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Abstract  34 

The newly discovered Halahatang oilfield in the northern Tarim Basin has a potential 35 

resource of > 70 Bbbls of oil. Oil organic geochemical data from the Halahatang oilfield 36 

indicate that the oils are of moderate maturity, biodegraded, and represent one oil family, 37 

derived from the same Paleozoic marine source. Modeling of coeval aqueous and 38 

hydrocarbon-bearing inclusion data provide fluid trapping temperatures and pressures of 39 

100 to 110 ºC and ~39 to 59 MPa, respectively. The fluid inclusion data coupled with the 40 

previous basin model studies, suggests a single prolonged oil migration event during the 41 

Permian. Rhenium-Osmium (Re-Os) isotope data oil yield an Early Permian Re-Os age 42 

of 285 ± 48 Ma. The age agrees with the timing of maturation of the Paleozoic source via 43 

burial history modelling but is slightly older (~5 - 55 myr) than the oil 44 

migration/accumulation timing implied by the basin modelling coupled with fluid 45 

inclusion analysis and the published reservoir illite K-Ar dates. Thus, the oil Re-Os date 46 

suggests that oil generation in the Halahatang Depression of the Tarim Basin occurred 47 

during the Early Permian, rather than the Silurian as previously proposed, with 48 

subsequent oil migration/accumulation occurring during the Mid-Late Permian as 49 

recorded by basin modelling, coupled with fluid inclusion analysis and illite K-Ar dating. 50 

In addition to promoting petroleum exploration in the Tarim Basin, this study that 51 

combines crude oil Re-Os isotope dating and traditional analytical methods (organic 52 

geochemistry/fluid inclusion analysis) to constrain petroleum evolution is applicable to 53 

hydrocarbon systems worldwide. 54 

 55 
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1 Introduction  61 

The accurate key timing of petroleum evolution (e.g., oil generation, migration / 62 

accumulation) is vital to understand the evolution of a petroleum system (Liu et al., 2013; 63 

Qiu et al., 2011), and is crucial for hydrocarbon exploration in a target region (Roberts et 64 

al., 2004). Although thousands of oilfields are known worldwide, understanding how to 65 

precisely constrain the key events of a petroleum system remains challenging (Liu et al., 66 

2013; Mark et al., 2010; Roberts et al., 2004). Aimed at solving these problems, the 67 

oilfield in Tarim Basin, northwest China was selected as an example in this study.  The 68 

Tarim basin is bordered by the Tian Shan, West Kunlun and A’erjin orogenic belts to the 69 

north, southwest, and southeast, respectively (Lin et al., 2015; Zhang et al., 2007a) (Fig. 70 

1B). The basin encompasses an area of 560,000 km2 (~216,217 mi2) and contains up to 71 

~14 km (~8.7 mi) of sedimentary strata. It has had a complex tectonic evolution (e.g., 72 

Caledonian, Hercynian, Indosinian-Yanshan and Himalayan orogenies). The basin 73 

contains significant petroleum potential (more than 70 billion barrels oil (Bbbls) and 250 74 

trillion cubic feet (Tcf) of gas) (Lin et al., 2015; Xiao and Tang, 2003; Xu et al., 2004). 75 

The Tarim Basin is the largest known onshore petroliferous basin in China, with only an 76 

estimated 10 percent of the total potential reserves presently discovered (Li, 2009; Xu et 77 

al., 2004). Although the Tarim Basin is considered to contain the most important future 78 

oil and gas resources in China (Li, 2009), the multiple tectonic events that the basin 79 



records have led to a complex hydrocarbon evolution, which has hampered oil and gas 80 

exploration (Li, 2009; Lin et al., 2015; Zhang et al., 2007a). 81 

More than thirty oil fields (e.g., Dawanqi, Lunnan, Tahe, Tazhong, Hetian and Bashituo) 82 

have been discovered throughout the Tarim Basin during the past three decades (Xu et al., 83 

2004; Zhao et al., 2004). More recently discovered is the deeply buried (>6000 m) 84 

(>19,685 ft) Early Paleozoic carbonate Yijianfang Formation in the Halahatang 85 

depression of the northern Tarim Basin that has a current estimated reserve of >4 Bbbls of 86 

oil (Zhu et al., 2013a), which supports the reported resource potential within the Tarim 87 

Basin (Li, 2009; Xu et al., 2004). However, both the source and timing of hydrocarbon 88 

generation and accumulation in the Tarim Basin remain debated (Chang et al., 2013a; Li, 89 

2009; Li et al., 2010; Liao et al., 2010; Tian, 2005; Xiao et al., 2012). Hydrocarbon 90 

maturation models propose that the Neoproterozic and Early Cambrian shales are the 91 

main source for the Shaya Uplift oilfield in the northern Tarim Basin (Li, 2009) and the 92 

Late Cambrian to Ordovician shales are the suggested oil source in Kongquehe area in 93 

northeast Tarim Basin (Tian, 2005). Based on both biomarker and δ13C analysis of 94 

individual n-alkanes for oils, a mixed origin (Cambrian–Lower Ordovician and Middle-95 

Upper Ordovician) has been proposed for the central Tarim Basin (Li et al., 2010). Basin 96 

modeling in the Caohu Depression in the northern Tarim Basin considers the Early 97 

Ordovician (ca. 400 Ma) to be a key time of oil generation and migration (Tian, 2005). 98 

This is, in part, supported by authigenic illite K-Ar dating (ca. 380 Ma) from the Late 99 

Silurian sandstone reservoir in the central Tarim Basin (Zhang et al., 2004). However, 100 

younger migration ages are also proposed in the central and northern Tarim Basin by 101 

authigenic illite K-Ar dates of ca. 250 and ca. 20 Ma (Zhang et al., 2004; Zhu et al., 102 



2013c).  103 

In the newly discovered Halahatang oil field, previous GC-MS (terpane and sterane 104 

characteristics) analysis on the oil and potential source rocks invoke both the shales of the 105 

Cambrian Yuertusi Formation, as well as Middle-Late Ordovician carbonates of the 106 

Lianglitage and Sangtamu Formations as the main sources of the petroleum (Chang et al., 107 

2013a; Lu et al., 2008; Xiao et al., 2016; Zhu et al., 2013a). The current burial history 108 

models and fluid inclusion data propose several age models for the petroleum evolution 109 

in the Halahatang oil field (e.g., Late Silurian, Late Permian and Neogene) (Chang et al., 110 

2013a; Si, 2013; Xiao et al., 2012; Zhu et al., 2013a). As a result the following key 111 

aspects of the petroleum systems are debated: (1) the source(s) of the oil; (2) the timing 112 

of oil generation, and (3) the timing of oil charging within the Tarim Basin. 113 

Rhenium-osmium (Re-Os) isotope analysis on hydrocarbons has shown potential to 114 

determine the absolute timing of hydrocarbon generation (Cumming et al., 2014; Finlay 115 

et al., 2011; Ge et al., 2016; Ge et al., 2018a; Ge et al., 2018b; Georgiev et al., 2016; 116 

Lillis and Selby, 2013; Selby and Creaser, 2005; Selby et al., 2007). Further, authigenic 117 

illite K-Ar (Ar-Ar) dating from the oil reservoir and fluid inclusion studies can help 118 

record the timing of oil migration and reservoir filling (Guo et al., 2012; Hamilton et al., 119 

1989; Lee et al., 1985; Mark et al., 2010; Zhang et al., 2004). In this study, we apply and 120 

discuss new oil geochemical analysis, fluid inclusion analysis, and Re-Os geochronology 121 

along with previous published sandstone authigenic illite K-Ar dating (Zhang and Luo, 122 

2011; Zhu et al., 2012), to quantitatively determine the petroleum evolution (timing of oil 123 

generation, migration/accumulation) associated with the Halahatang oilfield of the 124 

northern Tarim Basin. In addition, this work demonstrate this combined approach can 125 



yield quantitative data to establish the timing for petroleum evolution that may aid in the 126 

further understanding of both the temporal and spatial evolution of hydrocarbon systems 127 

worldwide.  128 

 129 

2 Geological setting  130 

The Halahatang depression occupies an area of ~40,000 km2 (15,444 mi2) within the 131 

centre of the Tabei Uplift in the northern Tarim Basin (Zhu et al., 2011). The Halahatang 132 

depression is bordered by the Yingmaili, Luntai, and Lunnan Uplift to the west, north and 133 

east, respectively, and the North Depression to the south (Fig. 1C). The geology of the 134 

Halahatang depression is characterized by a thick sequence of Cambrian to Quaternary 135 

strata (~14 km) (~8.7 mi) (Fig. 2) (Jia and Wei, 2002; Zhang and Huang, 2005). The 136 

Cambrian to Ordovician strata (~4.5 km) (~2.8 mi) comprise shallow marine to lagoonal 137 

carbonates (Jia and Wei, 2002), with the Silurian to Devonian strata being represented by 138 

~1 km (~0.62 mi) of fine-grained red beds and sandstones (Zhang and Huang, 2005), and 139 

the Carboniferous to Permian section is characterized by a ~1 km (~0.62 mi) thick 140 

interval of sandstone and mudstone (Chang et al., 2013b). Since the Triassic the renewed 141 

subsidence of the Halahatang depression has led to the accumulation of ~6 km (3.73 mi) 142 

of Mesozoic to Cenozoic fluvio-lacustrine sediments (Zhang and Huang, 2005). 143 

The Halahatang depression records multiple tectonic events. The Late Ordovician 144 

Caledonian Orogeny resulted in the uplift of the northern and central parts of the Tarim 145 

Basin (Zhang et al., 2007a). The region encompassing the Halahatang depression existed 146 

as a marginal foreland basin until the Late Permian (Jia and Wei, 2002; Wei et al., 2000; 147 

Zhu et al., 2011), and suffered uplift during the Hercynian Orogeny (Jia and Wei, 2002). 148 



Since the Triassic the Halahatang depression experienced several burial and uplift events 149 

controlled by the closure of the Tethys Ocean and collision between Indian and Eurasian 150 

Plates (Yanshan and Himalayan orogenies) (Jia and Wei, 2002; Xu et al., 2016; Zhang 151 

and Huang, 2005; Zhu et al., 2011).  152 

In the Halahatang depression, the carbonates of the Middle Ordovician Yijianfang 153 

Formation (>6,000 m deep) (>19,685 ft deep) is the main hydrocarbon reservoir, with 154 

Silurian and Triassic sandstones also considered as potential reservoir units (Zhu et al., 155 

2013a) (Fig. 2). The source rock for the oil is still debated, but the main sources are 156 

considered to be the shales of the Cambrian Yuertusi Formation, and organic-rich 157 

carbonates of the Middle to Late Ordovician Lianglitage and Sangtamu formations 158 

(Chang et al., 2013b; Cui et al., 2009; Huo et al., 2016; Xiao et al., 2016). The dense 159 

shale or mudstone above the reservoirs are considered the cap rocks (Zhang and Huang, 160 

2005; Zhu et al., 2013a).   161 

 162 

3 Samples and methods 163 

Five oil samples from separate wells (Ha9, Ha11, Ha15-2, Ha701 and XK4-3) in the 164 

Halahatang depression were collected for GC-MS and Re-Os analysis (Fig. 1C). All the 165 

oil samples are from the Middle Ordovician Yijianfang Formation between ~6550m 166 

(21,489 ft) and 6850 m (22,474 ft) (Table 1). The oil physical property and organic 167 

compositions were collected from the unpublished reports of the Tarim Oil and Gas 168 

Company. The experiments were conducted at Research Institute of Petroleum 169 

Exploration and Development, PetroChina, Beijing with the oil density, oil viscosity and 170 

oil fractions measured following three different national standard methods (General 171 



Administration of Quality Supervision Inspection and Quarantine of the People's 172 

Republic of China, 2011; National Development and Reform Commission, 2008; 173 

National Energy Administration of the People's Republic of China, 1993). The oil 174 

density, viscosity, and API values are 0.83 - 0.10, 3.15 - 342.3, and 8.46 - 38.37, 175 

respectively. The organic compositions, wax, sulfur, saturate, aromatic, resin, and 176 

asphaltene of the oil are ~6.0 %, ~0.6 %, ~56.1 %, ~16.5 %, ~4.7 %, and ~18.7 %, 177 

respectively. All the oil samples, with the exception of the oil from Well Ha701, are 178 

characterized by low viscosity (<0.90), a high API value (>29), and low asphaltene 179 

content (<25 %) (Table 1). Thus all the oils are characterized as light crude oil. However, 180 

the oil from well Ha701 possesses a high viscosity (~342) and asphaltene content 181 

(~34 %) and low API value (8.46) (Table 1), which characterizes the oil as heavy oil 182 

(Schenk et al., 2006; Zhang et al., 1990).  183 

The gas chromatography mass spectrometry (GC-MS) analysis of the oil samples were 184 

conducted at the China University of Geoscience (Wuhan) following the analytical 185 

procedure of (Zhang et al., 2015). Approximately 30 mg of crude oil sample was 186 

dissolved in 50 ml of n-hexane and left for 12 hrs at room temperature. The solution was 187 

then filtered, with all the filtrates collected and evaporated under nitrogen gas to 0.5 ml. 188 

A chromatographic column (30 cm × 10 mm in diameter) was prepared using a mixed 189 

stationary phase of activated silica gel and alumina with a ratio of 3:2 (Yang et al., 2009). 190 

The concentrated sample was transferred to the chromatographic column for further 191 

separation. The saturated hydrocarbon fraction was eluted with n-hexane (25 ml). The 192 

fractions were then carefully concentrated under nitrogen flow to 0.5 ml with the 193 

concentration around 5-10 mg/ml for GC-MS analysis. The GC-MS system consists of 194 



the Agilent 7890 GC and 5975C mass spectrometers. A DB-5MS column 50 m × 0.25 195 

mm × 0.25 μm was used. High purity helium (99.9995 %) was used as a carrier gas with 196 

a flow rate of 1.0 ml/min. The injector temperature was 300 ºC. The injection volume 197 

was 1.0 μl. All injections were done with a 7683B series autosampler. The oven 198 

temperature was programmed from 50 ºC (1 min hold) to 100°C at 10°C /min, and then 199 

to 310°C (20 min hold) at 2°C /min. The mass spectrometer was operated in the electron 200 

impact mode (70 eV). The temperature of ion source and transfer-line were set at 230°C 201 

and 300°C, respectively. The scanned mass range was from 50 to 550 u. The temperature 202 

of the quadrupole was held at 150°C. 203 

For the oil Re-Os analysis, the asphaltene fraction was analyzed as Re and Os are 204 

predominantly contained within the asphaltene fraction of oil (Cumming et al., 2014; 205 

Georgiev et al., 2016; Lillis and Selby, 2013; Rooney et al., 2012; Selby et al., 2007). The 206 

asphaltene fraction was precipitated from the oil using 40 times volume of n-heptane 207 

(~1g oil with 40 ml solvent) at room temperature for at least 8 hrs. The Re and Os 208 

isotopic compositions and abundances of the asphaltene from the oil were analysed at the 209 

Laboratory for Source Rock and Sulfide Geochronology and Geochemistry and the 210 

Arthur Holmes Laboratory (members of the Durham Geochemistry Centre) at Durham 211 

University following published analytical procedures (Selby et al., 2005; Selby et al., 212 

2007). Approximately 100-200 mg of asphaltene were dissolved and equilibrated with a 213 

known amount of a mixed 185Re and 190Os spike solution by inverse aqua-regia (3 ml 214 

HCl and 6 ml HNO3) in a Carius tube for 24 hours at 220˚C. Osmium was isolated and 215 

purified from the inverse aqua-regia by CHCl3 solvent extraction at room temperature 216 

and micro-distillation. The Re was isolated using HCl-HNO3-based anion 217 



chromatography. The purified Re and Os were loaded on Ni and Pt filaments, 218 

respectively, and analyzed using negative ion thermal ionization mass spectrometry 219 

(NTIMS). Total procedural blanks for Re and Os are 1.60 ± 0.03 pg and 0.05 ± 0.01 pg, 220 

respectively, with an average 187Os/188Os ratio of 0.22 ± 0.06 (1 SD; n = 4). All 221 

uncertainties include the propagated uncertainty in sample and tracer solution weights, 222 

the standard, spike calibrations, mass spectrometry measurements, and blanks. In-house 223 

Re (Restd) and Os (DROsS) solutions were analyzed as a monitor of reproducibility of 224 

isotope measurements. The 187Os/188Os values of the Os standard solution DROsS during 225 

this study are 0.1611 ± 0.0004 (1SD, n = 126), with the 185Re/187Re values of the Re 226 

standard solution being 0.5989 ± 0.0019 (1SD, n = 116). These values are in agreement 227 

with those previously published for DROsS and Restd (Cumming et al., 2014; Finlay et 228 

al., 2011, 2012; Lillis and Selby, 2013; Nowell et al., 2008). The Re–Os data of this study 229 

are regressed using the program Isoplot V. 4.15 (Ludwig, 2003) with187Re decay constant 230 

of 1.666×10-11a-1 (Smoliar et al., 1996). The input data contains 187Re/188Os and 231 

187Os/188Os ratios with their total absolute 2σ level uncertainty and the associated error 232 

correlation, Rho (Ludwig, 1980). 233 

A doubly polished fluid inclusion wafer (~100 micron thick) of a bioclastic limestone 234 

from the Ordovician Yijianfang Formation from well Ha9 was prepared for the fluid 235 

inclusion studies (Fig 3). Fluid inclusion petrography, microthermometry, laser raman 236 

microspectroscopy (LRM) and confocal scanning laser microscopy (CSLM) were 237 

conducted by CV Associés Engineering, Nancy, France.  238 

Fluid inclusion petrography was carried out using a Zeiss Axiovert 200 microscope 239 

equipped with both transmitted white and incident ultraviolet light (UV) (λ = 365 nm). A 240 



calibrated Linkam MDS 600 heating and cooling stage was used for microthermometry. 241 

Homogenization temperatures (Th) were obtained using the thermal cycling method with  242 

a heating rate of 10 ºC/min (Goldstein and Reynolds, 1994). The measured temperature 243 

precision for the Th is ± 0.1 ºC. The LRM analyses of aqueous fluid inclusions were 244 

performed on a Labram Jobin Yvon spectrometer, using 514.5 nm radiation produced by 245 

an argon laser. The salinity of aqueous fluid was estimated by LRM following the method 246 

described by (Dubessy et al., 2002). The CSLM methodology was used to measure the 247 

gas/oil volume ratio (Fv) of the hydrocarbon inclusions previously identified by UV-248 

fluorescence and characterized by microthermometry. The measurements were carried 249 

out using a Bio-Rad (Zeiss) Radiance 2100 Rainbow confocal scanning laser microscope 250 

equipped with an argon laser emitting at 488 nm and mounted on a Nikon TE2000-U 251 

inverted microscope.  252 

 253 

4 Results  254 

4.1 GC-MS analysis  255 

Abundant biomarkers (e.g., alkane and isoprenoids, terpane and steroids) were detected 256 

in all five oil samples (Table 2). The saturate fraction gas chromatograms (SFGCs) for 257 

three of the oils (Ha9, Ha701, XK4-3) exhibit an unresolved complex mixture (UCM) 258 

(Fig. 4), however, abundant alkane compounds are still detected in the oil samples above 259 

the UCM (Fig. 4). The carbon number of the alkane distributed between nC12 and nC27, 260 

with the highest peak occurring at nC15 or nC16 (Fig. 4). For the isoprenoids, the Pristane 261 

(Pr)/Phytane(Ph) ratios of the five oil samples range between 0.68 and 0.97. The ratios of 262 

Pr/nC17 and Ph/nC18 range from 0.04 - 0.47 and 0.07- 0.64, respectively (Table 2)(Fig. 263 



5A, B). Tricyclic terpanes, tetracyclic terpanes and hopanes were detected in the oil 264 

samples (m/z 191) (Fig. 4). The tricyclic terpanes range from C19 to C30, with a clear 265 

abundance increase between C20, C21, and C23 compounds (Fig. 4). The C24 tetracyclic 266 

terpane (C24TET) is detected in the oils. The ratios of C19/C23 tricyclic terpane 267 

(C19TT/C23TT), and C24 tetracyclic / C26 tricyclics terpane (C24TET/ C26TT) are 268 

respectively 0.12 to 0.20 and 0.42 to 0.49 (Table 2)(Fig. 5C). The hopanes range from 269 

C27 to C35 and exhibit the highest peaks at either C29 or C30. The hopanes show a decrease 270 

in the abundance with increasing carbon number between C31 and C35 (Fig. 4). Additional 271 

compounds (e.g., C30 diahopane (C30DH), Ts (18α(H)-trisnorhopane), Tm (17α(H)-272 

trisnorhopane), gammacerane and 25-nor-hopane) are also detected. The Ts/(Ts+Tm) and 273 

C30DH/C30H (C30 hopane) ratios vary from 0.37 to 0.55 (except for Ha15-2 which has a 274 

value of ~0.03) and 0.03 to 0.13, respectively (Table 2)(Fig. 5D). The 275 

gammacerane/C30H ratio varies from 0.05 to 0.19, with an average of 0.12, and the 25-276 

nor-hopane/C30H ratios range from 0.15 to 2.61 (Table 2)(Fig. 5F). Sterane compounds, 277 

such as C21 pregnane (C21P), C22 homopregnane (C22HP), diasterane, and C27-C29 sterane 278 

are detected (Fig. 4). The ratio of pregnane/homopregnane (C21P/C22HP) ranges from 279 

2.98 to 5.69, with an average of 4.03. The C27, C28, C29 sterane content of all the oil 280 

samples present a similar V-shape distribution, which display ~50.2, 14.6 and 35.1 %, 281 

respectively, with C27 sterane exhibiting the greatest abundance. The ratio of C29ααα 282 

20S/(20S+20R) and C29ββ/(ββ+αα) vary from 0.30 to 0.48 and 0.55 to 0.58 (Fig. 5E).  283 

4.2 Fluid inclusion analysis  284 

The fluid inclusion wafer from well Ha9 is composed of grains (mainly ooids, 285 

echinoderms and mollusks) enclosed by micrite and coarse calcite cements. Fluid 286 



inclusions in both the cement and calcite replaced grains were studied. The majority of 287 

the hydrocarbon and aqueous inclusions are distributed along annealed microfractures 288 

both in the calcite cements and the calcite replaced grains. Hydrocarbon-bearing 289 

inclusions (typically ≤ 5µm wide and ~2 to 10 µm long; Fig. 3) are liquid-rich, two-phase 290 

(L+V; L>V) inclusions that display blue, green and yellow UV fluorescence and are 291 

brown in transmitted light. Some localized inclusions within the same crystal possess 292 

highly variable liquid/vapor ratio indicating late alteration events (leakage and/or necking 293 

down) (Table 3).  294 

The majority of the aqueous inclusions are two-phase liquid rich inclusions (L+V; L>V) 295 

(Fig. 3). Rare monophase liquid-rich aqueous inclusions were also encountered. All the 296 

fluid inclusions are ≤ 5µm wide and ~2 to 15 µm long. Both aqueous and hydrocarbon 297 

inclusions commonly occur along the same annealed microfractures indicating a coeval 298 

relationship between the fluids.  299 

The homogenization temperatures (Th) values of the hydrocarbon-bearing inclusions 300 

range from 24.6 to 122 ºC (Table 3), with the majority homogenizing between 24.6 and 301 

79.9 ºC (Fig. 6A). The aqueous inclusions homogenize between 61.2 and 141.0 ºC (Fig. 302 

6A). The aqueous inclusions that are coeval with the hydrocarbon-bearing inclusions 303 

homogenize between 61.2 and 102.3 ºC, with a mean Th of 82.1 ºC (Fig. 6A). The 304 

calculated salinities obtained using the method of (Dubessy et al., 2002) vary from 6.7 to 305 

20.4 wt. % NaCl eq. (Table 3), with the majority yielding values between 12 and 16 306 

wt. % NaCl eq. The coeval hydrocarbon and aqueous inclusions have salinity values 307 

between 8.6 and 15.1 wt. % NaCl eq (Fig. 6B). 308 

The gas/oil volume ratio (Fv) measured by confocal scanning laser microscopy (CSLM)  309 



of three hydrocarbon-bearing inclusions, (ranging in size between 22 and 302 μm3), 310 

ranges from 5.1 to 10.9 %. The bubble and bulk volumes of the hydrocarbon inclusions 311 

range between 1.8 and 5.6 μm3, and 22.0 and 84.4 μm3 (Table 3). In general, a positive 312 

relationship exists between the Th and Fv data (Fig. 6C).  313 

LRM analysis was conducted on 14 aqueous inclusions. One coeval aqueous inclusion 314 

with a Th of 83.2 ºC (similar to the mean data, 82.1 ºC) was characterized and used for 315 

the estimation of trapping conditions of both aqueous and hydrocarbon fluids (Table 3, 316 

Fig. 7C). The CH4 content and salinity measurement were performed on 11 aqueous 317 

inclusions in calcite. Only two samples possess CH4 above the detection limit (0.017 and 318 

0.075 molal) (Table 3). Both aqueous inclusion thermodynamic (AIT) modeling using the 319 

CH4-H2O-NaCl system (Duan et al., 1992; Guillaume et al., 2003), and hydrocarbon 320 

bearing fluid inclusion thermodynamic (PIT) modeling were used to estimate aqueous 321 

and hydrocarbon fluid trapping conditions (Montel, 1993; Pironon, 2004) in well Ha9 in 322 

the Halahatang oilfield (Fig. 7C). 323 

4.3 Re-Os analysis  324 

The asphaltene Re and Os abundances of the five oil samples vary between 0.06 and 9.47 325 

ppb, and 4.9 and 57.2 ppt, respectively (Table 4). Both the Re and Os abundances of 326 

some of the oil samples are lower than those previously reported for oil and bitumen  327 

from both hydrocarbon or metalliferous systems (Cumming et al., 2014; Finlay et al., 328 

2011; Ge et al., 2016; Georgiev et al., 2016; Lillis and Selby, 2013; Selby et al., 2005), 329 

with most of the samples possessing higher Re and Os abundances when compared with 330 

that of the average upper crust (Re: 0.198 ppb and Os: 31 ppt) (Esser and Turekian, 1993; 331 

Rudnick and Gao, 2003).  332 



The 187Re/188Os values of the oil range from ~78 to 1655 and exhibit a radiogenic 333 

187Os/188Os composition of 1.48 to 4.68 (Table 4). Repeat analysis of oil samples Ha9 and 334 

Ha15-2, using a separately isolated asphaltene fraction, yield very reproducible 335 

187Re/188Os (125.4 vs 125.2 and 1655.2 vs 1636.7) and 187Os/188Os (1.66 vs 1.74 and 2.25 336 

vs 2.25) values, and similar Re (0.81 vs 1.23 ppb and 9.47 vs 5.86 ppb) and Os (37.4 vs 337 

57.2 ppt and 35.2 vs 22.0 ppt) abundances (Table 4). Similar reproducibility has also 338 

been shown by previous studies (Lillis and Selby, 2013; Liu et al., 2018; Selby et al., 339 

2005).  340 

Collectively all the Re-Os data of all five oil samples do not yield any meaningful date 341 

(Fig. 8) as sample Ha15-2 possesses a distinct Re-Os isotope composition to the 342 

remaining four oil samples that display a positive correlation between 187Re/188Os and 343 

187Os/188Os (Fig. 8). The Re-Os data, without sample Ha15-2, yield a Model 3 (assumes 344 

that the scatter in the degree of fit of the data is a combination of the assigned 345 

uncertainties, plus a normally distributed variation in the 187Os/188Os values (Ludwig, 346 

2008) date of 285 ± 48 Ma (n = 5, MSWD = 6.1), with an initial 187Os/188Os composition 347 

of 1.08 ± 0.20 (Fig. 8).  348 

 349 

5 Discussion  350 

5.1 Oil Geochemistry of the Halahatang Oilfield  351 

The biomarker molecular composition of an oil (n-alkanes, terpane, sterane) records 352 

information about its origin, maturity and alteration (Peters and Moldowan, 1993b; Wu et 353 

al., 2012; Zumberge, 1987). The carbon number of the alkane distributed between nC12 354 

and nC27, with the highest peak occurring at nC15 or nC16 (Fig. 4), indicating the oil is 355 



mainly sourced from bacteria and algae (Peters et al., 2005). The ratios of Pr/nC17 and 356 

Ph/nC18 range from 0.04 - 0.47 and 0.07- 0.64, respectively (Table 2) (Fig. 5A) and 357 

indicate the oils are from marine or saline facies sourced from lower bacteria and algae 358 

(Zhang et al., 2011). The pristane/phytane (Pr/Ph) ratio is a useful parameter to establish 359 

the depositional environment of the source unit of the oil. As such, Pr/Ph values of <1.0 360 

and >3.0 are suggested to indicate either an anoxic or oxic depositional environment, 361 

respectively (Didyk et al., 1978; Hunt, 1995; Peters et al., 2005). The Pr/Ph ratios of the 362 

Halahatang oils (0.68 - 0.97) (Fig. 5B) suggest that the oils are derived from a source unit 363 

deposited under predominantly anoxic conditions in a marine environment. The similar 364 

ratios of tricyclic terpanes (e.g., C23/C21 tricyclic terpanes (C23TT/C21TT) (~2.05), C23/C24 365 

tricyclic terpanes (C23TT/C24TT)(~1.73), C19/C23 tricyclic terpanes (C19TT/C23TT) 366 

(~0.16) and the C24 tertracyclic / C26 tricyclics terpane (C24TET/C26TT) (~0.45) (Table 2) 367 

(Fig.5C)) suggest that the oils belong to one family. The low ratios of C19/C23 tricyclic 368 

terpane (C19TT/C23TT) (0.12 - 0.20), and C24 tetracyclic / C26 tricyclics terpane (C24TET/ 369 

C26TT)(0.42 - 0.49) suggest that the oil samples are derived from a source containing 370 

marine derived organic matter (Bao et al., 2012; Peters and Moldowan, 1993a; Zumberge, 371 

1987) (Table 2)(Fig. 5C). In addition, the similar C21/C22 sterane (C21P/C22HP) ratio 372 

(>3.0) of the oil samples is also indicative that the oils belong to the same family (Table 373 

2). The relative abundance of the C27, C28, C29 regular steranes are used to constrain the 374 

source types, with the C27 sterane being linked to a marine planktonic source and the C29 375 

sterane, although they can be derived from algae, is mainly sourced from higher 376 

terrestrial plants (Peters and Moldowan, 1993a). The V-shape distribution of the C27, C28, 377 

C29 regular steranes, with C27 possessing the largest component on the Halahatang oils 378 



imply that the organic matter of the source has an alga source (Fig. 4) (Peters and 379 

Moldowan, 1993a). As Ts and diahopane are more resistant to thermal stress than Tm and 380 

hopane, the Ts / (Ts+Tm) and diahopane/ hopane (C30DH/C30H) ratios can provide 381 

insights to the level of oil maturity, with lower ratios equating to lower levels of maturity 382 

(Lu et al., 2010; Peters and Moldowan, 1993a). The Ts / (Ts + Tm) (~0.34) and 383 

C30DH/C30H (~0.09) ratios of the Halahatang oil samples indicate the oils are low to 384 

moderate maturity (Table 2). The C29 sterane is also a vital biomarker to determine the 385 

level of hydrocarbon maturity (Brooks and Welte, 1984; Peters and Moldowan, 1993a). 386 

The value of C29ɑɑɑ20S/(20S+20R)(~0.43) and C29ββ/(ββ+ɑɑ) (~0.57) of the Halahatang 387 

oils (Fig. 5E)  equates to a vitrinite reflectance (Ro) values of ~0.8 and 0.9, and implies 388 

the oils are within the oil window maturity. The unresolved complex mixture (UCM) of 389 

the gas chromatograms shown by samples Ha9, Ha701 and XK4-3, as well as, the 390 

presence of C29 25-nor-hopane, with Nor25H/C30H ratios of ~0.98, indicate the 391 

Halahatang oils have suffered biodegradation (Table 2) (Fig. 5F) (Wenger and Isaksen, 392 

2002). However, the relatively complete n-alkane compositions of the unresolved 393 

complex mixture indicate a second oil migration and accumulation event may have 394 

occurred in the Halahatang oilfield (Lu et al., 2008; Xiao et al., 2013; Zhu et al., 2012) 395 

(Fig. 4). In the case of the Ha15-2 oil, although the majority of biomarker parameters 396 

possess similar characteristics to the other four Halahatang oil samples, its distinct 397 

maturity (Ts / (Ts+Tm) = 0.03) and biodegradation related parameters (C29Nor25H/C30H = 398 

~0.15) (Table 2) indicate that sample Ha15-2 may have experienced alteration after the 399 

oil reservoir formed. However, as there is no obvious UCM found and that the sample 400 

possesses the lowest C29Nor25H/C30H value (0.15) (Fig. 4), thermal degradation rather 401 



than the biodegradation may be the main alteration mechanism. In summary, the GC-MS 402 

data show that the Halahatang oils belong to one family, derived from the same source 403 

that was deposited in a marine environment. In general, the oils are of low to moderate 404 

maturity, biodegraded, and may have experienced second hydrocarbon migration event. 405 

The organic geochemical differences of oil sample Ha15-2 indicate that some of the oil 406 

within the Halahatang oilfield may have undergone alteration after oil generation. 407 

5.2 Petroleum evolution timing constraints of the Halahatang Oilfield 408 

Fluid inclusions represent micron scale samples of the fluids (oil, gas and water) that 409 

migrated through and interacted with the host rocks during the evolution of a 410 

hydrocarbon system in sedimentary basins (Cooley et al., 2011). Fluid inclusion studies 411 

can play a key role in developing pressure, temperature, volume and composition models 412 

of fluid (oil and aqueous fluids) dynamics in petroliferous basins. Furthermore, fluid 413 

inclusion studies are critical to the understanding of petroleum migration and 414 

accumulation, and can help to predict the distribution of petroleum resources (Aplin et 415 

al., 1999; Bodnar, 1990; Bourdet et al., 2010; Oxtoby et al., 1995; Pironon, 2004; 416 

Teinturier et al., 2002). This study uses aqueous, and hydrocarbon bearing fluid 417 

inclusions to help elucidate the history of petroleum and aqueous fluid dynamics in the 418 

Tarim basin. 419 

The majority of the hydrocarbon-bearing fluid inclusions of this study exhibit yellow 420 

fluorescence, however, some green, and blue fluorescing inclusions are also encountered 421 

(Fig. 3). This indicates that the majority oil in the fluid inclusions is of low maturity. 422 

Indeed, hydrocarbons of different maturity or having experienced multiple migration 423 

events commonly exhibit a range of fluorescence colors (Burruss, 1985; Chen, 2014; 424 



McLimans, 1987; Stasiuk and Snowdon, 1997). Therefore, unlike the previous fluid 425 

inclusion results from the Yingmaili oilfield, west of the Halahatang oilfield (Zhu et al., 426 

2013a), the fluid inclusions of this study indicate that the Halahatang oilfield experienced 427 

a complex history of hydrocarbon evolution. For example, the blue fluorescing high 428 

maturity oil in some of the hydrocarbon bearing inclusions, although uncommon, maybe 429 

related to late stage hydrocarbon migration (Guo et al., 2016; Shi et al., 2015; Su et al., 430 

1991).  431 

The Th-salinity bivariate plot (Fig. 6B) for the aqueous FIs defines two groups: a low Th 432 

(<100 ºC) with <15 wt % NaCl eq. fluid and a fluid with Th >110 ºC and a salinity range 433 

between ~6 and 22 wt % NaCl eq. This division may reflect at least two stages of 434 

aqueous fluid movement. The broad range in Th values of the hydrocarbon bearing 435 

inclusions (~24 - 122 ºC) may reflect post-entrapment changes to the inclusion bearing 436 

fluid. This is further supported by the positive correlation between the vapor bubble 437 

volume percent (Fv % at 20 ºC) and the Th values (Fig. 6C) (Bourdet et al., 2008). The 438 

measured inclusions with the highest Th (>100 ºC) also have the highest Fv (13.9 %) 439 

values indicating post-entrapment modification. Furthermore, homogenization 440 

temperatures can decrease due to post-entrapment thermal cracking (Okubo, 2005). In 441 

our study, the two hydrocarbon bearing inclusions with the lowest Th values (~25 ºC and 442 

43 ºC) also possess the highest CH4 volume (~95 and 84 μm3, Table 3), which may 443 

indicate that some of the oils in the Halahatang oilfield have experienced thermal 444 

cracking. In general, the Th of hydrocarbon bearing fluid inclusions can also be modified 445 

by other post-entrapment events or processes e.g.: necking-down and re-equilibration 446 

(Bourdet et al., 2008; Larson et al., 1973). Therefore, the Th of the aqueous fluid 447 



inclusions that are coeval with the hydrocarbon-bearing inclusions are used to constrain 448 

the trapping temperature of the fluid that is saturated with CH4 (Nedkvitne et al., 1993; 449 

Visser, 1982). The isochores and isopleths for the aqueous inclusions are plotted as the 450 

dash-point lines in P-T space (Fig. 7C). For comparison, isochores are also drawn for 451 

non-coeval aqueous inclusions in Figure 7C. The aqueous inclusions coeval with the 452 

hydrocarbon-bearing inclusions display a unimodal Th distribution (~61 to 102 ºC; mean 453 

Th = 82.1 ºC, n = 23) (Fig. 7B). Two Th values were used to model the fluid trapping 454 

conditions (Fig. 7C) i.e. Th of 83.2 ºC (a coeval aqueous inclusion) the other represents 455 

the mean Th value (~82.0oC). The solid lines in Figure 6C are the isochores (and 456 

isopleths) for the three oil bearing inclusions plotted in Figure 5C. The intersections of 457 

the isochores for the oil-bearing inclusion (solid lines, Fig. 7C) and the selected coeval 458 

aqueous inclusions provide estimated fluid trapping temperatures of 100 to 110 ºC and 459 

fluid trapping pressures of ~39 to 59 MPa (Fig. 7C).  460 

Basin modelling coupled with fluid inclusion analysis has been widely applied to 461 

constrain the timing of hydrocarbon charging in petroleum systems (Cao et al., 2006; 462 

Guo et al., 2012; Roberts et al., 2004). In the Halahatang depression, basin modelling 463 

based on wells Ha601 and Ha9 suggest that the Early Palaeozoic source units were buried 464 

to ~3500 m (11,483 ft) and underwent hydrocarbon maturation between the 465 

Carboniferous and Permian (Zhang et al., 2007a; Zhu et al., 2012). Plotting the modelled 466 

Th data from this study with the previous basin model, one prolonged oil migration event 467 

during the Permian is proposed (Fig. 7A), which agrees with previous fluid inclusion 468 

studies of the Halahatang depression that also indicated the migration of hydrocarbons 469 

during the Late Permian (Xiao et al., 2012).  470 



Authigenic illite is one of the last phases formed mineral cements prior to hydrocarbon 471 

migration into a sandstone reservoir (Hamilton et al., 1989). If the displacement of an 472 

aqueous pore fluid is replaced by hydrocarbons this leads to the cessation of illite 473 

formation (Lee et al., 1985). The last formed illite can be used to determine the maximum 474 

timing of hydrocarbon emplacement or migration (Hogg et al., 1993). Among the many 475 

diagenetic clay mineral products amenable for geochronology, illite is the only commonly 476 

occurring diagenetic mineral in sandstone reservoirs that contain sufficient long-lived 477 

radioisotope (40K), which permit the determination of its formation age (Hamilton et al., 478 

1989). Although there is no sandstone reservoir in the Halahatang depression, in the 479 

Yingmaili Oilfield, ~30 km (~18.6 mi) northwest of the Halahatang depression, the 480 

Silurian Keping Formation sandstone reservoir is well-developed (Li et al., 2009). This 481 

sandstone strata is a reservoir to bitumen/oil and gas (Zhang and Luo, 2011). 482 

Hydrocarbons of the Silurian Keping Formation share a similar origin to hydrocarbons 483 

reservoired in Ordovician strata and thus may have charged at the same time (Zhu et al., 484 

2013a). Published illite K-Ar isotope data in the Keping Formation sandstone reservoir 485 

(Zhang and Luo, 2011; Zhu et al., 2012) could aid in understanding the petroleum 486 

evolution (migration) in the Halahatang oilfield. Seven sandstone samples from different 487 

wells (YM11, YM34, YM35, YM35-1) and depths (Fig. 1C) show a decreasing age trend 488 

from the northwest (293 ± 2) to the southeast (255 ± 3 Ma) (Zhang and Luo, 2011; Zhu et 489 

al., 2012). The much younger illite K-Ar date than the deposition age of the Keping 490 

Formation indicates the sandstone samples contain no or little detrital illitic 491 

contamination and that the K-Ar date obtained from the fine fraction should 492 

approximately reflect the timing of diagenetic illite formation. Except for the Yingmaili 493 



oilfield which is near to the Halahatang oilfield, other K-Ar dates in Tarim Basin, e.g., the 494 

Hadexun oilfield in the Northern Depression and Tazhong oilfield, respectively ~50 km 495 

(~31 mi) and ~100 km (~62 mi) south to the Hahalatang depression (Fig. 1B), also 496 

possess illite K-Ar dates of ~250 Ma and ~230 Ma, respectively (Zhang et al., 2007b; 497 

Zhu et al., 2013b). All the illite K-Ar dates (~280 - 230 Ma) from the central and northern 498 

Tarim Basin coincide with the above fluid inclusion and basin modelling data that show 499 

the major hydrocarbon migration and accumulation occurred predominantly during 500 

between the Mid to Late Permian.  501 

Petroleum evolution is a complex process including oil generation, migration and finally 502 

accumulation or destruction. Oil generation, which leads the whole evolution process, is 503 

one key factor. Previous research has shown that oil generation is a multi-step procedure 504 

involving bitumen formation from the kerogen and oil generation from the bitumen, and 505 

that these two steps are closely related (Lewan, 1985). Oil/bitumen/pyrobitumen Re-Os 506 

analysis, which is a new and challenging method, has shown potential in constraining the 507 

absolute timing of the oil/bitumen/pyrobitumen generation (Cumming et al., 2014; Finlay 508 

et al., 2011; Ge et al., 2016; Lillis and Selby, 2013; Liu et al., 2018; Selby and Creaser, 509 

2005). Although the GC-MS analysis and fluid inclusion analysis indicate that some oil 510 

samples in this study have suffered from biodegradation and secondary migration, 511 

however, previous research has shown that biodegradation do not significantly affect the 512 

Re-Os systematics of oil (Lillis and Selby, 2013). Moreover, and if the oils generated 513 

during one period, then multiple oil migration episodes following the generation will not 514 

disturb the hydrocarbon Re-Os system (Finlay et al., 2011; Lillis and Selby, 2013; Selby 515 

et al., 2005).  516 



The Re-Os data for all oil samples, except sample Ha15-2, yield a Model 3 Re-Os age of 517 

285 ± 48 Ma (Osi = 1.08 ± 0.20 [18.5 %], MSWD = 6.1). The large age uncertainty 518 

(~17 %) and MSWD value is beyond that associated with analytical uncertainty (~1.0), 519 

and is considered to be directly related to the variation in the initial 187Os/188Os ratio (Osi) 520 

of the sample set (Cohen et al., 1999; Ludwig, 2008) (Fig. 8; Table 4). Given that oils are 521 

generated from a source horizon that can be both stratigraphically (10s to 100s of m/ft) 522 

and geographically (10s to 100s kilometers/miles) expansive, the ability for oil sampled 523 

across a reservoir to possess the same initial Osi ratio can be challenged (see (Lillis and 524 

Selby, 2013)), but can also exhibit a limited range in values ((Liu et al., 2018)and 525 

references therein). The variation in Osi values could also relate to the oil sampled being 526 

associated with difference stages of the oil generation of a petroleum system (Liu et al., 527 

2018).  528 

The ~285 Ma Re-Os date, including its uncertainty of 48 Ma, is in good agreement with 529 

the understanding of the timing of oil generation in northern Tarim Basin (Zhu et al., 530 

2013a; Zhu et al., 2012). Basin modelling both in the Halahatang and Yingmaili oilfields 531 

of the northern Tarim Basin, suggest that a Paleozoic source was buried to ~3000 m 532 

(~9842 ft) and underwent hydrocarbon maturation during the Late Carboniferous to Early 533 

Permian (Zhu et al., 2013a; Zhu et al., 2012). Although possessing a relatively large 534 

uncertainty (48 Ma), the ~285 Ma Re-Os date, which is nominally slightly older than the 535 

oil migration / accumulation timing constrained by basin modelling coupled with fluid 536 

inclusion analysis and the reservoir illite K-Ar dates (see above), suggests that the Re-Os 537 

date represents the best absolute estimate for the timing of oil generation in the 538 

Halahatang oilfield. 539 



The oil sample Ha15-2 plots to right of the defined best-fit line (isochron) of the bulk of 540 

the Re-Os data for the oil sample set (Fig. 8). In comparison to the other oil samples, 541 

sample Ha15-2 also possesses different parameters in biomarker analysis 542 

(C29NOR25H/C30H = 0.15, Ts/(Ts+Tm) = 0.03) indicating the sample has experience post-543 

generation alteration. Furthermore, although of limited abundance, the presence of oil-544 

bearing fluid inclusions with high Th (>120 ºC) and a CH4 volume of ~ 90 μm3 of this 545 

study (Table 3) also indicate thermal cracking may have occurred in regions in the 546 

Halahatang oilfied. Moreover, the basin modelling shows that the Paleozoic strata in this 547 

area have been buried to ~7000 m (~ 22,966 ft) since the Late Neogene (Fig. 7A) (Zhu et 548 

al., 2012), and that during the last ~10 Myrs the high temperatures (>150ºC) may have 549 

led to thermal cracking of oil, particular in deeper parts, of the Halahatang oilfield (eg, 550 

Ha 15-2 oil). Previous work on TSR affected oil from the Manderson, South of the 551 

Bighorn Basin (Lillis and Selby, 2013) and pyrobitumen from Majiang - Wanshan 552 

reservoir, South China (Ge et al., 2016) have shown that the high temperature controlled 553 

thermal cracking can reset the Re-Os systematics in the hydrocarbons (oil/bitumen). The 554 

high Th and CH4 volume evidence from fluid inclusions, and basin modelling suggest 555 

that the thermal cracking which could lead to gas formation (Hill et al., 2003; Huc et al., 556 

2000) may have resulted in the Re-Os characteristics shown by oil sample Ha15-2. 557 

Additional research on similar oils to Ha15-2 from the Halahatang oilfield will be 558 

necessary to see if the Re-Os systematics are still being effected by thermal cracking as it 559 

has been suggested the closure temperature of Re-Os in thermal cracked oil is ≤120˚C 560 

(Ge et al., 2016; Lillis and Selby, 2013).  561 

5.3 Petroleum evolution in the Halahatang depression 562 



Based on the general tectonic evolution of the Tarim Basin, and combining the oil Re-Os 563 

dating and fluid inclusion analysis of this study from the Halahatang depression, and 564 

previous basin modeling and illite K-Ar isotope dates from Tarim Basin, the petroleum 565 

evolution in the Halahatang depression can be summarized as follows. Exhumation of 566 

Silurian strata driven by the Caledonian Orogeny during the Devonian (Fig. 9A) (Lin et 567 

al., 2015), the Tarim Basin transferred into an extensional environment between the 568 

Carboniferous and Permian (Zhang et al., 2007a). The continued subsidence during this 569 

period led to the burial (>3500 m) (>11483 ft) of the Paleozoic source units (Cambrian to 570 

Ordovician shales/mudstone) and oil generation during the Early Permian (Fig. 9B) 571 

(~285 Ma Re-Os oil date). The closure of the Tian Shan Sea (Late Hercynian tectonic 572 

event) caused a phase of uplift and exhumation during the Mid-Late Permian that resulted 573 

in the cessation the oil generation (Lin et al., 2015; Zhang et al., 2007a). However, 574 

tectonic instability, as well as, the simultaneous formed faults provided pathways for oil 575 

migration and accumulation (Zhu et al., 2013c). Both basin modelling and coupled fluid 576 

inclusion analysis of this study and previous illite K-Ar dating (~280 - 230 Ma) within 577 

central and northern Tarim Basin (Zhang et al., 2007b; Zhang and Luo, 2011; Zhu et al., 578 

2012; Zhu et al., 2013b) show that hydrocarbon migration and accumulation occurred 579 

predominantly during the Mid-Permian, but also during the Early Triassic (Fig. 9C). The 580 

Tarim Basin changed to a continental sedimentary depositional environment as of the 581 

Mesozoic (Zhang and Huang, 2005). The basin burial history of the Halahatang 582 

depression shows a continuous sedimentary deposition since the Late Triassic including a 583 

rapid sedimentation since the Neogene (Fig. 9D). This has resulted in the deep burial 584 

(~7000 m) (22965 ft) of the Ordovician reservoirs. The deep burial and high temperatures 585 



(>150 ºC) are suitable for oil cracking to occur. Both the high Th and CH4 volume 586 

observed in oil-bearing fluid inclusion and the oil Re-Os isotope characteristics of Ha 15-587 

2 oil show evidence of thermal cracking in parts of the Halahatang oilfiled. However, the 588 

organic geochemistry (Fig. 4) (Table 2), fluid inclusion analysis (Fig. 3) (Table 3) and 589 

Re-Os data (Fig. 8) of this study suggests that thermal cracking of oil in the Halahatang 590 

depression is neither prolonged nor widespread. 591 

 592 

6 Conclusions  593 

Combining the organic geochemical analysis, fluid inclusion analysis and Re-Os isotope 594 

analysis of the Halahatang oilfiled, in addition to previously published basin modeling 595 

and illite K-Ar dating in Tarim Basin, the petroleum evolution of the Halahatang oilfield, 596 

Northern Tarim Basin is quantitatively constrained. The organic geochemistry analyses 597 

show the oil samples belong to same family, with the oils derived from a source 598 

deposited in an anoxic marine environment, possess low to middle maturity and have 599 

undergone limited biodegradation. The ~285 Ma Re-Os date coincides with the 600 

hydrocarbon trap evolution, the Cambrian-Ordovician source rock maturation history 601 

(Zhang et al., 2007a), basin modelling result for the Halahatang depression, and the 602 

nearby Yingmai Basin indicating that the Re-Os data records the timing of oil generation. 603 

Traditional basin modelling coupled with fluid inclusion analysis are in good agreement 604 

with published illite K-Ar dates (280 - 230 Ma) (Zhang et al., 2007b; Zhang and Luo, 605 

2011; Zhu et al., 2012; Zhu et al., 2013b) in the Tarim basin and suggest that oil 606 

migration/accumulation occurred during the Mid-Permian to Early Triassic. The Re-Os 607 

geochemistry of Ha15-2, and oil-bearing fluid inclusion analysis suggest that some oils in 608 



the Halahatang depression have experienced thermal cracking since the Neogene.  609 

Integrating fluid inclusion analysis, reservoir illite K-Ar dating and Re-Os oil analysis, 610 

this work quantitatively establishes the entire petroleum evolution (generation, 611 

migration/accumulation) process in the Halahatang depression of the northern Tarim 612 

Basin. In addition to Tarim basin, the coupled analysis of Re-Os oil geochronology with 613 

K-Ar dating and fluid inclusions is also applicable to petroleum systems worldwide to aid 614 

in the understanding of both the temporal and spatial evolution of hydrocarbon systems. 615 
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 984 

Figure captions  985 

Fig. 1. (A) Location of the Tarim Basin, China. (B) Structural unit distribution of the 986 

Tarim Basin. (C) Regional map of the Halahatang depression, Yingmaili Uplift, Luntai 987 

Uplift, Lunnan Uplift and the Northern Depression (Substantially modified from (Zhu et 988 

al., 2012)). Also shown are the sample locations for the Re-Os analysis of this study and 989 

the illite K-Ar analysis (Zhang and Luo, 2011; Zhu et al., 2012). The dash line A-A’ 990 

shows the location of the cross section profile presented in Figure 8. 991 

 992 

Fig. 2. Combined Stratigraphic sequences, hydrocarbon system and tectonic events in the 993 

north Tarim Basin. Substantially modified after Chang et al., 2013a; Lin et al., 2015 and  994 

Zhang and Huang, 2005  995 

 996 

Fig. 3. Photomicrographs of (A) an example of a liquid-rich, two-phase (L+V; L>V) 997 

aqueous inclusion (~10 microns in longest dimension) in sample Ha9 and (B) an example 998 

of a two-phase hydrocarbon bearing fluid inclusion (~10 microns in longest dimension) 999 

in sample Ha9. (C, D) examples of hydrocarbon bearing fluid inclusions under 1000 



fluorescent light in sample Ha9. 1001 

 1002 

Fig. 4. GC, m/z 191 and m/z 217 mass chromatogram of the oil samples (Ha9, Ha11, 1003 

Ha701, XK4-3 and Ha15-2) in Halahatang oilfield, northern Tarim Basin.  1004 

 1005 

Fig. 5. (A). plots of Pristane/nC17 and Phytane/nC18 alkane ratios for sampled oils. (B)  1006 

Histogram of the Pr/Ph ratios for sampled oils. (C) Distribution of the tricyclic terpanes 1007 

(ratios of C23TT/C21TT, C23TT/C24TT, C19TT/C23TT and C24TET/C26TT) for the samples 1008 

oils. (D) Histogram of the Ts/Ts+Tm ratio for the sampled oils. (E) Plots of 1009 

C29ɑɑɑ20S/(20S+20R)(~0.43) and C29ββ/(ββ+ɑɑ) (~0.57) of the sampled oils. (F) 1010 

Histogram of the C29Nor25H/C30H ratio for the sampled oils. 1011 

 1012 

Fig. 6. (A) A Th frequency distribution histogram of aqueous, coeval (with hydrocarbon-1013 

bearing fluid inclusions) aqueous and hydrocarbon-bearing fluid inclusions in sample 1014 

Ha9. (B) A Th-salinity bivariate plot of aqueous fluid inclusions in sample Ha9. (C) A 1015 

bivariate plot of Fv (at 20°C) Th for three selected hydrocarbon bearing fluid inclusions 1016 

from sample Ha9. Seven oil types after (Bourdet et al., 2008) are also plotted for 1017 

reference indicating that the fluid inclusion hosted oils in sample Ha9 similar in 1018 

composition to N. America volatile oils (NA = North America).  1019 

 1020 

Fig. 7. (A) A burial history temperature-time plot for the Halahatang oilfield, showing the 1021 

key time for oil migration and or accumulation. (B) A Th frequency distribution 1022 

histogram for aqueous fluid inclusions coeval with hydrocarbon-bearing fluid inclusions 1023 



in sample Ha 9. (C) A P-T plot of isopleths and isochores for aqueous and hydrocarbon 1024 

bearing fluid inclusions in Ha9. Isopleths and isochores of the hydrocarbon fluids are 1025 

determined using PIT modeling (Montel, 1993; Pironon, 2004), whereas isopleths and 1026 

isochores for the aqueous fluids were generated using (Duan and Mao, 2006). The dash-1027 

point lines: coeval aqueous fluid inclusions (PI with AI). The dash lines: non-coeval 1028 

aqueous fluid inclusions (AI). The solid lines: three hydrocarbon bearing fluid inclusions 1029 

(PI)(plotted in Fig 5C) and are coeval with the aqueous fluid inclusions. Intersections 1030 

between the coeval isochores yield estimates of true fluid trapping temperatures and 1031 

pressures. See text for discussion. 1032 

 1033 

Fig. 8. Re-Os isochron plot of all oil samples Ha9, Ha9rpt, Ha11, Ha701, XK4-3. Data-1034 

point ellipses shown at the 2-sigma level absolute uncertainty. The Re-Os data for all 1035 

samples, except Ha15-2 and Ha15-2rpt, yield a Re-Os date of 285 ± 48 Ma, with an 1036 

initial 187Os/188Os of 1.08 ± 0.20 (MSWB = 6.1). Ha9rpt and Ha15-2rpt are repeated 1037 

analysis of samples Ha9 and Ha15-2. 1038 

 1039 

Fig. 9. Petroleum evolution model for the Halahatang oilfield, northern Tarim Basin. (A) 1040 

Halahatang depression during the Late Silurian. (B). Oil generation during the Early 1041 

Permian. (C) Oil migration/accumulation process during the Late Permian to Early 1042 

Triassic. (D) Present day configuration of the Halahatang oilfield after continuous 1043 

sedimentation since the Late Triassic. See text for discussion.  1044 

 1045 
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Table 1. Physical properties, sulfur content and component of the oil from the halahatang oilfield.  

Well  

name 

Depth  

(m) 

Formation 

Name 
Density (g/cm3) Viscosity 

(mPa·s, 50 ºC) 

API 

vaule 

Wax 

(%) 

Sulfur 

(%) 

Saturate 

(%) 

Aromatic 

(%) 

Resin 

(%) 

Asphaltene 

(%) 
20 ºC 50 ºC 

Ha 9 6598-6710 
Ordovician

Yijianfang 
0.879 0.859 6.92 29.48 3.80 0.84 57.33 10.00 6.67 23.33 

Ha 11 6658-6748 
Ordovicia 

Yijianfang 
0.833 0.812 2.62 38.37 6.10 0.50 64.67 14.33 3.67 14.33 

Ha 15-2 6559-6598 
Ordovician

Yijianfang 
0.844 0.822 3.15 36.15 8.60 0.63 56.00 18.00 4.33 18.67 

Ha 701 6557-6618 
Ordovician

Yijianfang 
1.011 0.992 342.3 8.46 / 0.67 46.92 13.36 3.42 33.56 

XK4-3 6834-6850 
Ordovician

Yijianfang 
0.88 0.86 7.96 29.30 5.90 0.59 55.49 26.55 5.24 3.56 

/: Not measured 

 

 

 

 

 

 

 



 

 

Table 2. The biomarker parameters of the oil samples from Halahatang oilfield. 

Sample 
name Pr/nC17 Ph/nC18 Pr/Ph C23TT/C21TT C23TT/C24TT C19TT/C23TT C24TET/C26TT Ts/(Ts+Tm) GAM/C30H 

Ha9 0.27 0.55 0.87 2.02 1.75 0.13 0.49 0.38 0.19 
Ha11 0.39 0.51 0.94 2.17 1.67 0.20 0.46 0.55 0.12 

Ha701 0.23 0.64 0.68 2.37 1.93 0.12 0.42 0.37 0.15 
XK4-3 0.47 0.56 0.97 1.78 1.60 0.20 0.47 0.38 0.05 
Ha15-2 0.04 0.07 0.93 1.91 1.72 0.16 0.42 0.03 0.07 

 C30DH/ 
C30H 

C29NOR25H/ 
C30H C21P/C22HP C27R 

(%) 
C28R 
(%) 

C29R 
(%) 

C29 
ɑɑɑ20S/(20S+20R) 

C29 
ββ/(ββ+ɑɑ)  

Ha9 0.10 1.15 3.12 56.69 7.56 35.75 0.30 0.57  
Ha11 0.03 0.35 2.98 37.40 20.07 42.53 0.44 0.55  

Ha701 0.13 2.61 4.20 65.37 7.02 27.60 0.48 0.57  
XK4-3 0.10 0.64 5.69 49.64 15.96 34.39 0.47 0.57  
Ha15-2 0.10 0.15 4.15 42.20 22.70 35.11 0.48 0.58  
 

 

 

 

 

 



Table 3. Summary of petrographic observations, microthermometry, Laser Raman Microspectroscopy and 

CSLM results of aqueous and oil-bearing inclusions for sample Ha9. 

Sample 
Name 

Inclusion 
No. FI types types Th 

(ºC) 
Error 
(ºC) 

Raman  
Salinity 

wt% (NaCl 
aq.) 

Raman 
Salinity 
( molal) 

CH4 
 

(molal) 

Bulk 
volume  
(μm3) 

Bubble 
volume 
(μm3) 

Fv  
at 20ºC  

(%) 

Relative 
error % 

Ha 9-1A 42 2-phase L-
V oil 

Calcite 
cement 52.8 2        

Ha 9-1A 43 2-phase L-
V oil 

Calcite 
cement 52.6 1        

Ha 9-1A 44 2-phase L-
V aqueous 

Calcite 
cement 98.1 0.2 14.6 3.02 0.1     

Ha 9-1A 45 2-phase L-
V oil 

Calcite 
cement 25.6 0.5    94.7 3.5 3.7 17 

Ha 9-1B 45b 2-phase L-
V oil 

Calcite 
cement n.m     32.6 1.8 5.1 49 

Ha 9-1B 46 2-phase L-
V aqueous 

Calcite 
cement 85.8 2        

Ha 9-1B 47 2-phase L-
V oil 

Calcite 
cement 25.1 0.3        

Ha 9-1B 48 2-phase L-
V aqueous 

Calcite 
cement 71.7 0.3        

Ha 9-1B 49 2-phase L-
V oil 

Calcite 
cement 57.2 0.2        

Ha 9-1B 50 2-phase L-
V aqueous 

Calcite 
cement 86.7 2        

Ha 9-1B 68 2-phase L-
V aqueous 

Calcite 
cement 83.2 0.2 14.2 2.88 0.017- 

0.026     

Ha 9-1B 69 1-phase L 
aqueous 

Calcite 
cement   18.6 4.04      

Ha 9-1C 51 2-phase L-
V oil 

Calcite 
cement 54.2 0.2        

Ha 9-1C 52 2-phase L-
V oil 

Calcite 
cement 24.6 0.3        

Ha 9-1C 53 2-phase L-
V oil 

Calcite 
cement 29.2 0.3        

Ha 9-1C 54 2-phase L-
V oil 

Calcite 
cement 37 0.2        

Ha 9-1C 55 2-phase L-
V aqueous 

Calcite 
cement 83.8 1        

Ha 9-1C 56 2-phase L-
V aqueous 

Calcite 
cement 91.6 2        

Ha 9-1C 57 2-phase L-
V aqueous 

Calcite 
cement 107.1 2        

Ha 9-1C 58 2-phase L-
V aqueous 

Calcite 
cement 77 1        

Ha 9-1C 59 2-phase L-
V aqueous 

Calcite 
cement 76.1 1 15.1 3.1 n.m.     

Ha 9-1C 60 2-phase L-
V aqueous 

Calcite 
cement 83.3 0.5        

Ha 9-1D 61b 2-phase L-
V oil 

Calcitized 
bioclast 122 2        

Ha 9-1D 62 2-phase L-
V oil 

Calcitized 
bioclast 48.9 1        

Ha 9-1D 63 2-phase L-
V aqueous 

Calcitized 
bioclast 79.5 0.5        

Ha 9-1D 64 2-phase L-
V aqueous 

Calcitized 
bioclast 80.9 1        

Ha 9-1D 65 2-phase L-
V aqueous 

Calcitized 
bioclast 82.9 1        

Ha 9-1D 67 2-phase L-
V aqueous 

Calcitized 
bioclast 79.6 1        

Ha 9-2A 1 2-phase L-
V aqueous 

Calcitized 
bioclast 90.6 0.5        

Ha 9-2A 2 2-phase L-
V aqueous 

Calcite 
cement 76.1 0.5        

Ha 9-2A 3 2-phase L-
V aqueous 

Calcite 
cement 102.3 1        

Ha 9-2A 7 2-phase L-
V aqueous 

Calcite 
cement 75.4 1        

Ha 9-2A 8 2-phase L-
V aqusous 

Calcite 
cement 74 0.3        

Ha 9-4A 10 2-phase L- Calcite 77.3 0.3        



V aqueous cement 

Ha 9-4A 11 2-phase L-
V aqueous 

Calcite 
cement 75.1 1        

Ha 9-4A' 12 2-phase L-
V oil 

Calcite 
cement 59.1 0.5        

Ha 9-4A' 13 2-phase L-
V oil 

Calcite 
cement 58.1 2        

Ha 9-4B 15 3-phase L-
V oil 

Calcitized 
bioclast 50.8 1        

Ha 9-4C 16 2-phase L-
V oil 

Calcitized 
bioclast 60 1        

Ha 9-4C 17 2-phase L-
V oil 

Calcitized 
bioclast 30.9 1        

Ha 9-4C 18 2-phase L-
V oil 

Calcitized 
bioclast 79.9 1        

Ha 9-4D 20 2-phase L-
V aqueous 

Calcite 
cement 66.4 0.5 8.6 1.63 n.m.     

Ha 9-4D 21 2-phase L-
V aqueous 

Calcite 
cement 66.3 2 9.5 1.82 d.l.     

Ha 9-4D 21b 2-phase L-
V aqueous 

Calcite 
cement 117 1 6.7 1.24 0.067-

0.075     

Ha 9-4D 21c 2-phase L-
V aqueous 

Calcite 
cement 134.3 2 13.2 2.63 n.m.     

Ha 9-4D 22 2-phase L-
V oil 

Calcite 
cement 53.5 0.3    29.4 2.6 8.7 14 

Ha 9-4E 23 2-phase L-
V oil 

Calcitized 
bioclast 68.1 0.5        

Ha 9-4E 24 3-phase L-
V oil 

Calcitized 
bioclast 63.4 2        

Ha 9-4E 25 2-phase L-
V oil 

Calcitized 
bioclast 43.1 1    84.4 5.6 6.2 20 

Ha 9-4E 26 2-phase L-
V oil 

Calcitized 
bioclast 51.8 2        

Ha 9-4E 26b 2-phase L-
V oil 

Calcitized 
bioclast n.m.     21.8 1.6 6.7 19 

Ha 9-5A 27 2-phase L-
V aqueous 

Calcitized 
bioclast 61.2 0.3        

Ha 9-5A 28 2-phase L-
V aqueous 

Calcitized 
bioclast 99.3 2        

Ha 9-5A 70 2-phase L-
V aqueous 

Calcitized 
bioclast 135.2 1 16.7 3.51 d.l.     

Ha 9-5A 71 2-phase L-
V aqueous 

Calcitized 
bioclast 141.1 1 20.4 4 d.l.     

Ha 9-5B 30 2-phase L-
V aqueous 

Calcite 
cement 78 0.5 9.8 1.87 d.l.     

Ha 9-5B 31 2-phase L-
V aqueous 

Calcite 
cement 76.4 0.3 8.2 1.55 d.l.     

Ha 9-5B 32 2-phase L-
V aqueous 

Calcite 
cement 111 1        

Ha 9-5B 33 2-phase L-
V aqueous 

Calcite 
cement 95.5 1        

Ha 9-5B 34 2-phase L-
V aqueous 

Calcite 
cement 83.8 0.5 8.9 1.69 d.l.     

Ha 9-5B 35 2-phase L-
V aqueous 

Calcite 
cement 100.3 1        

Ha 9-5B 35b 2-phase L-
V aqueous 

Calcite 
cement n.m.  9.3 1.77 d.l.     

Ha 9-5C 36 2-phase L-
V oil 

Calcitized 
bioclast 72.7 1        

Ha 9-5C 37 2-phase L-
V oil 

Calcitized 
bioclast 71.2 1        

Ha 9-7A 38 2-phase L-
V oil 

Calcitized 
bioclast 51.4 0.3        

Ha 9-7A 39 2-phase L-
V aqueous 

Calcitized 
bioclast 84.5 0.5        

Ha 9-7A 40 2-phase L-
V aqueous 

Calcitized 
bioclast 92 1        

Ha 9-7A 41 2-phase L-
V aqueous 

Calcitized 
bioclast 84 0.3        



 

Table 4. Synopsis of the Re-Os isotopic data of asphaltene fractions from oil from the Halahatang oilfield, Tarim basin, China. 

Sample Re 
(ppb) ± Os 

(ppt) ± 
192Os 
(ppt) ± 187Re/188Os ± 187Os/188Os ± rho *Osi285Ma 

Ha 9 0.81 0.01 37.4 0.4 12.9 0.2 125.4 2.8 1.66 0.04 0.723 1.06 

Ha 9rpt 1.23 0.02 57.2 0.7 19.5 0.4 125.2 3.2 1.74 0.04 0.732 1.14 

Ha11 0.56 0.02 12.1 0.5 3.9 0.4 283.3 30.4 2.30 0.24 0.920 0.95 

Ha701 0.07 0.01 4.9 0.3 1.7 0.2 78.7 16.0 1.48 0.19 0.612 1.11 

XK4-3 0.85 0.02 8.8 0.6 2.3 0.5 736.8 147.9 4.68 0.93 0.989 1.17 

Ha15-2 9.47 0.03 35.2 0.5 11.4 0.3 1655.2 39.7 2.25 0.05 0.970 -5.63 

Ha15-2rpt 5.86 0.02 22.0 0.4 7.1 0.3 1636.7 59.9 2.25 0.08 0.983 -5.54 
*Osi285Ma = 187Os/188Os measured calculated at the time of oil generation (258 Ma) to yield the initial 187Os/188Os composition. 
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