eq. (7.6), and f
(2)
8 (t), f

(2)
9 (t) and f10(t) as in eq. (6.16).

Let us now discuss the region t ∈ [t7, t8]. It follows from eq. (7.13) that

τA(t) =
3τ(t)− 2

1− τ(t)
for t ∈ [t7, t8] . (7.16)

Consistently, we have(
ΨA

2 (t)

ΨA
1 (t)

)
= −i

(
3 −2

−1 1

)(
Ψ2(t)

Ψ1(t)

)
for t ∈ [t7, t8] , (7.17)

with the Ψj(t) as defined in eq. (7.6). The factor of −i is purely conventional and introduced

so that ΨA
1 (t) is real and ΨA

2 (t) is imaginary also for t ∈ [t7, t8]. We then find τA(1/tphys) '
i 6.59, which corresponds to q6 ' 0.001. Hence, if for t ∈ [t7, t8] we express all iterated

integrals in eq. (6.16) in terms of iterated Eisenstein integrals evaluated at τA(t), as given

in eq. (7.16), then we obtain fast converging q-expansions for the elliptic master integrals.

The corresponding transformations can be worked out using the algorithms presented in

ref. [66]. We then find that, in this region, the matrix SA(t) of eq. (7.11) is given by

SA(t) =

 ΨA
1 (t) 0 0

−ΦA
1 (t) − 24

(t−9)(t−1)tΨA1 (t)
0

0 0 1

 for t ∈ [t7, t8] . (7.18)

2They can be downloaded from arXiv:1912.02747.
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For t ∈ [t7, t8], the pure integrals f
(2),A
8,U (t), f

(2),A
9,U (t) and fA10,U (t) are:

f
(2),A
8,U (t) = 40 I

(
1, b

(3)
6,0,1, a

(2)
6,0,1; τA(t)

)
− 40 I

(
1, b

(3)
6,0,1, a

(2)
6,0,2; τA(t)

)
+ 16I

(
1, b

(3)
6,3,1, a

(2)
6,0,1; τA(t)

)
− 16 I

(
1, b

(3)
6,3,1, a

(2)
6,0,2; τA(t)

)
− 16 I

(
1, b

(3)
6,3,2, a

(2)
6,0,1; τA(t)

)
+ 16 I

(
1, b

(3)
6,3,2, a

(2)
6,0,2; τA(t)

)
(7.19)

− iπ2

12
τA(t) +

ζ3

π
,

f
(2),A
9,U (t) = 40 I

(
b

(3)
6,0,1, a

(2)
6,0,1; τA(t)

)
− 40 I

(
b

(3)
6,0,1, a

(2)
6,0,2; τA(t)

)
+ 16 I

(
b

(3)
6,3,1, a

(2)
6,0,1; τA(t)

)
− 16 I

(
b

(3)
6,3,1, a

(2)
6,0,2; τA(t)

)
(7.20)

− 16 I
(
b

(3)
6,3,2, a

(2)
6,0,1; τA(t)

)
+ 16 I

(
b

(3)
6,3,2, a

(2)
6,0,2; τA(t)

)
+
π3

6
,

fA10,U (t) = 480 I
(
b

(3)
6,0,1, 1, b

(3)
6,0,1, a

(2)
6,0,2; τA(t)

)
− 480 I

(
b

(3)
6,0,1, 1, b

(3)
6,0,1, a

(2)
6,0,1; τA(t)

)
− 192 I

(
b

(3)
6,0,1, 1, b

(3)
6,3,1, a

(2)
6,0,1; τA(t)

)
+ 192 I

(
b

(3)
6,0,1, 1, b

(3)
6,3,1, a

(2)
6,0,2; τA(t)

)
+ 192 I

(
b

(3)
6,0,1, 1, b

(3)
6,3,2, a

(2)
6,0,1; τA(t)

)
− 192 I

(
b

(3)
6,0,1, 1, b

(3)
6,3,2, a

(2)
6,0,2; τA(t)

)
+ 960 I

(
b

(3)
6,3,1, 1, b

(3)
6,0,1, a

(2)
6,0,1; τA(t)

)
− 960 I

(
b

(3)
6,3,1, 1, b

(3)
6,0,1, a

(2)
6,0,2; τA(t)

)
+ 384 I

(
b

(3)
6,3,1, 1, b

(3)
6,3,1, a

(2)
6,0,1; τA(t)

)
− 384 I

(
b

(3)
6,3,1, 1, b

(3)
6,3,1, a

(2)
6,0,2; τA(t)

)
− 384 I

(
b

(3)
6,3,1, 1, b

(3)
6,3,2, a

(2)
6,0,1; τA(t)

)
+ 384 I

(
b

(3)
6,3,1, 1, b

(3)
6,3,2, a

(2)
6,0,2; τA(t)

)
− 960 I

(
b

(3)
6,3,2, 1, b

(3)
6,0,1, a

(2)
6,0,1; τA(t)

)
+ 960 I

(
b

(3)
6,3,2, 1, b

(3)
6,0,1, a

(2)
6,0,2; τA(t)

)
− 384 I

(
b

(3)
6,3,2, 1, b

(3)
6,3,1, a

(2)
6,0,1; τA(t)

)
+ 384 I

(
b

(3)
6,3,2, 1, b

(3)
6,3,1, a

(2)
6,0,2; τA(t)

)
+ 384 I

(
b

(3)
6,3,2, 1, b

(3)
6,3,2, a

(2)
6,0,1; τA(t)

)
− 384 I

(
b

(3)
6,3,2, 1, b

(3)
6,3,2, a

(2)
6,0,2; τA(t)

)
− π3

[
2 I
(
b

(3)
6,0,1, 1; τA(t)

)
− 4 I

(
b

(3)
6,3,1, 1; τA(t)

)
+ 4 I

(
b

(3)
6,3,2, 1; τA(t)

)]
− 12 ζ3

π

[
I
(
b

(3)
6,0,1; τA(t)

)
− 2 I

(
b

(3)
6,3,1; τA(t)

)
+ 2 I

(
b

(3)
6,3,2; τA(t)

)]
(7.21)

+G

(
0, 0, 0, 0;

1

t

)
−G

(
0, 0, 1, 0;

1

t

)
− 2G

(
0, 1, 0, 0;

1

t

)
+ 2G

(
0, 1, 1, 0;

1

t

)
+G

(
1, 0, 0, 0;

1

t

)
−G

(
1, 0, 1, 0;

1

t

)
+
π2

6

[
G

(
0, 0;

1

t

)
− 2G

(
0, 1;

1

t

)
+G

(
1, 0;

1

t

)]
+

16

3
ζ3G

(
0;

1

t

)
− 22

3
ζ3G

(
1;

1

t

)
+
π4

30
,

where the MPLs are written as functions of 1/t so that they are real in the region t ∈ [t7, t8].

We finish with a comment on Topology B. As already noted, it is obtained from

Topology A by replacing t → 1/t. In eq. (7.11) we defined the vector of functions fA(t)
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with fast-converging representations of the master integrals for all real values of t. We

adopt the same conventions for Topology B, i.e. all quantities with an index B admit a

piecewise definition. They are simply obtained from those of Topology A using:

~fB(t) = ~fA

(
1

t

)
. (7.22)

Similarly, we have

τB(t) = τA

(
1

t

)
, and SB(t) = SA

(
1

t

)
. (7.23)

In particular, with these relations we can obtain Topology B at tphys ∈ [t2, t3] from the

expressions given above for Topology A for 1/tphys ∈ [t7, t8]. As an example, f
(2),B
8,U (tphys)

is obtained from eq. (7.19), giving

f
(2),B
8,U (tphys) = 40 I

(
1, b

(3)
6,0,1, a

(2)
6,0,1; τB(tphys)

)
− 40 I

(
1, b

(3)
6,0,1, a

(2)
6,0,2; τB(tphys)

)
+ 16I

(
1, b

(3)
6,3,1, a

(2)
6,0,1; τB(tphys)

)
− 16 I

(
1, b

(3)
6,3,1, a

(2)
6,0,2; τB(tphys)

)
− 16 I

(
1, b

(3)
6,3,2, a

(2)
6,0,1; τB(tphys)

)
+ 16 I

(
1, b

(3)
6,3,2, a

(2)
6,0,2; τB(tphys)

)
− iπ2

12
τB(t) +

ζ3

π
. (7.24)

8 Three-loop contributions to the ρ parameter

We are now ready to give an expression for the three-loop contributions to the ρ parameter

in terms of iterated integrals of modular forms. We start from the expression given in

the ancillary files of ref. [44] renormalised in the MS scheme and set the regularisation

scale µ2 = m2
t . The result depends on the SU(Nc) colour factors CA = Nc and CF =

(N2
c − 1)/(2Nc), and on the number of massless quarks nl = nf − 2.3

In their expressions, the authors of ref. [44] leave the elliptic master integrals associated

with diagrams 8, 9 and 10 of figure 1 (and their Topology B counterparts) unevaluated,

making it particularly convenient to adapt their expression to our convention. For con-

creteness, we highlight the two main changes we make. First, we recall that we write our

results in terms of t = m2
2/m

2
1, whereas the expression of ref. [44] is written for x = m2/m1.

Second, we found it more convenient to compute the masters associated with diagrams 8,

9 of figure 1 in d = 2. Starting from their expression, we thus change variables to t and

use the dimension-shifting relations given in appendix B to rewrite them in terms of the

masters we have computed. Then, we decompose the three-loop corrections as

δ(2)(t) = δ
(2)
MPL(t) + δ

(2)
ell (t) (8.1)

where δ
(2)
ell (t) contains all contributions related to the elliptic master integrals f

(2),A
8 , f

(2),B
8 ,

f
(2),A
9 , f

(2),B
9 , fA10 and fB10. The remaining contribution δ

(2)
MPL(t) only depends on MPLs and

we do not discuss it further in this paper.

3In the notation of the ancillary files of ref. [44], we set lm = 0, ca = nc and keep the dependence on nc,

cf and nl. The SM values correspond to nc = 3, cf = 4/3 and nl = 4.
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The elliptic component δ
(2)
ell (t) can be written in a very compact form. For that, we

define the vector of coefficients

CA(t) = CFNc


(2CF−Nc)(t−11)(t−9)t

144(t−1) +
(t−9)t(5t2−28t−9)

108(t−1)2

− (2CF−Nc)(t−13)(t−9)(t−3)t
144(t−1) − (t−9)t(7t2−36t−27)

108(t−1)
2CF−Nc

12

 , (8.2)

and its counterpart

CB(t) = CA
(

1

t

)
. (8.3)

We then find

δ
(2)
ell (t) =

(
CA(t)

)T SA(t)

 f
(2),A
8,U (t)

f
(2),A
9,U (t)

fA10,U (t)

+ t
(
CB(t)

)T SB(t)

 f
(2),B
8,U (t)

f
(2),B
9,U (t)

fB10,U (t)

 . (8.4)

More explicitly,

δ
(2)
ell (t)

CFNc
=

1

12
(2Cf −Nc)

(
fA10,U (t) + t fB10,U (t)

)
−

(
(2CF −Nc)(t− 13)(t− 3)

6(t− 1)2
+

2
(
7t2 − 36t− 27

)
9(t− 1)2

)
f

(2),A
9,U (t)

ΨA
1 (t)

+

(
(2CF −Nc)(t− 11)(t− 9)t

144(t− 1)
+

(t− 9)t
(
5t2 − 28t− 9

)
108(t− 1)2

)
ΨA

1 (t)f
(2),A
8,U (t)

+

(
(2CF −Nc)(t− 13)(t− 9)(t− 3)t

144(t− 1)
+

(t− 9)t
(
7t2 − 36t− 27

)
108(t− 1)

)
ΦA

1 (t)f
(2),A
8,U (t)

+

(
(2CF −Nc)(3t− 1)(13t− 1)t

6(t− 1)2
−

2
(
27t2 + 36t− 7

)
t

9(t− 1)2

)
f

(2),B
9,U (t)

ΨB
1 (t)

(8.5)

−

(
(2CF −NC)(9t− 1)(11t− 1)

144(t− 1)t
−

(9t− 1)
(
9t2 + 28t− 5

)
108(t− 1)2t

)
ΨB

1 (t)f
(2),B
8,U (t)

+

(
(2CF −Nc)(3t− 1)(9t− 1)(13t− 1)

144(t− 1)t2
−

(9t− 1)
(
27t2 + 36t− 7

)
108(t− 1)t2

)
ΦB

1 (t)f
(2),B
8,U (t) .

We provide a set of ancillary files4 that allows to evaluate δ(2)(t) from our expression

in terms of iterated integrals of modular forms. Using the MATHEMATICA script we provide,

we find

δ(2)(tphys) = −9.03594 . . . (8.6)

for tphys = 5 · 10−4, Nc = 3 and nl = 4. Using the same scripts, we plotted δ(2)(t) for

t ∈ [0, 1] in figure 2. We find complete agreement with the values results of [39, 44–46].

4See arXiv:1912.02747.
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Figure 2. Three-loop corrections to the ρ parameter, for Nc = 3, CF = 4/3 and nl = 4 massless

quarks, as a function of t = m2
2/m

2
1 which we vary between 0 and 1.

9 Conclusion

In this paper we have presented for the first time fully analytic results in terms of eMPLs

and iterated Eisenstein integrals for the three-loop corrections to the ρ parameter in the

SM with two massive quark flavours. This computation was originally considered as an

expansion in the ratio of the quark masses in ref. [44]. An important ingredient in our

calculation is the realisation that the homogeneous second-order differential operator ap-

pearing in this computation is identical to the differential operator that appears in the

computation of the well-known sunrise graph. As a consequence, all integrals can be ex-

pressed in terms of the exact same class of functions as the sunrise graph, which are also

well-studied functions in pure mathematics. We can draw upon the knowledge of these

functions to analytically continue them using tools and algorithms developed for the sun-

rise graph. This distinguishes our computation from the results of refs. [45, 46], where a

novel class of special functions was introduced for the same class of integrals.

Besides ref. [73], our computation is only the second time that iterated integrals of

modular forms have been used to obtain fully analytic results for a complete physical

observable. We believe that the techniques that we have used in our computation can have

an impact also on the computation of other physical observables, and that they pave the

way for obtaining more results involving this class of special functions.
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A Differential equations for the non-elliptic master integrals

As written in eq. (2.11), the differential equations for the master integrals which are ex-

pressible in terms of MPLs, i.e. f1 through f7 of eq. (2.10), is given by

∂tfa = ε
(A0)ak
t

fk + ε
(A1)ak
t− 1

fk , 1 ≤ a, k ≤ 7 . (A.1)

The matrices A0 and A1 are given by

A0 =



−1 0 0 0 0 0 0

0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 1 2 0 0

0 0 0 −1 −2 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1


, and A1 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

−1 0 −2 0 0 0 0

0 0 0 −4 −2 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

2 0 2 0 0 −6 −4


. (A.2)

B Dimension-shift identities for elliptic master integrals

In this appendix we give the dimensional recurrence relations for the master integrals f
(2)
8

and f
(2)
9 . We denote f

(d)
8 and f

(d)
9 the master integrals in d dimensions. Then, the full

dimensional recurrence relations are given by:

f
(4−2ε)
8 =

1

6 ε3(1− 3 ε+ 2 ε2)(2− 9 ε+ 9 ε2)

[
3
(
6 t− 21 ε t− ε t2

)
f

(4−2ε)
1

+
(
12− 6 t− 45 ε+ 21 ε t+ 2 ε t2

)
f

(4−2ε)
2 +

(
27 t− 21 t2 − 7 t3 + t4

)
f

(2−2ε)
9

+
(
10 t2 − 9 t− t3 − 27 ε+ 108 ε t− 15 ε t2 − 2 ε t3

)
f

(2−2ε)
8

]
, (B.1)

f
(4−2ε)
9 =

1

6 ε3 (−1 + 3 ε)(1− 3 ε+ 2 ε2)

[
3 (3− 9 ε− ε t) f (4−2ε)

1 + (6 ε+ 2 ε t− 3) f
(4−2ε)
2

+
(
10 t− 9− t2 + 8 ε− 2 ε t2

)
f

(2−2ε)
8 +

(
9 t− 10 t2 + t3

)
f

(2−2ε)
9

]
. (B.2)

By expanding in ε the right-hand side of eqs. (B.1) and (B.2), it is possible to show that

the poles of f
(4−2ε)
8 and f

(4−2ε)
9 do not depend on f

(2)
8 and f

(2)
9 . The elliptic contributions
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appear starting from order ε0:

f
(4−2ε)
8 =

1 + t

ε3
+

45 + 48 t− t2 − 18 log t

12ε2

+
65 + 2π2 + 80 t+ 2π2 t− 5 t2 − 48 t log t+ 2 t2 log t+ 6 t log2 t

8 ε

+
1

48

[
405 + 45π2 + 840 t+ 48π2 t− 145 t2 − π2 t2 − 720 t log t− 18π2 t log t

+90 t2 log t+ 144 t log2 t− 6 t2 log2 t− 6 t log3 t− 48ζ3 − 48 t ζ3

+
(
40 t2 − 36 t− 4 t3

)
f

(2)
8 +

(
108 t− 84 t2 − 28 t3 + 4 t4

)
f

(2)
9

]
+O(ε), (B.3)

f
(4−2ε)
9 = − 1

ε3
+
t− 15 + 9 log t

6 ε2
+

4 t− 16− π2 + 18 log t− 2 t log t− 3 log2 t

4 ε

+
1

24

[
100 t− 60− 15π2 + π2 t+ 252 log t+ 9π2 log t− 72 t log t− 54 log2 t

+6 t log2 t+ 6 log3 t+ 24 ζ3 +
(
36− 40 t+ 4 t2

)
f

(2)
8 +

(
36 t+ 40 t2 − 4 t3

)
f

(2)
9

]
+O(ε). (B.4)
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