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Abstract 

Cyclothems, composed of interbedded mudstone, coal and sandstone layers, make up the Taiyuan and Shanxi 

Formations in the Late Carboniferous to Early Permian in North China under a marine-to-continental depositional 

environment. The cyclothems act as important fossil energy hosts, such as coalbeds, hydrocarbon source rocks and 

unconventional natural gas reservoirs. Organic geochemistry and petrology of mudstones and coals in the Taiyuan 

and Shanxi Formations in the eastern Ordos Basin were studied to reveal the organic matter sources and 

paleoenvironments. Total organic carbon (TOC) contents vary from 1.1 wt.% (mudstone) to 72.6 wt.% (coal). The 

samples are mainly within the oil window, with the Tmax values ranging from 433 to 469°C. Organic petrology and 

source biomarkers indicate that the mudstones were sourced from a mixed organic matter input, and terrigenous 

organic matter predominates over aquatic organic matter. The coals are mostly sourced by terrigenous organic 

matter inputs. High concentrations of hopanes argue for a strong bacterial input. Some m/z 217 mass 

chromatograms have peaks at the hopanes’ retention times as a result of high hopane to sterane ratios. These 

hopane-derived peaks do not interfere the identification of the steranes because the hopanes and the steranes have 

different retention times. Maturity-dependent biomarkers demonstrate that the samples have been thermally mature, 

which agree with the Tmax values. Anomalously low C29 20S/(20S+20R) and C29 ββ/(ββ+αα) sterane ratios are 
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present in all the samples, and are interpreted as due to the terrigenous organic matter input or the coal-related 

depositional environment. In addition, biomarkers and iron sulfide morphology indicate that the organic matter of 

the mudstones deposited in a proximal setting with shallow, brackish/fresh water bodies. With consideration of 

preservation of organic matter, the redox conditions are dysoxic. Redox oscillations resulted in the records of oxic 

conditions in some samples. Finally, the coals and the mudstones mainly generate gas and have poor oil generative 

potential. 

Keywords: Organic geochemistry, Organic petrology, Pyrite, Organic matter provenance, Mudstone, Coal, Ordos 

Basin 

1 Introduction 

Taiyuan and Shanxi Formations in Late Carboniferous to Early Permian in the eastern Ordos Basin are coal 

measures and act as important fossil energy hosts, such as coalbeds, hydrocarbon source rocks and unconventional 

natural gas reservoirs (Xiao et al., 2005). Tight gas and coalbed methane in the formations in Linxing, eastern 

Ordos Basin have been commercially developed (Meng et al., 2018; Qi et al., 2019b). Joint developments of tight 

gas, coalbed methane and shale gas have been proposed and tested to increase the efficiency of gas recovery (Ju et 

al., 2014; Li et al., 2016; Ju et al., 2018; Li et al., 2019). In addition, the coals and shales in the formations have 

been found to be the dominant source rocks for the tight gas pools in almost all huge gas fields in the Ordos Basin, 

such as Sulige, Daniudi and Wushenqi gas fields. However, the organic matter provenance and depositional 

environment of the source rocks (including organic-rich mudstones and coals) remain unclear, which will result in 

inaccurate estimations of hydrocarbon potential (Hu et al., 2018).  

Organic petrology and organic geochemistry play important roles in determining organic matter provenance, 

thermal maturities and paleo-depositional environments (Jiamo et al., 1990; Hasiah and Abolins, 1998; Holba et al., 

2003; Böcker et al., 2013; French et al., 2014; Hackley et al., 2016; Hakimi and Ahmed, 2016; Adebayo et al., 

2018; Ghassal et al., 2018; Zieger and Littke, 2019). A lot of organic geochemical studies on marine shales have 

been done, but transitional source rocks are inadequately studied. Many marine shales, especially shallow marine 

shales, have been found to contain humic organic matter, generally with a lower concentration than the aquatic 

organic matter (Milliken et al., 2013; Mathia et al., 2016; Adegoke et al., 2017; Petersen et al., 2017; Borrego et al., 

2018). The organic matter input of transitional source rocks is more complex. Previous studies have shown that 

mudstones and interbedded coals may exhibit considerable variations in kerogen types (e.g. algal organic matter vs 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



land plant) and depositional environments, especially marine-affected coal measures (Sun et al., 2000; Rangel et 

al., 2002). Various kerogen types also lead to a wide range of HI values of coal measures (see also Wu et al., 2018). 

Carbon isotope compositions and biomarkers, such as Pr/Ph and gammacerane indices, can differentiate the 

mudstones and the interbedded coals (Hasiah and Abolins, 1998; Kotarba and Clayton, 2003; Zhu et al., 2012; 

Adegoke et al., 2015). The mudstones are commonly found to deposit in more reducing conditions than the coals. 

In addition, iron sulfides are also key indicators of contemporary environmental conditions (Rickard and Luther, 

2007). Iron sulfides occur in sediments from deep sea to non-marine, and the principal iron sulfide in rock records 

is pyrite (Schieber, 2011a). Pyrite morphology reveals whether it is formed during deposition period, early 

diagenesis or late diagenesis (Kortenski and Kostova, 1996; Wilkin et al., 1996; Wilkin et al., 1997). Diameters of 

framboids were found to decrease with increasing reducing conditions (Wilkin et al., 1996).  

This study is to understand the provenance and depositional environments of the organic matter in the Late 

Carboniferous to Early Permian in the Linxing Area of the eastern Ordos Basin. Detailed molecular geochemistry 

of mudstones and coals is studied for the first time in the Taiyuan and Shanxi Formations in Eastern Ordos Basin. 

Organic geochemistry is also integrated with organic petrology and SEM observation. This study is of significance 

to estimating the hydrocarbon potential of the source rocks in the Linxing Area, and also helps understand the 

accumulation and preservation of organic matter in the cyclothems in the eastern Ordos Basin. 

2 Geologic setting and sampling 

The Ordos Basin is located in the western part of the North China Block, bordered by the Yin Mountain, 

Lvliang Mountain, Qinling Mountain, and Liupan and Helan Mountains (Figure 1a). It was formed on Archean 

granulites and lower Proterozoic greenschists of the North China Block (Zhang, 1989), and has experienced four 

evolutionary stages: The Early Palaeozoic shallow marine platform, the Late Palaeozoic offshore plain, the 

Mesozoic intracontinental basin and the Cenozoic faulting and subsidence (Yang et al., 2005). The eastern Ordos 

Basin entered into a marine-to-continental depositional environment in the Late Carboniferous and Early Permian. 

Alternating regression and transgression occurred during the transitional period. Typical cyclothems deposited as 

the Taiyuan and Shanxi Formations, including several coal seams and thick organic-rich mudstone layers (Figure 

2).  

The sampling area is the Linxing Area in the eastern Ordos Basin (Figure 1a). The Linxing Area is situated at 

38° northern latitude, which is the “fulcrum” of the north-south “seesaw” of the Ordos Basin (Li et al., 2012). The 
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“fulcrum” acts as a transitional zone between marine and continental depositional environments, with paleo-water 

depths increasing from north to south (Li et al., 2012). Organic matter of the mudstones in the Linxing Area 

includes both type II2 and III kerogen (Li et al., 2016). No.8 (+9+10) and No. 5 (+3+4) coalbeds are regionally (or 

locally) workable coalbeds (Li et al., 2016). Thirteen mudstones, including five coal-lamina-bearing mudstones 

(coaly mudstones), and six coals were collected from different fresh coalfaces and drilling faces of six underground 

coal mines with depths between 153-390 m to escape from weathering. Table 1 shows the formations that the 

samples belongs to. The locations of the coal mines are shown in Figure 1b.  

3 Methods 

Total organic carbon (TOC) analysis and Rock-Eval pyrolysis were performed on all the samples. TOC was 

measured with a LECO CS230 Carbon/Sulfur analyzer after removing carbonate in the samples with hydrochloric 

acid (HCl). Pyrolysis was performed using Rock-Eval 6 equipment. Pyrolysis parameters, like free hydrocarbons 

(S1, mg HC/g rock), hydrocarbon generation potential (S2, mg HC/g rock), temperature of maximum pyrolysis yield 

(Tmax, °C) and hydrogen index (HI, mg HC/g TOC), were recorded or calculated.  

Macerals of the coals and the mudstones were investigated under plane polarized reflected light with a 

fluorescence illuminator. All images were taken under a Leica Plan 50×/0.85 oil immersion objective to acquire 

500× magnification. Maceral compositions were determined under both incident white light and UV light. Vitrinite 

reflectance (Ro) of the coals was measured on the coal samples prepared following ASTM standard D2797. Ro was 

examined in incident white light at magnification of 500× oil immersion. 

Mechanically polished thin sections were also prepared for the mudstone samples. A Hitachi SU-70 High 

Resolution Analytical Scanning Electron Microscope (SEM) equipped with an Oxford Instrument Energy 

Dispersive Spectrometer (EDS) was used to observe the thin sections after applying a sputter coating of ~20 nm 

thickness of carbon. Secondary imagery was taken under 15kV and a working distance of ~15mm. Mineral 

components were confirmed by X-ray energy dispersive spectrums.  

Molecular geochemistry was studied by gas chromatography (GC) and gas chromatography mass 

spectrometry (GC-MS) in the State Key Laboratory for Heavy Oil Processing, China. Coaly mudstones were 

excluded to avoid the influence of intercalated coal laminae. The mudstones and the coals were solvent-extracted 

by a Soxhlet extractor with a solvent mixture of dichloromethane and methanol (volume ratio 9:1). The samples 

were refluxed for more than 96 hours until the effluent distilled solvent was colourless and transparent. Group 
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components were separated from the extracts by liquid column chromatography. A chromatographic column (20×

0.80 cm) was packed 3 g of silica gel which has been activated at 200 °C for 4h and 2 g of alumina which has been 

activated at 400-450 °C for 4h. Both the silica gel and alumina are of 100-200 mesh. Normal hexane was used to 

elute saturated fractions. The coaly mudstones, namely the coal-laminae bearing mudstones, were excluded for GC 

and GC-MS analysis, because bulk biomarker analysis will mix the information of both the interbedded coal 

laminae and the mudstone matrix.  

GC analysis of the saturated fractions was performed by a Gas Chromatography Flame Ionization Detector 

equipped with a HP-5 silica capillary column (30m×0.25mm×0.25μm). Oven temperature was initially set as 

100 °C for 1 minute and was then increased to 300 °C with a step of 4 °C/ min, followed by an isothermal period of 

10 minutes. Gaseous saturated hydrocarbons were carried by 99.999 % Helium at a linear velocity of 1 mL/min.  

GC-MS analysis of the saturated fractions was conducted by an Agilent 7890-5975c instrument also equipped 

with a HP-5 silica capillary column (30m×0.25mm×0.25μm). Oven temperature was initially set as 50 °C for 1 

minute, and was increased to 120 °C with a step of 20 °C/min, then to 250 °C with a step of 4 °C/min, and finally 

to 310 °C with a step of 3 °C/min; the period at 310 °C was 30 min. Helium (99.999 %) was used as a carrier gas at 

a speed of 1 mL/min. The mass spectrometer was operated in electron ionization mode (EI) at 70 eV. The voltage of 

multiplier was 1200 V. All biomarkers ratios, expect for C29 sterane maturity ratios, were calculated on the base of 

peak area integration above baseline of specific ion chromatograms. The C29 sterane maturity ratios was calculated 

from peak height to reduce the effects of co-elution.  

4 Results 

4.1 Bulk geochemical parameters 

Results of bulk geochemical analysis are listed in Table 1. The TOC contents of the mudstones, the coaly 

mudstones and the coals are in the range of 1.1-8.4 wt.%, 15.6-22.2 wt.% and 55.8-72.6 wt.%, respectively. The 

samples are mainly within the oil window, with Tmax values varying from 433 to 469 °C. The Ro of the coals ranges 

from 0.78 % to 1.15 % and has a linear correlation with their Tmax values (the R
2
 of the linear fitting is 0.95). 

Thermal maturity of the samples generally increases from north to south. The HI values of the mudstones, the coaly 

mudstones and the coals are in the range of 17-111 mg HC/g TOC, 76-249 mg/g TOC and 129-269 mg/g TOC, 

respectively.  
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4.2 Organic petrology 

According to organic petrological images, vitrinite and inertinite are dominant macerals, especially for the 

coals. All the samples contain more vitrinite than inertinite. Some vitrinite and inertinite have well-defined or 

broken cellular structures (Figure 3b). The samples collected from the northern areas (L1-L2) vary greatly in size of 

organic matter, while those from the southern areas are dominated by small fragments (Figure 3a-c). Fluorescence 

was utilized to recognize liptinite, but this is restricted for relatively high mature samples due to fluorescence 

extinction. Terrestrial liptinite comprises cutinite, resinite, sporinite and part of liptodetrinite (Figure 3d-i). Cutinite 

includes both thin-wall and thick-wall types. Most spores are dispersed, although some are grouped in 

sporangiums. The spores have either ornamental or smooth walls (Figure 3 f-i). Besides terrestrial liptinite, 

fluorescent lamalginite is present in low abundance in the mudstones with Tmax values<450 ℃ (Figure 3 i-l). Since 

the samples have entered the oil window, the fluorescence has greatly shifted to the long wavelength (red). When 

Tmax>450 °C, the fluorescence intensity of liptinite decreases rapidly and only some spores in dull brown are still 

identifiable (Figure 3h-i). Fluorescence completely disappears when the Tmax values exceed 460 °C. No alginite 

was found in the southern area due to fluorescence extinction.  

4.3 SEM observation 

Iron sulfides in the mudstones include pyrite and marcasite. Pyrite occurs as framboids, grouped framboidal 

aggregates, scattered euhedral crystals, or replacements of organic matter (Figure 4a-d). The diameters of the 

framboids are up to >30 μm (Figure 4a). Pyrite, including some framboids, is usually associated with organic 

matter or occurs within organic matter (Figure 4b and c). As for the sample L2-S2, framboids are not as abundant 

as other types of pyrite. Combining DES results and morphology features, abundant needle-like and radial 

marcasite were identified in L1-S1 and L2-S1 (Figure 4e and f). The spherical shapes of some marcasite clusters 

indicate that they were formed before compaction (Figure 4f). 

4.4 Molecular geochemistry 

GC and GC-MS results are present in Table 2 and are also partly shown in Figure 5. Carbon preference index 

(CPI) reflects the preference of odd- to even-numbered n-alkanes in the range of n-C24-34 (Bray and Evans, 1961). 

The CPI values of the samples range from 0.99 to 1.23. The terrestrial to aquatic ratios (TAR) values of the 

mudstones vary from 0.20 to 9.87 (average 3.51), and those of the coals range from 0.30 to 1.54 (average 0.71). 
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Pristane (Pr) and phytane (Ph) are the most important acyclic isoprenoids. The Pr/Ph values of the mudstones are in 

the range of 0.76-1.35 and those of the coals range from 0.95 to 2.48. The Pr/n-C17 and Ph/n-C18 values of the 

samples (including the mudstones and the coals) are in the range of 0.17-1.18 and 0.11-0.82, respectively.  

Terpane and hopane distributions were obtained from m/z 191 mass fragmentograms (Figure 5). The C24 

Tet/(C24 Tet+C23 Tri), C24 Tet/(C24 Tet+C26 Tri) and C19 Tet/(C19 Tet+C23 Tri) ratios are in the range of 0.40-0.99, 

0.27-0.94 and 0.13-0.89, respectively. Hopanoids are rich in C30 hopane and C29 norhopane. The C29/C30 hopane 

ratios of the samples vary from 0.45-1.47. The Ts/(Ts+Tm) values vary from 0.02 to 0.54. The homohopanes 

comprise C31-C35 homohopanes, the concentrations of which decrease with increasing carbon-number. C30 

moretane/C30 hopane ratios range from 0.14 to 0.26. The mudstones generally have larger C35/C34 homohopane 

ratios than the coals. The C35/C34 homohopane ratios of the mudstones and the coals are in the range of 0.27-0.64 

(average 0.49) and 0.32-0.50 (average 0.4), respectively. As for each pair of homohopanes, the S-isomers 

predominate over the R-isomers in all the samples. The C32 22S/(S+R) ratios range from 0.54 to 0.60. 

Gammacerane concentration is relatively low, with the gammacerane indices ranging from 0.03-0.24.  

Sterane distributions are shown on m/z 217 mass fragmentograms. The relative proportion of C27, C28 and C29 

regular steranes are in the range of 25-42%, 21-37% and 25-45%, respectively. The C29/C27 sterane ratios of the 

samples range from 0.66 to 1.78. Maturity indices of steranes are C29 20S/(S+R) and C29 ββ/(ββ+αα) sterane ratios. 

The two ratios are in the range of 0.35-0.47 (average 0.42) and 0.35-0.48 (average 0.43), respectively. The hopanes 

greatly predominate over the steranes, with the sterane/hopane ratios ranging from 0.02-0.58.  

5 Discussion 

5.1 Organic provenance 

The continuous distribution of coal seams, as well as the thin coal laminae in the mudstones, demonstrate a 

strong input of higher plants. Organic petrographic observation indicates that organic matter of the mudstones is 

dominated by terrestrial macerals. The samples in the southern areas have much smaller fragments of terrestrial 

OM than those in the northern areas (Figure 3 a-c), indicating the northern areas are more proximal than the 

southern areas. In addition, lamalginite is present in low abundance in relatively low mature samples, suggesting an 

input of aquatic-derived materials. Alginite is not present in the samples in the southern area because these samples 

have relatively high maturity (Tmax value>450 °C and Ro>1%), leading to fluorescence extinction. Molecular 

organic geochemical parameters provide more maturity and provenance information for all the samples. 
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CPI gives information of provenance, paleo-redox conditions and thermal maturity of organic matter (Bray 

and Evans, 1961). Petroleum generated from terrigenous organic matter has high CPI values that decreases toward 

1.0 with increasing maturation (Peters et al., 2005). Despite the high maturity, our samples have an average CPI 

value of 1.11 and the value of an individual sample is up to 1.23, suggesting the effects of higher plant inputs. The 

TAR values of our samples do not well reveal the organic matter sources. The coals which are expected to have 

high TAR values are found to have extremely low TAR values, even much lower than the mudstones. The low TAR 

values of the coals are consistent with the short-chain-dominated n-alkane distribution (Figure 5). 

Short-chain-dominated extracts of coals have been reported by previous studies (see also Littke et al., 1990; Zhu et 

al., 2012; Furmann et al., 2013). Thermal maturation may lead to low TAR values (Zhu et al., 2012). But it is not 

likely to be the major cause of our samples, since high TAR values occur in a relatively high mature coal, L6-C2, 

and most of the mudstones. The coals of the Taiyuan and Shanxi Formations in the Linxing Area are rich in vitrinite 

(> 85%) (Li et al., 2016). It has been found that vitrinite-rich coals contain more short-chain-n-alkanes than 

sporinite-rich coals (Littke et al., 1990). Petersen and Nytoft (2006) also concluded that aliphatic chains >C18 are 

absent from or very restricted in the Carboniferous coals and most of the Permian coals, both of which are 

vitrinite-rich. Enrichment of short-chain-n-alkanes of the samples should result from the retention of more volatile 

components, which is in agreement with Furmann et al. (2013).  

Even though the samples were collected from the underground coal mines, biodegradation may occur in some 

samples due to the shallow depth (<400m). n-Alkane distribution of some samples comprises unresolved complex 

mixture (UCM) (Figure 5) and two mudstones have Pr/n-C17 values >1 (Table 2). However, the large presence of 

n-alkanes indicates that the biodegradation is very slight. Because biodegradation consumes short-chain-n-alkanes 

firstly, paleoenvironmental and paleoclimatic interpretations from biomarkers are effective (Wenger et al., 2002; 

Izart et al., 2015).  

As for non-hopanoid terpenoids, C19-C20 tricyclic terpanes are mainly derived from diterpenoids, which are 

produced by vascular plants (Preston and Edwards, 2000; Hao et al., 2011). C24 tetracyclic terpanes are associated 

with terrigenous organic matter, while relatively high C23 tricyclic terpanes are often indicative of aquatic organic 

matter (Philp and Gilbert, 1986; Peters et al., 1995). C24 Tet/(C23 Tri+C24 Tet) ratios and C24 Tet/(C26 Tri+ C24 Tet) 

ratios reflect the intensity of terrigenous organic matter input (Hanson et al., 2000; Hao et al., 2011). Figure 6a 

shows a positive relationship between the two ratios. The two ratios vary substantially, indicating a variable input 

of terrigenous and aquatic organic matter. The mudstones, except for L2-S1, have moderate values of these ratios, 
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suggesting a mixed terrigenous and aquatic organic matter input. The relatively high ratios of the coals suggest a 

predominance of higher plants. Two coals have lower tetracyclic ratios, may indicating more aquatic organic matter 

components. There is a generally decreasing trend of the two ratios from the Taiyuan Formation to the Shanxi 

Formation (Figure 6a), indicating increasing aquatic organic matters in this period. 

According to previous studies, most bitumen extracts show a clear predominance of C30 hopanes, while the 

predominance of C29 hopanes is common for organic matter deposited in anoxic carbonate settings (Philp and 

Mansuy, 1997). Besides, hopanoids can also be derived from ferns, lichens or mosses, as well as degradation of 

bacteriohopantetrol (Chaffee et al., 1986; Böcker et al., 2013). C29/C30 hopane ratios may increase due to their 

terrestrial clastic inputs or specialized bacterial community, which attack predominantly sporopollenin substances 

(Rangel et al., 2002; Zdravkov et al., 2017). Our samples, especially the coals, have relatively high C29/C30 hopane 

ratios. The C29/C30 hopane ratios of the mudstones and the coals are up to 0.95 and 1.47, respectively. Abnormally 

high C29/C30 hopane ratios were also reported by Littke and Haven (1989) and Zdravkov et al. (2017). Ferns are 

common plants in the late Carboniferous to Permian. For example, Pecopteris has been reported in formations in 

the Linxing Area (Qi et al., 2019b). Sterane/hopane ratios reflect inputs of eukaryotic (mainly algae and higher 

plants) versus prokaryotic (bacteria) organisms (Connan et al., 1986; Cao et al., 2009). In general, high 

sterane/hopane ratios (≥1) typify marine organic matter with major contributions of algal material (Moldowan et 

al., 1985). Low sterane/hopane ratios are as a result of a strong bacterial input, and are attributed to the abundant 

terrestrial materials which contain soil bacteria (French et al., 2014; Song et al., 2017).  

As for steroids, it is commonly accepted that C29 steranes are mainly sourced from photosynthesizing 

organisms while C27 steranes originate from phytoplankton (Huang and Meinshein, 1979; Moldowan et al., 1985). 

The moderate C29/C27 sterane ratios support a contribution of both aquatic and terrigenous organic matter. The 

C29/C27 sterane ratios show positive relationships with C24 Tet/(C23 Tri+C24 Tet) ratios (Figure 6b), since both of 

them reflect the intensity of terrigenous organic matter input. However, two of the coals have C29/C27 sterane ratios 

<1, possibly due to aquatic input. Yuana and Zhang (2018) also reported low C29/C27 sterane ratios of coals. They 

concluded that this resulted from the increase in plankton input. The aquatic organic matter inputs of both the 

mudstones and the coals increase slightly from the Taiyuan to the Shanxi Formations (Figure 6b).  

5.2 Validity of sterane biomarker ratios 

We saw unusual distributions of m/z 217 mass chromatograms of most of the samples (Figure 7a and b). 
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Some fragment peaks on m/z 217 mass chromatograms occur at the retention times of hopanes, indicating that they 

were derived from hopanes (see the peaks marked with inverted triangles in Figure 7a and b). Farrimond et al. 

(2015) also reported that sterane peaks on m/z 217 mass chromatograms are obscured by hopanes due to high 

hopane/sterane ratios. The hopane show on m/z 217 mass chromatograms is due to the high hopane to sterane 

ratios. Signal intensities of the hopanes of the samples are generally one or two orders larger than those of the 

steranes. In fact, hopanes will produce not only m/z 191 mass fragments, but also relatively low concentrations of 

other fragment ions, including m/z 217 fragments (see Figure 8.27 in Peters et al. (2005)). Considering the high 

hopane to sterane ratios, even though a very low proportion of hopanes produce m/z 217 fragments, the 

concentration of these fragments may be comparable to those of the m/z 217 fragments of steranes. 

It is important to check whether the sterane ratios calculated from the m/z 217 mass chromatograms are valid. 

As for our samples, the hopanes’ fragments on m/z 217 mass chromatograms do not affect the identification of 

steranes’ concentration, because the steranes and the hopanes have different retention times. The m/z 217 fragments 

of steranes and hopanes do not mix with each other. This can be verified through comparing the mass 

chromatograms between steranes (m/z 217) and hopanes (m/z 191), as well as norhopanes (and m/z 177) (Figure 

7). The m/z 217 fragments from hopanes and norhopanes are separate from the sterane peaks on the m/z 217 mass 

chromatograms. Thus, the sterane biomarker ratios are effective. However, cautions should be taken if the hopanes 

which have similar retention times with steranes are present in samples.  

5.3 Thermal maturity 

The Tmax values (433-470 °C) indicate that the samples are mainly within the oil window (Peters, 1986; Peters 

et al., 2005), and they generally increase from the north to south. CPI is affected by thermal maturation and 

paleo-depositional environment. Petroleum generated from terrigenous organic matter has high CPI values which 

decreases toward 1.0 with thermal maturation (Peters et al., 2005). CPI of the mudstones approaching 1.0 and the 

low CPI values of the coals indicate that the organic matter is thermally mature. In addition, molecular biomarkers 

provide more insights into thermal maturity.  

Because 17α,21β(H)-hopanes are more thermally stable than 17β,21α(H)-moretanes, C30 moretane/C30 

hopane ratios decrease from 0.8 in immature bitumen to values of <0.15 (typically <0.06) in mature source rocks 

(Seifert et al., 1979; Mackenzie et al., 1980a; Seifert and Moldowan, 1980; Adegoke et al., 2017). However, the C30 

moretane/C30 hopane ratios of our samples (0.14-0.26) are slightly higher than 0.15, which is inconsistent with their 
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thermal maturity. It is because that higher terrigenous organic matter inputs from higher plants, peat and coal, and 

diagenetic effects, often lead to anomalously high C30 moretane/C30 hopane ratios (Grantham, 1986; Rullkötter and 

Marzi, 1988; French et al., 2012). In addition, Ts/(Ts+Tm) is regarded as a sensitive maturity indicator but is also 

controlled by sources, paleoenvironment and lithology (Seifert et al., 1979; Moldowan et al., 1986; Cao et al., 

2009). Early diagenesis also plays an important role in setting initial values of Ts/(Ts+Tm) (Moldowan et al., 1986). 

Because Ts and Tm reach equilibrium at the maturity of Ro ~ 1.4 % (Seifert et al., 1979), Ts/(Ts+Tm) ratios can 

reflect the variations of maturity of our samples. The Ts/(Ts+Tm) ratios of our samples generally increase with Tmax 

values, except for L5-S2 (Figure 8a). Besides, hopane isomerization at C-22 is the most widely applied of hopane 

maturity parameters. The C32 22S/(22S+22R) ratio reaches equilibrium values of ca. 55-60% over a maturity of 

430-436 °C (Farrimond et al., 1998). The hopane maturity ratios of our samples are in the range of 0.54-0.60 and 

have reached equilibrium, indicating the samples have been thermally mature.  

The degree of sterane isomerization is also controlled by thermal degradation. The C29 20S/(20S+20R) and 

C29 ββ/(ββ+αα) sterane ratios are commonly used maturity ratios. The two ratios of our samples are generally larger 

than 0.4 (Figure 8b), indicating that the samples are thermally mature (Mackenzie et al., 1980a; Difan et al., 1990). 

However, the C29 20S/(20S+20R) and C29 ββ/(ββ+αα) sterane ratios are lower than their expected equilibrium 

values (0.55 and 0.7, respectively), even though the Tmax values indicate that part of the samples have reached the 

late oil window. The m/z 217 mass chromatograms of our samples also clearly show that C29 20R steranes slightly 

dominate over C29 20S steranes, and C29 ααα steranes slightly dominate over C29 αββ steranes (Figure 5). Actually, 

abnormally low sterane maturity ratios have been widely reported for coal measures (see also Dzou et al., 1995; 

Killops et al., 1998; Norgate et al., 1999; Kotarba and Clayton, 2003; Aderoju and Bend, 2017; Li et al., 2017), 

because the sterane epimerization ratios are significantly influenced by source input and paleo-depositional 

environment (Norgate et al., 1999; Aderoju and Bend, 2017). Anomalously low levels of sterane isomerisation is 

common for coal measures, while anomalously high levels of isomerisation for steranes and homohopanes have 

been observed occasionally in carbonate hypersaline or high sulfur-content reducing environments (Mackenzie et 

al., 1980b; Ten Haven et al., 1986; Sun et al., 2016). Besides, reversal of sterane maturity parameters is also a 

common explanation for abnormally low values of C29 20S/(20S+20R) and C29 ββ/(ββ+αα) sterane ratios at 

relatively high maturity (Lewan et al., 1986; Peters et al., 1990). However, our samples are not likely to be 

controlled by this regime, since the sterane maturity ratios show no relationship with increasing maturity.  
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5.4 Hydrocarbon potential 

The HI vs Tmax plot suggests that the mudstones contain both type II and III kerogens (Figure 9a). Compared 

to the mudstones, the coals and coaly mudstones generally have higher HI values, and are located much above the 

type III range on the HI vs Tmax plot (Figure 9a). It has also been recognized that HI vs Tmax diagrams or HI vs OI 

diagrams may misrepresent the kerogen types of coals due to the anomalously high hydrocarbon potential of coal 

samples (Peters, 1986). Jasper et al. (2009) also found that the HI values of the coal are about twice as high as that 

of the dispersed organic matter, although the maceral composition is similar. One possible explanation to the 

relatively high HI values of the coals is that coals of higher plant origin (Type III) do not respond to pyrolysis in the 

same way as dispersed Type III kerogens (Peters, 1986). The reduced HI values of the mudstones are due to the 

retention of generated hydrocarbons on mineral surfaces during pyrolysis. Additionally, the organic matter is more 

readily to be oxidized in a mineral-rich environment than in a peat environment (Bostick and Foster, 1975; Scheidt 

and Littke, 1989; Jasper et al., 2009). Another explanation is that the high HI values result from marine 

transgression, which is also very reasonable in a transitional phase. Elevated water tabled leads to increased 

biodegradation, the processing of hydrogen rich components and bacterial lipids to the peat. Excess sulfur from 

marine water enhances the preservation of hydrogen-rich plant and bacterial lipids through sulfurization (Marshall 

et al., 2015). Sykes et al. (2014) found that the HI value of marine affected coals is positively correlated with the 

total S content, which is an indicator of degrees of marine influence (Zieger and Littke, 2019). Anyhow, the coals 

and coaly mudstones are generally within the band of humic coals (Petersen, 2006) (Figure 9b). 

The TOC vs S2 plot indicates that the samples have poor to excellent hydrocarbon generation potential 

(Figure 10). The coals have the strongest hydrocarbon potential, followed by the coaly mudstones and then the 

mudstone samples. The intercalated coal laminae significantly increase the hydrocarbon potential of the mudstones. 

The predominant terrigenous organic matter input and the presence of liptinite (both terrigenous liptinite and 

aquatic lamalginite) indicate the source rocks generate mainly gas and may also have oil potential. Many previous 

studies have discussed the oil generative potential of coals (Horsfield et al., 1988; Littke et al., 1990; Clayton et al., 

1991; Hunt, 1991; Powell et al., 1991; Killops et al., 1998; Sykes and Snowdon, 2002; Petersen and Nytoft, 2006). 

Killops et al. (1998) classified coals into high-H and low-H coals according to H/C ratios. Sykes and Snowdon 

(2002) evaluated the oil generative potential of the coals by HI values. According to the criteria of Sykes and 

Snowdon (2002), the coals are in the gas-prone and gas- & oil-prone bands. However, no oil shows can be found in 
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the formations in the research area. It indicates that the coals did not generate enough oils during maturation to 

allow migration as a discrete phase. Previous studies also concluded that the Carboniferous and Permian coals have 

the least oil generative potential, compared with Cenozoic and Jurassic coals (Petersen, 2006; Petersen and Nytoft, 

2006). 

According to the Tmax values and the maturity-depended biomarkers, the samples have already been thermally 

mature, indicating that a certain amount of organic matter has been transformed into hydrocarbon (mainly gas). 

Stable isotope carbon compositions have verified that the coal measures are the dominant sources of tight gas in the 

Ordos Basin (Dai et al., 2005; Han et al., 2018).  

5.5 Depositional environments 

Pristane and phytane are formed from the degradation of chlorophyll phytyl side-chain, which is controlled by 

the Eh of depositional environments (Didyk et al., 1978). Pr/Ph<1 indicates hypersaline, anoxic or carbonate 

settings, and Pr/Ph>3 is associated with fluvial, deltaic or humic-dominated sediments deposited under oxic 

conditions (Mackenzie et al., 1980a; Østensen, 2005). Pr/Ph decreases with thermal maturation. The Pr/Ph ratios of 

our coals are much lower than common humic coals of similar maturity (Figure 11). The relatively low Pr/Ph 

values of the coals indicate a strongly marine-influenced sedimentary environment (Ahmed et al., 1999; Yuan and 

Zhang, 2018). Most of the coal samples have higher Pr/Ph values than the mudstones, suggesting that these coals 

deposited in a more oxidizing environment (Kotarba and Clayton, 2003). The coalbeds and coal laminae should be 

formed when proximal depositional settings occasionally transformed into swamp-peat due to sea-level 

fluctuations. Pr/n-C17 and Ph/n-C18 ratios reflect source-rock facies, maturity and biodegradation (Shanmugam, 

1985). The two ratios commonly decrease with increasing maturity but increase with biodegradation. This is 

because isoprenoids break down earlier than n-alkanes during maturation and isoprenoids are more bioresistant 

than n-alkanes (Peters et al., 2005). According to the Pr/n-C17 vs Ph/n-C18 plot, the mudstones belong to a 

transitional environment while the coals deposited in both oxidizing and transitional environments (Figure 12a).  

The redox conditions are also confirmed by the low gammacerane indices. Gammacerane is generally 

considered to be derived from tetrahymanol. Water body stratification creates anaerobic conditions where ciliates 

feed on green and purple sulphur bacteria and produce tetrahymanol because sterols are lacking in their diet 

(Damsté et al., 1995). Thus, gammacerane is an indicator of stratified water column during sedimentation. High 

gammacerane indices are commonly associated with hypersaline conditions (Moldowan et al., 1985). Strong 
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preservation of C35 homohopanes is associated with carbonate environments (Seifert et al., 1984). The homohopane 

indices are positively correlated with the gammacerane indices (Figure 12b), and both the two biomarkers are in 

low values. Reducing conditions and relatively high salinity commonly have homohopane indices in excess of 5% 

(Cao et al., 2009; Hu et al., 2019). Thus, the low homohopane indices of our samples (0.01-0.05) support dysoxic to 

oxic conditions. Both gammacerane indices and homohopane indices increase from the Taiyuan Formation to the 

Shanxi Formation, indicating increasing reducing conditions. The low gammacerane indices as well as the 

moderate Pr/Ph ratios of our samples support a dysoxic to oxic condition and a brackish/fresh water body (see also 

Jiamo et al., 1990).  

Pyrite is common in the mudstones, occurring as framboids, grouped framboidal aggregates, scattered 

euhedral crystals, or replacement of organic matter (Figure 4a-d). Pyrite can be formed in water columns, i.e., 

syngenetic pyrite, or below sediment-water interfaces, i.e. diagenetic pyrite (Wilkin and Arthur, 2001). 

Distributions of framboid size are related to the redox conditions of fine-grained sediments (Wilkin et al., 1996). 

Framboids with a narrow size distribution and maximum size <18 μm are evidence of syngenetic pyrite formation 

subjacent to the O2-H2S boundary (Wilkin and Arthur, 2001). However, the framboids of our mudstone samples 

vary greatly in size and the diameters are up to ~30 μm (Figure 4a and b), indicating an early diagenetic origin and 

dysoxic bottom waters. Many framboids and other types of diagenetic pyrite are next to or nested in organic matter 

(Figure 4b-c), because microbial degradation of organic matter consumes oxygen, forming local reducing 

conditions. It also indicates limited reducing condition in early depositional period.  

Anhedral pyrite replacement (formed by late digenetic pyritization) and dispersive euhedral pyrite (formed 

via infilling and cementation of previously formed framboids) occur in the mudstones. The lack of syngenetic 

pyrite and the abundant diagenetic pyrite suggests limited syngenetic pyritization and a less reducing water column 

(Kortenski and Kostova, 1996; Wilkin et al., 1996; Soliman and El Goresy, 2012; Song et al., 2017). Increases in 

diagenetic pyrite over framboidal pyrite have been recorded in sediments at basin margins rather than in the more 

central parts of basins (Wilkin and Arthur, 2001). Beside pyrite, marcasite, the dimorph of pyrite, occurs in L1-S1 

and L2-S1. The spherical marcasite in Figure 4f was formed in uncompacted surficial sediments and is a typical 

early diagenetic marcasite. Early diagenetic marcasite is a reliable indicator of oxygen-bearing bottom waters 

(Schieber, 2011b). The conclusion obtained from iron sulfides agrees with the biomarkers.  

Although the geochemical parameters support a dysoxic and oxic condition, it remains questionable how can 

such high concentrations of organic matter be preserved in an oxic condition. Organic matter preservation in 
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sediments are strongly related to oxygen exposure time, namely the time in oxic conditions (Hartnett et al., 1998; 

Hedges et al., 1999). Thus, the “oxic” records must resulted from short-term exposure to oxic conditions, and the 

samples which have “oxic” records should have undergone redox oscillations (namely mixed redox conditions). 

The redox oscillation commonly occurs in coastal and continental margin sediments (Aller, 1994). It results from 

many mechanisms, including (1) bioturbation and bioirrigation, (2) episodic physical mixing events by upwelling, 

tidal oscillation and wind-driven waves (Arzayus and Canuel, 2005; Bianchi et al., 2016), (3) seasonal input of rain 

water (Lewis et al., 2007), (4) diurnal photosynthesis in photic zone (Ivlev, 2015; Peng et al., 2019), (5) variation of 

intensity of microbial respiration (Bianchi et al., 2016). These events alter the oxygen concentration in bottom 

waters, moving the redox interface up and down, or directly change the oxygen contents in sediments. Redox 

oscillations are generally asymmetrical in length and typically spend ~10-100 times longer anoxic than oxic 

conditions (Aller, 1994), which favors for preservation of organic matter.  

Compositions of organic matter are controlled by organic matter sources and altered by oxidative degradation. 

The oxygen-bearing bottom waters enable selective preservation of terrigenous relative to marine organic matter, 

because terrigenous fractions are thought to be more resistant to oxidation than marine fractions (Van Santvoort et 

al., 2002; Burdige, 2005; Huguet et al., 2008). The selective preservation leads to that terrestrial organic carbon has 

higher burial efficiency than marine organic carbon in transitional zones (Huguet et al., 2008). Thus, the redox 

conditions of bottom waters partly lead to the enrichment of terrigenous organic matter.  

6 Conclusions 

(1) Biomarkers and organic petrology suggest a mixed terrigenous and aquatic organic matter input of the 

mudstones and a dominance of terrigenous organic matter inputs of the coals. The low TAR values of the coals, 

which result from retention of volatile components, can not reveal the organic precursors of the samples. High 

hopane concentrations indicate a strong bacterial input. 

(2) High hopane to sterane ratios lead to presence of hopane fragment peaks on m/z 217 mass chromatograms. It 

does not affect the identification of the steranes, because the steranes and the hopanes have different retention 

times. However, cautions should be taken if the hopanes which have similar retention times with steranes are 

present in samples.  

(3) The Tmax values and hopane maturity biomarkers indicate that the samples are thermally mature. The C30 

moretane/C30 hopane ratios are higher than expected values for mature samples, which is as a result of the 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



strong input of terrestrial organic matter. The abnormally low C29 20S/(20S+20R) and C29 ββ/(ββ+αα) sterane 

ratios are due to terrestrial organic matter or coal-related depositional environments.  

(4) The coals generally have higher HI values than the mudstones, because minerals in the mudstones will retain 

the generated hydrocarbons during pyrolysis. Marine influence may also contribute to the high HI values. The 

TOC vs S2 plot indicates that the samples have poor to excellent hydrocarbon generation potential. The source 

rocks produce mainly gases and have poor oil generative potential.  

(5) Biomarkers and iron sulfide morphology indicate that the depositional environment is a proximal setting with 

shallow and brackish/fresh water bodies. The redox indicators support dysoxic to oxic conditions. Since 

organic matter can not be preserved in oxic conditions, the “oxic” records should resulted from redox 

oscillations.  
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Figure 1 

 

Figure 1 (a) Simplified regional geologic map of the Ordos Basin, after Darby and Ritts (2002). (b) sampling locations in 

the research area. 
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Figure 2 

 

Figure 2 The stratigraphy and sedimentary environment of the Benxi to Shanxi Formations, modified from Shen et al. 

(2017). 
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Figure 3 

 

Figure 3 Organic-petrological images. (a), (b), (c), (h) and (k) were taken in fluorescence mode, and others were taken 

under incident white light. V-vitrinite; Fu-fusinite; I-inertinite; Re-resinite; Sp-sporinite; Cu-cutinite; LA-lamalginite.  
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Figure 4 
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Figure 4 Microscopic morphology of the iron sulfides. (a) L1-S2, grouped framboidal aggregates. (b) L4-S2, framboidal 

pyrites surrounded by organic matter. (c) L5-S2, euhedral pyrites distributing along organic matter. (d) L1-S2, anhedral 

pyrite as replacement of organic matter. (e) L1-S1, needle-like marcasite. (f) L2-S1, early digenetic marcasite. 
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Figure 5 

 

Figure 5 Gas chromatograms and mass chromatograms of terpanes + hopanes (m/z=191) and steranes (m/z=217) of the 

saturated fraction of extracts derived from two mudstones and two coals.  

  Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Figure 6 

 

Figure 6 (a) Plot of C24 Tet/(C24 Tet+C23 Tri) ratios vs C24 Tet/(C24 Tet+C26 Tri) ratios. (b) Plot of C24 Tet/(C24 Tet+C23 Tri) 

ratios vs C29/C27 sterane ratios.  

 

 

Figure 7 

 

Figure 7 Comparison of m/z 217, 191 and 177 mass chromatograms of L5-S2 and L1-C1. NL represents the nominal level, 

namely the peak signal intensity. The red, blue and green spots represent the m/z=217 fragments of C29, C28 and C27 sterane 

series, respectively. The inverted triangles represent m/z=217 fragments of the hopanes. The red shadow covers the range 

of the retention times of C29 ααα 20S, C29 αββ 20S, C29 ααα 20R, C29 αββ 20R steranes. It indicates that the hopanes and the 

steranes have different retention times. The hopane-derived fragments do not affect identification of the steranes on m/z 

217 mass chromatograms. 

  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

 

Figure 8 

 

Figure 8 (a) Plot of Ts/(Ts+Tm) ratios vs Tmax values (b) Plot of sterane maturity ratios. 

 

 

Figure 9 

 

Figure 9 (a) Plot of HI vs Tmax to determine kerogen types; (b) Plot of HI vs Tmax with the band of humic coals according to 

Petersen (2006).  
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Figure 10 

 

Figure 10 S2 vs TOC plot to indicate hydrocarbon potential.  

 

Figure 11 

 

Figure 11 Plot of Pr/Ph vs Ro of the coal samples and data from Jasper et al. (2010); Böcker et al. (2013) (modified from Qi 

et al. (2019a)). Each group of data are linearly fitted. The fitted lines are in the same color as symbols of corresponding 

data.  

 

Figure 12 
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Figure 12 Plots of (a) Pr/n-C17 vs Ph/n-C18 and (b) Gammacerane index vs homohopane index. 
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Tables 

Table 1 Sample information, TOC values, Rock-Eval pyrolysis parameters and vitrinite reflectance. 

Sa

mples 

Lithology 
For

mation 

TOC 

(wt. %) 

Tma

x (℃) 

HI 

(mg/g) 

S1 

(mg/g) 

S2 

(mg/g) 

R

o (%) 

L1-

S1 

Mudstone 
Taiy

uan 

4.9 447 17 

0.2

2 

0.8

2 

 

L2-

S1 

Mudstone 
Taiy

uan 

3.8 446 44 

0.2

8 

1.6

6 

 

L2-

S2 

Mudstone 
Taiy

uan 

1.1 435 45 

0.0

2 

0.5

0 

 

L3-

S1 

Mudstone 
Taiy

uan 

8.4 448 111 

0.4

8 

9.3

5 

 

L5-

S2 

Mudstone 
Taiy

uan 

2.5 469 72 

0.3

2 

1.8

2 

 

L4-

S1 

Mudstone 
Sha

nxi 

2.3 461 70 

0.3

6 

1.5

8 

 

L4-

S2 

Mudstone 
Sha

nxi 

4.0 466 92 

0.2

7 

3.7

2 

 

L6-

S2 

Mudstone 
Sha

nxi 

4.7 463 101 

0.5

3 

4.7

3 

 

L1-

S2 

Coaly 

mudstone 

Sha

nxi 

15.6 433 249 

0.2

2 

38.

70 

 

L1-

S3 

Coaly 

mudstone 

Sha

nxi 

20.7 433 203 

0.1

3 

41.

94 

 

L4-

S3 

Coaly 

mudstone 

Sha

nxi 

18.1 452 276 

1.2

1 

49.

90 
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L4-

S4 

Coaly 

mudstone 

Sha

nxi 

20.3 456 197 

0.9

3 

39.

93 

 

L6-

S4 

Coaly 

mudstone 

Sha

nxi 

22.2 465 76 

0.2

3 

16.

93 

 

L1-

C1 

Coal 
Taiy

uan 

68.4 

437 187 

1.6

5 

12

8.01 

0.

81 

L2-

C1 

Coal 
Taiy

uan 

66.4 

437 168 

1.6

1 

11

1.83 

0.

78 

L3-

C1 

Coal 
Taiy

uan 

55.8 

439 129 

1.5

3 

71.

78 

0.

84 

L5-

C1 

Coal 
Taiy

uan 

71.5 

466 221 

3.3

1 

15

8.03 

1.

15 

L4-

C1 

Coal 
Sha

nxi 

70.7 

456 269 

3.6

1 

19

0.55 

1.

01 

L6-

C2 

Coal 
Sha

nxi 
72.6 

458 200 

4.2

6 

14

5.24 

1.

14 
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Table 2 Molecular geochemical parameters. 

Samples L

1-S1 

L

2-S1 

L

2-S2 

L

3-S1 

L

5-S2 

L

4-S1 

L

4-S2 

L

6-S2 

L

1-C1 

L

2-C1 

L

3-C1 

L

5-C1 

L

4-C1 

L

6-C2 

n-alka

nes and 

isoprenoids 

TAR 0

.61 

3

.33 

9

.87 

4

.69 

0

.20 

2

.20 

6

.52 

0

.65 

0

.78 

0

.40 

0

.30 

0

.77 

0

.45 

1

.54 

Pr/Ph 0

.76 

1

.09 

0

.82 

1

.23 

1

.22 

1

.09 

1

.10 

2

.12 

2

.15 

2

.48 

1

.04 

1

.35 

1

.63 

0

.95 

Pr/n-C17 0

.88 

0

.47 

0

.93 

1

.18 

0

.65 

1

.05 

0

.55 

0

.92 

0

.63 

0

.29 

0

.42 

0

.44 

0

.63 

0

.17 

Ph/n-C18 0

.82 

0

.32 

0

.70 

0

.55 

0

.44 

0

.75 

0

.47 

0

.45 

0

.28 

0

.11 

0

.36 

0

.35 

0

.39 

0

.15 

CPI 1

.07 

1

.23 

1

.04 

0

.99 

1

.05 

1

.05 

1

.00 

1

.11 

1

.04 

1

.13 

1

.15 

1

.10 

1

.17 

1

.19 

Terpe

noids 

C24 Tet/(C24 Tet+C23 

Tri) 

0

.33 

0

.8 

0

.41 

0

.46 

0

.31 

0

.36 

0

.45 

0

.77 

0

.94 

0

.79 

0

.30 

0

.27 

0

.66 

0

.47 

C24 Tet/(C24 Tet+C26 

Tri) 

0

.40 

0

.9 

0

.72 

0

.66 

0

.39 

0

.53 

0

.57 

0

.97 

0

.99 

0

.95 

0

.49 

0

.45 

0

.88 

0

.61 

C19 Tet/(C19 Tet+C23 

Tri) 

/ 0

.67 

0

.13 

0

.27 

0

.48 

0

.37 

0

.59 

0

.61 

0

.89 

0

.70 

0

.39 

0

.42 

0

.67 

0

.34 
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Gammacerane index 0

.14 

0

.08 

0

.09 

0

.06 

0

.23 

0

.19 

0

.22 

0

.05 

0

.03 

0

.08 

0

.14 

0

.24 

0

.16 

0

.14 

Hopa

noids 

Ts/(Ts+Tm) 0

.39 

0

.05 

0

.25 

0

.08 

0

.48 

0

.47 

0

.54 

0

.03 

0

.02 

0

.05 

0

.43 

0

.48 

0

.43 

0

.30 

C30 moretane/C30 

hopane 

0

.14 

0

.26 

0

.25 

0

.23 

0

.15 

0

.14 

0

.19 

0

.16 

0

.17 

0

.19 

0

.15 

0

.15 

0

.15 

0

.15 

C29/C30 17α-hopane 0

.47 

0

.85 

0

.75 

0

.95 

0

.46 

0

.50 

0

.48 

0

.79 

1

.47 

1

.31 

0

.68 

0

.45 

0

.46 

0

.44 

C35/C34 17α-hopane 0

.53 

0

.27 

0

.50 

0

.33 

0

.58 

0

.50 

0

.64 

0

.38 

0

.32 

0

.38 

0

.50 

0

.59 

0

.38 

0

.46 

C32S/(S+R) hopane 0

.57 

0

.58 

0

.56 

0

.58 

0

.56 

0

.56 

0

.54 

0

.58 

0

.60 

0

.58 

0

.58 

0

.56 

0

.56 

0

.56 

Homohopane index 0

.033 

0

.015 

0

.035 

0

.021 

0

.053 

0

.036 

0

.052 

0

.026 

0

.012 

0

.028 

0

.032 

0

.049 

0

.028 

0

.041 

Steroi

ds 

C27 ααα 20R(%) 3

9 

3

1 

3

6 

4

2 

3

3 

3

7 

3

8 

3

6 

2

5 

2

7 

4

1 

3

6 

3

5 

2

5 

C28 ααα 20R (%) 2

7 

2

4 

2

8 

2

6 

2

7 

3

3 

3

7 

2

9 

3

2 

3

0 

2

1 

3

5 

2

5 

3

6 

C29ααα 20R (%) 3

4 

4

5 

3

6 

3

2 

4

0 

3

0 

2

5 

3

4 

4

4 

4

2 

3

7 

2

9 

4

0 

3

9 
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C29/C27 ααα 20R 0

.86 

1

.43 

1

.00 

0

.77 

1

.21 

0

.81 

0

.66 

0

.94 

1

.78 

1

.53 

0

.90 

0

.81 

1

.12 

1

.52 

C29 ααα 

20S/(20S+20R) 

0

.39 

0

.44 

0

.35 

0

.44 

0

.39 

0

.44 

0

.45 

0

.47 

0

.46 

0

.40 

0

.39 

0

.40 

0

.41 

0

.39 

C29 ββ/(ββ+αα) 20R 0

.40 

0

.39 

0

.35 

0

.39 

0

.41 

0

.47 

0

.48 

0

.48 

0

.46 

0

.42 

0

.43 

0

.43 

0

.46 

0

.40 

Sterane/Hopane ratio 0

.20 

0

.03 

0

.25 

0

.11 

0

.24 

0

.37 

0

.28 

0

.16 

0

.02 

0

.02 

0

.58 

0

.23 

0

.22 

0

.15 

Note: TAR, terrestrial to aquatic ratio, (n-C27+n-C29+n-C31)/(n-C15+n-C17+n-C19); Tet, Tetracyclic terpane; Tri, Tricyclic terpane; Gammacerane index, Gammacerane/C30 

17α-hopane  
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Highlights 

 Terrigenous organic matter dominates the coals and predominates over aquatic organic matter in the 

mudstones 

 High hopane to sterane ratios result in fragment peaks of hopanes on m/z 217 mass chromatograms 

 The fragments derived from the hopanes on m/z 217 mass chromatograms do not interfere identification of the 

steranes 

 The redox condition is dysoxic and the oxic records of geochemical parameters result from redox oscillations 
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