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ABSTRACT
We explore unsupervised machine learning for galaxy morphology analyses using a combination of feature extraction with
a vector-quantized variational autoencoder (VQ-VAE) and hierarchical clustering (HC). We propose a new methodology that
includes: (1) consideration of the clustering performance simultaneously when learning features from images; (2) allowing for
various distance thresholds within the HC algorithm; (3) using the galaxy orientation to determine the number of clusters. This
set-up provides 27 clusters created with this unsupervised learning that we show are well separated based on galaxy shape and
structure (e.g. Sérsic index, concentration, asymmetry, Gini coefficient). These resulting clusters also correlate well with physical
properties such as the colour–magnitude diagram, and span the range of scaling relations such as mass versus size amongst
the different machine-defined clusters. When we merge these multiple clusters into two large preliminary clusters to provide a
binary classification, an accuracy of ∼ 87 per cent is reached using an imbalanced data set, matching real galaxy distributions,
which includes 22.7 per cent early-type galaxies and 77.3 per cent late-type galaxies. Comparing the given clusters with classic
Hubble types (ellipticals, lenticulars, early spirals, late spirals, and irregulars), we show that there is an intrinsic vagueness in
visual classification systems, in particular galaxies with transitional features such as lenticulars and early spirals. Based on this,
the main result in this work is not how well our unsupervised method matches visual classifications and physical properties, but
that the method provides an independent classification that may be more physically meaningful than any visually based ones.

Key words: techniques: image processing – galaxies: general – methods: data analysis.

1 IN T RO D U C T I O N

Galaxy structure and visual morphology have a strong connection
with their stellar population properties, such as surface brightness,
colour, and the formation history of galaxies (Holmberg 1958;
Dressler 1980). The dominant visual morphological classification
system in use today was first constructed by Hubble (1926), which
was then revised by adding a class for lenticulars (S0), a type of
galaxy has a disc structure without apparent spiral arms (Hubble
1936; Sandage 1961). Since then, a number of detailed classification
systems were proposed such as ones including the notation for the
inter and outer ring structure (de Vaucouleurs 1959) and different
arm classes (Elmegreen & Elmegreen 1982, 1987), among others.

However, visual classification systems can be intrinsically biased
due to the subjective judgement of different human classifiers. These
human errors are unavoidable and sometimes cannot be reproduced
for carrying out a statistical analysis. This greatly limits the ability to
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use galaxy classification in a formal quantitative way. These issues
led astronomers to search for a quantitative description of galaxy
structure based on the shape, structure, and physical properties of
galaxies which can in principle be connected with visual morphology.
For example, principal component analysis was applied to determine
the number of dominant features needed to reproduce the variance
shown in observation in Whitmore (1984) as well as to provide
an objective procedure for analysing galaxy properties (also see
Conselice 2006). Other studies such as non-parametric methods,
e.g. concentration, asymmetry, smoothness/clumpiness, and Gini
coefficient (Bershady, Jangren & Conselice 2000; Conselice, Ber-
shady & Jangren 2000; Abraham, van den Bergh & Nair 2003;
Conselice 2003; Lotz, Primack & Madau 2004; Law et al. 2007),
and parametric methods, e.g. Sérsic profile (Sérsic 1963, 1968)
for measuring galaxy structure were also proposed to provide a
more objective and quantitative classification systems than visual
assessment alone.

Even though quantitative measures of galaxy structure are ex-
tremely useful for measuring properties such as the merger history
(e.g. Conselice 2003), morphological ‘classifications’ into types is
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still an important and complementary process. However, it is not clear
if indeed we know what these ‘best types’ are such that whether a
classification scheme results in relatively unique physical properties
of the galaxies or traces the merger history in each class.

Thus, in this study we build a galaxy morphological classification
system that does not involve human bias; we do this through
an unsupervised machine learning approach. One may argue that
supervised machine learning, as a more established technique, might
be more suitable for this task. However, providing labelled data,
which is essential to train a supervised machine, must involve human
judgement. Our intention in this study is to avoid human bias.
Secondly, the high accuracy achieved by a supervised machine is
based on the given prior knowledge from labelled data. Therefore, the
performance of a supervised machine becomes uncertain when the
testing domain is different from the training domain (e.g. Dodge &
Karam 2016; Rosenfeld, Zemel & Tsotsos 2018). In future surveys
such as the Vera Rubin Observatory (formerly known as Large
Synoptic Survey Telescope, LSST; Ivezić et al. 2019)1 will generate
the size of the Sloan Digital Sky Survey (SDSS; York et al. 2000)2

data over 10 yr in one night. It is doubtful that the current data and
human labelling abilities and speed could facilitate an unbiased and
extensive labelled data set for a supervised machine to ‘correctly’
classify the potentially unknown patterns within the data of future
surveys. Furthermore, this supervised learning will always miss
unusual systems.

For the reason discussed above, we use unsupervised machine
learning that is trained without any prior knowledge (e.g. galaxy
labels, such as Hubble types). This approach is able to give us
suggestive classifications from the machine’s perspective based upon
input features. However, with an unsupervised machine learning
technique it becomes more challenging to have a ‘sensible’ clas-
sification, that is one with more consistency with human opinion,
when the dimensionality of a feature space becomes high (curse
of dimensionality, Bellman 1954; Keogh & Mueen 2017). In astro-
nomical studies, unsupervised machine learning applications have
been mostly used in the studies of spectroscopic data which is
less dimensional than applying to imaging data (e.g. Geach 2012;
Carrasco Kind & Brunner 2014; Krone-Martins & Moitinho 2014;
Siudek et al. 2018). Therefore, unsupervised learning for galaxy
classification is still in its infancy.

There are currently several types of astronomical studies that
apply unsupervised machine learning techniques to images which
reach reasonable results, including: galaxy morphology (Hocking
et al. 2018; Martin et al. 2020), strong lensing identification (Cheng
et al. 2020), and anomaly detection (Xiong et al. 2018; Margalef-
Bentabol et al. 2020). For example, Hocking et al. (2018) and
Martin et al. (2020) apply a technique called Growing Neural Gas
algorithm (Fritzke 1994), which is a type of self-organizing map
(Kohonen 1997), to extract features from images. These features
are then connected with a hierarchical clustering algorithm (Hastie,
Tibshirani & Friedman 2009). On the other hand, Cheng et al. (2020)
use a fundamentally different approach by using a convolutional
autoencoder (Masci et al. 2011), which includes an architecture of
convolutional neural networks, for feature extraction. This method
connects the extracted features with a Bayesian Gaussian mixture
model from which a clustering analysis can be done.

In this study, we apply an architecture consisting of a convolutional
autoencoder, as convolutional neural networks have demonstrated

1https://www.lsst.org
2https://www.sdss.org

their capability for capturing representative and meaningful features
from images (Krizhevsky, Sutskever & Hinton 2012). We do not use
the same convolutional autoencoder as Cheng et al. (2020), but we
apply a newly developed technique from Google DeepMind (van
den Oord, Vinyals & kavukcuoglu 2017; Razavi, van den Oord &
Vinyals 2019) called ‘vector-quantized variational autoencoder (VQ-
VAE)’. This technique includes a vector quantization method that
accelerates the time-consuming process of feature extraction when
using a convolutional autoencoder, as explained in Cheng et al.
(2020). On the other hand, for clustering algorithms, we decide to
apply a modified hierarchical clustering method to group the data in
order to explore connections between the distances amongst extracted
features in feature space, and the number of classification clusters.

In this paper, we use this unsupervised machine learning technique
to develop a galaxy morphology classification system defined by a
machine, and compare it with traditional visual classification system
such as the Hubble sequence. We furthermore also compare our
machine developed classification with galaxy physical properties,
such as stellar mass, colour, and physical size of galaxies. We use
monochromatic images throughout to focus only on the impact of
galaxy shape and structure on morphological classifications in this
paper. The methodology we develop is introduced in Section 2, while
the detailed description of how to approach using our method and
the data used in this study are shown in Section 3. Section 4 presents
the results in this study. Finally, we conclude the work in Section 5.

2 M E T H O D O L O G Y

In this section, we explain our unsupervised machine learning
methodology that is used throughout this paper. We give a brief
overview here, before going into detail in the following subsections.

Our unsupervised machine learning technique includes a feature
learning phase with a VQ-VAE (Sections 2.1 and 2.2) and a
clustering phase using a hierarchical clustering algorithm (HC;
Section 2.3). Several novel approaches for unsupervised machine
learning applications are made in this paper: (1) the VQ-VAE
considers both reconstruction and preliminary clustering results in
the feature learning phase (Section 2.2 and also see Section 3.3); (2)
multiple different distance thresholds are used to draw the decision
lines on the merger tree in the clustering process (Section 2.3); (3)
use the feature of galaxy orientation to decide the distance thresholds
applied in the clustering process (see details in Section 2.3).

2.1 Vector-quantized variational autoencoder

The VQ-VAE was built by Google DeepMind (van den Oord et al.
2017; Razavi et al. 2019) and was originally used for high-fidelity
image emulation. The task of image emulation is to learn the
distribution of the data given a set of training images, and then
to reproduce the images with the learnt distribution. In details, the
structure of an autoencoder (Fig. 1) contains an encoder with a
posterior distribution q(z|x) and a prior distribution p(z) where x
is the input data and z represents latent variable, and a decoder with
a distribution p(x|z) for reproducing the input data.

The VQ-VAE is a type of autoencoder that includes the structure
of convolutional neural networks and applies a vector quantization
process (van den Oord et al. 2017) to make the posterior and prior
distribution become categorical. By using a categorical distribution,
the computational time for training an autoencoder is significantly
reduced compared to other machine learning methods. For example,
in Cheng et al. (2020), it takes 0.0146 ms per pixel per epoch
by a convolutional autoencoder running on a NVIDIA TU102
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Figure 1. A schematic architecture of the modified VQ-VAE used for feature extraction of images. The top aspect with a coloured background is the main
architecture of the VQ-VAE, which is then modified to consider the silhouette score calculated using the two preliminary clusters given by k-medoids clustering
as a part of the loss function when training VQ-VAE (see details in Section 2.2). The blue shading at the left and right represents the encoder and the decoder,
respectively while the yellow part shows the vector quantization process. The details of each layer are shown in Table 1.

[GeForce RTX 2080 Ti] GPU, while in this work, a VQ-VAE
takes 4.59 × 10−4 ms per pixel per epoch using the same device.
This is an enormous difference in training speed (30 times faster),
but without reducing the reconstruction ability. The reconstruction
errors of both methods are on average ∼5 × 10−4 when using the
most optimal trained model. This shows the usefulness of a built-
in vector quantization process to an autoencoder. More importantly,
the improvement in computational efficiency makes it feasible to
apply such unsupervised techniques to large-scale survey data, even
allowing it to be included in the analysis pipelines for future surveys.

Following the top coloured area in Fig. 1, the posterior categorical
distribution q(z|x) is defined as (van den Oord et al. 2017; Razavi
et al. 2019):

q (z = k|x) =
{

1 f or k = argminj

∥∥ze (x) − ej

∥∥
2

0 otherwise
, (1)

where ze(x) is the output of the encoder (the blue part at the left in
the figure), the value ej represents a vector in the codebook that is
used for vector-quantizing the ze(x), and k is the index for the vector
used in the selected codebook (the top box of the yellow part in the
figure). We then measure the vector-quantized representation zq(x),
which is the input of the decoder (the blue shading at the right side
in the figure), through equations (1) and (2).

zq (x) = ek, where k = argminj

∥∥ze (x) − ej

∥∥
2
. (2)

The vector quantization process is shown as the yellow part in Fig. 1.
The output of an encoder, ze(x) can be represented by a combination
of the index of different vectors, k, in the codebook (the square in
the middle of the yellow part). For example, in Fig. 1, a voxel in the
output of an encoder is represented by a vector, e3, after the vector
quantization. We then use the index of these vectors to build a two-
dimensional index map. For the pixel used in our example, the value

is 3. With this index map, we can rebuild the distribution, zq(x), with
the same dimension as ze(x) but in this case each ‘pixel’ in zq(x)
is quantized to one of the vectors shown in the codebook. For our
example, the vector e3 is used for the pixel. The distribution of zq(x)
is then used as the input for the decoder to reconstruct the images.

The loss function of the original VQ-VAE contains three parts: re-
constructed loss, codebook loss, and commitment loss. An additional
penalty is considered later in the modified version of the VQ-VAE
(see Section 2.2). The reconstructed loss is measured by comparing
the reconstructed images with the input images. The codebook loss
is used to make the selected codebook, ej, approach the output of the
encoder, ze(x), while the commitment loss is applied to encourage
the ze(x) to be as close as possible to the chosen codebook from the
previous epoch. With these definitions, the loss function, L, for the
VQ-VAE is defined as (Razavi et al. 2019)

L = log p
(
x|zq (x)

) + ‖sg [ze (x)] − e‖2
2 + β‖ze (x) − sg [e]‖2

2,

(3)

where the value sg is the stop gradient operator and β is used for
adjusting the weight of the commitment loss. The study of van den
Oord et al. (2017) found that their results correlate with the value of
β, and no apparent change occurs when β ranges from 0.1 to 2.0.
Therefore, we set β = 0.25 in this study which follows the setting in
van den Oord et al. (2017).

The details of the VQ-VAE architecture are shown in Table 1. Four
convolutional layers are used in both the encoder and decoder, and
residual neural networks (ResNets, He et al. 2016) are used in this
architecture to create a deeper neural network with less complexity.
The activation function applied in the convolutional layers is the
rectified linear unit (ReLu) (Nair & Hinton 2010) such that f(z) = 0
if z < 0 while f(z) = z if z ≥ 0. The VQ-VAE code is based upon

MNRAS 503, 4446–4465 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/3/4446/6168393 by Ting-Yun C
heng on 27 April 2021



Unsupervised galaxy morphological classification 4449

Table 1. The architecture used for the setup of the VQ-VAE used throughout this study.

Type #channel Kernel size Stride size Activation function

Encoder
Convolutional layer 64 4 × 4 2 × 2 ReLu
Convolutional layer 128 4 × 4 2 × 2 ReLu
Convolutional layer 128 4 × 4 2 × 2 ReLu
Convolutional layer 128 3 × 3 1 × 1 ReLu
ResNets

Pre-VQ
Convolutional layer 64 1 × 1 1 × 1

Decoder
Convolutional layer 128 3 × 3 1 × 1 ReLu
ResNets
Transposed convolutional layer 128 4 × 4 2 × 2 ReLu
Transposed convolutional layer 64 4 × 4 2 × 2 ReLu
Transposed convolutional layer 1 4 × 4 2 × 2

ResNets
Convolutional layer 32 3 × 3 1 × 1 ReLu
Convolutional layer 128 1 × 1 1 × 1 ReLu

the example provided in SONNET library (DeepMind 2018)3 which
is built on top of TENSORFLOW (Abadi et al. 2015).4 To train the
VQ-VAE, we apply the Adam Optimizer (Kingma & Ba 2014) and
the learning rate is set to 0.0003 which is used in Razavi et al. (2019).

2.2 Modified VQ-VAE

In this study, we apply a modification to our original VQ-VAE to
consider both image reconstruction and a preliminary clustering
result when extracting the representative features from images
(Fig. 1). To achieve this goal, a penalty defined by silhouette score
(Rousseeuw 1987, equation 4) is added in the original loss of VQ-
VAE (equation 5). The silhouette score indicates how well clusters
are separate from each other and is defined by the formula,

s = b − a

max (b, a)
, (4)

where a represents the mean intra-cluster distance while b is the dis-
tance between a cluster and its nearest neighbour cluster. Therefore, a
larger silhouette score indicates a better separation between clusters
in feature space. To train our VQ-VAE, we minimize the final loss
function combining the loss described in equation (3) and the penalty
defined as,

Ls = (1 − s) λ, (5)

where s represents the silhouette score and λ is a constant used for
making the magnitude of this penalty of the same order as other
losses used in the VQ-VAE (Section 2.1). The value of λ is equal to
0.1 in our case.

As shown in Fig. 1, during the training of the VQ-VAE, we
interpolate an unsupervised instance-based clustering algorithm
called ‘k-medoid clustering’ (Maranzana 1963; Park & Jun 2009)
to obtain two preliminary clusters using a flattened index map. The
two clusters are then used for measuring a silhouette score to evaluate
the performance of the initial clustering. This step is simply to make
VQ-VAE intentionally extract features that can not only be used
to reconstruct the input images but also be well separated into at
least two distinctive groups in feature space. The Hamming distance

3https://github.com/deepmind/sonnet
4https://www.tensorflow.org

Figure 2. The schematic dendrogram of the HC process. Data points are
shown on the x-axis, and gradually merge with each other based on the
distance (similarity) at the y-axis. Each solid line represents a branch and
each black circle indicates a stopping point for the corresponding branch
(see Section 3.4). The dashed lines represent the leaves (clusters) after the
stopping points. The grey dotted line indicates a cut suggesting the number of
clusters in a branch without showing orientation effect (also see Section 3.4;
the results are shown in Section 4.2).

(Hamming 1950) is used as the distance metric as our data are
represented by the indices of the vectors in the codebook whereby the
number itself only represents a category rather than a real value of the
vector (more description in Section 2.3). The ‘k-medoid clustering’
is used here for a fast evaluation; in the main clustering process
after feature extraction, we apply hierarchical clustering algorithms
(Section 2.3).

2.3 Uneven iterative hierarchical clustering

In this section, we describe our hierarchical clustering procedure
for identifying different types of clusters. Hierarchical clustering
(HC; Johnson 1967; Hastie et al. 2009), in particular agglomerative
HC (called sometimes ‘bottom-up’), first assigns each input as an
individual group, then merges two nearest (the most similar) groups
together based upon the measured pair distance in the feature space,
recursively. The ‘bottom-up’ HC structure allows a different number
of data points in clusters because it starts with individuals (Fig. 2).

MNRAS 503, 4446–4465 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/3/4446/6168393 by Ting-Yun C
heng on 27 April 2021

https://github.com/deepmind/sonnet
https://www.tensorflow.org


4450 T.-Y. Cheng et al.

Other kinds of clustering such as ‘top-down’ HC and k-medoid
clustering used in Section 2.2 start with clusters themselves, which
are more difficult to provide a starting point for an uneven number
of data points for the initial clusters.

The distance (similarity) measured in this study is the Hamming
distance (Hamming 1950). As stated in Section 2.2, our data are
represented by the index of the vectors selected from the codebook.
This is such that an index indicates a category rather than the real
value of a vector. We compare two data sets represented by a set of
features labelled with indices. The Hamming distance is defined as
the number of mismatched indices between the pair over the number
of features used to represent the data. For example, assuming that an
image can be presented by four different features labelled with the
indices: 1, 2, 3, 4, after VQ-VAE; in this case the Hamming distance
is 0 if the other image is represented as 1, 2, 3, 4 as well, and the
Hamming distance is 1 if it is represented by 4, 3, 2, 1.

For further clarification, Fig. 2 illustrates the clustering process.
Within this study, we realize that when all the data are considered,
the merging point can be less accurate due to the mixture of blindly
measured distances from a great variety of extracted features in
images. Therefore, we carry out an iterative clustering process with
a reverse concept that we control the data used for doing HC from
the top to bottom. We first make the HC merge all data into two
top parent branches, then apply the second round of HC to the
data of a parent branch to obtain two children branches, and apply
the same procedure again to the sub-data of a child branch to get
two grandchildren branches, and so on. The iterative action stops
when it reaches a certain condition (the black circle in Fig. 2; see
Section 3.4).

In a typical HC, a uniform distance is used to determine the final
clusters. However, a uniform distance threshold is not appropriate
considering that galaxies’ appearance in different morphological
types have different complexity, such that spiral galaxies have a
larger diversity in appearance than elliptical galaxies. Therefore, in
this study, we propose to allow a different stopping point/distance
threshold for each branch depending on the complexity of the objects
in the branch (see Section 3.4). For example, a branch that consists of
galaxies that can look very different within a class may continue for
many iterations, while others may reach the stop criteria with fewer
iterations due to a relatively monotonous structure within the data of
the branch. For example, spiral galaxies can have a variety of spiral
arm appearances, i.e. different number of arms, different positions
of arms, etc. Therefore, the distance between spiral-like galaxies
are generally larger than the distance between two elliptical-like
galaxies. This consideration is sensible and is of great importance in
morphological classification of galaxies; however, this is neglected
in a typical HC algorithm. Therefore, to distinguish it from a typical
HC algorithm, we call this set-up ‘uneven clustering’ that provides
us with a more precise distinction in galaxy shape, structure, and
morphology.

3 IMP LEM ENTATION

The pipeline of this study includes three main steps: (1) feature
selection; (2) feature learning (using the modified VQ-VAE); and
finally (3) clustering process. The data used in this study are
introduced in Section 3.1. The feature selection is described in
Section 3.2, and the set-up for the feature learning process using the
modified VQ-VAE (Section 2.2) is discussed in Section 3.3. Finally,
in Section 3.4 we explain the details of the clustering process we use
to classify galaxies.

Table 2. The classification scheme used in this work and in Domı́nguez
Sánchez et al. (2018, DS18; presented in T-Type). In DS18, they define the
T-Type of −3 for ellipticals (E), −2 for lenticulars at the early stage (S0−),
−1 for lenticulars at the intermediate to late stages (S0), 0 for S0/a, and the
positive values of T-Type are for different stages of spirals. Finally the T-Type
of 10 represents irregular galaxies (Irr).

This work E S0 eSp lSp Irr

E S0−, S0 S0/a–Sab Sb–Sdm Irr
DS18 −3 −2, −1 0–2 3–8 10

3.1 Data sets

The imaging data used throughout this work are from the SDSS Data
Release 7 (York et al. 2000; Abazajian et al. 2009) with a redshift
cut of z < 0.2. In order to focus on the impact of galaxy shape and
structure to morphological classifications, we utilize monochromatic
r-band images. An extension including colour and other factors is
some to consider for the future. Here, we are focused on single-
band morphological classification on features seen and not in general
a physical classification that might result from considering galaxy
colours and colour distributions.

To examine what types of systems our classification clusters
contain, as well as to have the flexibility within the data distribution
in our data sets, we use morphology labels defined by T-Type (de
Vaucouleurs 1964) and the probability of being a barred galaxy
(Pbar). Both quantities are obtained using deep learning techniques
from Domı́nguez Sánchez et al. (2018, hereafter DS18). We define
eight labels including barred galaxies that contain significant features
shown in the Hubble morphological system: ellipticals (E), lenticu-
lars (S0), early spirals (eSp), late spirals (lSp), irregulars (Irr), barred
lenticulars (SB0), early barred spirals (bar eSp), and late barred
spirals (bar lSp).

The comparison of the classification scheme is shown in Table 2;
in which, S0, eSp, and lSp are separated into barred and non-barred
galaxies based on the value of Pbar. We additionally include labels of
irregular galaxies from three other works: Fukugita et al. (2007),
Nair & Abraham (2010), and Oh et al. (2013) to provide more
irregular galaxies in our data base. The morphological labels in our
data sets are not used for training our machine, but to prepare an
appropriate data set with a specific data distribution, and as a way to
examine the obtained clusters in terms of these types.

To investigate the differences in the classification systems defined
by humans and those from a machine, as well as potential applica-
tion within our unsupervised machine learning technique in future
surveys, we prepare two different data sets: which are ‘balanced’
and ‘imbalanced’. In the balanced data set, we artificially allocate
the same number of galaxy images to each morphological type. The
eight human defined morphological types have visually distinctive
differences from each other; therefore, the purpose of this arrange-
ment is to allow our VQ-VAE consider fairly the characteristics of
each morphology type when extracting the representative features
from input images. Otherwise it is possible that some type of bias
would result if the distribution of the types we select are input into
our VQ-VAE in the same fraction as they are found in the nearby
Universe. In this case, we would find that the late-type discs would
dominate over early discs and ellipticals (e.g. Conselice 2006).

On the other hand, it is of great importance to know how an
unsupervised machine learning technique can be applied in future
surveys to explore a large scale of unknown galaxies’ morphology in
an ‘as is’ situation. That is, we need to know how our VQ-VAE
performs when galaxies are inputted from imaging observations
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Figure 3. The type distributions of the balanced (left) and imbalanced (right) data sets. The latter follows the distribution of nearby galaxies (Oh et al. 2013).
The number shown above the coloured bar represents the fraction of the type in all data. The fraction of barred galaxies are highlighted with hashed lines. The
orange and light blue colouring represent early-type galaxies and late-type galaxies, respectively.

of the real Universe with no balancing. For this goal, we set up
the ‘imbalanced data set’ with a realistic distribution in terms of
galaxy morphological types which follows the distribution of nearby
galaxies at z = 0.033–0.044 as presented in Oh et al. (2013). The
type distributions of the balanced and imbalanced data set are shown
in Fig. 3.

3.2 Feature selection

In this section, we discuss a pre-processing procedure to reject
irrelevant information from images. The feature selection procedure
is used to select the pixels in images that are significant and which
reflect the shape or structure of the targets. Cheng et al. (2020) showed
that the background noise can result in an overfit to the noise when
training the convolutional autonencoder. To solve this, Cheng et al.
(2020) applied a simplified convolutional autoencoder to denoise the
images and emphasise the pixels from the targets themselves before
the main task is computed. However, a denoising process by another
autoencoder is time consuming and could potentially add artificial
structure when reconstructing the images. Therefore, in this study,
we simply use a 1σ clipping of pixel values measured through the
background noises as our selection threshold. Any pixel value is
below this criterion the pixel value is set as 0 (Martin et al. 2020).
Whilst this will remove noise, it will also potentially remove outer
fainter portions of the galaxies themselves. However, this will retain
the brighter portions of the inner parts of galaxies where classification
is done in any case. Removing this fainter light does not have an effect
on our measurements as it would if we were measuring for example
surface brightness profiles.

3.3 Feature learning

As described, in this study, we apply a modified VQ-VAE (see
Section 2.2) to carry out our unsupervised learning. Our VQ-VAE
basically learns the representative features from our images. It
considers a preliminary clustering result by including an additional
penalty (equation 5) in the VQ-VAE (Section 2.2). This modification
helps to find not only better representative features for image

reconstruction, but also the features that can be well separated into
two initial groups in feature space.

The main advantage of the VQ-VAE technique is to accelerate the
unsupervised feature extraction process which is over 30 times faster
than using a typical convolutional autoencoder (e.g. Cheng et al.
2020) without a significant trade-off to the reconstruction accuracy
(Razavi et al. 2019). This is achieved by quantizing the values used
for reconstruction (Section 2.1).

The hyper-parameters setting used in this study follows the set-
up described in Razavi et al. (2019) except for the codebook size.
It determines the number of vectors available in the quantization
process (Section 2.1). This number of vectors decides the ‘resolution’
of the reconstructed images. Namely, the more available vectors,
the more details can be presented in images. Razavi et al. (2019)
use 512 vectors in their codebook to generate high-fidelity emulated
images of different animals, e.g. dogs, cats. However, with a different
goal from emulation in our study, we realized during analysis that
a larger codebook size leads to a worse clustering result. This is
because the machine with a larger codebook uses too many details
of the images into account when carrying out the clustering. These
details help to complete the puzzle when emulating images but they
blur the boundary in the feature space when doing clustering. In
this study, after a series of heuristic tests with different codebook
sizes, we choose a size of 16 for our codebook. This choice forces
the machine to use the provided vectors on the most significant
features and the initial two clusters show the highest silhouette score
while still retaining a certain level of the reconstruction quality.
This number of 16 may, and probably does, differ within different
instances of use. The modified VQ-VAE models in the work trained
using balanced and imbalanced data sets have a silhouette score of
0.321 and 0.306, respectively, between the two clusters obtained by
k-medoids clustering.

3.4 Clustering

Within the clustering task, we apply an uneven iterative hierarchical
clustering (Section 2.3) on the data represented by a set of vector-
quantized features obtained after the VQ-VAE.
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4452 T.-Y. Cheng et al.

In this study, we propose a new approach to decide the number
of clusters within unsupervised machine learning applications. This
approach can be used in other instances beyond using a VQ-VAE. Part
of this is inspired by the fact that the clusters can be highly sensitive
to galaxy orientation. The concept we use is to take the threshold
measured by the features of galaxy orientation on the merger tree to
find where the effect of galaxy orientation in a branch starts to appear
(e.g. grey dotted lines in Fig. 2). In other words, this threshold also
provides the number of classification clusters that are not separated
based on the galaxy orientation. This threshold is defined by the
average distance between the artificially rotated images in a branch
(drot),

drot =
∑N

i

∑N

j dij

N (N − 1)
, (6)

where N is the number of data points in the branch, and dij represents
the distance between an image i and image j. The distance, dij, is
measured through the Hamming distance.

In this process, we stop a branch and decide the number of clusters
within that branch when one of two criteria is satisfied: (1) the drot

suggests fewer than two clusters (≤2) in a branch; (2) the difference
between the drot measured using the data of a parent branch and the
data of a child branch are smaller than 0.015, that is dp,rot − dc,rot ≤
0.015.

The first criterion indicates that galaxy orientation is considered
when having more than two clusters (>2) in this branch (e.g. circles
1 and 2 in Fig. 2). Two clusters are the minimal number to split;
therefore, we stop the iterative clustering in a branch when this
criterion is satisfied. On the other hand, the second criterion is used
to decide whether a branch (the parent branch) should have more sub-
branches (the child branches). The variation between branches is less
significant when the difference in the distance between the data of a
parent branch and a child branch is small (≤0.015). The value used
in the second criterion is measured based on the branches stopped
due to the first criterion. Therefore, there is no need to split a parent
branch when the second criterion is satisfied. The suggested number
of clusters by the drot of the parent branch is then the number of
clusters in the branch without having the effect of galaxy orientation.
For example in Fig. 2, the branch stops at the circle 3 by satisfying the
second criterion, and the drot (grey dotted line) suggests three clusters
without showing the effect of galaxy orientation in this branch.

This strategy provides a different approach for achieving ‘rotation-
invariance’ in unsupervised machine learning applications. One
might consider building a rotationally invariant machine learning
model or to ‘de-rotate’ galaxies as a pre-processing procedure using
either mathematical methods or other machine learning techniques.
For example, Martin et al. (2020) tried to produce a rotationally
invariant representation using 2D fast Fourier transforms before
clustering. However, to use a rotation-invariant unsupervised ma-
chine learning model for galaxies can be time consuming and
challenging for several reasons: (1) artificially rotated galaxy images
for each galaxy are essential to train a machine which enormously
increases the training sample sizes; (2) it is often difficult and
uncertain to determine the orientation of a galaxy; and (3) this
model could be easily biased towards the training set. It is therefore
difficult, uncertain, and computationally costly to pre-process and
eliminate galaxy orientations with either mathematical methods or
other machine learning techniques.

Therefore, in this work, we propose a novel way to deal with this
issue. We simply use galaxy orientation as a feature to define the
clusters in such a way that we avoid generating clusters that might
be sensitive to galaxy orientation. This method may unintentionally

exclude galaxies with other distinctive structural features. However,
the main advantage of this approach is not only to provide a different
way of thinking but also to help with one of the prime issues in
unsupervised machine learning applications – what is the number of
clusters appropriate for a particular study?

4 R ESULTS AND DI SCUSSI ON

4.1 Unsupervised binary classification

Starting with a simple examination, we enforce our machine to
merge all galaxies in the balanced data set into two preliminary
clusters. Randomly picked examples of galaxies within the two
clusters are shown in Fig. 4. Galaxies in one cluster have clearly
more features (featured group; e.g. arm structure) than the galaxies
of the other cluster (less featured group; more elliptical). We examine
the morphological distribution in both clusters (left column in Fig. 5);
one cluster has ∼ 96 per cent late-type galaxies (LTGs) and the other
one has ∼ 60 per cent early-type galaxies (ETGs).

Due to an unequal number between the ETGs and the LTGs in the
balanced data set (Fig. 3), the fraction of ETGs and LTGs in each
cluster might be biased. We examine another quantity, ‘dominance’,
which represents the ratio between the fraction of a certain type in
a given cluster to the fraction of this type within the data set (right
column in Fig. 5). This quantity removes the statistical influence
from different number of types used in the input data sets; hence,
it shows a better representation of the galaxy features emphasized
in the cluster. Through the dominance distribution, we observe that
the featured and less featured group are clearly dominated by the
features of LTGs and ETGs, respectively.

We further investigate the potential structural factors considered
when separating the two clusters. With the analysis of the two
clusters, we can decide what are the major structural factors in the
clustering process. First of all, it is clear that with our unsupervised
learning we obtain a separation into two main clusters where one
correlates with LTGs and the other with ETGs. This verifies with
a machine this basic dichotomy that has existed in classification
schemes for over 100 yr.

However, we also want to compare our clusters with more quantita-
tive measures. In Fig. 6, we compare a variety of structural measure-
ments such as concentration, asymmetry, smoothness/clumpiness,
Sérsic index, Gini coefficient, M20, apparent half-light radius (Re,
arcsec), and r-band apparent magnitude (mr) between the two
clusters. These measurements, except for the r-band magnitude,
are provided from the catalogue of Meert, Vikram & Bernardi
(2015), and the r-band magnitudes are from Simard et al. (2011).
Within these measurements, the Sérsic index, Gini coefficient, and
M20 show a clear separation, and the asymmetry shows a minor
separation between the two clusters in Fig. 6. This indicates that
our machine takes galaxy structure that correlates with measurable
structural parameters (asymmetry, Gini coefficient, M20) and light
distribution (Sérsic index) into account rather than the apparent
size and the apparent brightness of galaxies, when categorizing
galaxies into the two clusters. This is good, as it shows that our
method does not depend on distance or the apparent sizes of galaxies
but on the inherent morphologies and structures of the galaxies
themselves.

Note that the concentration and smoothness distributions show
fewer differences between the two clusters. These two quantities
also do not have apparent differences between the LTGs and
ETGs in our data set, because the galaxies in our data sets are
relatively faint (∼ 74 per cent galaxies fainter than mr = 16) and
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Unsupervised galaxy morphological classification 4453

Figure 4. Randomly picked examples of galaxies found within our two preliminary clusters using the balanced data set. Galaxies in one cluster have more
features (left), and galaxies in the other group have relatively fewer features (right).

Figure 5. The distribution of visual galaxy morphology in each cluster obtained using the balanced input data set. The left column shows the fraction of each
morphology type in the clusters while the right column presents the dominance of each type. The ‘dominance’ is defined by the fraction of a certain morphology
type in the cluster divided by a fraction of this type within the data set. The top row shows the distribution of the ‘featured group’ while the bottom row presents
the statistics for the ‘less featured group’.

the image resolution is limited by the ground-based seeing (>1
arcsec; the image sampling is 0.396 arcsec per pixel). This also
produces a small separation between the two clusters in terms
of asymmetry. Although we cannot straightforwardly confirm the
correlation between the two clusters and the concentration parameter,

the Gini coefficient and M20 provide a connection with the concept of
concentration.

Based on our visual assessment, we proceed to associate the
featured group to LTGs and the less featured group to ETGs in order
to compare these machine-predicted labels with the catalogue labels.
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Figure 6. The comparison of structural measurements including: concentration, asymmetry, smoothness/clumpiness, Sérsic index, Gini coefficient, M20,
half-light radius (Re), and r-band apparent magnitude (mr) between the two initial clusters. The blue shading represents the featured group while the orange
shading is for the less featured group.

Figure 7. The T-Type distribution between the two preliminary clusters
within the balanced data set. The corresponding visual morphology class
is shown in Table 2. The blue shading shows the distribution of the featured
group, while the light orange colour represents the less featured group.

Using the balanced data set, the machine-predicted and the catalogue
labels agree with an accuracy of ∼0.75 in this binary classification.
The accuracy is defined as the number of the correct matches between
the machine labels and the catalogue labels from all galaxies in the
data set.

In Fig. 7, we present the T-Type distribution between the two
clusters. It shows that the main confusion in binary classification by
our machine happens when classifying early spirals into either ETGs
or LTGs, in particular, Sab galaxies (T-Type = 2). When we exclude
early spirals from the balanced data set, the accuracy increases to
∼0.87 for binary classification.

We discuss some plausible reasons for this misclassification
compared to visual classification by our machine. For example,

one uncertainty originates from the provided labels which combine
the uncertainty of both visual classifications and machine learning
predictions. Secondly, from our machine’s perspective, in addition
to the potential machine learning uncertainty, another possible un-
certainty is caused by the reconstruction inaccuracy in the VQ-VAE,
particularly within spiral galaxies with insignificant arm structures.
However, although these causes are unavoidable, these conditions
exist only in a fairly small fraction of the data in the input imaging
data set. The main reason for the mixture of early spirals in both clus-
ters is due to the intrinsic difficulty of classifying this type into either
ETGs or LTGs based only on galaxy structure. The ‘early spirals’ in
fact include a wide range of transitional features that are difficult to
accurately define. The separation may become better when including
colour information; however, with our method, we state the difficulty
to discriminate early spirals when considering only galaxy appear-
ance/structure in a unsupervised machine learning methodology.

4.2 Machine classification scheme

In the previous section, we enforce our machine to provide two
initial clusters for a preliminary examination. However, the main
motivation for this study is to investigate the classification system a
machine would suggest when ‘looking’ at galaxies and classifying
them through machine learning. We use the proposed method in
Section 3 with the balanced data set to let the machine explore
freely and suggest a number of clusters to categorize the galaxies
in the data set. Galaxies in our data set are categorized into 27
classification clusters by our machine. Comparing with previous
work on unsupervised learning which produced 160 clusters (Martin
et al. 2020). Our method suggests that significantly fewer number
of galaxy morphology classifications are needed. In addition to the
different implementations applied in both works, the difference in
the number of obtained clusters might be due to the fact that we only
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Unsupervised galaxy morphological classification 4455

Figure 8. Randomly picked examples of images from each cluster listed in the order of the average value of the T-Type within that cluster (Table 2). The
number shown at the left bottom corner is the average value of the T-Type in the cluster. At the right top corner, the identification number of the belonging
cluster for the image is presented.

consider monochromatic images to investigate the impact of galaxy
structure in this study, while Martin et al. (2020) used coloured
images. Additionally, to have more available measurements of galaxy
structure and properties, we choose to use the imaging data from the
SDSS (York et al. 2000; Abazajian et al. 2009) which has a worse
resolution and image sampling (0.396 arcsec per pixel) than the
one used in Martin et al. (2020, 0.168 arcsec per pixel). This may
be a reason for the resulting fewer number of clusters obtained in
our work. To further investigate galaxy morphology classifications,
the colour information and images with better resolutions will be
considered in future work.

Randomly picked examples of images from each of the 27 clusters
are shown in Fig. 8. The number shown on the bottom left is the aver-
age value of the T-Type in the clusters and the identification number
of the cluster is shown on the top right. The identification numbers of
groups are generated on the merger tree from left to right; therefore,
they are simply labels without physical interpretation. Table 3 lists
the characteristics of each cluster in structural measurements, galaxy
properties, and statistics. This can be used to co-examine the figures
shown from this section to Section 4.4. Through visual assessment in

Fig. 8, we find that galaxies in some clusters show bars (e.g. g15 and
g16 in Fig. 8), while others show more elongated shapes than others.

In Fig. 9, we re-examine the influence of the major structural
parameters such as the Sérsic index, asymmetry, Gini coefficient,
and M20 (Section 4.1), in separating clusters. Each coloured circle
represents one cluster and is coloured by the average value of the T-
Type in the cluster. The grey lines in Fig. 9 show the error bars defined
by the standard deviation for the two clusters with the maximum and
minimum average values of T-Type. Asymmetry, similar to Fig. 6,
shows less discrimination between different clusters in the parameter
space. Except for this, we confirm again a clear correlation between
our machine classification clusters and major structural features.
Additionally, the given clusters show a transition along with the
T-Type. This suggests the clusters are correlated with the visual
morphology roughly from early types to late types.

4.3 Machine classifications versus human visual classifications

It is important to note that the goal of this work is not to find a
perfect agreement between our machine-based classification and the
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Table 3. The table lists the average values of structural measurements [Sérsic index, Gini coefficient, M20, asymmetry (A)] and galaxy properties [g − r,
r-band absolute magnitude (Magr), stellar mass (logM∗), physical size (Re, kpc)] in each machine-defined cluster. Additionally, the statistics of each cluster
are presented in the last four columns where Ng shows the number of galaxies in the cluster and Fg indicates the percentage of total samples. The Dg lists the
dominated types in each cluster, which are selected based on the dominance of each morphology type, and Fg,D shows the fraction of the dominated types in
a cluster. The Fg,bar is the fraction of barred galaxies in a cluster. Finally, Dg,bar and Dg,nobar is the dominance of barred galaxies and non-barred galaxies in a
cluster, respectively. The ordering follows the group IDs that are simply labels for convenience.

Group 〈Sérsic n〉 〈Gini〉 〈M20〉 〈A〉 〈g − r〉 〈Magr〉 〈logM∗〉 〈Re〉 Ng Dg Fg,bar Dg,bar

ID (M
) (kpc) (Fg) (Fg,D) (Dg,nobar)

g1 1.3 0.48 −1.84 0.16 0.63 −21.16 10.31 6.98 896 eSp/lSp 0.54 1.45
(1.4 per cent) (0.97) (1.22)

g2 1.6 0.47 −1.91 0.16 0.71 −21.5 10.47 9.48 441 eSp/lSp 0.68 1.82
(0.69 per cent) (0.93) (0.83)

g3 1.68 0.46 −1.85 0.15 0.71 −21.61 10.56 9.83 287 eSp/lSp 0.74 1.97
(0.45 per cent) (0.87) (0.7)

g4 1.63 0.5 −1.92 0.14 0.73 −21.32 10.46 6.92 2924 eSp/lSp 0.34 0.91
(4.57 per cent) (0.79) (1.75)

g5 1.17 0.46 −1.84 0.13 0.52 −20.19 9.79 6.52 2141 lSp 0.46 1.22
(3.35 per cent) (0.76) (1.3)

g6 1.08 0.5 −1.85 0.14 0.63 −20.53 10.12 6.06 2463 eSp/lSp 0.14 0.37
(3.85 per cent) (0.8) (2.17)

g7 1.35 0.51 −1.73 0.19 0.46 −20.31 9.8 5.05 3055 lSp/Irr 0.16 0.42
(4.77 per cent) (0.78) (0.67)

g8 0.82 0.44 −1.55 0.14 0.38 −19.45 9.37 3.98 510 Irr 0.02 0.04
(0.8 per cent) (0.97) (0.03)

g9 1.26 0.47 −1.64 0.16 0.36 −19.82 9.49 5.26 1291 lSp/Irr 0.16 0.43
(2.02 per cent) (0.94) (0.13)

g10 1.13 0.48 −1.65 0.19 0.42 −20.31 9.75 5.15 946 lSp/Irr 0.29 0.78
(1.48 per cent) (0.94) (0.47)

g11 1.27 0.48 −1.66 0.18 0.36 −19.88 9.49 5.2 1130 lSp/Irr 0.17 0.44
(1.77 per cent) (0.88) (0.29)

g12 1.33 0.46 −1.73 0.15 0.55 −20.99 10.22 7.32 1054 lSp 0.74 1.99
(1.65 per cent) (0.85) (0.5)

g13 1.01 0.46 −1.75 0.14 0.51 −20.43 9.92 6.01 941 lSp 0.51 1.37
(1.47 per cent) (0.81) (1.27)

g14 1.39 0.52 −1.83 0.14 0.63 −20.62 10.16 5.7 2079 eSp/lSp/Irr 0.12 0.32
(3.25 per cent) (0.86) (1.76)

g15 1.85 0.48 −1.87 0.14 0.69 −21.64 10.61 8.9 1397 eSp/lSp 0.73 1.94
(2.18 per cent) (0.87) (0.64)

g16 2.87 0.51 −2.02 0.15 0.83 −22.04 10.81 11.5 776 S0/eSp/lSp 0.8 2.12
(1.21 per cent) (0.8) (0.51)

g17 1.47 0.48 −1.8 0.15 0.65 −21.43 10.46 7.15 989 eSp/lSp 0.65 1.72
(1.55 per cent) (0.93) (0.87)

g18 1.82 0.53 −1.79 0.18 0.65 −20.95 10.2 6.51 553 eSp/lSp/Irr 0.27 0.72
(0.86 per cent) (0.79) (0.98)

g19 1.43 0.5 −1.69 0.13 0.57 −20.59 10.0 6.4 1013 Irr 0.17 0.46
(1.58 per cent) (0.59) (0.64)

g20 1.53 0.5 −1.69 0.15 0.54 −20.63 9.96 6.76 982 lSp/Irr 0.22 0.58
(1.53 per cent) (0.71) (0.53)

g21 2.56 0.53 −1.9 0.12 0.76 −21.29 10.46 7.8 2138 S0/eSp/lSp/Irr 0.29 0.76
(3.34 per cent) (0.68) (1.39)

g22 4.64 0.57 −2.09 0.1 0.94 −22.03 10.94 7.32 12733 E/S0 0.3 0.81
(19.9 per cent) (0.78) (0.87)

g23 4.71 0.57 −2.09 0.11 0.94 −21.93 10.87 7.18 8474 E/S0 0.4 1.07
(13.24 per cent) (0.8) (0.67)

g24 3.17 0.53 −2.04 0.13 0.81 −21.82 10.73 9.14 6420 S0/eSp/lSp 0.69 1.85
(10.03 per cent) (0.69) (0.56)

g25 3.81 0.56 −2.05 0.12 0.94 −21.67 10.78 6.26 3485 S0 0.23 0.61
(5.45 per cent) (0.62) (1.77)

g26 2.62 0.53 −2.02 0.13 0.85 −21.52 10.62 7.36 2056 S0/eSp/lSp 0.27 0.72
(3.21 per cent) (0.88) (1.89)

g27 2.53 0.52 −1.99 0.14 0.85 −21.64 10.69 8.08 2826 S0/eSp 0.53 1.41
(4.42 per cent) (0.71) (1.21)
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Unsupervised galaxy morphological classification 4457

Figure 9. The comparison of the major structural features such as the Gini coefficient, M20, Sérsic index, and the asymmetry as a function of each cluster
from Section 4.1. Each circle represents one classification cluster from our unsupervised machine learning process that is coloured by the average T-Type in
the cluster. The average value of the data in the clusters are used for each structural feature value. The grey lines show the error bars defined by the standard
deviation for the two clusters with the maximum and minimum average T-Type within their clusters, respectively.

visual morphologies. Our goals are to understand the features used
by our method to categorize galaxy images, and to introduce a novel
classification scheme ‘proposed’ by our machine. That is, we want to
develop a scheme whereby galaxies are classified by a reproducible
and scientific computational way and not by human opinion.

To better understand our machine-based classes, we compare them
with visual morphological classes such as the Hubble sequence, and
discuss the visual features extracted by our machine. To do this
comparison, we associate each cluster with one or a mix of Hubble
types based on the dominance of each type within each of the clusters
(Fig. 10). As mentioned in Section 4.1, the ‘dominance’ of each type
is the ratio between the fraction of a given morphology type in the
cluster to the fraction in the data set. We associate a given cluster
with one or several morphology types when the dominance of a
certain type is >1. This selection indicates which kinds of visual
features considered in a visual morphology type are dominated in a
cluster.

In Fig. 10, we show the accumulated distribution of the classifi-
cation clusters to one or a mix of visual morphology types. Each
coloured bar represents one cluster and the deeper bluer colours
indicate more barred galaxies than non-barred galaxies within that
given cluster. In Fig. 10, the darkest blue represents a cluster with the
strong bar dominance, Dg,bar ≥ 1 and the non-bar dominance, Dg,nobar

< 1 (see the last column in Table 3; e.g. g16 in the table). The medium
blue is for a cluster with both bar and non-bar dominance ≥1 (weak
bar dominance; e.g. g27 in Table 3). This criterion indicates that
the features of a barred galaxy are not distinctive in a cluster. The
lightest blue is used when the bar dominance is Dg,bar < 1 (no/less
dominance; e.g. g14 and g19 in Table 3). Through the highlight of
the bar dominance in clusters in Fig. 10, our machine is shown to
successfully discriminate between barred and non-barred galaxies.
Examples of clusters with different bar dominance are shown in
Fig. 11.

We observe in Fig. 10 that no cluster is dominated by either
elliptical galaxies or early spirals only. The features of elliptical
galaxies are recognized to have a great similarity to some lenticular
galaxies by our machine. Visually, we separate ellipticals and
lenticulars mainly based on the disc structure. However, compared

to the cluster dominated by only lenticulars (the g25 in Table 3)
in Fig. 12, the galaxies in the two clusters dominated by E/S0 (g22;
g23) lack significant disc structure, whereas ‘g22’ represents the 22th
cluster, and so on (also see Fig. 8 and Table 3). However, clusters
with more disky galaxies, such as g27 (blue solid line in Fig. 12),
are dominated by a mix of S0 and eSp. This is likely an indication
for an uncertainty in distinguishing ellipticals, lenticulars, and early
spirals in the visual classification system we use and not a defect
of our unsupervised learning. Only the lenticulars with a moderate
range of Sérsic index (peaks at ∼3; yellow solid line in Fig. 12) can
be separated from other morphology types.

Additionally, as stated in Section 4.1, early spirals are difficult to
be categorized into either ETGs or LTGs, and as such it is difficult
to have a distinctive cluster dominated by only this morphology type
(Fig. 10) due to the broad transitional features in this type. This again
indicates the intrinsic difficulty of visually separating early spirals
from other morphology types, such as lenticulars and late spirals.

Most of our clusters have a mixture of different Hubble types
within them which indicates galaxies with similar features in appear-
ance can be visually classifying into a variety of morphology types
(see examples in Fig. 13). In other words, a mix of galaxy structure
in fact exists in a visually defined morphology type. This result
reveals an intrinsic vagueness of the visual classification systems
such that they are not always accurately defined, with many galaxies
not optimally classified as a certain T-Type due to the diversity of
properties beyond a guessed at morphology.

One exception from the above discussion is our cluster 21 (g21 in
Table 3 with a mix of four morphology types: S0, eSp, lSp, Irr). This
cluster is shown to have galaxies with bright companions which
overwhelms the brightness of the central objects (the ‘g21’ row
shown in Fig. 13). After the feature selection and normalization
in Section 3.2, the central objects might become negligible to the
machine learning compared to the companions. This can result in
difficulty for our machine to capture the structure of the central
objects as well as group these galaxies correctly. On the other
hand, galaxies with companions are more likely to experience galaxy
mergers, and thus this cluster can be used as an indication to find
potential merger events or compact groups of galaxies.
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4458 T.-Y. Cheng et al.

Figure 10. The accumulated distribution of the classification clusters compared with Hubble sequence morphological types. The x-axis shows one or a mix
of visual morphology types which dominates the clusters listed in Table 3. All 27 clusters are plotted here, and each coloured bar represents one cluster. The
different colours of the bars show different dominance levels of barred galaxies in the cluster, such that from deep to light blue represent more barred galaxies
to no/fewer barred galaxies in the cluster.

Figure 11. Examples of the clusters with different bar dominance levels. Each row shows five randomly picked examples in the cluster, where ‘g6’ represents
the sixth cluster, and so on. From top to bottom, examples of no/less, weak, and strong bar dominance are presented, respectively. The galaxy morphology
information is shown below each image.

4.4 Machine classifications versus physical properties

In previous sections, we show that our machine learning classifica-
tions trained with monochromatic images are categorized based on
structural features (Section 4.2) and visual features (Section 4.3). In
this section, we examine several galaxy properties in each machine-
defined galaxy class.

First, Fig. 14 shows the average values of different galaxy proper-
ties such as g − i colour, r-band absolute magnitude (Magr), stellar

mass (M∗), and galaxy physical sizes (Re, in kpc) for each machine-
defined cluster. The colours and physical sizes are again taken from
Simard et al. (2011) while the stellar mass originates from Mendel
et al. (2014). Each cluster, as defined by the machine in this plot, has
distinctive physical properties in galaxy colour, absolute magnitude,
stellar mass, and physical size. Even though the discrimination can
be small in value when considering the error bars, a clear transition
of physical properties along with different clusters are shown.

MNRAS 503, 4446–4465 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/3/4446/6168393 by Ting-Yun C
heng on 27 April 2021
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Figure 12. The Sérsic index distribution for the clusters dominated by E/S0
galaxies (g22: red solid line; g23: red dashed line), S0 (g25: yellow solid line),
and S0/eSp (g27: blue solid line), where ‘g22’ represents the 22th cluster,
and so on.

In Fig. 15, we combine these properties together and plot the
colour–magnitude plane (left) and the mass–size plane (right). Each
circle represents one cluster, coloured by the average value of the
stellar mass of the galaxies in the cluster for the colour–magnitude
diagram, and by the average colour value for the mass–size relations.
Each star shows the average value of the data within a certain visual
morphology type (written in black) for comparison. The machine-
defined morphology types fill in the gap within the correlation of
galaxy morphology and galaxy properties along with the Hubble
types. This indicates that the machine classification scheme can
construct the missing morphologies in the visual classification
systems without involving human potential bias. It will be interesting
to investigate the correlation of these machine-defined classifications
with galaxy environment and other galaxy properties, which will be
left to study in a future paper.

Additionally, we notice on the mass–size diagram (right in Fig. 15)
that the five orange clusters above the eSp star-label are dominated by
barred galaxies, in particular, the top cluster with the largest average
size has ∼ 80 per cent barred galaxies in the cluster (g16 in Table 3).
Galaxies in this cluster have larger sizes, larger stellar masses, and
are redder in colour than other clusters with a mix of typical spiral
galaxies.

4.5 Data set with a real distribution

To test the capability of our method on a realistic data distribution, we
apply our method to the imbalanced data set (Fig. 3) that follows the
distribution of intrinsic morphology for nearby galaxies (Oh et al.
2013, Section 3.1). In this section, we examine the performance
using this data set for (1) binary classification (Section 4.5.1) and (2)
multiple classification clusters (Section 4.5.2) using the imbalanced
data set, and compare the results with the one using the balanced
data set.

4.5.1 Unsupervised binary classification

Similar to Section 4.1 for the balanced data set, we merge the
imbalanced data set into two preliminary clusters (example of
galaxies in each is shown in Fig. 16). Although the imbalanced
data has a significantly different distribution in galaxy types from
the balanced data set, our machine obtains two preliminary clusters
with similar features to the two clusters provided using the balanced

data set (Fig. 4). As before, one cluster is dominated by galaxies with
many distinct features while the other has galaxies with significantly
fewer features.

Fig. 17 shows the morphological fractions of different types (left
column) and the dominance of each morphology type in each cluster
(right column). The dominance is, again, the ratio between the
morphological fraction in the cluster to the fraction in the data
set. This quantity removes the impact of the imbalanced numbers
between each type, and indicates the visual features emphasized
in a cluster. The two clusters are clearly dominated by LTGs and
ETGs, respectively. Additionally, the dominance distribution of the
imbalanced data set is completely consistent with that of the balanced
data set (Fig. 5). This confirms that no matter which data distribution
is used, our machine is capable of separating the two clusters based
on the specific features existing in the corresponding morphology
types.

Additionally, applying our method to the imbalanced data set
we get an initial accuracy of ∼0.87 in separating ETGs from
LTGs. The accuracy is again defined as the number of correct
matches from the total samples. The reason for a higher accuracy
compared with the balanced data set is due to a lower fraction
of early spirals in the imbalanced data set (∼ 8 per cent) than
the balanced data set (∼ 25 per cent). When we exclude the early
spirals from the imbalanced data set, the accuracy barely changes,
and it is consistent with the accuracy obtained when using the
balanced data set (accuracy: ∼0.87; Section 4.1). These results show
the ability of our method to achieve reliable binary morpholog-
ical classification for large surveys with unknown morphological
mixes.

4.5.2 Multiple classification clusters

Following Section 3.4, and using the imbalanced data set, we obtain
the same number of clusters, 27, as when we used the balanced
data set through our method of determining the number of clusters
(Section 4.2). The clustering results for both data sets are very
close to each other, with only very minor differences. For example,
seven clusters are separated under the less featured group using the
balanced data set while eight clusters are obtained using the imbal-
anced data set. Conversely, we obtain 20 clusters for the featured
group using the balanced data set, and 19 using the imbalanced
data set.

In Fig. 18, we associate the classification clusters for the imbal-
anced, realistic, data set with Hubble types based on the dominance
of each type. We find no clean clusters for ellipticals (E), lentic-
ulars (S0), early spirals (eSp), and irregulars (Irr) when using the
imbalanced data set. The lack of clusters for E and eSp is due to the
same reasons for the balanced data set discussed in Section 4.2: these
two visual morphologies are intrinsically difficult to separated from
other morphology types. Additionally, in Section 4.2, we conclude
that to get a clean S0 cluster, galaxies have to show a moderate
disc structure (Fig. 12). However, there is not a sufficient number
of lenticulars with the relevant features due to the low fraction
of this type in the imbalanced data set (Fig. 3). It is impossible
for the machine to classify a galaxy that does not exist in some
abundance within the data set; therefore, we miss the pure S0 cluster
when using the imbalanced data set. On the other hand, irregular
galaxies do not have a specific structure; therefore, it is easy to be
confused them with some late spirals with less structured appearances
by our machine, based on only galaxy structure and without the
prior knowledge of ‘late spirals’ or ‘irregulars’. They also suffer
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Figure 13. Examples of images of galaxies from clusters with a mix of many visual morphology types. Each row shows five randomly picked examples within
the cluster, where ‘g22’ represents the 22th cluster, and so on. The morphology information is shown below each image.

from the similar cause of the missing S0 cluster: the insufficient
number of irregular galaxies in our imbalanced set decreases the
possibility of the distinctive irregulars to be picked out by our
machine.

Similar to the results of the balanced data set, the separation
between clusters might ‘improve’ in terms of being closer to a
more physical classification when we consider colour information
in our machine. Therefore, this will be an important part in future
work.

5 C O N C L U S I O N S

In this paper, we present an unsupervised machine learning technique
by applying a combination of a feature extractor – a VQ-VAE and
a hierarchical clustering algorithm (HC). This method involves a
vector quantization process that provides a rate of classification with
a feature extractor in the learning phase at least 30 times faster than
a typical convolutional antoencoder used in Cheng et al. (2020) on
the same device.
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Unsupervised galaxy morphological classification 4461

Figure 14. The diagram shows the average value of different galaxy properties such as g − i, r-band absolute magnitude (Magr), stellar mass (M∗), and galaxy
physical sizes (Re, kpc) for each machine-defined cluster. The error bars show the standard deviation of the values within a cluster. The x-axis represents the
cluster index without any physical meaning. Each individual plot is ordered by the average value of each physical property for the galaxies in the clusters.

To sensibly explore galaxy morphologies and investigate the
suggestive number of galaxy morphological classes, we propose
some novel modifications to the machine learning algorithms used in
this work (Section 2). First, we include a preliminary clustering result

in the VQ-VAE architecture during the feature learning process.
This helps to extract features that can not only reproduce the input
images but also be well separated into two preliminary clusters in
feature space. Secondly, different distance thresholds are used within
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Figure 15. Left: the colour–magnitude diagram of the classification clusters where the x-axis is the average values of the r-band absolute magnitude (Magr)
and the y-axis represents the average value of the galaxy colours (g − r) within each plotted cluster. Each circle represents one classification cluster from our
unsupervised machine and coloured by the average value of the stellar mass (M∗). Right: the mass–size relation of the given clusters where the x-axis and y-axis
is the average values of the stellar mass (M∗) and the average values of the galaxy physical sizes (Re, kpc), respectively. Each circle is coloured by the average
value of galaxy colour (g − r). In both graphs, each star shows the average values of these quantities for the traditional Hubble types for comparison, where the
type of each is written in black.

Figure 16. Examples of galaxies within the two preliminary clusters using the imbalanced data set. Galaxies in one cluster are with more features (left), and
galaxies in the other group are with relatively fewer features (right).

each branch in the merger tree in the HC process rather than a
single distance threshold for a whole tree. This flexibility prevents
the creation of unnecessary clusters separating galaxies with few
features, while allowing more clusters for galaxies that show larger
variation. Another innovation is to use galaxy orientation (a potential
problem when classifying galaxies) to our advantage, helping to
decide the number of clusters (Section 3.4).

Using the monochromatic images from the SDSS, we first explore
galaxy classifications using a data set with a balanced number of
galaxies in each morphological class (Section 3.1). This is done to
reduce potential biases associated with number imbalances. Using
this method, we obtain 27 clusters within this balanced data set.
We find that our method separates the classification clusters based
on galaxy shape and structure (e.g. Sérsic index, asymmetry, Gini
coefficient, M20). We then associate our classification clusters with
the Hubble sequence based on the dominance of each type in a given
cluster (Section 4.2). Clusters with barred, weak-barred, and non-

barred galaxies are well distinguished by our machine. However,
when using the balanced data set, no clean clusters are found for
ellipticals or early spirals (Fig. 10). Additionally, most clusters are
associated with a mixture of Hubble types. We thus conclude that
there is a fundamental difficulty in separating accurately galaxies
with transitional features such as lenticular galaxies and early
spirals with a machine. This applies both to visual and machine
classifications.

In addition, we find that each machine classification cluster has
characteristic galaxy properties (e.g. colours, masses, luminosities,
sizes) that transition smoothly along the Hubble sequence. In future
work, we will further investigate if this unsupervised method could
provide a more physically meaningful classification system than a
purely visual classification one.

Overall, the machine classification clusters provide a reasonable
and detailed scheme for galaxy morphological classification based
on a combination of multiple structural parameters, avoiding human
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Figure 17. The distribution of visual galaxy morphology in each cluster obtained using the imbalanced data set. The left column shows the fraction of each
morphology type in the clusters, while the right column shows the dominance of each type. The top row shows the distribution of the ‘featured group’ while the
bottom row presents the one of the ‘less featured group’. This can be compared to the same distribution when using the balanced data set shown in Fig. 5.

Figure 18. The accumulated distribution of the classification clusters compared with the Hubble sequence for the imbalanced data set. The x-axis shows one
or a mix of visual morphology types. Each coloured bar represents one cluster. Different colours are different dominance of barred galaxies in the cluster, such
that from deep to light blue represent more barred galaxies to no/fewer barred galaxies in the cluster.
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errors and biases. The dominate features in our classification clusters
can be used as the foundation of an objective alternative to the Hubble
sequence. Since our system separates well galaxies with different
shape, structure, and physical properties, it may prove useful in
generic galaxy formation and evolution studies. The system may
be improved by including multicolour imaging and velocity maps.
Galaxies at higher redshifts have structures that look significantly
different from those of nearby galaxies, such as those we examine
in this study. Thus, it would be interesting to apply our technique to
higher redshift galaxies to see whether the VQ-VAE method would
classify galaxies in the earlier Universe into our clusters or if it would
suggest new ones.

To test the performance of our method with realistic morphological
distributions, we also apply it to an imbalanced data set that follows
the morphological distribution of nearby galaxies. The results are
very similar to the ones obtained with the balanced data set, showing
that our system is able to deal with large galaxy samples with more
realistic morphological mixes. It also shows that our set up is not
sensitive to different distributions of input galaxy morphologies,
but can handle a range of distributions of various galaxy input
‘types’.

As mentioned earlier, in the future we plan to carry out a more
detailed comparison between a machine-defined classification and
a visual classification to investigate the pros and cons between the
two ways. In addition, we intend to apply the techniques developed
here to multicolour images with better resolution such as the data
from the Dark Energy Survey and the Euclid Space Telescope.
Velocity maps from integral-field spectroscopic surveys could also
be included. The resulting classification system(s) should prove very
useful to better understand galaxy properties, their formation and
evolution. We also expect that the future development of this work
will result in a fundamental change in how we approach galaxy
morphological classification – both visually and when using machine
learning.
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