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An extremely fast and accurate pseudospectral numerical method is presented, which can be used

in inverse methods for estimating soil hydraulic parameters from horizontal infiltration or desorp-

tion experiments. Chebyshev polynomial differentiation in conjunction with the flux concentration

formulation of Philip (1973) results in a numerical solution of high order accuracy that is directly

dependent on the number of Chebyshev nodes used. The level of accuracy (< 0.01% for 100

nodes) is confirmed through a comparison with two different, but numerically demanding, exact

closed-form solutions where an infinite derivative occurs at either the wetting front or the soil sur-

face. Application of our computationally efficient method to estimate soil hydraulic parameters

is found to take less than one second using modest laptop computer resources. The pseudospec-

tral method can also be applied to evaluate analytical approximations, and in particular, those of

Parlange and Braddock (1980) and Parlange et al (1994) are chosen. It is shown that both these ap-

proximations produce excellent estimates of both the sorptivity and moisture profile across a wide

range of initial and boundary conditions and numerous physically realistic diffusivity functions.
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1. Introduction8

Since the 1970’s, there have been numerous publications on approximate analytical solutions9

for determining both the sorptivity and moisture content profiles associated with horizontal infiltra-10

tion. Many of these approximations (e.g. Parlange, 1971, 1975; Philip, 1973; Babu, 1976; Parlange11

and Braddock, 1980; Parslow et al., 1998; Parlange et al., 1994) require multiple integrals to be12

evaluated, iteration or multiple terms in a perturbation expansion to obtain the saturation profile.13

However, they do apply for arbitrary soil hydraulic properties. While other approximations (e.g.14

Ma et al., 2009; Tzimopoulos et al., 2015; Su et al., 2017; Sadeghi et al., 2017; Su et al., 2018;15

Hayek, 2018) provide simple closed-form approximations, these are for either a very specific soil16

moisture characteristic equation (Brooks and Corey, 1964; Gardner, 1958), hydraulic diffusivity17

(exponential) or flux concentration relation (Philip, 1973).18

In the case of the widely used van Genuchten (1980) model of the soil moisture characteristic19

equation, a simple closed form solution for the moisture content profile was found by Zimmerman20

and Bodvarsson (1989) by using boundary layer theory at the wetting front. Interestingly their21

solution was capable of handling both ponded and unsaturated surface boundary conditions for an22

arbitrary constant initial condition. However the accuracy of their method reduced significantly23

for near dry initial conditions. The size of this error was subsequently decreased by Parlange et al.24

(1991) through combining his earlier optimization results (Parlange, 1975) with an approximation25

for the profile developed by Brutsaert (1976).26

The level of accuracy of the approximate analytical solutions arises from the nature of the27

limiting assumptions that are made about the moisture content profile. Their advantage though,28
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as compared to numerically evaluating an exact solution to the full problem, is predominantly a29

saving in computation time that significantly increases as greater accuracy is sought. This is where30

pseudospectral methods come into their own as an accurate and computationally efficient method31

for obtaining a numerical solution to the dual problem of determining sorptivity and moisture32

content profiles. One of the main benefits of a pseudospectral method is that the error diminishes33

rapidly as the number of nodal points increase (Fornberg, 1998), such that the resulting solution34

can be readily integrated or differentiated, to the same order of accuracy as the original solution.35

Such a method was successfully developed by Bjørnarå and Mathias (2013) to solve a related and36

similar problem of two-phase flow due to McWhorter and Sunada (1990).37

We have four objectives for this article. The first is to demonstrate the benefits of using a38

pseudospectral method to study the horizontal infiltration equation. The second is to use a pseu-39

dospectral method to, not only develop an essentially exact numerical solution to the full problem40

utilizing the flux concentration formulation of Philip and Knight (1974), but also to show how it41

can be used to evaluate existing approximate analytical solutions. In particular, we choose the42

approximate solutions developed by Parlange and Braddock (1980) and Parlange et al. (1994) be-43

cause: (1) they are straightforward to apply in a pseudospectral formulation and (2) they provide44

a level of accuracy for both the sorptivity and the moisture profile for an arbitrary diffusivity that45

has not been subsequently surpassed.46

Inverse methods are well known for being computationally demanding and faster more accu-47

rate and efficient methods are always being sought after. Thus our third objective is to demonstrate48

how the computational speed and accuracy of our pseudospectral method can be exploited for the49

rapid inverse determination of estimating soil hydraulic parameters from horizontal infiltration50
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experiments.51

Typically, it is more common for vertical infiltration rather than horizontal infiltration experi-52

ments to be used for inverse modelling of hydraulic parameters. However, during drying or des-53

orption experiments, hydraulic gradients will dominate the flow of water and neglecting the effects54

of gravity can be justified. Consequently, our final objective is to demonstrate that our methodol-55

ogy is straightforward to apply and maintains high levels of accuracy for desorption scenarios as56

well.57

The outline of this article is as follows. First we present the governing equations for the hori-58

zontal infiltration boundary value problem. The Boltzmann transform is applied to obtain the flux59

concentration formulation of Philip and Knight (1974). It is explained how to evaluate two approx-60

imate analytical solutions and a flux concentration solution using a Chebyshev polynomial differ-61

entiation matrix. In particular we choose the approximations of Parlange and Braddock (1980) and62

Parlange et al. (1994) as they apply for arbitrary diffusivity functions and have previously been63

shown to be quite accurate. An error analysis is performed by comparison to exact closed-form64

solutions for two special diffusivity functions from Philip (1960). Computation times for both the65

approximate solutions and the flux concentration solution are studied as a function of number of66

Chebyshev nodes. The solutions are again compared when using the van Genuchten (1980) soil67

moisture characteristic equations. We then present an example whereby the pseudospectral flux68

concentration solution is used for the rapid and accurate inverse modelling of a horizontal infiltra-69

tion experiment dataset from Villarreal et al. (2019). Finally we compare some desorption results70

from our pseudospectral flux concentration solution with numerical results previously obtained by71

Lisle et al. (1987).72
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2. Methods and data73

2.1. Governing equations74

Horizontal infiltration is described by the mass conservation equation75

∂θ

∂t
= −

∂q
∂x

(1)

with the moisture flux, q [LT−1], being found from Darcy’s law76

q = −D(θ)
∂θ

∂x
(2)

where θ [-] is moisture content, t [T] is time, x [L] is distance and D(θ) [L2T−1] is the hydraulic77

diffusivity.78

We consider solutions of Eqs. (1) and (2) subjected to the following initial and boundary79

conditions:80

θ = θI , x ≥ 0, t = 0

θ = θ0, x = 0, t > 0

θ = θI , x→ ∞, t > 0

(3)

where θI [-] is a uniform initial moisture content value and θ0 [-] is a constant boundary moisture81

content value.82

The cumulative infiltration of fluid, V [L], through x = 0 is found from (Philip, 1957)83

V = −

∫ t

0
D(θ0)

∂θ

∂x

∣∣∣∣∣
x=0

dt = S t1/2 (4)
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where S [LT−1/2] is the sorptivity.84

2.1.1. Application of dimensionless transforms and Boltzmann transform85

To aid further study we introduce the following dimensionless transformations:86

ϑ =
θ − θr

θs − θr
, D =

(θs − θr)D
Ksψc

, σ =
S√

(θs − θr)Ksψc

(5)

along with a dimensionless Boltzmann transform87

φ =

√
(θs − θr)x2

Ksψct
(6)

where θr [-] and θs [-] are the residual and saturated moisture contents, Ks [LT−1] is the saturated88

hydraulic conductivity and ψc [L] represents the capillary length scale of the porous medium of89

concern.90

The boundary value problem above then reduces to91

−
φ

2
dϑ
dφ

=
d

dφ

(
D(ϑ)

dϑ
dφ

)
(7)

subjected to the following boundary conditions:92

ϑ = ϑI , φ→ ∞

ϑ = ϑ0, φ = 0
(8)
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whilst the dimensionless sorptivity can be found from (Philip, 1969)93

σ =

∫ ϑ0

ϑI

φ(ϑ)dϑ (9)

For the commonly applied form of soil moisture characteristic equations attributed to van94

Genuchten (1980), the dimensionless diffusivity is given by95

D(ϑ) =

(
1 − m

m

)
ϑL−1/m

[
1 −

(
1 − ϑ1/m

)m]2(
1 − ϑ1/m)m (10)

where L and m are empirical parameters. The L parameter is normally taken to be 0.5 (as is96

assumed hereafter in this article) and m ∈ (0, 1).97

2.1.2. Flux concentration formulation98

For cases where D(ϑ = ϑI) = 0, φ has compact support, meaning φ ∈ [0, φ f ] where φ f denotes99

the location of a discrete wetting front. However, when using the van Genuchten (1980) diffusivity100

function with θI > 0, it will be the case that D(ϑ = ϑI) > 0 and φ ∈ [0,∞).101

A problem with directly solving Eq. (7) using a Chebyshev differentiation matrix is that, in the102

case where there is a semi-infinite independent variable, φ ∈ [0,∞), it must be mapped to the finite103

region of the Chebyshev space, z ∈ [−1, 1]. One way to avoid this is to multiply both sides of Eq.104

(7) by dφ/dϑ such that φ ∈ [0,∞) and ϑ ∈ [ϑI , ϑ0] become the new dependent and independent105

variables, respectively (Philip, 1955). The ϑ variable can be easily mapped to the z-space via a106

linear transform. In this article we obtain a pseudospectral solution using the flux concentration107

formulation of Philip (1973), which utilizes independent and dependent variables that are both108
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bounded by finite limits.109

The flux concentration, F [-], is defined by (Philip and Knight, 1974)110

F ≡
q(x, t)
q(0, t)

= −
2D(ϑ)
σ

dϑ
dφ

(11)

which, on substitution into Eq. (7), leads to the boundary value problem (Philip and Knight, 1974):111

d2F
dϑ2 = −

2D(ϑ)
σ2F

(12)

112

F = 1, ϑ = ϑ0

F = 0, ϑ = ϑI

(13)

Given a solution for F, the dimensionless sorptivity, σ, is found from (Philip and Knight, 1974)113

σ2 = 2
∫ ϑ0

ϑI

(ϑ − ϑI)D(ϑ)
F

dϑ (14)

and φ can be found from (Philip, 1973)114

φ = σ
dF
dϑ

(15)

An apparent problem is that a value of σ is needed to obtain a solution for F. However, this is115

easily dealt with by evaluating F and σ, simultaneously, within a single Newton iteration scheme.116

Bjørnarå and Mathias (2013) employed a very similar scheme to solve a two-phase flow problem117

previously defined by McWhorter and Sunada (1990).118
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2.2. Chebyshev spectral collocation (pseudospectral) method119

In this article, values of φ, for both a flux concentration solution and the approximate solutions120

of Parlange and Braddock (1980) and Parlange et al. (1994), are obtained using a pseudospectral121

differentiation matrix, D, which is a matrix such that the values of the d’th derivative of a function122

y(z) at distinct nodes z can be approximated by y(d)(z) ≈ D(d)y(z). Following Bjørnarå and Mathias123

(2013) we adopt a Chebyshev polynomial differentiation matrix (Weideman and Reddy, 2000).124

The Chebyshev polynomial of the second kind, p, interpolates a function, y, at the nodes (so-

called Chebyshev nodes) (Weideman and Reddy, 2000, p. 479)

zk = cos
(
(k − 1)π
N − 1

)
, k = 1, 2, . . . ,N (16)

such that p(z) = y(z). Note that z ∈ [−1, 1].125

The value of the interpolating polynomial’s d’th derivative at the k’th node is given by (Wei-

deman and Reddy, 2000):

p(d)(z) = D(d)y(z) (17)

where D(d) is the d’th order Chebyshev differentiation matrix. We use a short MATLAB code126

called CHEBDIF, provided by Weideman and Reddy (2000), for creating the Chebyshev points, z,127

and the differentiation matrix, D.128
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2.2.1. Imposing Dirichlet boundary conditions129

In the differentiation matrix method for solving differential equations, the interpolating poly-

nomial is only required to satisfy the differential equation at the interior nodes. The values of the

interpolating polynomial and the derivatives at the interior nodes are, respectively (Piché, 2007;

Piché and Kanniainen, 2009):

p(z2:N−1) = y(z2:N−1) = I2:N−1,:y (18)

p(d)(z2:N−1) = D(d)
2:N−1,:y (19)

where I is the identity matrix.130

Piché (2007) and Piché and Kanniainen (2009) use a sub-matrix notation associated with MAT-131

LAB. The z2:N−1 term represents all rows of the vector, z, except for the first and last rows. The132

I2:N−1,: term represents all rows of an identity matrix except for the first and last rows. The D(d)
2:N−1,:133

term represents all rows of a dth order differentiation matrix except for the first and last rows.134

Dirichlet boundary conditions can be specified as constraints on the end nodes, corresponding

to the first and last rows of the differentiation matrix, i.e.:

p(z = 1) = y1

p(z = −1) = yN (20)
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2.2.2. Mapping the Chebyshev nodes to the solution space135

The coordinate space for the Chebyshev nodes is z ∈ [−1, 1] (note that zN = −1 and z1 = 1).136

However, the solution space for the normalised moisture content is ϑ ∈ [ϑI , ϑ0]. Therefore, the137

Chebyshev nodes, zk, need to be mapped to the normalised moisture content space by the following138

transform:139

ϑ =
ϑ0 + ϑI

2
+
ϑ0 − ϑI

2
z (21)

Here we also introduce an appropriately transformed differentiation matrix, E, where140

E =
dz
dϑ

D (22)

and, from Eq. (21)141

dz
dϑ

=
2

ϑ0 − ϑI
(23)

2.2.3. Evaluating definite integrals142

Once a variable, f (y ∈ [a, b]), is specified at the Chebyshev nodes, it can be integrated using a143

Lobatto-type integration formula (previously explained by Bjørnarå and Mathias, 2013):144

∫ b

a
f (y)dy ≈

π

N − 1

(
b − a

2

) N∑
k=1

√
1 − z2

k fk (24)
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where zk are the locations of the Chebyshev nodes given in Eq. (16) and fk = f (zk).145

2.3. Pseudospectral solution of the horizontal infiltration equation146

Here we explain how to evaluate a pseudospectral solution of the horizontal infiltration equa-147

tion using the flux concentration formulation of Philip (1973).148

By applying Eq. (19) on the interior nodes and Dirichlet boundary conditions and Eq. (20), on

the end-nodes, Eq. (12) can be written in matrix form (similar to Piché, 2007):

R(F) =



E(2)
2:N−1,:F + I2:N−1,:

 2D
σ2F


FN − 0

F1 − 1


(25)

where R is the residual vector, F represents the solution vector for the dependent variable, F,
[

2D
σ2F

]
149

is a vector containing a value for every Chebyshev node, and the two last rows impose the Dirichlet150

boundary conditions, Eq. (13), on F.151

2.3.1. Newton’s iteration method152

Eq. (25) must be solved iteratively. Let Fi be the i-th iteration of the solution vector. The153

residual vector for the subsequent iteration, R(Fi+1), satisfies the Taylor series:154

R(Fi+1) = R(Fi) +

[
∂R
∂Fi

]
∆F + O(∆F2) (26)
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where ∆F = Fi+1 − Fi and [∂R/∂Fi] is the Jacobian matrix found from (similar to Piché, 2007)

[
∂R
∂Fi

]
=



E(2)
2:N−1,: + I2:N−1,:diag

− 2D
σ2F2


IN,:

I1,:


(27)

where
[
− 2D
σ2F2

]
is a vector containing a value for every Chebyshev node.155

If Fi+1 is the exact solution then R(Fi+1) = 0 and we should obtain ∆F from156

∆F = −

[
∂R
∂Fi

]−1

R(Fi) + O(∆F2) (28)

To reach this goal, we therefore update F using the Newton iteration157

Fi+1 = Fi −

[
∂R
∂Fi

]−1

R(Fi) (29)

The scheme can be considered to have converged when |∆F| has reached an acceptably low level.158

Note that at the interior nodes, F ∈ (0, 1). Therefore a good initial guess is to set F = 1.159

An additional “correction”-step in the Newton iteration loop must also be applied to ensure the160

positivity condition, F > 0. The iteration loop is continued until max(|∆F|) < 10−6.161
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2.3.2. Evaluation of the sorptivity162

The dimensionless sorptivity is determined by evaluating the integral in Eq. (14) using Eq.163

(24), i.e.:164

σ2 =
π

N − 1

(
ϑ0 − ϑI

2

) N∑
k=1

√
1 − z2

k

2(ϑ − ϑI)D
F


k

(30)

The dimensionless sorptivity, σ, is iteratively found for a given ϑ0 such that F(ϑ0) = 1. There-165

fore, σ needs to be evaluated in each Newton iteration so that the two variables F and σ converge166

to a solution.167

An example MATLAB script for the above procedures is provided as an appendix below.168

2.4. Closed-form exact solutions169

Two closed-form exact solutions, due to Philip (1960), utilizing specialised diffusivity func-170

tions, will be used to assess the error associated with our pseudospectral solution described above.171

Case 1 has compact support (or a finite wetting front) with an infinite spatial derivative at the172

front. This type of infiltrating front is very demanding for any numerical discretization method and173

provides a stringent test on its accuracy. In contrast, Case 2 has an infinite derivative at the surface174

boundary. These two exact solutions therefore allow the assessment of our numerical method175

under two very different but extremely demanding flow conditions.176

2.4.1. Case 1177

For the special case when ϑI = 0, ϑ0 = 1 and178

D =
mϑm

2

(
1 −

ϑm

m + 1

)
, m > 0 (31)
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where m [-] is an empirical exponent, it can be shown that (Philip, 1960)179

φ = 1 − ϑm (32)

and consequently, from Eqs. (9) and (15), respectively:180

σ =
m

m + 1
(33)

181

F =
(m + 1)ϑ − ϑm+1

m
(34)

2.4.2. Case 2182

For the special case when ϑI = 0, ϑ0 = 1 and183

D =
m

2(m + 1)

[
(1 − ϑ)m−1 − (1 − ϑ)2m

]
, m > 0 (35)

where m [-] is an empirical exponent, it can be shown that (Philip, 1960)184

φ = (1 − ϑ)m (36)

and consequently, from Eqs. (9) and (15), respectively:185

σ =
1

m + 1
(37)

186

F = 1 − (1 − ϑ)m+1 (38)
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2.5. Parlange’s approximation187

A number of different approximate solutions for general diffusivity functions have been devel-188

oped. Arguably the most accurate of these are due to Parlange and Braddock (1980) and Parlange189

et al. (1994). The advantage of employing an approximate solution over a solution to the full190

problem is that the computation time is reduced. In this article we compare the computation time191

for our pseudospectral flux concentration solution with that required to evaluate the approximate192

solutions of Parlange and Braddock (1980) and Parlange et al. (1994).193

2.5.1. Parlange and Braddock (1980) approximation194

The approximation of Parlange and Braddock (1980) gives that φ is found from:195

φ = AU (39)

where196

A2 =
2
∫ ϑ0

ϑI
Ddϑ∫ ϑ0

ϑI
U2dϑ

(40)

197

dU
dϑ

= B (41)

and198

B =
D

ϑ − ϑI

[
1

n + 1

(
ϑ − ϑI

ϑ0 − ϑI
− 1

)n]−1

(42)

where n satisfies199 ∫ ϑ0

ϑI
(ϑ − ϑI)Ddϑ∫ ϑ0

ϑI
(ϑ0 − ϑI)Ddϑ

=
1
4

(2n + 3)(2n + 1)
(n + 1)(n + 2)

(43)

A value for sorptivity can be obtained by substituting Eq. (39) into Eq. (9).200
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2.5.2. Parlange et al. (1994) approximation201

The approximation of Parlange et al. (1994) gives that φ satisfies the equation:202

A
2
φ2 +

σ

ϑ0 − ϑI
φ + 2U = 0 (44)

where203

dU
dϑ

= B (45)

204

B =
D

ϑ − ϑI
(46)

and205

σ2 = (2 − A)(ϑ0 − ϑI)
∫ ϑ0

ϑI

Ddϑ (47)

where A is a constant satisfying the equation206

(2 − A)(2 + nA)
2(1 + nA)[2 + (n − 1)A]

=

∫ ϑ0

ϑI
(ϑ − ϑI)nDdϑ∫ ϑ0

ϑI
(ϑ0 − ϑI)nDdϑ

(48)

and207

n + 0.72068 =

∫ ϑ0

ϑI
(ϑ0 − ϑI)Ddϑ∫ ϑ0

ϑI
(ϑ0 − ϑ)Ddϑ

(49)

2.5.3. Evaluation by pseudospectral method208

The approximate solutions of Parlange and Braddock (1980) and Parlange et al. (1994) also

lend themselves to evaluation by pseudospectral method. The definite integrals can be evaluated

using Eq. (24). The U term can be evaluated using the Chebyshev differentiation matrix, with the

17



constraint that U = 0 at ϑ = ϑ0, by solving the following system of equations:

U =


E(1)

2:N,:

I1,:


−1 

B2:N

0

 (50)

where U and B are vectors of U and B values that correspond to each Chebyshev node, respectively.209

The B values are found from Eq. (42) for the Parlange and Braddock (1980) approximation and210

from Eq. (46) for the Parlange et al. (1994) approximation.211

2.6. Experimental data and its analysis212

To demonstrate the applicability of our pseudospectral flux concentration solution for in-213

verse modelling, we revisit the horizontal infiltration data previously presented by Villarreal et214

al. (2019). Villarreal et al. (2019) studied three different soils from the Argentinean Pampas Re-215

gion: a silty loam, a loam and a sandy loam. Disturbed soil samples were air dried to a mean initial216

moisture content of between 0.03 and 0.07, sieved through a 2-mm mesh and then gently packed217

into PVC tubes of 35 cm length and 10 cm interior diameter. The tubes were horizontally orien-218

tated with a water inlet boundary at one end, where the water pressure was held at atmospheric219

pressure, and an impermeable boundary at the other end. The cumulative infiltration along with220

the soil moisture content at 15, 20 and 25 cm from the inlet boundary were monitored continuously221

with time.222

Model parameter values for our pseudospectral solution can be obtained by calibration against223

this observed experimental data as follows. First, the sorptivity, S [LT−1/2], is obtained by linear224

regression of the infiltration time-series data. Values for the van Genuchten (1980) m parameter225
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and the quantities θr and (θs − θr) are guessed. The normalised initial and boundary moisture226

contents, ϑI and ϑ0 are assumed to be 0.001 and 0.999, respectively, to reflect the air-dried initial227

condition and atmospheric boundary, respectively. A value for σ along with corresponding φ228

values, denoted φ, at the locations in Chebyshev space, z, of 100 Chebyshev nodes, are determined229

using the pseudospectral flux concentration solution described above.230

The locations of the observed moisture contents, θ j, in Chebyshev space, z j, are determined231

from (recall Eq. (21))232

z j =
2(θ j − θr) − (θs − θr)(ϑ0 + ϑI)

(θs − θr)(ϑ0 − ϑI)
(51)

Corresponding values of φ, denoted φ j, are obtained by interpolating φ using a MATLAB func-233

tion, called CHEBINT (available from Weideman and Reddy, 2000), which uses Chebyshev poly-234

nomials to provide an exact interpolation of the pseudospectral solution (Weideman and Reddy,235

2000).236

The corresponding “modelled” times of each experimental value, t j, can then be determined237

from238

t j =
(θs − θr)x2

j

Ksψcφ
2
j

(52)

where x j is the distance from the boundary inlet at which the moisture content was recorded and a239

value for the product Ksψc [L2T−1] is obtained from240

Ksψc =
S 2

(θs − θr)σ2 (53)

New values of m, θr and (θs − θr) are iteratively selected by MATLAB’s optimisation routine,241
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FMINSEARCH, and the process above is repeated, until the mean absolute error (MAE), between242

values of t1/2
j x−1

j from the experimental observation record and those determined from Eq. (52), is243

minimised.244

FMINSEACH uses the Nelder-Mead simplex algorithm as described by Lagarias et al. (1998).245

Seed values for the unknown parameters are determined as follows. The seed value for m is246

arbitrarily taken to be 0.2 and for θr it is taken to be the minimum observed soil moisture content247

in the data. The seed value for (θs − θr) is taken to be the difference between the maximum and248

minimum observed soil moisture content in the data.249

3. Results250

Here we present results using pseudospectral implementations of the Parlange approximations251

and the pseudospectral flux concentration solution for the horizontal infiltration equation. First we252

assess the error of the different approaches by comparison with the two closed-form exact solu-253

tions of Philip (1960). We then compare the computation time required for the different schemes,254

using the van Genuchten (1980) diffusivity function. We provide a demonstration, where the255

pseudospectral flux concentration solution is used to inverse model hydraulic parameters from the256

experimental horizontal infiltration data from Villarreal et al. (2019). Finally, it is shown how our257

methodology can also be easily applied to desorption scenarios and our results are compared with258

those from Lisle et al. (1987).259

3.1. Comparison with the closed-form exact solutions of Philip (1960)260

A comparison with the closed-form exact solutions of Philip (1960) was performed to verify261

the accuracy of the pseudospectral flux concentration solution. Fig. 1 shows results for Case 1,262
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where φ = 1−ϑm. Figs.1a and b show plots of flux concentration, F, and dimensionless Boltzmann263

transform, φ, respectively, for various values of m. Whereas the ϑ distribution with φ is important264

for simulating horizontal infiltration experiments, the F plots are interesting because this is the265

dependent variable being solved for within the Newton iteration scheme (recall Eq. (12)).266

For Figs.1a and b, the pseudospectral flux concentration solution was evaluated using 30267

Chebyshev nodes. The Philip (1960) solution was evaluated at the same Chebyshev nodes and268

the results are shown as circular markers. The location of the circular markers in Figs. 1a and b269

therefore also show the location of these Chebyshev nodes. The cosine distribution of the nodes270

leads to a natural clustering of nodes at both the boundary condition and the wetting front. It271

can be seen that there is close to perfect correspondence between both solutions for all the m val-272

ues studied. Values of φ were also determined using the approximate solutions of Parlange and273

Braddock (1980) and Parlange et al. (1994), using the same 30 Chebyshev nodes, and these are274

found to be indistinguishable from the flux concentration solution. However we also note that the275

approximate solution of Parlange and Braddock (1980), yields the exact analytical solution of Eq.276

(32) when the diffusivity is given by Eq. (31).277
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Figure 1: a) Plots of flux concentration against normalised moisture content ϑ (only for the flux concentration solution

and exact closed form solution) for different m values, using the Case 1 diffusivity function of Philip (1960). b) Plots

of normalised moisture content against dimensionless Boltzmann transform. c) Plots of % error for dimensionless

sorptivity, σ. d) Plots of mean % error for dimensionless Boltzmann transform, φ. e) Plots of computation time

against number of Chebyshev nodes. f) Plots of number of Newton iterations against Chebyshev nodes (only for the

flux concentration solution). Circular markers are from the exact closed-form solution of Philip (1960) for Case 1.

The solid, dashed and dashed-dot lines are from the flux concentration solution, the Parlange and Braddock (1980)

approximation and the Parlange et al. (1994) approximation, respectively.
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A sensitivity analysis was performed to explore how the number of Chebyshev nodes, N, af-278

fects the accuracy of the solutions. Figs. 1c and d show plots of percentage error in terms of dimen-279

sionless sorptivity, σ, and dimensionless Boltzmann transform, φ. These errors were calculated280

from the difference between the pseudospectral solutions/approximations and the closed-form ex-281

act solution of Philip (1960). For φ, the percentage error was taken to be the mean absolute error282

for each Chebyshev node divided by the mean value of φ for each Chebyshev node, according to283

the closed-form exact solution. The errors can be seen to progressively reduce, with increasing N,284

for both the pseudospectral flux concentration solution and Parlange’s approximations.285

All simulations reported in this article were conducted on a Lenovo Thinkpad with an Intel286

Core i5-835OU CPU at 1.70 GHz. Fig. 1e shows plots of computation time as a function of N.287

The pseudospectral flux concentration solution typically requires between three and six times the288

amount of time as compared to Parlange’s approximations. The main reason for this is that the flux289

concentration solution involves a Newton iteration scheme requiring between 5 and 11 iterations290

(see Fig. 1f). Nevertheless, this still takes less than 30 ms to compute, even with 300 Chebyshev291

nodes.292

With the Parlange and Braddock (1980) method being exact for this example, the errors shown293

in Figs. 1c and d are purely due to the truncation errors associated with the evaluation of the294

integrals in Eqs. (40) and (43) using Eq. (24).295

Fig. 2 shows results from repeating the above analysis but using Case 2 of Philip (1960),296

where φ = (1 − ϑ)m. Again, the flux concentration solution provides a high level of accuracy297

and continuously improves with increasing number of Chebyshev nodes, N. In contrast, the error298

for the two approximate solutions reaches an irreducible value beyond which it no longer reduces299
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with increasing N. This irreducible error is due to the limiting assumptions embedded in the300

derivations of these approximations. As both of the Parlange approximations are based on a sharp301

wetting front, then it is not surprising that their accuracy is much more limited for this diffusivity302

and the corresponding moisture profile. Actually, the surprising result here is that they therefore303

do as well as they do. The computation time for the flux concentration solution is between two304

and ten times that needed for the approximations. However, a solution with 30 nodes provides %305

errors in both σ and φ of less than 0.1% whilst taking less than 0.6 ms to compute.306

The oscillations seen in the results from the Parlange et al. (1994) approximation, in Fig. 2b,307

are due to Gibbs phenomenon, resulting from the pseudospectral implementation. These oscilla-308

tions were found to dampen to negligible levels when N > 100.309
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Figure 2: Same as Fig. 1 but for Case 2 of Philip (1960).
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3.2. Comparison of results using the van Genuchten diffusivity function310

Fig. 3 shows plots of normalised moisture content, ϑ, against normalised similarity trans-311

form, φ, for different values of ϑI , ϑ0 and m, using the van Genuchten (1980) diffusivity function,312

given in Eq. (10), and 100 Chebyshev nodes. The pseudospectral flux concentration solution is313

shown as solid lines while the approximations of Parlange and Braddock (1980) and Parlange et314

al. (1994) are shown as dashed and dashed-dot lines, respectively. The approximations of Par-315

lange and Braddock (1980) and Parlange et al. (1994) provide very close correspondence with the316

flux concentration solution, including where there is significant diffusion tailing. Indeed, it is not317

possible to visually distinguish between the Parlange and Braddock (1980) approximation and the318

flux concentration solution.319

Additional numerical details relating to these simulations are presented in Table 1. Note that320

the sorptivity values are those calculated using the flux concentration solution. For all the scenarios321

studied, both of Parlange’s approximations were able to provide sorptivity estimates with less322

than 0.3% error. It was found that the flux concentration solution required around four times as323

much computation time as compared to the approximations, but this was of the order of a few324

milliseconds.325

While it is clear that both of Parlange’s approximations are very accurate, the approximation326

of Parlange and Braddock (1980) is usually superior with estimating both σ and the moisture327

content profiles (Figs. 2b, c and Table 1) for the diffusivities presented here. Both methods use328

moments to determine an unknown parameter and thenσ. However, the approximation of Parlange329

et al. (1994) is developed from a truncated expansion around the front whereas the approximation330

of Parlange and Braddock (1980) is not. We have carried out additional comparisons between331
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the two Parlange approximations for both power law (ϑp) and exponential law (epϑ) diffusivities332

for p = 0, 1, 2, 3 . . . 10. In both cases it was again found that the Parlange and Braddock (1980)333

approximation provided better estimates for the majority of p values. Nevertheless, the differences334

in accuracy are not large and the Parlange et al. (1994) approximation is simpler and easier to335

implement.336
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Figure 3: Plots of normalised moisture content, ϑ, against dimensionless similarity transform, φ, using the van

Genuchten (1980) diffusivity function defined in Eq. (10), with ϑ0 and m as specified in the subtitles and ϑI as

specified in the legends. The solid, dashed and dashed-dot lines are from the flux concentration solution, the Parlange

and Braddock (1980) approximation and the Parlange et al. (1994) approximation, respectively.
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Table 1: Numerical details, associated with the results shown in Fig. 3, for the pseudospectral flux concentration

solution (PFCS), the Parlange and Braddock (1980) approximation (Par. 1980) and the Parlange et al. (1994) (Par.

1994) approximation. All three methods employed a Chebyshev differentiation matrix with 100 Chebyshev nodes.

m (-) ϑ0 (-) ϑI (-) σ (-) % error for σ Computation time (ms)

Par. 1980 Par. 1994 PFCS Par. 1980 Par. 1994

0.2 0.7 0.001 0.059 0.001 0.002 2.48 0.91 0.97

0.2 0.7 0.3 0.043 0.000 0.048 3.29 0.89 0.88

0.2 0.7 0.6 0.016 0.132 0.140 4.35 0.74 0.92

0.2 1 0.001 0.431 0.013 0.005 2.07 0.85 0.81

0.2 1 0.3 0.359 0.018 0.019 2.33 1.07 1.00

0.2 1 0.6 0.267 0.000 0.118 3.05 3.96 3.02

0.7 0.7 0.001 0.232 0.004 0.019 4.12 1.24 1.26

0.7 0.7 0.3 0.163 0.165 0.175 3.58 1.29 0.91

0.7 0.7 0.6 0.052 0.077 0.082 4.76 1.03 0.95

0.7 1 0.001 1.060 0.038 0.031 2.65 1.07 0.94

0.7 1 0.3 0.882 0.036 0.103 3.03 2.62 2.38

0.7 1 0.6 0.653 0.041 0.281 3.55 1.05 1.33

3.3. Inverse modelling of horizontal infiltration experimental data337

Here we show how the pseudospectral flux concentration solution can be used for inverse mod-338

elling. Fig. 4 shows plots of observed and simulated moisture content profiles and the cumulative339
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infiltration against time, during horizontal infiltration experiments, for the three soil samples of340

Villarreal et al. (2019). The solid lines were obtained by calibrating the flux concentration so-341

lution, with a van Genuchten diffusivity, to the observed experimental data using the procedure342

described in Section 2.6. The resulting model parameters are presented in Table 2. Notably, each343

inversion took around one second to complete using a Lenovo Thinkpad with an Intel Core i5-344

835OU CPU at 1.70 GHz (exact computation times are also reported in Table 2).345

Villarreal et al. (2019) obtained their van Genuchten diffusivity parameters using the finite346

element code, HYDRUS (Šimunek et al., 2000). For comparison their model parameters are also347

presented in Table 2.348

No specific experimental values of θI were given by Villarreal et al. (2019). However, they349

report that the mean air-dried initial moisture contents were between 0.03 and 0.07 for the three350

soil types, which is in general agreement with our fitted values for θI . In Fig. 4 of Villarreal et351

al. (2019), it can be seen that their predicted time varying moisture contents, at 15 and 25 cm for352

all three soils, have a curvature that changes sign as θ approaches θs. This type of behaviour is353

not possible with a numerical solution of Eqs. (1) to (3), nor is it shown in their experimental354

data. Except for the slight offset in matching the initial moisture contents for the loam and sandy355

loam soils, our pseudospectral flux concentration solution not only has a far superior match to356

the experimental data, but it also has the correct mathematical behaviour near θs. Villarreal et357

al. (2019) also had difficulty matching the initial moisture contents but do not comment on this;358

perhaps the difference is due to the inherent accuracy in the moisture sensors at such a low moisture359

content.360
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Figure 4: a), c) and e) show plots of moisture content against time at different distances from the inlet boundary

of a horizontal infiltration experiment, for the three soils of Villarreal et al. (2019). The circular markers are from

the experimental observations made by Villarreal et al. (2019). The solid lines are from the pseudospectral flux

concentration solution. b), d) and f) show plots of infiltration volume per unit area of soil sample against the square-

root of time for each of the three soil samples. The circular markers are from the experimental observations made by

Villarreal et al. (2019). The straight lines are obtained by linear regression.
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Table 2: Results from calibrating the pseudospectral flux concentration solution to experimental horizontal infiltration

data obtained by Villarreal et al. (2019) along with the model parameters previously estimated by Villarreal et al.

(2019).

Flux concentration solution Villarreal et al. (2019)

Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3

S (cm s−1/2) 0.0849 0.0891 0.134 0.08 0.08 0.15

m (-) 0.320 0.266 0.236 0.231 0.281 0.438

θr (-) 0.0113 0.0636 0.0644 0.05 0.05 0.05

θs − θr (-) 0.508 0.437 0.418 0.46 0.49 0.46

Ksψc (cm2s−1) 0.0383 0.0656 0.1890 0.0435 0.0444 0.0505

MAE (min1/2cm2) 0.022 0.021 0.017

Computation time (s) 0.52 0.55 0.88

3.4. Application to desorption361

Our pseudospectral flux concentration solution can be used to simulate desorption by setting362

ϑ0 to be less than ϑI . Under such conditions, the cumulative desorption of fluid, Vd [L], through363

x = 0 is found from (Lisle et al., 1987)364

Vd =

∫ t

0
D(θ0)

∂θ

∂x

∣∣∣∣∣
x=0

dt = S dt1/2 (54)

where S d [LT−1/2] is the desorptivity.365
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The dimensionless desorptivity, σd [-], is found from (Lisle et al., 1987)366

σd ≡
S d√

(θs − θr)Ksψc

=

∫ ϑI

ϑ0

φ(ϑ)dϑ (55)

Note that σ2
d = σ2.367

Here we revisit the desorption results previously presented by Lisle et al. (1987) who provided368

highly accurate numerical solutions for desorptivity using both a power law diffusivity function369

D = (m + 1)ϑm (56)

and an exponential diffusivity function370

D =
memϑ

em − 1
(57)

where in both cases, m [-] is an empirical exponent.371

Dimensionless desorptivity values, σd, were calculated using the pseudospectral flux concen-372

tration solution when ϑ0 = 0 and ϑI = 1, using both of the diffusivity functions given by Eqs. (56)373

and (57). In Table 3 we compare our results for both 10 and 100 Chebyshev nodes alongside the374

numerical results from Lisle et al. (1987).375

With just 10 Chebyshev nodes, the pseudospectral flux concentration solution is able to pro-376

vide higher accuracy, in all but three cases, than the approximate solutions previously studied by377

Lockington (1994). With 100 Chebyshev nodes, the pseudospectral flux concentration solution378

provides exact correspondence with the results of Lisle et al. (1987) to four decimal places in all379
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but four cases.380

Note that we obtained the numerical results for the exponential diffusivity function, due to381

Lisle et al. (1987), from Table 2 of Lockington (1994). The original results presented in Table 1382

of Lisle et al. (1987) have been scaled in a different way.383

Also note that when a power law diffusivity is used with m = 1, Table 1 of Lisle et al. (1987)384

provides a desorptivity value of 0.9382. However, if you take the results from their Table 2 and385

utilize their Eq. (22), one arrives instead at a desorptivity value of 0.9392, which is the same as386

the value from our solution with 100 Chebyshev nodes.387

Table 3: Dimensionless desorptivity values, σd, for different m values, with different diffusivity functions, when

ϑ0 = 0 and ϑI = 1. Results were produced using the pseudospectral flux concentration solution with N = 10 and

N = 100. Numerical results due to Lisle et al. (1987) are shown for comparison.

Power law diffusivity function, Eq. (56) Exponential diffusivity function, Eq. (57)

m N = 10 N = 100 Lisle et al. (1987) N = 10 N = 100 Lisle et al. (1987)

1 0.9391 0.9392 0.9382 1.0424 1.0464 1.0464

2 0.8198 0.8199 0.8199 0.9571 0.9596 0.9595

3 0.7365 0.7366 0.7366 0.8738 0.8753 0.8753

4 0.6743 0.6743 0.6743 0.7980 0.7988 0.7988

5 0.6256 0.6255 0.6255 0.7321 0.7325 0.7325

6 0.5860 0.5860 0.5860 0.6764 0.6765 0.6766

7 0.5532 0.5531 0.5531 0.6296 0.6297 0.6297

8 0.5253 0.5251 0.5251 0.5904 0.5904 0.5903

9 0.5012 0.5010 0.5010 0.5573 0.5572 0.5572

10 0.4802 0.4800 0.4800 0.5290 0.5288 0.5288
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4. Summary and conclusions388

The objective of this article was to demonstrate the benefits of using a pseudospectral method389

to solve the horizontal infiltration equation. The non-linear diffusion problem was transformed390

into a self-similar second-order differential equation, with flux concentration and moisture content391

as the dependent and independent variables, respectively. The flux concentration formulation was392

chosen because it provided a scheme whereby both the dependent and independent variables are393

bounded within finite domains. The resulting boundary value problem was solved within a Newton394

iteration scheme using a Chebyshev differentiation matrix, leading to a pseudospectral solution of395

the horizontal infiltration equation. It was also shown how to use a Chebyshev differentiation396

matrix to evaluate the integrals within the approximate solutions of Parlange and Braddock (1980)397

and Parlange et al. (1994).398

An error analysis was performed by comparison with closed-form exact solutions for two399

special diffusivity functions, previously provided by Philip (1960). It was demonstrated for the400

φ = 1 − ϑm case, that both the Parlange approximations and the pseudospectral flux concentration401

solution are very accurate. However, for the φ = (1 − ϑ)m case, both of the Parlange approxi-402

mations retained an irreducible error. In contrast, error associated with the pseudospectral flux403

concentration solution progressively reduced towards zero with increasing number of Chebyshev404

nodes. The accuracy of our pseudospectral flux concentration solution is purely dependent on the405

number of Chebyshev nodes applied.406

A comparison between the pseudospectral flux concentration solution and Parlange’s approx-407

imations was then conducted for a range of parameter values using the van Genuchten (1980)408
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diffusivity function. The approximations provided very accurate moisture content distributions409

and corresponding estimates for sorptivity with less than 0.3% error.410

The pseudospectral flux concentration solution took between two and ten times longer to com-411

pute as compared to Parlange’s approximations, which was largely due to the Newton iteration412

scheme that Parlange’s approximations do not require. Nevertheless, the pseudospectral method413

provided an extremely fast means of evaluating both the approximations and the flux concentra-414

tion solution with computation times for the flux concentration solution being of the order of a415

few milliseconds. The pseudospectral flux concentration solution was also found to be effective416

for simulating desorption for both power law and exponential law diffusivities.417

Inverse methods are well known for being computationally demanding and faster more accu-418

rate and efficient methods are always being sought after. The pseudospectral formulation provides419

an extremely fast and accurate numerical method that can be used in inverse methods for esti-420

mating soil hydraulic parameters. A demonstration was provided whereby van Genuchten (1980)421

parameters were estimated by model calibration to observed experimental data from horizontal422

infiltration experiments on three different soil samples, previously presented by Villarreal et al.423

(2019). Model parameters were iteratively chosen using a simplex algorithm. The model inver-424

sion process was found to take around one second using modest laptop computer resources and425

the resulting model fit to observed data was found to be of very good quality.426
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Appendix A. MATLAB implementation of the pseudospectral flux concentration solution502

Below is a short MATLAB script that can be used to determine both σ and φ for a given sce-
nario using the psuedospectral flux concentration solution.

N=100; %Number of Chebyshev nodes

thI=0.001; %Initial moisture content

th0=0.7; %Boundary moisture content

m=0.2; %van Genuchten parameter

[z,D]=chebdif(N,2); %Get differentitation matrices

dzdth=2/(th0-thI); %Chebyshev node scaling factor

E1=dzdth*D(:,:,1); %First-order

E2=dzdth^2*D(:,:,2); %Second-order

%Determine coefficients for integration

IntCoefs=pi/(N-1)/dzdth*sqrt(1-z.^2)';

I=eye(N); %Identity matrix

%Determine theta values for each z value

th=(th0+thI)/2+(th0-thI)/2*z;

%Determine diffusivity for each z value

L=(1-th.^(1/m)).^m;

Dbar=(1-m)/m*th.^(0.5-1/m).*(1-L).^2./L;

OF=1; %Initialise objective function

i=2:N-1; %Inner node index

F=ones(N,1); %Initial guess

while OF>1e-6 %Newton iteration

%Determine square of sorptivity

sig2=IntCoefs*[2*(th-thI).*Dbar./F];

Q=2*Dbar/sig2./F;

R=[E2(i,:)*F+I(i,:)*Q;F(N)-0;F(1)-1];

dR=[E2(i,:)+I(i,:)*diag(-Q./F);I(N,:);I(1,:)];

Fold=F; %Store previous iteration

F=max(eps,F-dR\R); %Update F and ensure > 0

OF=max(abs(F-Fold)); %Define objective function

end

%Determine phi for each theta value

phi=sqrt(sig2)*E1*F;
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