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DEPOSITION, DIFFUSION, AND NUCLEATION ON AN INTERVAL
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Motivated by nanoscale growth of ultra-thin films, we study a model of
deposition, on an interval substrate, of particles that perform Brownian mo-
tions until any two meet, when they nucleate to form a static island, which
acts as an absorbing barrier to subsequent particles. This is a continuum ver-
sion of a lattice model studied in the applied literature. We show that the
associated interval-splitting process converges in the sparse deposition limit
to a Markovian process (in the vein of Brennan and Durrett) governed by a
splitting density with a compact Fourier series expansion but, apparently, no
simple closed form. We show that the same splitting density governs the fixed
deposition rate, large time asymptotics of the normalized gap distribution, so
these asymptotics are independent of deposition rate. The splitting density
is derived by solving an exit problem for planar Brownian motion from a
right-angled triangle, extending work of Smith and Watson.

1. Introduction. Surface phenomena are important in chemistry, physics, and materials
science. Our probabilistic model originates with the growth of ultra-thin films. The nonequi-
librium dynamics of these self-organized growth processes are of central importance in under-
standing the construction of nanomaterials by deposition of monomers onto a solid substrate.
The materials involved may be crystals, metals, or semiconductors, for example, deposition
may be via vapour, chemical methods, or cathodic sputtering, and surface binding may be
chemical (chemisorption) or physical (physisorption). In certain contexts, thin film growth
is known as “epitaxy”. Nanoscale growth is important in the development of many techno-
logical devices reliant on the remarkable electrical, optical, and thermal properties of thin
films, and developments in construction of nanomaterials and in atomic-scale experimental
observation have fuelled interest over the last couple of decades. We refer to [1–3, 16, 36, 39,
40] for scientific background and technological applications.

Under certain energetic conditions, the early stages of submonolayer growth are described
by so-called Volmer–Weber dynamics. Particles are deposited onto a substrate and undergo
diffusion until sufficiently many particles come into close proximity, when they “nucleate”
to form static islands, which form absorbing barriers with respect to the diffusion of other
particles. The nucleation threshold (i.e., the number of particles that must come together to
nucleate) increases with temperature. As time goes on, more islands form by nucleation,
and these islands grow by the accumulation of additional diffusing particles. Eventually, as
coverage increases, monomers will tend to aggregate on growing islands rather than initiate
new islands, and these growing islands will coalesce into larger structures. Many interesting
aspects of these dynamics are discussed for example, in [3, 4, 7–10, 14, 17, 19, 21, 32–35]
and references therein.

In the present paper we study a one-dimensional model on an interval substrate which is
both space- and time-continuous, in which two particles suffice for nucleation (“binary nu-
cleation”). Ours is a continuum relative of a type of lattice model that has been widely used
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in the applied literature, for example, by Bartelt and Evans [4] and by Blackman and Mul-
heran [9], for both simulation and theoretical investigations; see also [29] for a related early
Monte Carlo study. The model neglects both the spatial extent of islands (this “point island”
assumption is reasonable at low coverage) and also any potential evaporation of particles.

Informally, the model is as follows. At time t = 0, there are no active particles and the
initial island locations are {0,1}, the endpoints of the interval.

• Deposition. Particles are deposited on [0,1] according to a space–time Poisson process on
[0,1] ×R+ with intensity λ > 0.

• Diffusion and nucleation. Each deposited particle performs an independent Brownian mo-
tion until it either (i) hits an existing island, or (ii) meets another diffusing particle. In
case (i), the particle is absorbed by the island. In case (ii), we say that nucleation has oc-
curred, and a new island is formed at the collision site. In either case, the particle’s position
becomes fixed for all subsequent time.

In Section 2 we present our main results for the nucleation process, which can be under-
stood with the informal definition of the process given above. The first (Theorem 2.2) is a
description of the λ → 0 limit as a particular Markovian interval-splitting process, character-
ized in part by a splitting density φ0 on [0,1]. In contrast to previous applied work, which
proposed various Beta distributions in this role, our φ0 does not seem to have a simple expres-
sion in terms of elementary functions. Our second main result (Theorem 2.3) treats long-time
statistics of the fixed-λ process, in particular, the normalized gap distribution. It turns out that
the large-time statistics of the fixed-λ process can be described via the λ → 0 density φ0, and
so, in particular, the limits are independent of λ. In Section 3 we make some comparisons with
previous work (which mostly lies outside the probability literature) and comment on possible
extensions. A formal construction of our process is presented in Section 4, along with some
fundamental initial observations. The key ingredient in our limit theorems is a quantitative
approximation of the evolution of our process via an interval-splitting kernel; this is derived
in Section 5. This approximation is then used to derive our λ → 0 results (in Section 6) and
our fixed-λ, long-time results (in Section 7). The splitting kernel requires evaluation of the
density φ0, which we reduce to a problem of the exit position of planar Brownian motion from
a right-angled triangle, started from an arbitrary interior point: the solution to this problem,
which extends old work of Smith and Watson [37], is presented in Section 8. In Section 9 we
collect necessary analytic properties of the splitting density φ0, as well as some numerical
approximations. Finally, in Section 10 we apply results of Brennan and Durrett [12, 13] to
derive normalized gap-distribution statistics for interval-splitting processes; this forms an in-
gredient to our results but is presented in some generality so as to facilitate comparison with
the various other interval-splitting parameters that have been proposed in the literature for
related nucleation problems.

We mention briefly that there has been much recent interest in the probability literature in
systems of interacting diffusing particles: see, for example, [5, 15, 38]. Several of these mod-
els include deposition or particle birth, and coalescence of diffusing particles, but coalescing
particles continue to diffuse, rather than nucleate.

2. Main results. We are interested in the interval fragmentation process induced by
our model. We defer a formal construction of the model (based on a marked Poisson
point process) to Section 4 below. Let It denote the number of interior islands at time
t ∈ R+ := [0,∞), so I0 = 0. Set ν0 := 0, and for n ∈ N := {1,2, . . .} denote the time of
the nth nucleation by

νn := inf{t ∈ R+ : It = n};(2.1)

throughout the paper, we adopt the usual convention that inf∅ := +∞. The proof of the
following fact will be given in Section 4.
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LEMMA 2.1. For all λ > 0, νn < ∞ a.s. for all n ∈ N, and limn→∞ νn = ∞, a.s.

Let Zn denote the vector of island locations in [0,1], listed left to right, at time νn, so
Zn ∈ �n where

�n := {
(z0, z1, . . . , zn+1) ∈ [0,1]n+2 : 0 = z0 < z1 < · · · < zn < zn+1 = 1

}
.

Consider the process Z := (Z0,Z1,Z2, . . .). At time νn, the law of Zn+1 is not determined
by Zn alone, since there may still be active particles in the system. However, our first main
result (Theorem 2.2) shows that as λ → 0, the process Z converges to a Markovian interval-
splitting process. We next describe the limiting process.

Let B denote the Borel subsets of [0,1], and for n ∈ N set [n] := {1,2, . . . , n}. Take a
function r : [0,1] → R+ and a probability measure � on ([0,1],B). Assume that r(�) > 0
for all � > 0, and �({0}) = �({1}) = 0. Then define for each n ∈ Z+ := {0} ∪ N a splitting
map �n : �n × [n + 1] × (0,1) → �n+1 by

(
�n(z; j, v)

)
i :=

⎧⎪⎪⎨
⎪⎪⎩

zi if i < j,

zj−1 + v(zj − zj−1) if i = j,

zi−1 if i > j,

(2.2)

for z = (z0, z1, . . . , zn+1) ∈ �n, j ∈ [n + 1], and v ∈ (0,1). We say that the process S :=
(S0,S1,S2, . . .), with Sn = (Sn,0, Sn,1, . . . , Sn,n+1) ∈ �n for all n, is an interval-splitting
process with parameters r and �, if, for all n ∈ Z+, j ∈ [n + 1], and B ∈ B,

(2.3) P
(
Sn+1 ∈ �n(Sn; j,B) | S0,S1, . . . ,Sn

) = r(Sn,j − Sn,j−1)∑
i∈[n+1] r(Sn,i − Sn,i−1)

�(B), a.s.

The sequence of kernels (2.3) and the initial value S0 = (0,1) ∈ �0 determine the finite-
dimensional distributions of S , and hence the law of S as a random element of the product
space �0 × �1 × · · · with the usual (Borel) product topology. In words, the transition from
Sn to Sn+1 is achieved by choosing the interval to be split randomly with probabilities pro-
portional to the function r of each interval length, and the chosen interval is split into two by
choosing a point in the interval according to the distribution �. Interval-splitting processes
in this generality were studied by Brennan and Durrett [12, 13].

Our λ → 0 limit of Z turns out to be an interval-splitting process with a particular r and
�. To describe the � that arises in our limit, we need some more notation. Define

ψ(z) := 24

π4

∑
n odd

an sinnπz, where an := 4

n4 tanh
(

nπ

2

)
− π

n3 ;(2.4)

where “n odd” means n ∈ {1,3,5, . . .}. Note that a1 > 0, but an < 0 for n ≥ 3. In Section 9 we
will use a representation of ψ involving a special function related to the Clausen function to
show that ψ is twice continuously differentiable on [0,1], to give a more rapidly converging
series approximation, and to show that ψ(z) ∼ 3z2 as z → 0, a property that has important
consequences for some of our results, but which is well-hidden in the series representation of
(2.4). The probabilistic meaning of ψ is as a (defective) density arising from an exit problem
for Brownian motion in a right-angled triangle: see Section 8. In particular, although not
obvious from (2.4), ψ(z) > 0 for all z ∈ (0,1). Also set

μ :=
∫ 1

0
ψ(z)dz = 48

π5

∑
n odd

an

n
= 48

π4

∑
n odd

sech2(nπ
2 )

n4 ;(2.5)

the first series follows directly from (2.4), while the second is established in Section 9.
The second series representation in (2.5) is useful for numerical evaluation of μ, because
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FIG. 1. The smooth curve is a numerical estimate of the density φ0 using the approximant φ
k,m
0 for k = 9, m = 5

(see Section 9 for a definition) which is accurate to within 10−10 for all x ∈ [0,1]. The histogram is a simulation
estimate for the distribution of the location of the first nucleation at λ = 0.1 based on 106 samples of a discrete
version of the model on the lattice {0, 1

100 , 2
100 , . . . ,1}, in which any active particle performs continuous-time

simple random walk at rate 1002, and the Poisson deposition rate at each site is λ/100.

sech2(nπ
2 ) decays exponentially in n. Indeed, taking only the terms n = 1,3 in the final sum

in (2.5) suffices to evaluate the first 8 decimal digits of μ ≈ 0.07826895 (see Section 9 for a
justification).

Let φ0 be ψ normalized to be a probability density, and let �0 be the corresponding prob-
ability measure, that is,

�0(B) :=
∫
B

φ0(z)dz := 1

μ

∫
B

ψ(z)dz for B ∈ B.(2.6)

See Figure 1 for an illustration of a numerical approximation to φ0, and see Section 9 for a
discussion of the numerics. We can now state our first main result.

THEOREM 2.2. As λ → 0, the process Z converges, in the sense of total-variation con-
vergence of finite-dimensional distributions, to an interval-splitting process with parameters
r0 and �0, where r0(�) = �4 and �0 is given by (2.6).

When λ ∈ (0,∞) is fixed, there is not such a neat description of the interval-splitting pro-
cess. However, after a long time, when all intervals become very small, scaling arguments
show that diffusion again dominates deposition (we give details below). Roughly speaking,
this means that certain large-time statistics of the fixed-λ process can be asymptotically de-
scribed in terms of the λ → 0 limit given in Theorem 2.2. To state the result, we need to
introduce some notation for the statistics that we wish to consider.

Let (Ln,1,Ln,2, . . . ,Ln,n+1) denote the gap lengths associated with Zn, so if Zn =
(Zn,0,Zn,1, . . . ,Zn,n+1) ∈ �n, then

Ln,i := Zn,i − Zn,i−1 for 1 ≤ i ≤ n + 1.

For x ∈ [0,1], denote the number of interior islands in [0, x] after n nucleations by

Nn(x) := max
{
i ∈ {0,1, . . . , n} : Zn,i ≤ x

};
the total number of interior islands is Nn(1) = Iνn = n. For Un uniform on [n + 1], set

L̃n := Ln,Un

E(Ln,Un)
= (n + 1)Ln,Un,
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the length of a randomly chosen gap, normalized to have unit mean. Denote the empirical
gap size distribution, also normalized, by

En(x) := 1

n + 1

n+1∑
i=1

1
{
Ln,i ≤ x

n + 1

}
for x ∈ R+.

Here is our main result in the case of fixed λ. Note that, for the reasons previously indicated,
the limit distributions do not depend on λ. For a positive function g, we write f (x) ∼ g(x) to
mean the ratio f (x)/g(x) tends to 1.

THEOREM 2.3. Let λ ∈ (0,∞).

(i) We have that limn→∞ supx∈[0,1] |n−1Nn(x) − x| = 0, a.s.
(ii) There exists a continuous probability density function g0 on R+, which can be de-

scribed in terms of r0 and φ0 appearing in Theorem 2.2, such that, for all x ∈ R+,

lim
n→∞P(L̃n ≤ x) =

∫ x

0
g0(y)dy, and, a.s., lim

n→∞En(x) =
∫ x

0
g0(y)dy.

Moreover, there exist constants cg,0, cg,∞, θ ∈ (0,∞) such that

g0(x) ∼ cg,0x
2 as x → 0 and g0(x) ∼ cg,∞

x2 exp
(−θx4)

as x → ∞.

We do not have an explicit expression for g0, but g0 can be characterized in terms of r0
and φ0 via a distributional fixed-point equation derived in [13]: see Section 10. In Section 10
we demonstrate, in a context of more general interval-splitting processes, the key properties
of r0 and φ0 that lead to the tail asymptotics for g0 stated here.

3. Discussion. A Web of Science topic search in May 2020 for “epitaxy” produces over
90,000 titles, covering articles in chemistry, physics, materials science, and so on (for com-
parison, “percolation” produces about half that number). While, as far as we are aware, our
continuum model does not seem to have been considered before, closely related discrete
models have generated significant interest, and have been studied both via simulations and
various interesting, but not fully rigorous, analytical approaches (see, e.g., [4, 9, 21, 33, 35]).
Our model corresponds to a specific case of the models of submonolayer deposition consid-
ered in [9] and elsewhere: here we focus on one dimension, on binary nucleation, and on
regimes where active particles are sparse.

It is natural to seek to extend our model in the following four important ways.

(a) Take the nucleation threshold to be an integer α ≥ 2 (our case is α = 2).
(b) Allow the deposition rate λ to depend on time or on the current number of islands,

with λ → ∞.
(c) Consider substrates in higher dimensions, so that, for example, monomers live in

[0,1]d , d ∈N (the case d = 2 being the most physically relevant).
(d) Permit islands to have spatial extent as an increasing function of the number of

monomers that they have captured.

In discrete models, as α increases nucleations become much rarer, and quantitative differ-
ences are predicted by existing theory (e.g., [21, 34]). In the continuum context, due to the
impossibility of multiple simultaneous Brownian collisions, a meaningful model with α ≥ 3
in one dimension (or α ≥ 2 in dimension d ≥ 2) seems to require an addition of an interaction
radius δ > 0 for particles. Thus addressing (a) and/or (c) may simultaneously require dealing
with (d).
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We raise point (b) because a key feature of the analysis in the present paper is that the
density of active particles is low, and tends to zero as time goes on. On the other hand, much
existing work is concerned with regimes in which, at a typical time, there are many active
particles in the system, and the statistics of the system are driven by a “quasiequilibrium”
between particle deposition and capture by islands [8, 9, 19]. Both regimes are potentially
relevant for physical applications [36], Section 11.2. While it seems likely that the results of
the present paper could be extended to allow λ to grow slowly with time, the methods used
here will not fully extend to the case where the average density of active particles remains
bounded above zero. Suitable models with any/all of the features (a)–(d) provide much scope
for probabilistic investigation.

We discuss some specific points of comparison between our results and earlier work. For
their model, Blackman and Mulheran [9], Section V, consider analogues of the parameters r0

and �0 in our Theorem 2.2, and argue that:

• their analogue of r0(�) scales as �5, rather than our �4;
• their analogue of �0 is the Beta(3,3) distribution, which has density proportional to z2(1−

z)2 over z ∈ [0,1]; this approaches zero as z2, like our φ0.

O’Neill et al. describe arguments for both �3 and �5 scaling for the splitting exponent, and
report simulation estimates that fall between the two [34]. As mentioned above, the arguments
in [9, 34] have many active particles in the system when a nucleation happens, so their results
are not necessarily comparable with ours.

Statistics of the (normalized) gap distribution, such as studied in our Theorem 2.3, have
received a lot of attention, along with the closely-related capture-zone distributions, that is,
the sizes of the Voronoi intervals associated with the islands [9, 21, 33, 35]. Stretched Gamma
distributions of the form g(x) ≈ xθ1 exp(−cxθ2) have been considered (sometimes called the
generalized Wigner surmise [35]), but it has since been accepted that such distributions do
not capture simultaneously the x → 0 and x → ∞ asymptotics. For example, Blackman and
Mulheran [9] argue that, in the regime they are considering, the asymptotic density should
look like

g(x) ≈ x2 as x → 0 and g(x) ≈ 1

x2 exp
(−θx5)

as x → ∞.(3.1)

The predictions of (3.1) are reproduced by a fragmentation approximation [21], while an al-
ternative approach based on distributional fixed-point equations apparently reproduces the
asymptotics in (3.1) at 0 but not at ∞ [33], Section III. The exponent 5 in (3.1) comes from
Blackman and Mulheran’s predicted splitting exponent. In Theorem 10.1 we give a gen-
eral result deriving tail asymptotics for the normalized gap distribution in general interval-
splitting processes, providing a range of asymptotics like (3.1).

4. Construction, regeneration, and scaling. It is convenient to generalize our model so
that the substrate is [0, �] for � ∈ (0,∞). Let C := C(R+,R), the collection of all continuous
functions from R+ to R, and let C0 := {f ∈ C : f (0) = 0}. Let W denote the standard Wiener
(probability) measure on C0, so that W is the law of standard Brownian motion on R started
at the origin.

We build our process from P�,λ, a homogeneous Poisson point process of intensity λ > 0
on [0, �] × R+, where each Poisson point carries an independent C0-valued random mark
distributed according to W . With probability one, all the R+-coordinates of the process are
distinct, and then we may (and do) list the points of P�,λ in order of increasing R+-coordinate
as �1,�2, . . . with �i = (ξi, si, bi), where ξi ∈ [0, �], bi = (bi(r), r ∈ R+) ∈ C0, and 0 <
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s1 < s2 < · · · . We interpret si as the time of deposition of the ith particle, which arrives at
location ξi ∈ [0, �]. Set

xi(r) :=
{
∂ if 0 ≤ r < si,

ξi + bi(r − si) if r ≥ si,
(4.1)

where xi(r) = ∂ is to be interpreted as particle i having not yet arrived by time r , and xi(r) ∈
R is the position of the ith particle at time r ≥ si , ignoring interactions. Let R̄ := R∪ {∂}.

Let I be the set of all finite subsets of [0, �] (the set of possible island locations), let A
denote the set of all finite (or empty) subsets of N (possible labels of active particles), and
let X := R̄

N (locations of the particles, neglecting interactions). From the marked Poisson
process P�,λ, we will construct the process Y := (Yt , t ∈ R+) where Yt = (It ,At ,Xt ) with
It ∈ I, At ∈ A, and Xt := (x1(t), x2(t), . . .) ∈ X. The system described informally in Sec-
tion 1 is captured by It , the locations of the interior islands, and (xj (t), j ∈At ), the locations
of the active particles.

Here is the algorithm to construct Y , starting from I0 = A0 = ∅, and using (Xt , t ∈ R+)

as defined by (4.1).

1. Suppose we have constructed Ys , s ∈ [0, t]. Let i ≥ 0 be such that si ≤ t < si+1 (where
s0 := 0). At time t , let It be the set of interior islands, and let At be the set of indices of the
active particles. For j, k ∈ At , j < k, let

Tj,k := inf
{
r ≥ t : xj (r) = xk(r)

}
,

and, for j ∈ At , set

Tj := inf
{
r ≥ t : xj (r) ∈ It ∪ {0, �}}.

Let a1 < a2 be the (a.s. unique) indices such that Ta1,a2 = minj,k:j<k Tj,k , and let a0 be the
(a.s. unique) index such that Ta0 = minj Tj . Let T = min{Ta0, Ta1,a2}.

2. If T > si+1 then the next arrival occurs before any nucleation or absorption, and we set
Is = It for all s ∈ (t, si+1], As = At for all s ∈ (t, si+1), and Asi+1 = At ∪ {i + 1}. Update
t 
→ si+1 and return to Step 1.

3. On the other hand, if T < si+1, we set Is = It and As = At for all s ∈ (t, T ), and
proceed as follows at time T .

• If Ta1,a2 < Ta0 , nucleation of particles a1, a2 occurs at time T , and we set IT = It ∪
{xa1(T )}, and AT = At \ {a1, a2}.

• If Ta0 < Ta1,a2 , particle a0 is captured by an existing island at time T , and we set IT = It

and AT = At \ {a0}.
Then update t 
→ T and return to Step 1.

LEMMA 4.1. The above construction defines a Markov process Y for all time.

PROOF. The number of Poisson arrivals in time interval [0, t] is a.s. finite, so the num-
ber of active particles at any time is a.s. finite, as is the number of islands. Given a finite
number of active particles and islands at distinct locations, the independence property of the
Poisson process and the Markov property of the Brownian motions imply that the evolution
until the next event (either nucleation, deposition, or adsorption) is Markovian. The point-
transience of planar Brownian motion implies the following facts about multiple indepen-
dent one-dimensional Brownian motions with generic starting points: two Brownian motions
never visit a given point at the same time, three Brownian motions never meet simultane-
ously, and two pairs of Brownian motions have two different first meeting times. Together
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FIG. 2. A cycle [σk, ηk] which starts at time σk with deposition of a particle into [0,1], having no interior
islands. The cycle contains two subsequent depositions, the first nucleation (at time ν1), and a capture of an
active particle by an existing island.

with the fact that deposition locations a.s. never coincide with the locations of any currently
active particles or islands, this means that there is a.s. a well-defined next event, and, up to
and including the time of that next event, active particles and islands are always at distinct
locations. The above algorithm thus gives a well-defined construction from each event to the
next. Thus the process is well-defined for all time, and inherits the Markov property from the
properties of the Poisson process and the Brownian motions. �

We denote by P�,λ the probability measure associated with the process Y constructed
above. In the special case � = 1, we write simply Pλ. For the corresponding expectations
we use E�,λ and Eλ. Let At := |At | denote the number of active particles at time t , and let
It := |It | denote the number of interior islands at time t . Initially, A0 = I0 = 0. Let Ft :=
σ(Ys,0 ≤ s ≤ t) denote the σ -algebra generated by the process up to time t ∈R+.

Define η0 := 0. Also for k ∈N define stopping times

σk := inf{t > ηk−1 : At = 1} and ηk := inf{t > σk : At = 0}.(4.2)

Lemma 4.2 below shows that all these stopping times are finite, a.s.; for k ∈ N, we call the
time interval [σk, ηk] the kth cycle. See Figure 2 for an illustration.

By definition, At = 0 for t ∈ [ηk−1, σk), so nucleation can only occur during the cycles
[σk, ηk]. Up until the first nucleation, the cycles [σk, ηk] encode a regeneration structure that
we will exploit. Let Mt := max1≤i≤It+1 LIt ,i , the length of the longest gap at time t . The next
lemma is somewhat technical, but important: it gives a tail bound for the duration of a cycle.
The intuition is that active particles are captured rather rapidly by existing islands, and faster
still if the gaps between islands are small.

LEMMA 4.2.

(i) For any λ > 0, we have that ηk, σk < ∞ for all k ∈ N, Pλ-a.s.
(ii) For all λ0 ∈ (0,∞) there exist constants δ = δ(λ0) > 0 and C1 = C1(λ0) < ∞ such

that, for all λ ∈ (0, λ0], for all k ∈ N and all t ∈ R+,

Pλ(ηk − σk ≥ t | Fσk
) ≤ C1 exp

(−δM−1
σk

t1/2)
Pλ-a.s.(4.3)

PROOF. For λ > 0, it is easy to see that ηk < ∞ implies σk+1 < ∞, Pλ-a.s.; since η0 = 0
this means σ1 < ∞. Thus to show that ηk, σk < ∞ for all k, it suffices to fix k ∈ N and to
establish (4.3) supposing that σk < ∞, a.s. This is how we proceed.
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Let λ0 ∈ (0,∞) and λ ∈ (0, λ0]. Write M := Mσk
∈ (0,1]. For t ∈ R+, set

Ĩt := Iσk+M2t , Ãt := Aσk+M2t , Ãt := Aσk+M2t , F̃t := Fσk+M2t ,

and x̃j (t) := xj (σk + M2t). In the rest of this proof, when we refer to “time” we mean the
value of t in the index σk + M2t . Let Bt(j) be the event that x̃j (s), j ∈ Ãt , hits Ĩt at some
time s ∈ [t, t + 1]. If Bt(j) occurs, then particle j is no longer active at time t + 1, because
either it has been captured by an existing island, or it has collided with another active particle
in the meantime. Also, |Ãt+1 \ Ãt |, the number of new active particles at time t +1 compared
to time t , is bounded by the number Z̃t of Poisson arrivals in time interval [t, t + 1]. Thus

Ãt+1 − Ãt ≤ Z̃t − ∑
j∈Ãt

1Bt (j),

and, by construction, Z̃t and the Bt(j) are conditionally independent, given F̃t . (This bound
ignores nucleations, which can also eliminate active particles.) For δ > 0,

Eλ

(
eδ(Ãt+1−Ãt ) | F̃t

) ≤ Eλ

(
eδZ̃t | F̃t

) ∏
j∈Ãt

Eλ

(
e−δ1Bt (j) | F̃t

)
.

Given F̃t , Z̃t is Poisson with mean λM2, so Eλ(eδZ̃t | F̃t ) = exp(λM2(eδ − 1)), while

Eλ

(
e−δ1Bt (j) | F̃t

) = 1 − (
1 − e−δ)

Pλ

(
Bt(j) | F̃t

)
.

We claim that there is a constant q > 0 such that

Pλ

(
Bt(j) | F̃t

) ≥ q, a.s., for all t ∈ R+ and all j ∈ Ãt .(4.4)

Indeed, if (wt , t ≥ 0) is standard Brownian motion on R with w0 = 0, then the claim (4.4)
holds with q = P(sup0≤t≤1 wt ≥ 1) = P(sup0≤t≤M2 wt ≥ M), since x̃j (t) has at least one
island within distance M at time t . By the reflection principle for Brownian motion [31],
page 45, q = 2P(w1 ≥ 1) ≈ 0.317.

Using (4.4), since 1 − z ≤ e−z and λM2 ≤ λ0, we get

Eλ

(
eδ(Ãt+1−Ãt ) | F̃t

) ≤ exp
(
λ0

(
eδ − 1

) − qÃt

(
1 − e−δ)).(4.5)

There is an absolute constant δ0 such that eδ − 1 ≤ 2δ and 1 − e−δ ≥ δ/2 for all δ ∈ [0, δ0].
Fix δ ∈ [0, δ0], and let a0 := �6λ0/q�, so a0 ∈ N. If Ãt ≥ a0, then

λ0
(
eδ − 1

) − qÃt

(
1 − e−δ) ≤ 2δλ0 − qa0δ

2
≤ −δλ0.

Thus we obtain from (4.5) that

Eλ

(
eδ(Ãt+1−Ãt ) | F̃t

) ≤ exp(−δλ0) on {Ãt ≥ a0};(4.6)

Eλ

(
eδ(Ãt+1−Ãt ) | F̃t

) ≤ exp(2δλ0) on {Ãt < a0}.(4.7)

Set τ0 := 0 and define, for r ∈N, the stopping times

γr := inf{t ∈ R+ : t > τr−1 + 1, Ãt ≥ a0} and τr := inf{t ∈ R+ : t > γr, Ãt < a0}.
Also define τ ′

r := min{γr + n : n ∈ N, Ãγr+n < a0}. Then, a.s., Ãτ0 = Aσk
= 1 and τr ≤ τ ′

r ;
also, Ãγr is bounded above by a0 plus a Poisson random variable with mean λ0. The Foster–
Lyapunov drift bounds (4.6) and (4.7) show that we may apply Theorem 2.3 of [22] to the
discrete-time process Ãγr , Ãγr+1, . . . and its stopping time τ ′

r − γr to show that, for some
constants θ > 0 and C < ∞, depending only on λ0,

Eλ

(
eθ(τr−γr ) | F̃γr

) ≤ Eλ

(
eθ(τ ′

r−γr ) | F̃γr

) ≤ C a.s., for all r ∈ N.(4.8)
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Next, with Z̃t again the number of depositions during time interval [t, t + 1], we have that
a sufficient condition for Ãt+1 = 0 is that Z̃t = 0 (no new arrivals) and all the active particles
at time t become inactive before time t + 1; hence, by (4.4),

Pλ(Ãt+1 = 0 | F̃t ) ≥ Pλ

(
{Z̃t = 0} ∩ ⋂

j∈Ãt

Bt (j) | F̃t

)
≥ qa0e−λ0 on {Ãt ≤ a0}.

(4.9)

Define for r ∈ N and m ∈ N the event

E(r,m) = {
M−2(ηk − σk) > τr−1 + m,γr − τr−1 > m

} ∈ F̃τr−1+m.

Then, since E(r,m + 1) ⊆ E(r,m),

Pλ

(
E(r,m + 1) | F̃τr−1

) = Eλ

[
Pλ

(
E(r,m + 1) | F̃τr−1+m

)
1E(r,m) | F̃τr−1

]
,

where, since Ãτr−1+m+1 = 0 implies that M−2(ηk − σk) ≤ τr−1 + m + 1,

Pλ

(
E(r,m + 1) | F̃τr−1+m

) ≤ 1 − Pλ(Ãτr−1+m+1 = 0 | F̃τr−1+m).

Thus, by (4.9) and the fact that E(r,m) implies Ãτr−1+m < a0, with ε0 = qa0e−λ0 ,

Pλ

(
E(r,m + 1) | F̃τr−1

) ≤ Eλ

[
(1 − ε0)1E(r,m) | F̃τr−1

] ≤ e−ε0 Pλ

(
E(r,m) | F̃τr−1

)
.

Iterating this bound gives Pλ(E(r,m) | F̃0) ≤ e−ε0(m−1), a.s., for all m ∈ N.
Fix t ∈ N. Let K = max{r : τr ≤ M−2(ηk − σk)} and L = min{r : γr − τr−1 > t}. Then

τK ≤ M−2(ηk − σk) and we cannot have γK+1 ≤ M−2(ηk − σk), or else we would also have
τK+1 ≤ M−2(ηk − σk) too. Thus M−2(ηk − σk) ≤ γK+1, so M−2(ηk − σk) ≤ τK + (γK+1 −
τK). For r < L we have

τr =
r∑

j=1

(τj − γj ) +
r∑

j=1

(γj − τj−1) ≤ rt +
r∑

j=1

(τj − γj ).

On the event

{K < r} ∩
{

r∑
j=1

(τj − γj ) ≤ t

}
∩

r⋂
j=1

({
M−2(ηk − σk) ≤ τj−1 + t

} ∪ {γj − τj−1 ≤ t}),
we have that either L > r , in which case

M−2(ηk − σk) ≤ γK+1 ≤ γr ≤ τr−1 + max
1≤j≤r

(γj − τj−1) ≤ (r + 1)t,

or else L ≤ r and M−2(ηk − σk) ≤ τL−1 + t ≤ (r + 1)t also. Thus

Pλ

(
ηk − σk > (r + 1)M2t | Fσk

)
≤ Pλ(K ≥ r | Fσk

) + Pλ

(
r∑

j=1

(τj − γj ) ≥ t | Fσk

)
+ Pλ

(
r⋃

j=1

E(j, t) | Fσk

)
.

(4.10)

For the first term on the right-hand side of (4.10), we have

Pλ(K ≥ m + 1 | Fσk
) = Eλ

[
Pλ(K ≥ m + 1 | F̃τm)1{K ≥ m} | F̃0

]
≤ Eλ

[(
1 − Pλ(Ãτm+1 = 0 | F̃τm)

)
1{K ≥ m} | F̃0

]
,

since Ãτm+1 = 0 implies M−2(ηk − σk) ≤ τm + 1 < τm+1. By (4.9), Pλ(K ≥ m + 1 | Fσk
) ≤

(1 − ε0)Pλ(K ≥ m | Fσk
), and Pλ(K ≥ m | Fσk

) ≤ e−ε0m, a.s., for all m ∈ Z+.
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For the second term on the right-hand side of (4.10), we have from (4.8) that

Eλ

[
eθ

∑r
j=1(τj−γj ) | F̃0

] = Eλ

[
eθ

∑r−1
j=1(τj−γj )

Eλ

(
eθ(τr−γr ) | F̃τr−1

) | F̃0
]

≤ CEλ

[
eθ

∑r−1
j=1(τj−γj ) | F̃0

]
,

where θ,C are as in (4.8), and depend only on λ0. Iterating this argument gives, for all r ∈N

and a constant D < ∞, Eλ(e
θ

∑r
j=1(τj−γj ) | Fσk

) ≤ eDr , a.s. By Markov’s inequality,

Pλ

(
r∑

j=1

(τj − γj ) ≥ t | Fσk

)
≤ eDr−θt .

Choose r = � θ
2D

�t . Putting all the bounds together, we obtain from (4.10) that

Pλ

(
ηk − σk > cM2t2 | Fσk

) ≤ e−εt ,

for some constants c > 0 and ε > 0. Then (4.3) follows. This completes the proof of (ii), and
hence (i), as explained at the start of this proof. �

The next result shows that the cycles [σk, ηk] do not accumulate in finite time.

LEMMA 4.3. Let λ ∈ (0,∞). As k → ∞, νk, ηk, σk → ∞, Pλ-a.s.

PROOF. By construction, σ1, σ2, . . . is a subsequence of the Poisson arrival times
s1, s2, . . ., and hence ηk ≥ σk ≥ sk for all k ∈ N. Similarly, the kth nucleation can only occur
after 2k particles have been deposited, so νk ≥ s2k for all k ∈ N. But limk→∞ sk = ∞, a.s.

�

Lemma 4.3 shows that ν0, ν1, . . . does not have a finite accumulation point, so we can talk
about the first nucleation in any time interval which contains nucleations; we have not yet
proved that νk is finite for all k, but we will do so later in this section. Let Ek be the event
that at least one nucleation occurs in time interval [σk, ηk]. For k ∈ N, let

αk := min{j ∈ N : Ek+j occurs},
the number of cycles after ηk until the first nucleation in time interval (ηk,∞), where αk = ∞
if and only if there is no nucleation after time ηk .

On the event E1, the first nucleation occurs at some location ζ� for ζ ∈ (0,1). Recall that B
denotes the Borel subsets of [0,1], and denote the probability that the first nucleation occurs
during the first cycle and at spatial location in �B by

ν(�,λ;B) := P�,λ

(
E1 ∩ {ζ ∈ B}) for B ∈ B,(4.11)

and set ν(λ;B) := ν(1, λ;B). The probability of nucleation during the first cycle is

μ(�,λ) := P�,λ(E1) = ν
(
�,λ; [0,1]) and μ(λ) := Pλ(E1) = ν

(
λ; [0,1]) = μ(1, λ).

The next result gives an important scaling property, which is a consequence of the scaling
properties of the Poisson process and of Brownian motion. For a scalar a > 0, let aYt =
(aIt ,At , aXt ), that is, scalar multiplication of all spatial variables.

LEMMA 4.4. Let �,λ ∈ (0,∞). Then

P�,λ

((
�−1Y�2t

)
t≥0 ∈ ·) = P�3λ

(
(Yt )t≥0 ∈ ·).(4.12)

As a consequence, for all �,λ ∈ (0,∞),

ν(�,λ; ·) = ν
(
�3λ; ·).(4.13)
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FIG. 3. Illustration of the scaling argument in the proof of Lemma 4.4.

PROOF. For � > 0, define the space–time scaling operation S� : C0 → C0 by S�(f )(t) =
�−1f (�2t), t ∈ R+. Then define the function T� : [0, �] ×R+ × C0 → [0,1] ×R+ × C0 by

T�(x, s, f ) =
(

x

�
,

s

�2 , S�(f )

)
.

We claim that

T�(P�,λ) has the same law as P1,�3λ.(4.14)

To see this, view P�,λ as a Poisson point process with intensity measure λ�� ⊗W , where ��

is Lebesgue measure on [0, �]×R+ and W is Wiener measure on C0. Brownian scaling ([31],
page 12) shows that W is preserved by the transformation S�, since b is standard Brownian
motion on R if and only if S�(b) is too. Thus, by the mapping theorem [26], page 38, T�(P�,λ)

is a Poisson point process with intensity measure �3λ�1 ⊗ W . This verifies (4.14).
Let (Ys, s ∈ R+) and (Y ′

t , t ∈ R+) denote the processes constructed from P�,λ and
T�(P�,λ) using the algorithm described above. The action of the map T� shows that

Y ′
t = 1

�
Y�2t =

(
1

�
I�2t ,A�2t ,

1

�
X�2t

)
,(4.15)

since T� scales space by 1/� and time by 1/�2. For instance, the arrival time of the ith particle
in Y ′ is s′

i = �−2si , and the ith particle’s trajectory x′
i is given for r ≥ s ′

i by

x′
i (r) = 1

�
ξi + S�(bi)

(
r − �−2si

) = 1

�
ξi + 1

�
bi

(
�2r − si

)
,

so that x′
i (r) = �−1xi(�

2r). Combining (4.15) with (4.14), we see that �−1Y�2t under P�,λ has
the same law as Y ′

t under P1,�3λ. This proves (4.12). See Figure 3 for a schematic.
The event defining ν(�,λ; ·) in (4.11), namely E1 ∩ {ζ ∈ B}, is invariant under time-

scaling, and ζ is already scaled so as to be in [0,1]. Then, by (4.12), P�,λ(E1 ∩ {ζ ∈ B}) =
P�3λ(E1 ∩ {ζ ∈ B}), which establishes (4.13). �

Fix t ∈R+. Let ζ ′
t ∈ (0, �) denote the location of the earliest nucleation in the time interval

(t,∞), if there is one, otherwise set ζ ′
t = ∞; we will shortly be able to prove Lemma 2.1,

which says that there will a.s. always be such a nucleation. At time t there are It + 1 gaps,
and gap j ∈ [It + 1] is given by [ZIt ,j−1,ZIt ,j ]. Define

ζt := ∑
j∈[It+1]

1
{
ζ ′
t ∈ (ZIt ,j−1,ZIt ,j )

}( ζ ′
t − ZIt ,j−1

ZIt ,j − ZIt ,j−1

)
,

so ζt ∈ (0,1) as long as ζ ′
t is finite. For t ∈ R+, j ∈ [It + 1], and B ∈ B, define the event

Dt(j,B) := {
ζ ′
t ∈ [ZIt ,j−1,ZIt ,j ], ζt ∈ B

}
,(4.16)

which says that the next nucleation after time t occurs in gap j and at relative location in B .



DEPOSITION, DIFFUSION, AND NUCLEATION ON AN INTERVAL 4861

By the strong Markov property, there is a measurable πλ such that, Pλ-a.s.,

Pλ

({αk = 1} ∩ Dηk
(j,B) | Fηk

) = πλ(ZIηk
; j,B).(4.17)

Similarly, there is a measurable �λ such that

Pλ(αk = 1 | Fηk
) = �λ(ZIηk

) = ∑
j∈[Iηk

+1]
πλ

(
ZIηk

; j, [0,1]).(4.18)

The next result gives a lower bound for πλ on a certain set; in particular, it shows that
�λ(ZIηk

) > 0. We will see in Section 6 that this bound is of the correct order as λ → 0.

LEMMA 4.5. Let B0 := [1/8,7/8]. For any λ0 ∈ (0,∞) there exists a constant ε0 =
ε0(λ0) > 0 such that, for all λ ∈ (0, λ0] and all k ∈ Z+,

πλ(Zηk
; j,B0) ≥ ε0λL4

Iηk
,j for all j ∈ [Iηk

+ 1].

PROOF. Fix k ∈ Z+. To simplify notation, write I = Iηk
for the number of interior is-

lands, and, for 1 ≤ j ≤ I + 1, Zj = ZI,j for the island locations and Lj = LI,j for the
lengths of the gaps. Take j ∈ [I + 1]. Define nested subintervals of [Zj−1,Zj ] by

�j,k =
[
Zj−1 + k + 1

8
Lj ,Zj − k + 1

8
Lj

]
for k ∈ {0,1,2}.

We will define a series of events whose intersection implies that nucleation occurs in �j,0.
Let T := min{i ∈ Z+ : si ≥ ηk}. Take a constant t0 ∈ (1,∞) to be chosen later. Let

F1 := {ξT ∈ �j,2} ∩
{

sup
0≤t≤L2

j

∣∣xT (sT + t) − ξT

∣∣ <
1

8
Lj

}
,

the event that the next deposition occurs in �j,2, and that xT stays in �j,1 through time
interval [sT , sT + L2

j ]. Define the event

F2 := {
sT +1 ≤ sT + L2

j

} ∩ {ξT +1 ∈ �j,1} ∩ {
sT +2 > sT + t0L

2
j

}
,

that a single arrival occurs during time interval (sT , sT + L2
j ] and at location in �j,1, and no

arrival occurs during time interval (sT + L2
j , sT + t0L

2
j ].

On F1 ∩ F2, at time sT +1 both particles T ,T + 1 are active and are at locations in �j,1,
since neither can have encountered another active particle or an existing island. Suppose
(without loss of generality) that the leftmost of the two active particles T ,T + 1 at time
sT +1 is the particle labelled T : that is, xT (sT +1) < xT +1(sT +1). Let F3 denote the event
that both xT visits [Zj − 1

8Lj ,Zj ] before visiting [Zj−1,Zj−1 + 1
8Lj ], and xT +1 visits

[Zj−1,Zj−1 + 1
8Lj ] before visiting [Zj − 1

8Lj ,Zj ]. Also let F4 denote the event that both
xT and xT +1 exit the interval �j,0 before time sT +1 + t0L

2
j . If F3 ∩ F4 occurs, then the

particles T ,T + 1 must meet in the interval �j,0 before time sT +1 + t0L
2
j , and, still being

active, nucleate. Therefore,

πλ(ZI ; j,B0) ≥ Pλ(F1 ∩ F2 ∩ F3 ∩ F4 | Fηk
).(4.19)

We bound the probability on the right-hand side of (4.19): for concreteness, we give a
quantitative estimate, although we make no attempt to optimize the constants. We have

Pλ(F1 | FsT ) ≥ 4

π
exp

{−8π2} − 4

3π
exp

{−72π2} =: q1 > 10−35 on {ξT ∈ �j,2},
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using bounds on two-sided exit times from for example, [23], page 1047. Also,

Pλ(F2 | FsT ) ≥ 1

2
Lj · λL2

j e−L2
j λ · e−(t0−1)L2

j λ ≥ pλL
3
j ,

where pλ := λ
2 e−λt0 , and, given FsT , F1 and F2 are independent. So

Pλ(F1 ∩ F2 | Fηk
) = Eλ

[
Pλ(F1 | FsT )Pλ(F2 | FsT )1{ξT ∈ �j,2} | Fηk

] ≥ q1pλ

4
L4

j .

Brownian motion started at x ∈ (a, b) hits b before a with probability x−a
b−a

, so

Pλ(F3 | FsT +1) =
(

8xT (sT +1) − 8Zj−1 − Lj

6Lj

)(
8Zj − 8xT +1(sT +1) − Lj

6Lj

)
,(4.20)

which is at least 1/36 on F1 ∩ F2. Let τ be the first exit time of a Brownian motion started at
x ∈ [2/8,6/8] from the interval [1/8,7/8]. The minimal distance from x to the set {1/8,7/8}
is at most 3/8, so, if w is Brownian motion on R,

P(τ ≥ t) ≤ P

(
sup

0≤s≤t

ws ≤ 3

8

)
= 1 − 2P

(
w1 ≥ 3

8
√

t

)
,

by the reflection principle and scaling. Hence

P(τ ≥ t) ≤ 2
∫ 3/(8

√
t)

0

1√
2π

e−u2/2 du ≤ 3

4
√

6t
.

Taking t = t0 = 1944 ensures that P(τ ≥ t0) ≤ 1/144, so that, by Brownian scaling,

Pλ

(
F c

4 | FsT +1

) ≤ 2P(τ ≥ t0) ≤ 1

72
on F1 ∩ F2.(4.21)

Combining (4.20) and (4.21) we get

Pλ(F3 ∩ F4 |FsT +1) ≥ Pλ(F3 | FsT +1) − Pλ

(
F c

4 | FsT +1

) ≥ 1

72
on F1 ∩ F2.

Hence we conclude that

Pλ(F1 ∩ F2 ∩ F3 ∩ F4 | Fηk
) ≥ Eλ

[
Pλ(F3 ∩ F4 | FsT +1)1F1∩F2 | Fηk

]
≥ 1

72
Pλ(F1 ∩ F2 | Fηk

) ≥ q1pλ

288
L4

j ,

which, with (4.19), completes the proof on setting ε0 = q1
576 e−1944λ0 . �

Now we can complete the proof of Lemma 2.1.

PROOF OF LEMMA 2.1. Fix λ0 = λ > 0, and let ε0 be as in Lemma 4.5. By (4.18),

Pλ(αk = 1 | Fηk
) = �λ(ZIηk

) ≥ ∑
j∈[Iηk

+1]
πλ(ZIηk

; j,B0) ≥ ε0λ
∑

j∈[Iηk
+1]

L4
Iηk

,j ,

by Lemma 4.5. Then, by Jensen’s inequality, Pλ(αk = 1 | Fηk
) ≥ ε0λ(1 + Iηk

)−3, since∑
j∈[Iηk

+1] LIηk
,j = 1. Also, {αk = 1} ∈ Fηk+1 . By Lévy’s extension of the Borel–Cantelli

lemma (e.g., [24], Corollary 7.20), it follows that
∑

k∈Z+(1+ Iηk
)−3 = ∞ implies that αk = 1

for infinitely many k. On the other hand, if
∑

k∈Z+(1 + Iηk
)−3 < ∞, then Iηk

→ ∞. In either
case, there are infinitely many nucleations. �

The next result shows how the regenerative structure leads to a description of the joint
distribution of the gap which nucleates and the nucleation location in terms of single-cycle
distributions. Recall the definition of Dt(j,B) from (4.16).
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LEMMA 4.6. Let λ ∈ (0,∞). For all k ∈ Z+, all j ∈ [Iηk
+ 1], and all B ∈ B,

Pλ

(
Dηk

(j,B) | Fηk

) = πλ(ZIηk
; j,B)

�λ(ZIηk
)

, Pλ-a.s.

PROOF. Fix k ∈ Z+ and write I = Iηk
. For m ∈ Z+,

Pλ

({αk = m + 1} ∩ Dηk
(j,B) | Fηk

)
= Eλ

[
Pλ

({αk = m + 1} ∩ Dηk+m
(j,B) | Fηk+m

)
1{αk > m} | Fηk

]
= Eλ

[
πλ(ZI ; j,B)1{αk > m} | Fηk

]
= πλ(ZI ; j,B)Pλ(αk > m | Fηk

),

(4.22)

using the regeneration at time ηk+m and (4.17). Taking B = [0,1] and summing over j ∈
[I + 1], we get Pλ(αk = m + 1 | Fηk

) = �λ(ZI )Pλ(αk > m |Fηk
). In other words,

Pλ(αk > m + 1 | Fηk
) = Pλ(αk > m | Fηk

) − Pλ(αk = m + 1 | Fηk
)

= (
1 − �λ(ZI )

)
Pλ(αk > m | Fηk

).

Iterating this gives Pλ(αk > m | Fηk
) = (1 − �λ(ZI ))

m. Thus, by (4.22),

Pλ

({αk = m + 1} ∩ Dηk
(j,B) | Fηk

) = (
1 − �λ(ZI )

)m
πλ(ZI ; j,B).

Summing over m ∈ Z+ gives the result. �

5. Splitting distribution estimates. Define κn : �n × [n + 1] ×B → [0,1], n ∈ Z+, by

κn(z; j,B) := (zj − zj−1)
4∑

i∈[n+1](zi − zi−1)4 �0(B),(5.1)

the interval-splitting kernel in (2.3) specialized to the parameters r0 and �0 as appearing
in Theorem 2.2. The main result of this section, as follows, shows that the evolution of the
island locations in our nucleation process is approximated by the kernel (5.1). This result will
serve both for fixed time as λ → 0, and for fixed λ in the long-time limit. In the supremum in
Proposition 5.1, and subsequent similar instances, Bj ∈ B for each j .

PROPOSITION 5.1. For any λ0 ∈ (0,∞) there exists a constant C2 = C2(λ0) < ∞ such
that, for all λ ∈ (0, λ0] and all k ∈ Z+, Pλ-a.s.,

sup
B1,...,BIηk

+1

∣∣∣∣ ∑
j∈[Iηk

+1]
Pλ

(
Dηk

(j,Bj ) | Fηk

) − ∑
j∈[Iηk

+1]
κIηk

(ZIηk
; j,Bj )

∣∣∣∣ ≤ C2λ
1/2M3/2

ηk
.

The rest of this section will develop the proof of Proposition 5.1, which is built on the
regeneration structure in Lemma 4.6. First, we explain the origin of �0.

Recall from (4.11) that ν(λ;B) = Pλ(E1 ∩ {ζ ∈ B}), where E1 is the event that at least
one nucleation occurs in time interval [σ1, η1], and ζ is the location of the first nucleation.
For the λ → 0 asymptotics of ν(λ;B) we need some more notation.

Let w denote standard Brownian motion on R, started at x ∈ [0,1], and set τ := inf{t ∈
R+ : wt /∈ (0,1)}, the first exit time from the interval (0,1). Then for B ∈ B,

P(wt ∈ B, t ≤ τ | w0 = x) =
∫
B

qt (x, y)dy,
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where

qt (x, y) := 1√
2πt

∑
k∈Z

{
exp

(
−(y − x + 2k)2

2t

)
− exp

(
−(y + x + 2k)2

2t

)}
;(5.2)

see, for example, [18], pages 341–342, or [11], pages 122, 174. The density qt (x; ·) corre-
sponds to a (defective) distribution with total mass P(t ≤ τ | w0 = x).

Let W denote a standard Brownian motion in R
2 given in components as Wt =

(W
(1)
t ,W

(2)
t ), and let S := ∂[0,1]2 and D := {(x, y) ∈ [0,1]2 : x = y} denote the boundary

and diagonal of the unit square, respectively. For measurable A ⊆ R
2, define τA := inf{t ∈

R+ : Wt ∈ A}. For u, v ∈ [0,1]2 and B ∈ B, set

H(u, v;B) := P
(
τD < τS,W(1)

τD
∈ B | W0 = (u, v)

)
,(5.3)

so that H(u, v; ·) is a measure on ([0,1],B) with total mass H(u, v; [0,1]) = P(τD < τS |
W0 = (u, v)). Define

�1(B) :=
∫ 1

0
dz

∫ 1

0
dy

∫ 1

0
dx

∫ ∞
0

qt (x, y)H(y, z;B)dt.(5.4)

The proof of the following result is given in Section 8.

PROPOSITION 5.2. We have that �1 = μ�0, where μ is given by (2.5) and �0 is defined
at (2.6). In particular, �1([0,1]) = μ.

We will use the simple fact that if Z is Poisson with mean θ ∈R+, then for all k ∈ N,

kP(Z ≥ k) ≤ E
[
Z1{Z ≥ k}] = e−θ

∞∑
�=k−1

θ�+1

�!(5.5)

≤ θke−θ
∞∑

�=k−1

θ�−k+1

(� − k + 1)! = θk.

The next result shows how �1, and hence, by Proposition 5.2, �0, arises in our model.

LEMMA 5.3. For any λ0 ∈ (0,∞) there is a constant C3 = C3(λ0) < ∞ such that

sup
B∈B

∣∣ν(λ;B) − λ�1(B)
∣∣ ≤ C3λ

5/3 for all λ ∈ (0, λ0].(5.6)

PROOF. In order for E1 to occur, the particle that arrives at time s1 = σ1 must remain
active until the second particle arrives at time s2 (or else the number of active particles would
fall to zero). Define events F1(B) = {1 ∈ As2, x1(s2) ∈ B}, and F1 = F1((0,1)), the event
that the first particle is still active when the second one arrives. We have

Pλ

(
F1(B)

) = Eλ

[
qs2−s1(ξ1,B)

] =
∫
B

dy

∫ 1

0
dx

∫ ∞
0

λe−λtqt (x, y)dt,

since ξ1 is uniform on [0,1], s2 −s1 is exponential with parameter λ, and the two are indepen-
dent. From time s2, on F1, there are active particles at x1(s2) = y (say) and x2(s2) = ξ2 = z

(say); if these two particles meet in B before either exits [0,1] (call this event F2(y, z;B)),
and no other particle is deposited in the meantime, then E1 ∩ {ζ ∈ B} occurs. Any other
way for E1 ∩ {ζ ∈ B} to occur requires that a third particle arrive before time η1. Thus if
F3 = {s3 > η1}, we have

F1 ∩ F2
(
x1(s2), ξ2;B) ∩ F3 ⊆ E1 ∩ {ζ ∈ B} ⊆ (

F1 ∩ F2
(
x1(s2), ξ2;B)) ∪ F c

3 .
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It follows that ∣∣Pλ

(
E1 ∩ {ζ ∈ B}) − Pλ

(
F1 ∩ F2

(
x1(s2), ξ2;B))∣∣ ≤ Pλ

(
F c

3
)
.(5.7)

Here

Pλ

(
F1 ∩ F2

(
x1(s2), ξ2;B)) =

∫ 1

0
dz

∫ 1

0
Pλ

(
F1(dy)

)
Pλ

(
F2(y, z;B)

)
,

using the Markov property at time s2, and the fact that ξ2 is uniform on [0,1]. Thus

Pλ

(
F1 ∩ F2

(
x1(s2), ξ2;B)) = λ

∫ 1

0
dz

∫ 1

0
dy

∫ 1

0
dx

∫ ∞
0

e−λtqt (x, y)H(y, z;B)dt,

and hence, by (5.4) and the fact that H(y, z;B) ≤ 1 and 1 − e−z ≤ z,

sup
B∈B

∣∣Pλ

(
F1 ∩ F2

(
x1(s2), ξ2;B)) − λ�1(B)

∣∣
≤ λ

∫ 1

0
dx

∫ ∞
0

(
1 − e−λt )

P(τ ≥ t | w0 = x)dt(5.8)

≤ λ2
∫ 1

0
E

(
τ 2 | w0 = x

)
dx,

which is O(λ2). Let ε ∈ (0,1). If Z is the number of arrivals in time interval (σ1, σ1 + λ−ε],
then, since Z is Poisson with mean λ1−ε , Pλ(Z ≥ 2) ≤ λ2−2ε by (5.5), and

Pλ

(
F c

3
) ≤ Pλ

(
η1 − σ1 ≥ λ−ε) + Pλ(Z ≥ 2) ≤ C1 exp

(−δλ−ε/2) + λ2−2ε,(5.9)

by Lemma 4.2. The result follows from (5.7), (5.8), and (5.9). �

Consider the end of a cycle at time ηk . Denote by Jk ∈ [Iηk
+ 1] the index such that the

arrival at time σk+1 lands in gap [ZIηk
,Jk−1,ZIηk

,Jk
]. Let F ′

ηk
denote the σ -algebra generated

by Fηk
and the value Jk , so F ′

ηk
identifies the gap occupied by the first arrival after ηk , but

not that arrival’s location in the gap.
Let Gk(j, s) be the event that during time interval [σk+1, σk+1 + s] at least one nucleation

occurs in gap j ∈ [Iηk
+ 1]. The next result gives an upper bound on nucleation occurring

outside gap Jk during a fixed time horizon.

LEMMA 5.4. Let λ0 ∈ (0,∞). There exists a constant C4 = C4(λ0) < ∞ such that, for
all λ ∈ (0, λ0], all s ∈ [0, 1

2λ
], all k ∈ Z+, and all j ∈ [Iηk

+ 1] \ {Jk},
Pλ

(
Gk(j, s) | F ′

ηk

) ≤ C4λ
2sL4

Iηk
,j , Pλ-a.s.

PROOF. Fix k ∈ Z+ and write I = Iηk
, J = Jk , and, for 1 ≤ j ≤ I + 1, Zj = ZI,j

and Lj = LI,j . Given F ′
ηk

, take j ∈ [I + 1] \ {J }. For the process restricted to the inter-
val [Zj−1,Zj ], define “local cycles” [σj,�, ηj,�] by ηj,0 := σk+1 (at which point there are no
active particles in gap j ) and, for � ∈N,

σj,� = inf
{
t > ηj,�−1 : ∑

i∈At

1
{
xi(t) ∈ [Zj−1,Zj ]} = 1

}
,

ηj,� = inf
{
t > σj,� : ∑

i∈At

1
{
xi(t) ∈ [Zj−1,Zj ]} = 0

}
.

Nucleation in [Zj−1,Zj ] can only occur during time intervals [σj,�, ηj,�]. In order for
Gk(j, s) to occur via nucleation during [σj,�, ηj,�], there must have been at least � arrivals in
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[Zj−1,Zj ] during time interval [σk+1, σk+1 + s], and then nucleation must occur during that
cycle, an event of probability μ(Lj ,λ). Together with (5.5) this gives

Pλ

(
Gk(j, s) | F ′

ηk

) ≤
∞∑

�=1

λ�L�
j s

�μ(Lj ,λ) = λLj sμ
(
L3

jλ
) ∞∑
�=0

λ�L�
j s

�,

by (4.13). Here λLj s ≤ 1/2, provided s ≤ 1
2λ

. Then Pλ(Gk(j, s) |F ′
ηk

) ≤ 2λLj sμ(L3
jλ), and

Lemma 5.3 completes the proof. �

Now we can give the proof of Proposition 5.1.

PROOF OF PROPOSITION 5.1. Fix k ∈ Z+ and write I = Iηk
, J = Jk , M = Mηk

, and, for
1 ≤ j ≤ I + 1, Zj = ZI,j and Lj = LI,j . The new arrival at time σk+1 is deposited in gap J .
We show that the main contribution to Pλ(Dηk

(j,B) | Fηk
) comes from J = j .

Fix λ0 ∈ (0,∞). Define event Gk(s) := ⋃
j∈[I+1]\{J } Gk(j, s), that there is at least one

nucleation outside interval [ZJ−1,ZJ ] during time interval [σk+1, σk+1 + s]. By Lemma 5.4,

Pλ

(
Gk(s) | Fηk

) ≤ Eλ

[ ∑
j∈[I+1]\{J }

P
(
Gk(j, s) |F ′

ηk

) | Fηk

]

≤ C4λ
2sEλ

[ ∑
j∈[I+1]\{J }

L4
j | Fηk

]
≤ C4λ

2s
∑

j∈[I+1]
L4

j ,

for all λ ∈ (0, λ0] and all s ≤ 1
2λ

. Moreover, from Lemma 4.2 we have that

Pλ(ηk+1 − σk+1 ≥ s | Fηk
) = Eλ

[
Pλ(ηk+1 − σk+1 ≥ s | Fσk+1) | Fηk

]
≤ C1 Eλ

[
exp

(−δM−1
σk+1

s1/2) | Fηk

]
.

Then, if G� := Gk(ηk+1 − σk+1), since Mσk+1 ≤ Mηk
= M , we get

Pλ(G� | Fηk
) ≤ Pλ(ηk+1 − σk+1 ≥ s | Fηk

) + Pλ

(
Gk(s) | Fηk

)
≤ C1 exp

(−δM−1s1/2) + C4λ
2s

∑
i∈[I+1]

L4
i ,

(5.10)

for all λ ∈ (0, λ0] and all s ≤ 1
2λ

. For ε ∈ (0,1), take s = M2−ε min(λ−1/2, 1
2λ−1). By (5.10)

and noting that
∑

i∈[I+1] L4
i ≥ M4, we get, for some C < ∞ and all λ ∈ (0, λ0],

Pλ(G� |Fηk
) ≤ Cλ3/2M2−ε

∑
i∈[I+1]

L4
i a.s.(5.11)

For t ∈ R+, let A′
t denote the number of active particles in gap [ZJ−1,ZJ ] at time σk+1 + t ,

and let η′ := inf{t > 0 : A′
t = 0}; note A′

0 = 1. Let ζ � ∈ (0,1) denote the relative location of
the first nucleation for the process restricted to gap [ZJ−1,ZJ ]. Observe that on the event Gc

�,
we have ζηk

= ζ � and nucleation occurs in gap J . Let E′ be the event that nucleation occurs
in gap [ZJ−1,ZJ ] during time interval [σk+1, σk+1 + η′]. Then∣∣∣∣ ∑

j∈[I+1]
Pλ

({αk = 1} ∩ Dηk
(j,Bj ) | Fηk

)

− ∑
j∈[I+1]

Pλ

(
E′ ∩ {J = j} ∩ {

ζ � ∈ Bj

} | Fηk

)∣∣∣∣
≤ Pλ(G� | Fηk

).

(5.12)
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Here

Pλ

(
E′ ∩ {J = j} ∩ {

ζ � ∈ Bj

} | Fηk

) = Eλ

[
Pλ

(
E′ ∩ {

ζ � ∈ Bj

} | F ′
ηk

)
1{J = j} | Fηk

]
.

The event E′ ∩ {ζ � ∈ B} depends only on the process restricted to the interval [ZJ−1,ZJ ]
after time σk+1, which has the same law as the process on interval [0,LJ ] after time σ1, for
which the event E′ ∩ {ζ � ∈ B} translates as E1 ∩ {ζ ∈ B}. Thus,

Pλ

(
E′ ∩ {

ζ � ∈ B
} | F ′

ηk

) = PLJ ,λ

(
E1 ∩ {ζ ∈ B}) = ν(LJ ,λ;B),

by (4.11). Then, since ν(Lj , λ;B) is Fηk
-measurable and Pλ(J = j | Fηk

) = Lj , we obtain

Pλ

(
E′ ∩ {J = j} ∩ {

ζ � ∈ Bj

} | Fηk

) = Ljν(Lj , λ;Bj).(5.13)

Then from (4.17) with (5.11), (5.12), (5.13), and the scaling property (4.13), there is a con-
stant C < ∞ such that, a.s., for all λ ∈ (0, λ0],

sup
B1,...,BI+1

∣∣∣∣ ∑
j∈[I+1]

πλ(ZI ; j,Bj ) − ∑
j∈[I+1]

Ljν
(
L3

jλ;Bj

)∣∣∣∣
≤ Cλ3/2M2−ε

∑
j∈[I+1]

L4
j .

(5.14)

Now applying (5.6), we have from (5.14) that, for all λ ∈ (0, λ0],
sup

B1,...,BI+1

∣∣∣∣ ∑
j∈[I+1]

πλ(ZI ; j,Bj ) − λ
∑

j∈[I+1]
L4

j�1(Bj )

∣∣∣∣
≤ C3λ

5/3
∑

j∈[I+1]
L6

j + Cλ3/2M2−ε
∑

j∈[I+1]
L4

j(5.15)

≤ Cλ3/2M2−ε
∑

j∈[I+1]
L4

j ,

redefining C < ∞ as necessary, since L6
j ≤ M2L4

j . Taking all the Bj = [0,1] in (5.15), and
using the fact that �1([0,1]) = μ (see Proposition 5.2), we get∣∣∣∣�λ(ZI ) − μλ

∑
j∈[I+1]

L4
j

∣∣∣∣ ≤ Cλ3/2M2−ε
∑

j∈[I+1]
L4

j .(5.16)

For the constants ε > 0 and C < ∞ as appearing in (5.15) and (5.16), let ε0 = μ
2C

and define
the event F := {λ1/2M2−ε ≤ ε0}. Then, from (5.16),

�λ(ZI ) ≥ μλ

2

∑
j∈[I+1]

L4
j on F.(5.17)

Thus we have from (5.15) and (5.17) that, for all λ ∈ (0, λ0],

sup
B1,...,BI+1

∣∣∣∣
∑

j∈[I+1] πλ(ZI ; j,Bj )

�λ(ZI )
− λ

∑
j∈[I+1] L4

j�1(Bj )

�λ(ZI )

∣∣∣∣ ≤ Cλ1/2M2−ε on F.

Moreover, since
∑

j∈[I+1] L4
j�1(Bj ) ≤ μ

∑
j∈[I+1] L4

j , we have that, on F ,

∣∣∣∣λ
∑

j∈[I+1] L4
j�1(Bj )

�λ(ZI )
− λ

∑
j∈[I+1] L4

j�1(Bj )

μλ
∑

j∈[I+1] L4
j

∣∣∣∣ ≤
∣∣∣∣�λ(ZI ) − μλ

∑
j∈[I+1] L4

j

�λ(Z)

∣∣∣∣
≤ Cλ1/2M2−ε,
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by (5.16) and (5.17). Combining the bounds in the last two displays we get

sup
B1,...,BI+1

∣∣∣∣
∑

j∈[I+1] πλ(ZI ; j,Bj )

�λ(ZI )
−

∑
j∈[I+1] L4

j�1(Bj )

μ
∑

j∈[I+1] L4
j

∣∣∣∣ ≤ Cλ1/2M2−ε on F.

Lemma 4.6 and the fact that �1(B) = μ�0(B) (Proposition 5.2) finish the proof. �

6. Sparse deposition regime. In this section we focus on the λ → 0 regime, and prove
Theorem 2.2. Proposition 5.1 refers to the next nucleation after time ηk . For the convergence
of finite-dimensional distributions in Theorem 2.2, we need to consider the next nucleation
after time νn, the previous nucleation time. This is the purpose of the next result.

LEMMA 6.1. For any n ∈ Z+, we have

lim
λ→0

Eλ sup
B1,...,Bn+1

∣∣∣∣ ∑
j∈[n+1]

Pλ

(
Dνn(j,Bj ) | Fνn

) − ∑
j∈[n+1]

κn(Zn; j,Bj )

∣∣∣∣ = 0.

For the proof of this result, and later, it is useful to define

kn := min{k ∈ Z+ : ηk ≥ νn} for n ∈ Z+.(6.1)

Then k0 = 0, and, for all n ∈ N, σkn < νn ≤ ηkn for kn ∈ N. Note that ηkn is a stopping time,
but σkn , n ∈ N, is not a stopping time.

PROOF OF LEMMA 6.1. With kn as defined at (6.1), we have

Pλ

(
Dνn(j,Bj ) | Fνn

) = Eλ

[
Pλ

(
Dνn(j,Bj ) | Fηkn

) | Fνn

]
.

Let Fk be the event that there are two or more nucleations in time interval [σk, ηk]. On F c
kn

,
there is no nucleation in the interval (νn, ηkn], and so Dνn(j,B) = Dηkn

(j,B). Thus

sup
B1,...,Bn+1

∣∣∣∣ ∑
j∈[n+1]

Pλ

(
Dνn(j,Bj ) | Fηkn

) − ∑
j∈[n+1]

κn(Zn; j,Bj )

∣∣∣∣
≤ C2λ

1/2 + 1Fkn
,

(6.2)

by Proposition 5.1 and the fact that Iηkn
= n on F c

kn
. If Gk = ⋃k

i=1 Fi , then

sup
B1,...,Bn+1

∣∣∣∣ ∑
j∈[n+1]

Pλ

(
Dνn(j,Bj ) | Fνn

) − ∑
j∈[n+1]

κn(Zn; j,Bj )

∣∣∣∣
≤ C2λ

1/2 + Pλ(Gkn | Fνn),

(6.3)

by (6.2) and the fact that κn(Zn; j,B) is Fνn -measurable. Next, we bound Pλ(Fk) and hence
Pλ(Gkn). In order for there to be two (or more) nucleations in time interval [σk, ηk], there
must be at least three deposition events during time interval (σk, ηk]. Let Z denote the number
of deposition events during time (σk, σk + λ−1/6]. Then,

Pλ(Fk | Fσk
) ≤ Pλ

(
ηk − σk > λ−1/6 | Fσk

) + Pλ(Z ≥ 3 | Fσk
),

and, since, given Fσk
, Z is Poisson with mean λ5/6, Pλ(Z ≥ 3 | Fσk

) ≤ λ5/2, by (5.5). To-
gether with the tail bound in Lemma 4.2, this shows that Pλ(Fk | Fσk

) ≤ Cλ5/2, for some
C < ∞ and all λ ∈ (0,1], say. For fixed n ∈ Z+ and ε > 0, choose k sufficiently large so that
Pλ(kn > k) ≤ ε. Then

Pλ(Gkn) ≤ Pλ(kn > k) +
k∑

i=1

Pλ(Fi) ≤ ε + Ckλ5/2.
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Thus, for fixed n and ε > 0, we may choose λ small enough so that Pλ(Gkn) ≤ 2ε. Hence
limλ→0 Pλ(Gkn) = 0. Together with (6.3), this completes the proof. �

Now we are ready to prove Theorem 2.2. Recall the definition of the splitting function �n

from (2.2), and that, from (2.3) and (5.1), the interval-splitting process S = (S0,S1, . . .) with
parameters r0 and �0 has

P
(
Sn+1 ∈ �n(Sn; j,B) | S0,S1, . . . ,Sn

) = κn(Sn; j,B).

Define the transition kernel Pn : �n × Bn+1 → [0,1] by P(Sn+1 ∈ A | S0,S1, . . . ,Sn) =
Pn(Sn,A), where A ∈ Bn+1 and Bn denotes the Borel sets on �n. Then, if �−1

n (z; j,A) :=
{v ∈ [0,1] : �n(z; j, v) ∈ A} for A ∈ Bn+1, we have from (5.1) that

Pn(z,A) = ∑
j∈[n+1]

κn

(
z; j,�−1

n (z; j,A)
) =

∑
j∈[n+1](zj − zj−1)

4�0(�
−1
n (z; j,A))∑

j∈[n+1](zj − zj−1)4 ,

where z = (z0, . . . , zn+1) ∈ �n.

PROOF OF THEOREM 2.2. Define for n ∈ N and A1 ∈ �1, . . . ,An ∈ �n,

Kn(A1, . . . ,An) := P(S1 ∈ A1, . . . ,Sn ∈ An),

where S is the interval-splitting process with parameters r0 and �0. Then K1(A) =
P0(Z0,A) and, for n ∈ N,

Kn+1(A1, . . . ,An+1) = E
[
1{S1∈A1,...,Sn∈An}P(Sn+1 ∈ An+1 | S0, . . . ,Sn)

]
= E

[
1{S1∈A1,...,Sn∈An}Pn(Sn,An+1)

]
(6.4)

=
∫
An

Kn(A1, . . . ,An−1, dz)Pn(z,An+1).

We wish to prove that for any n ∈ N,

lim
λ→0

sup
A1,...,An

∣∣Pλ(Z1 ∈ A1, . . . ,Zn ∈ An) − Kn(A1, . . . ,An)
∣∣ = 0,(6.5)

the supremum over A1 ∈ B1, . . . ,An ∈ Bn. We establish (6.5) by induction on n. First,∣∣Pλ(Zn+1 ∈ A |Fνn) − Pn(Zn,A)
∣∣

(6.6)

=
∣∣∣∣ ∑
j∈[n+1]

Pλ

(
Dνn

(
j,�−1

n (Zn; j,A)
) | Fνn

) − ∑
j∈[n+1]

κn

(
Zn; j,�−1

n (Zn; j,A)
)∣∣∣∣.

By (6.6), a consequence of Lemma 6.1 is that, for all n ∈ Z+,

lim
λ→0

Eλ sup
A∈Bn+1

∣∣Pλ(Zn+1 ∈ A | Fνn) − Pn(Zn,A)
∣∣ = 0.(6.7)

In particular, taking n = 0 in (6.7), we get the n = 1 case of (6.5), the basis for the induction.
For the inductive step, suppose that (6.5) holds for some given n ∈ N. Then

Pλ(Z1 ∈ A1, . . . ,Zn+1 ∈ An+1) = Eλ

[
1{Z1∈A1,...,Zn∈An} Pλ(Zn+1 ∈ An+1 | Fνn)

]
.

By (6.7), it follows that

lim
λ→0

sup
A1,...,An+1

∣∣Pλ(Z1 ∈ A1, . . . ,Zn+1 ∈ An+1)

−Eλ

[
1{Z1∈A1,...,Zn∈An}Pn(Zn,An+1)

]∣∣ = 0.
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Now by inductive hypothesis (6.5) and the relationship between total-variation distance and
coupling, for any ε > 0 we can choose λ > 0 sufficiently small, and work on a suitable
probability space in which P((X1, . . . ,Xn) �= (Y1, . . . , Yn)) ≤ ε and (X1, . . . ,Xn) has law
Pλ(Z1 ∈ ·, . . . ,Zn ∈ ·) and (Y1, . . . , Yn) has law Kn. Hence

sup
A1,...,An+1

∣∣Eλ

[
1{Z1∈A1,...,Zn∈An}Pn(Zn,An+1)

] −E
[
1{Y1∈A1,...,Yn∈An}Pn(Yn,An+1)

]∣∣ ≤ ε,

and the expectation involving the Yis is, by (6.4), equal to Kn+1(A1, . . . ,An+1). This com-
pletes the inductive step. �

7. Fixed-rate deposition regime. In this section, we will prove Theorem 2.3, which
says that, roughly speaking, the long-term asymptotics of the fixed-λ process are governed
by the interval-splitting process that arises as the λ → 0 limit established in Theorem 2.2. The
intuition for this is that as time goes on, the gaps get smaller and so capture of active particles
by existing islands gets faster, which has a similar effect as driving down the deposition rate.

The proof of Theorem 2.3 uses coupling based on the following result.

PROPOSITION 7.1. For any λ ∈ (0,∞),

Eλ

∑
n∈Z+

sup
B1,...,Bn+1

∣∣∣∣ ∑
j∈[n+1]

Pλ

(
Dνn(j,Bj ) | Fνn

) − ∑
j∈[n+1]

κn(Zn; j,Bj )

∣∣∣∣ < ∞.

To obtain Proposition 7.1, we need an improved version of the bound in Lemma 6.1,
and this requires control of the chance of additional nucleations occurring in time interval
(νn, ηkn], where kn is as defined at (6.1). This is the purpose of the next lemma.

Let χk denote the number of nucleations during time interval [σk, ηk].
LEMMA 7.2. For any λ0 ∈ (0,∞), there exists C5 = C5(λ0) < ∞ such that, for all λ ∈

(0, λ0] and all k ∈ Z+,

Eλ

(
χk+11{χk+1 ≥ 2} | Fηk

) ≤ C5λ
5/2M13/2

ηk
, Pλ-a.s.

PROOF. Fix k ∈ Z+. Write I = Iηk
, J = Jk , M = Mηk

, and Lj = LI,j for 1 ≤ j ≤ I + 1.
Fix s > 0. During time interval (σk+1, σk+1 + s], let Y denote the number of depositions
in gap J , and let Y ′ denote the number elsewhere in the interval. Given F ′

ηk
, Y and Y ′ are

independent Poisson random variables with E(Y | F ′
ηk

) = λsLJ ≤ λsM and E(Y ′ | F ′
ηk

) ≤
λs. Since each nucleation consumes two active particles in the same interval, in order for
there to be (at least) two nucleations during time interval (σk+1, σk+1 + s], we must either
have (i) at least 3 depositions in gap J , (ii) at least one deposition in gap J , and at least two
depositions elsewhere, or (iii) no depositions in gap J , and at least 4 depositions elsewhere.
In any case, the number of nucleations is not more than the number of depositions. Hence

Eλ

(
χk+11{χk+1 ≥ 2, ηk+1 − σk+1 ≤ s} | F ′

ηk

)
≤ Eλ

((
Y + Y ′)1{Y ≥ 3} | F ′

ηk

) +Eλ

((
Y + Y ′)1{

Y ≥ 1, Y ′ ≥ 2
} | F ′

ηk

)
+Eλ

(
Y ′1

{
Y ′ ≥ 4

} | F ′
ηk

)
≤ Eλ

(
Y1{Y ≥ 3} | F ′

ηk

) +Eλ

(
Y ′ | F ′

ηk

)
Pλ

(
Y ≥ 3 | F ′

ηk

)
+ 2Eλ

(
Y1{Y ≥ 1} | F ′

ηk

)
Eλ

(
Y ′1

{
Y ′ ≥ 2

} | F ′
ηk

) +Eλ

(
Y ′1

{
Y ′ ≥ 4

} | F ′
ηk

)
≤ (λsM)3 + λs · (λsM)3 + 2λsM · (λs)2 + (λs)4

≤ 3λ3s3M + 2λ4s4,

(7.1)
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by (5.5) and the fact that M ≤ 1. On the other hand, by Cauchy–Schwarz,

Eλ

(
χk+11{ηk+1 − σk+1 > s} | Fηk

) ≤ (
Eλ

(
χ2

k+1 | Fηk

))1/2(
Pλ(ηk+1 − σk+1 > s | Fηk

)
)1/2

.

If Y ′′ denotes the number of Poisson arrivals during time interval (σk+1, σk+1 + x], then

Pλ

(
χk+1 ≥ 3�λ0x� | Fηk

) ≤ P(ηk+1 − σk+1 ≥ x | Fηk
) + P

(
Y ′′ ≥ 3�λ0x� | Fηk

)
.

The Poisson variable Y ′′ has Eλ(eY ′′ | Fηk
) ≤ e2λ0x , a.s., so, by Lemma 4.2 and Markov’s in-

equality, Pλ(χk+1 ≥ 3�λ0x� | Fηk
) ≤ C1 exp(−cx1/2) + exp(−λ0x), where c > 0. It follows

that Eλ(χ
2
k+1 | Fηk

) ≤ C for some C < ∞. With Lemma 4.2, this shows that

Eλ

(
χk+11{ηk+1 − σk+1 > s} |Fηk

) ≤ C exp
(−cM−1s1/2)

,

where the constants C < ∞ and c > 0 depend on λ0. Thus we obtain

Eλ

(
χk+11{χk+1 ≥ 2} |Fηk

) ≤ 3λ3s3M + 2λ4s4 + C exp
(−cM−1s1/2)

,

provided λ ≤ λ0. Taking s = λ−1/6M11/6 we get the result. �

The next result shows that Mνn → 0, a.s., and gives some quantification of the rate. One
expects that Mνn , the length of the largest gap when there are n interior islands, is not much
greater than 1/n, and Lemma 7.3 is, in a rough sense, a bound of O(nε−(3/4)). On the ba-
sis of the upper tail of g0 in Theorem 2.3, we conjecture that the correct order for Mνn is
(logn)1/4/n.

LEMMA 7.3. For any λ ∈ (0,∞) and any γ > 4/3, we have Eλ

∑∞
n=0 M

γ
νn < ∞.

PROOF. Consider the process (Wt , t ∈ R+) defined by

Wt = ∑
i∈[It+1]

Lα
It ,i

,

where α > 1. Note that 0 < Wt ≤ Ws ≤ W0 = 1 for 0 ≤ s ≤ t < ∞. Lemma 4.5 says

Pλ

({αk = 1} ∩ Dηk
(j,B0) | Fηk

) ≥ ε0L
4
Iηk

,j ,

where B0 = [1
8 , 7

8 ] and ε0 = ε0(λ) > 0. On {αk = 1} ∩ Dηk
(j,B0), nucleation occurs during

time interval [ηk, ηk+1] at relative location v ∈ B0 in gap j ∈ [Iηk
+ 1], and any subsequent

nucleation before time ηk+1 only decreases Wηk+1 . Hence, on {αk = 1} ∩ Dηk
(j,B0),

Wηk+1 − Wηk
≤ − inf

v∈B0
�(v,α)Lα

Iηk
,j , where �(v,α) := 1 − vα − (1 − v)α.(7.2)

Here infv∈B0 �(v,α) = δ > 0 depending only on α > 1. From Lemma 4.5 with (7.2),

Eλ(Wηk+1 − Wηk
| Fηk

) ≤ −δε0
∑

i∈[Iηk
+1]

L4+α
Iηk

,i ≤ −δε0M
4+α
ηk

.(7.3)

Taking expectations and summing, since W0 = 1, we obtain, for every α > 1,

Eλ

∑
k∈Z+

M4+α
ηk

≤ 1

δε0
< ∞.(7.4)

In particular, (7.4) shows that limt→∞ Mt = 0, a.s. As in the proof of Lemma 6.1, let
Fk = 1{χk ≥ 2}, the event that there are two or move nucleations during [σk, ηk]. Recall
the definition of kn at (6.1). From Lemma 7.2 and (7.4) (take α = 5/2), we have∑

n∈N
Pλ(Fkn) = ∑

k∈N
Eλ

∑
n:kn=k

1{χk ≥ 2} = Eλ

∑
k∈N

χk1{χk ≥ 2} < ∞,(7.5)

since kn = k ∈ N if and only if σk ≤ νn ≤ ηk .
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Now we extend the argument to get the statement in the lemma. Take α = 4 in the definition
of Wt . For k ∈ Z+ let ρk = min{n ∈ N : νn > ηk}. As above, we have that �(v,4) ≥ δ > 0 for
all v ∈ B0. On the event Dηk

(j,B0), we have Wνρk
− Wηk

≤ −δL4
Iηk,j

. If ν1 and ν2 are finite

measures on a countable set S, then, for A = {j ∈ S : ν1(j) ≥ ν2(j)}, supposing, without loss
of generality, that ν1(S) ≥ ν2(S),∑

j∈S

∣∣ν1(j) − ν2(j)
∣∣ = 2

(
ν1(A) − ν2(A)

) + ν2(S) − ν1(S)

≤ 2 sup
J⊆S

∣∣ν1(J ) − ν2(J )
∣∣.(7.6)

From Proposition 5.1, taking Bj = B for all j ∈ J and Bj = ∅ for j /∈ J , we obtain

sup
B∈B

∣∣∣∣∑
j∈J

Pλ

(
Dηk

(j,B) | Fηk

) − ∑
j∈J

κIηk
(ZIηk

; j,B)

∣∣∣∣ ≤ C2λ
1/2M3/2

ηk
.

Then using (5.1) and (7.6), it follows that

∑
j∈[Iηk

+1]

∣∣∣∣Pλ

(
Dηk

(j,B0) | Fηk

)
L4

Iηk
,j −

L8
Iηk,j

�0(B0)∑
i∈[Iηk

+1] L4
Iηk

,i

∣∣∣∣ ≤ 2C2λ
1/2M11/2

ηk
.

Consequently, for ε = �0(B0) > 0,

Eλ(Wνρk
− Wηk

| Fηk
) ≤ 2C2λ

1/2W 11/8
ηk

− δε

∑
i∈[Iηk

+1] L8
Iηk

,i∑
i∈[Iηk

+1] L4
Iηk

,i

.

Let An denote the event that νn+1 > ηkn ; on An, Iηkn
= Iνn = n and ρkn = n + 1. Then taking

k = kn (noting that ηkn is a stopping time) and using the monotonicity of Wt ,

Eλ(Wνn+1 − Wνn | Fηkn
) ≤ Eλ(Wνρkn

− Wηkn
| Fηkn

)1An

≤ 2C2λ
1/2W 11/8

νn
− δε

∑
i∈[n+1] L8

n,i∑
i∈[n+1] L4

n,i

1An.

Since
∑

i∈[n+1] Ln,i = 1, Jensen’s inequality gives
∑

i∈[n+1] L8
n,i ≥ W

7/3
νn . Hence

Eλ(Wνn+1 − Wνn | Fηkn
) ≤ CW 11/8

νn
− δεW 4/3

νn
1An,

where C < ∞. Since 4/3 < 11/8, and Wνn+1 ≤ Wνn ≤ 1, there exists ε > 0 such that, a.s.,

Eλ(Wνn+1 − Wνn | Fηkn
) ≤ −εW 4/3

νn
1{Wνn < ε}1An.(7.7)

Let β ∈ (0,1). Then (1 + x)β ≤ 1 + βx for all x ∈ [−1,0], so

Eλ

(
Wβ

νn+1
− Wβ

νn
| Fηkn

) = Wβ
νn
Eλ

[(
1 + Wνn+1 − Wνn

Wνn

)β

− 1 | Fηkn

]

≤ 1Ac
n
− βεWβ+(1/3)

νn
1{Wνn < ε},

by (7.7). Taking expectations, summing, and using the fact that W0 = 1, we get

βε

n−1∑
m=0

Eλ

(
Wβ+(1/3)

νm
1{Wνm < ε}) ≤ 1 +

n−1∑
m=0

Pλ

(
Ac

m

)
for all n ∈ N.
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Now Ac
n ⊆ Fkn , so, by (7.5),

∑∞
n=0 Pλ(A

c
n) < ∞. Thus

∞∑
n=0

Eλ

(
Wβ+(1/3)

νn
1{Wνn < ε}) < ∞.(7.8)

On the other hand, since Wνn ∈ [0,1] and β > 0,

∞∑
n=0

Eλ

(
Wβ+(1/3)

νn
1{Wνn ≥ ε}) ≤ ε−2

∞∑
n=0

Eλ

(
W 7/3

νn

)

≤ ε−2
Eλ

∑
k∈Z+

∑
n:kn=k

(
W 7/3

ηk
1{χk = 1} + 1{χk ≥ 2}),

since Wνn = Wηkn
on {χkn = 1}. Here we have that

Eλ

∑
k≥1

∑
n:kn=k

(
W 7/3

ηk
1{χk = 1} + 1{χk ≥ 2}) ≤ Eλ

∑
k≥1

W 7/3
ηk

+Eλ

∑
k≥1

χk1{χk ≥ 2}

≤ Eλ

∑
k≥1

M7
ηk

+ CEλ

∑
k≥1

M13/2
ηk

,

by Lemma 7.2 and the fact that Wηk
≤ M3

ηk
. Then, by (7.4), since 7 > 13

2 > 5,

∞∑
n=0

Eλ

(
Wβ+(1/3)

νn
1{Wνn ≥ ε}) < ∞.(7.9)

Combining (7.8) and (7.9), since Wνn ≥ M4
νn

we conclude

Eλ

∑
n∈Z+

M4β+(4/3)
νn

≤ Eλ

∑
n∈Z+

Wβ+(1/3)
νn

< ∞,

which gives the result, since β ∈ (0,1) was arbitrary. �

Now we can give the proof of Proposition 7.1.

PROOF OF PROPOSITION 7.1. On F c
kn

, Iηkn
= Iνn = n, and so, by Proposition 5.1,

sup
B1,...,Bn+1

∣∣∣∣ ∑
j∈[n+1]

Pλ

(
Dνn(j,Bj ) | Fηkn

) − ∑
j∈[n+1]

κn(Zn; j,Bj )

∣∣∣∣ ≤ 1Fkn
+ C2λ

1/2M3/2
ηkn

.

Since Mηkn
≤ Mνn , it follows on taking conditional expectations given Fνn that

sup
B1,...,Bn+1

∣∣∣∣ ∑
j∈[n+1]

Pλ

(
Dνn(j,Bj ) | Fνn

) − ∑
j∈[n+1]

κn(Zn; j,Bj )

∣∣∣∣
≤ Pλ(Fkn | Fνn) + C2λ

1/2M3/2
νn

.

Here we know from Lemma 7.3 that Eλ

∑
n∈Z+ M

3/2
νn < ∞, and we know from (7.5) that∑

n∈Z+ Pλ(Fkn) < ∞. The result follows. �

Finally we present the proof of Theorem 2.3. This is based on a coupling argument, using
Proposition 7.1, together with appropriate asymptotic results for interval-splitting processes,
which we defer to Section 10.
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PROOF OF THEOREM 2.3. Recall from the proof of Theorem 2.2 that Pn(Sn,A) =
P(Sn+1 ∈ A | S0, . . . ,Sn), A ∈ Bn+1, is the kernel associated with the the interval-splitting
process S = (S0,S1, . . .) with parameters r0 and �0. Proposition 7.1 with (6.6) shows that

Eλ

∑
n∈Z+

sup
A∈Bn+1

∣∣Pλ(Zn+1 ∈ A | Fνn) − Pn(Zn,A)
∣∣ < ∞.(7.10)

Let FZ
n := σ(Z0,Z1, . . . ,Zn). Since Pλ(Zn+1 ∈ A | FZ

n ) = Eλ[Pλ(Zn+1 ∈ A | Fνn) | FZ
n ],

Eλ

∑
n∈Z+

sup
A∈Bn+1

∣∣Pλ

(
Zn+1 ∈ A | FZ

n

) − Pn(Zn,A)
∣∣

≤ Eλ

∑
n∈Z+

sup
A∈Bn+1

Eλ

[∣∣Pλ(Zn+1 ∈ A | Fνn) − Pn(Zn,A)
∣∣ | FZ

n

]
< ∞,

(7.11)

by (7.10). Fix n0 ∈ Z+. We couple (Z0,Z1, . . .) and (Sn0,Sn0+1, . . .), an interval-splitting
process with parameters r0 and �0 and initial configuration Sn0 = Zn0 . On a common
probability space, where we still denote probabilities by Pλ, construct (Z0, . . . ,Zn0) ac-
cording to the law given by Pλ, and then set Sn0 = Zn0 . Let n ≥ n0. Let FZ,S

n =
σ(Z0, . . . ,Zn,Sn0, . . . ,Sn). Given FZ,S

n , if Zn �= Sn, then generate Sn+1 independently of
Zn+1 according to Pn(Sn, ·). If Zn = Sn, then generate (Zn+1,Sn+1) by maximal coupling
of Pλ(Zn+1 ∈ · | FZ

n ) and Pn(Zn, ·). Then

Pλ(Zn = Sn for all n ≥ n0) ≥ 1 − εn0,(7.12)

where

εn0 = Eλ

∑
n≥n0

sup
A∈Bn+1

∣∣Pλ

(
Zn+1 ∈ A | FZ

n

) − Pn(Zn,A)
∣∣.

By (7.11), for any ε > 0 we can choose n0 large enough that εn0 < ε; fix such an n0.
We apply Theorem 10.1 to the interval-splitting process with parameters r0 and �0;

in the hypotheses we take α = 4 and β = 2, using Lemma 9.6 for the behaviour of φ0
near zero. Theorem 10.1(i) shows that Pλ(n

−1Cn(x) → x | Sn0 = z) = 1 for all z, and
hence Pλ(n

−1Cn(x) → x | FZ,S
n0

) = 1, a.s. On the event Zn = Sn for all n ≥ n0, we have
n−1|Nn(x) − Cn(x)| → 0, a.s. Hence

Pλ

(
n−1Nn(x) → x | FZ,S

n0

) ≥ Pλ

(
n−1Cn(x) → x,Zn = Sn for all n ≥ n0 | FZ,S

n0

)
= Pλ

(
Zn = Sn for all n ≥ n0 | FZ,S

n0

)
.

Taking expectations and using (7.12), we get Pλ(n
−1Nn(x) → x) ≥ 1 − εn0 ≥ 1 − ε. Since

ε > 0 was arbitrary, we establish part (i) of the theorem. The a.s. convergence in part (ii) is
deduced from Theorem 10.1(ii) in a similar way, and convergence of Pλ(L̃n ≤ x) = Eλ En(x)

follows from the bounded convergence theorem. The asymptotics for g0 follow from Theo-
rem 10.1(iii), noting that there α = 4, β = 2, and a = 0. �

8. Brownian motion exiting a right-angled triangle. This section provides a proof of
Proposition 5.2. Recall the notation S = ∂[0,1]2 and D = {(x, y) ∈ [0,1]2 : x = y} for the
boundary and diagonal of the unit square, and the definition of H(u, v;B) from (5.3). Let
U := {(x, y) ∈ [0,1]2 : x ≥ y}, the right-angled triangle with side-lengths 1,1,

√
2. Then for

B ∈ B we can write

H(u, v;B) = P
(
τ∂U = τD,W(1)

τD
∈ B | W0 = (u, v)

)
for (u, v) ∈ U ;
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the symmetry H(u, v;B) = H(v,u;B) gives H(u, v;B) for all (u, v) ∈ [0,1]2. An old result
of Smith and Watson [37] states that the probability that planar Brownian motion started from
a uniform random point in U exits via the diagonal is given by

2
∫
U

H
(
u, v; [0,1])dudv =

∫
[0,1]2

H
(
u, v; [0,1])dudv

= 1 − 16

π3

∑
n odd

coth(nπ/2)

n3(8.1)

≈ 0.41063 to 5 decimal places.

(The term (coth(3π/2) − 1)/9 on page 484 of [37] should be (coth(3π/2) − 1)/27, which
leads to an error in the 5th decimal place of their numerical approximation.) The method
of [37] could be adapted to find

∫ 1
0

∫ 1
0 H(u, v;B)dudv, but we want to evaluate H(u, v;B)

integrated against a different measure, as in (5.4). We use a variation on the classical method
of images to evaluate H(u, v;B) explicitly for fixed u, v. This is the content of Theorem 8.1,
which appears to be new, and from which we deduce Proposition 5.2.

For n ∈ Z, set sn(x, y) := sin(nπx) sinh(nπy). For x, y ∈ (0,1) and z ∈ [0,1], define

h(x, y, z)

:= ∑
n∈N

2 sin(nπ(1 − z))

sinh(nπ)

(
sn(x, y) + sn(1 − x,1 − y) − sn(y, x) − sn(1 − y,1 − x)

);
provided x, y ∈ (0,1), the sum here converges absolutely, uniformly for z ∈ [0,1].

THEOREM 8.1. For all (u, v) ∈ U \ D and all B ∈ B,

H(u, v;B) =
∫
B

h

(
u + v

2
,
u − v

2
,w

)
dw.(8.2)

REMARK 8.2. As a corollary to the theorem, following a similar (but simpler) series of
calculations to those in the proof of Proposition 5.2 below, one can derive

2
∫
U

H
(
u, v; [0,1])dudv =

∫
[0,1]2

H
(
u, v; [0,1]) dudv

= 32

π3

∑
n odd

(−1)
n−1

2

n3 sech(nπ/2),

(8.3)

which converges much faster than (8.1). Equality of (8.1) and (8.3) entails the identity

1 − 16

π3

∑
n odd

coth(nπ/2)

n3 = 32

π3

∑
n odd

(−1)
n−1

2

n3 sech(nπ/2),

for which we have not been able to find a reference.

We prove Theorem 8.1 by solving an appropriate Dirichlet problem. For a domain D ⊂R
2

with boundary ∂D and g : ∂D → R, a twice-differentiable f : R2 → R solves the Dirichlet
problem (D, g) if ∇2f = 0 on D and f = g on ∂D. We will show that H solves the Dirichlet
problem (U,g) where g depends on u, v, and B . Since g is not continuous, we approximate
it by continuous functions. Then we appeal to the explicit eigenfunctions of the Laplacian
on [0,1]2, and an application of the method of images [25], to solve the modified Dirichlet
problem, and then take a limit. While we believe that Theorem 8.1 is new, the idea has a long
history, and we refer to [30] for some similar examples.
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PROOF OF THEOREM 8.1. Provided (u, v) ∈ U \ D, both (u ± v)/2 are in (0,1). Note
also that h((1 + v)/2, (1 − v)/2,w) = h(u/2, u/2,w) = 0 because of the antisymmetries
h(x, y, z) = −h(y, x, z) = −h(1 − y,1 − x, z), so the integral in (8.2) is 0 if u = 1 or v = 0.
Thus it remains to prove (8.2) for (u, v) ∈ U \ ∂U . Moreover, since Brownian motion started
in the interior of U hits (0,0) or (1,1) with probability 0, and the value of the integral is
unaffected by the addition of points 0 or 1 to B , it suffices to suppose that B ⊆ (0,1).

Set V := {(x, y) ∈ [0,1]2 : x + y ≤ 1, x ≥ y}. Define the matrix M and associated linear
transformation m by

M := 1

2

(
1 1
1 −1

)
and m(u,v) := M

(
u

v

)
.

Then m maps U to V , and m(x,x) = (x,0). Since MM� = 1
2I , where I is the identity, the

process MW is a constant time-change of Brownian motion, so that

H(u, v;B) = P
(
W(1)

τ∂V
∈ B,W(2)

τ∂V
= 0 | W0 = m(u,v)

)
.(8.4)

Take γ : [0,1] → [0,1] continuous with γ (0) = γ (1) = 0. Then gV : ∂V → [0,1] with
gV (x, y) = 0 for y > 0 and gV (x,0) = γ (x) is continuous on ∂V . Define g : S → [0,1]
by

g(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ (x) if y = 0,

γ (1 − x) if y = 1,

−γ (y) if x = 0,

−γ (1 − y) if x = 1,

(8.5)

then g is continuous on S and satisfies g(x, y) = −g(y, x) = g(1−x,1−y) for all (x, y) ∈ S.
There is a unique twice-differentiable function f : [0,1]2 → [0,1] that solves the Dirichlet
problem ([0,1]2, g). Moreover, f inherits from g the symmetries f (x, y) = −f (y, x) =
f (1 − x,1 − y) for all (x, y) ∈ [0,1]2 (to see this, note, for instance, that f (x, y) + f (y, x)

solves the Dirichlet problem with zero boundary condition, and hence is identically zero). In
particular, f (x, x) = f (x,1 − x) = 0 for all x ∈ [0,1]. Hence the function fV := f |V solves
the Dirichlet problem (V , gV ).

For the simple region [0,1]2, solutions to the Dirichlet problem can easily be described
in terms of combinations of functions sin(nπx) sinh(nπy) for n ∈ N and their images under
the transformations x ↔ y and x ↔ 1 − y. In particular, the solution to the Dirichlet problem
([0,1]2, g), where g is of the form (8.5), is f given by

f (x, y) = ∑
n∈N

Ansn(x, y) + Bnsn(1 − x,1 − y) + Cnsn(y, x) + Dnsn(1 − y,1 − x)

sinh(nπ)
,

where the boundary condition gives An = Bn = −Cn = −Dn = 2
∫ 1

0 γ (z) sin(nπ(1 − z))dz.
Given B ∈ B, with B ∩ {0,1} = ∅, consider a sequence γk of bounded continuous func-

tions on [0,1] with γk(0) = γk(1) = 0 and limk→∞ γk(x) = 1B(x) for every x ∈ [0,1]. Then
let fk denote the solution to the Dirichlet problem ([0,1]2, gk), where gk is constructed from
γk according to (8.5). Then

fk(x, y) = ∑
n∈N

Ak,n

sinh(nπ)

(
sn(x, y) + sn(1 − x,1 − y) − sn(y, x) − sn(1 − y,1 − x)

)
,

where Ak,n = 2
∫ 1

0 γk(z) sin(nπ(1 − z))dz. As described above, restricting fk to V gives
the (unique) solution to the Dirichlet problem (V , gV,k), where gV,k(x, y) = γk(x)1{y = 0}.
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By the connection between the Dirichlet problem with continuous boundary conditions and
stopped Brownian motion (see, e.g., Theorem 3.12 of [31]) we have

E
(
gV,k(Wτ∂V

) | W0 = (x, y)
) = fk(x, y) for all (x, y) ∈ V.

Now, by choice of γk ,

lim
k→∞gV,k(Wτ∂V

) = 1
{
W(1)

τ∂V
∈ B,W(2)

τ∂V
= 0

}
, a.s.,

so, by bounded convergence,

P
(
W(1)

τ∂V
∈ B,W(2)

τ∂V
= 0 | W0 = (x, y)

) = lim
k→∞fk(x, y) for all (x, y) ∈ V.(8.6)

By bounded convergence, limk→∞ Ak,n = 2
∫
B sin(nπ(1 − z))dz. For fixed (x, y) ∈ (0,1)2,

the series expression for fk is absolutely convergent, and f (x, y) = limk→∞ fk(x, y) sat-
isfies f (x, y) = ∫

B h(x, y, z)dz, with h as defined in the display above Theorem 8.1. Then
combining (8.4) and (8.6), we obtain the result. �

Now we can complete the proof of Proposition 5.2.

PROOF OF PROPOSITION 5.2. Recall the definition of �1 from (5.4). For y, z ∈ (0,1),
y �= z, we have H(y, z;B) = H(y ∨ z, y ∧ z;B) is given by the formula (8.2), so that

�1(B) =
∫
B

dw

∫ 1

0
dz

∫ 1

0
dy

∫ 1

0
dx

∫ ∞
0

qt (x, y)h

(
y + z

2
,
(y ∨ z) − (y ∧ z)

2
,w

)
dt,

where we may define h(x,0,w) and h(1, y,w) arbitrarily. We now proceed to show that
�1(B) = ∫

B ψ(w)dw, where ψ is given by (2.4). Let

Q(y) :=
∫ 1

0
dx

∫ ∞
0

qt (x, y)dt.

Then

�1(B) =
∫
B

dw

∫ 1

0
dy

∫ y

0
Q(y)h

(
y + z

2
,
y − z

2
,w

)
dz

+
∫
B

dw

∫ 1

0
dz

∫ z

0
Q(y)h

(
y + z

2
,
z − y

2
,w

)
dy

=
∫
B

dw

∫ 1

0
dy

∫ y

0

[
Q(y) + Q(z)

]
h

(
y + z

2
,
y − z

2
,w

)
dz.

Changing variables from (y, z) ∈ U to (u, v) = (
y+z

2 ,
y−z

2 ) ∈ V we get

�1(B) = 2
∫
B

dw

∫ 1

0
du

∫ u∧(1−u)

0

[
Q(u + v) + Q(u − v)

]
h(u, v,w)dv.

A useful alternative expression for qt (see [11], page 122) is the spectral representation

qt (x, y) = 2
∑
m∈N

exp
(
−m2π2t

2

)
sin(mπx) sin(mπy).

Hence

Q(y) = 8

π3

∑
m odd

sin(mπy)

m3 = y(1 − y);



4878 N. GEORGIOU AND A. R. WADE

see (9.9) below. It follows that

�1(B) = 4
∫
B

dw

∫ 1

0
du

∫ u∧(1−u)

0

[
u(1 − u) − v2]

h(u, v,w)dv.

Decomposing h(u, v,w) into sums over even and odd n, and using that heven(u, v,w) =
−heven(1 − u, v,w) and hodd(u, v,w) = hodd(1 − u, v,w) = hodd(u, v,1 − w), gives

∫ 1

0
du

∫ u∧(1−u)

0

[
u(1 − u) − v2]

h(u, v,w)dv

= 2
∫ 1/2

0
du

∫ u

0

[
u(1 − u) − v2]

hodd(u, v,1 − w)dv,

so that �1(B) = 16
∫
B

∑
n odd

In

sinh(nπ)
sin(nπw)dw, where

In =
∫ 1/2

0
du

∫ u

0

[
u(1 − u) − v2]

× (
sn(u, v) + sn(1 − u,1 − v) − sn(v, u) − sn(1 − v,1 − u)

)
dv.

It remains to evaluate the integral In for n odd. To simplify the calculation, observe that for
n odd, the angle-sum formulae for the trigonometric and hyperbolic sines imply

sn(1/2 − x,1/2 − y) + sn(1/2 + x,1/2 + y) = 2sn(1/2,1/2)cn(x, y),

where cn(x, y) := cos(nπx) cosh(nπy). Hence, changing variables from (u, v) to (x, y) =
(1/2 − v,1/2 − u), the integral In becomes

In = 2sn(1/2,1/2)

∫ 1/2

0
dx

∫ x

0

[
x(1 − x) − y2](

cn(y, x) − cn(x, y)
)
dy.

We can write In = 2sn(1/2,1/2)(In,1 + In,2) where, for c̃n(x, y) := cn(y, x) − cn(x, y),

In,1 :=
∫ 1/2

0
dx

∫ x

0
x(1 − 2x)c̃n(x, y)dy and In,2 :=

∫ 1/2

0
dx

∫ x

0

(
x2 − y2)

c̃n(x, y)dy.

Then, since nπ
∫ x

0 c̃n(x, y)dy = R((1+ i) sin(nπ(1+ i)x)), integration by parts of the (com-

plex) integral
∫ 1/2

0 x(1 − 2x) sin(nπ(1 + i)x)dx yields

In,1 = sin(nπ/2)

π4

(
2 sinh(nπ/2)

n4 − π cosh(nπ/2)

2n3

)
for odd n.

For In,2, notice that − ∫ 1/2
0 dx

∫ x
0 y2c̃n(x, y)dy = ∫ 1/2

0 dy
∫ y

0 x2c̃n(x, y)dx, so that In,2 =∫ 1/2
0

∫ 1/2
0 x2c̃n(x, y)dx dy, and integration by parts yields

In,2 = sin(nπ/2)

π4

(
4 sinh(nπ/2)

n4 − π cosh(nπ/2)

n3

)
for odd n.

Hence, using that sin2(nπ/2) = 1 for n odd, we have

16In

sinh(nπ)
= 32 sinh(nπ/2)

π4 sinh(nπ)

(
6 sinh(nπ/2)

n4 − 3π cosh(nπ/2)

2n3

)
= 24

π4 an,

for odd n, where an is given by (2.4), and therefore �1(B) = ∫
B ψ(w)dw. �
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9. Analysis of the splitting density. In this section we present analytical and numeri-
cal results on the probability density φ0 appearing in (2.6). We start by discussing efficient
numerical approximation of the function ψ defined at (2.4) and the constant μ defined at
(2.5).

First we establish the final equality in (2.5). This will follow from the identity

4
∑
n odd

tanh(nπ/2)

n5 = π5

96
+ π

∑
n odd

sech2(nπ/2)

n4 .(9.1)

The equality (9.1) may be deduced from the fact that, for α,β > 0 with αβ = π2,

α−2
∑
n odd

tanh(nα/2)

n5 − (−β)−2
∑
n odd

tanh(nβ/2)

n5 = αβ(β − α)

192
,(9.2)

a formula attributed to de Saint-Venant in 1856 ([6], page 294). It follows from (9.2) that

α + β

π4

∑
n odd

tanh(nα/2)

n5 − 1

β2

∑
n odd

tanh(nβ/2) − tanh(nα/2)

n5(β − α)
= π2

192
.

Taking α − β → 0 gives (9.1). Then from the first series in (2.5) with (2.4), we have that

μ = 192

π5

∑
n odd

tanh(nπ/2)

n5 − 48

π4

∑
n odd

1

n4 .

Writing ζ(s) := ∑
n∈N n−s , note that

∑
n odd n−s = (1 − 2−s)ζ(s) for s > 1. Thus we obtain

the final series in (2.5), using (9.1) and the fact that ζ(4) = π4/90.
Truncating the second series in (2.5), we can write, for any odd integer n,

μ = μn + 48

π4 rn, where μn := 48

π4

∑
k≤n
k odd

sech2(kπ/2)

k4 and rn := ∑
k>n
k odd

sech2(kπ/2)

k4 .

Since sechx ≤ 2e−x for all x ∈ R we have, for n odd,

rn ≤ 4

(n + 2)4

∑
k≥n+2
k odd

e−kπ ≤ 4e−(n+2)π

(n + 2)4 · 1

1 − e−2π
.(9.3)

In particular, the bound r3 < 10−9 guarantees that μ is approximated by μ3 to within 5 ×
10−10. Since μ3 ≈ 0.078268954659, this suffices to evaluate the first 8 decimal digits of μ

as μ ≈ 0.07826895.
This idea can be extended to compute moments of �0. Set mk := ∫ 1

0 zkφ0(z)dz.

PROPOSITION 9.1. We have that m1 = 1/2,

m2 = 1

2
− 1

60μ
, m3 = 1

2
− 1

40μ
and m4 = 1

2
− 11

280μ
+ 576

μπ8

∑
n odd

sech2(nπ/2)

n8 .

PROOF. If

ωk,n :=
∫ 1

0
zk sin(nπz)dz,
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then we have from (2.4) and the fact that φ0(z) = μ−1ψ(z) that mk = 24
μπ4

∑
n odd anωk,n. For

example, ω1,n = 1
nπ

(−1)n+1 so m1 = 24
μπ5

∑
n odd

an

n
= 1

2 , by (2.5), as is to be expected, due

to the symmetry of φ0 around 1/2. Also, ω2,n = 1
nπ

− 4
n3π3 for odd n, so

m2 = 1

2
− 96

μπ7

∑
n odd

an

n3 = 1

2
− 384

μπ7

∑
n odd

tanh(nπ/2)

n7 + 96

μπ6 · ζ(6) · 63

64
.

Since
∑

n odd n−7 tanh(nπ
2 ) = 7π7

23040 [6], page 293, and ζ(6) = π6

945 , we get the claimed formula
for m2. The formula for m3 follows from those for m1 and m2 by symmetry of φ0.

Finally, for n odd, ω4,n = 1
nπ

− 12
n3π3 + 48

n5π5 , and, similar to before,

m4 = 1

2
− 6

35μ
+ 4608

μπ9

∑
n odd

tanh(nπ/2)

n9 .

The claimed formula for m4 now follows from the identity

4096
∑
n odd

tanh(nπ/2)

n9 = 37π9

315
+ 512π

∑
n odd

sech2(nπ/2)

n8 ,

which can be obtained in a similar fashion to (9.1), but replacing (9.2) by the appropriate
higher-order analogue from [6], page 294. �

The formulae in Proposition 9.1 give m2 and m4 to 10 decimal places as

m2 ≈ 0.2870590372 and m4 ≈ 0.1212564646.(9.4)

COROLLARY 9.2. The distribution �0 is not a Beta distribution.

PROOF. For β > 0, the Beta(β,β) distribution has density proportional to xβ−1(1 −
x)β−1 for x ∈ [0,1], and its kth moment is mβ,k = ∏k−1

j=0
β+j

2β+j
. Thus mβ,1 = 1/2. To fit

mβ,2 = m2 as given by (9.4) requires that β = β� ≈ 2.8729963811. But the Beta(β�,β�)

distribution has mβ�,4 ≈ 0.1212665009, which fails to match m4 from (9.4). �

Now we turn to analysis of the density φ0. It is useful to write

an = bn − 4

n4 dn, where bn := 4 − nπ

n4 and dn := 1 − tanh(nπ/2) for n ∈ N.

Note that 0 < dn < 2e−nπ . For k ∈ N, define the functions

Sk(x) :=
∞∑

n=1

sinnx

nk
and Ck(x) :=

∞∑
n=1

cosnx

nk
.(9.5)

It is known (see, e.g., equation 1.443.1 of [20], page 47) that

S3(x) = π2

6
x − π

4
x2 + 1

12
x3 for 0 ≤ x ≤ 2π.(9.6)

There is no closed form for S2 or S4, which are relatives of the Clausen function [27]. We
will express ψ in terms of the function

S(x) := ∑
n odd

sinnπx

n4 = S4(πx) − 1

16
S4(2πx).(9.7)
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LEMMA 9.3. We have that

ψ(x) = 96

π4 S(x) − 3x(1 − x) − 96

π4

∑
n odd

dn

n4 sinnπx.(9.8)

Moreover, ψ is twice continuously differentiable on [0,1].

REMARK 9.4. The third derivative of ψ diverges as x → 0 (to −∞) and x → 1 (to
+∞).

PROOF OF LEMMA 9.3. By rearranging (2.4), we can write

ψ(x) = 96

π4

∑
n odd

sinnπx

n4 − 24

π3

∑
n odd

sinnπx

n3 − 96

π4

∑
n odd

dn

n4 sinnπx.

From (9.6) we have that, for 0 ≤ x ≤ 1,

∑
n odd

sinnπx

n3 = S3(πx) − 1

8
S3(2πx) = π3

8
x(1 − x).(9.9)

This yields (9.8). The series expression for S(x) is evidently twice continuously differen-
tiable, and hence the same is true for ψ . �

Although S4 has no closed form, it has some numerically efficient series representations.
We use one of these to obtain an efficient approximation for ψ , and hence φ0. The (absolute)
Bernoulli numbers are |B(2�)| := 2ζ(2�)(2�)!/(2π)2�. For k,m ∈ Z+ and x ∈ [0,1], define

ψk,m(x) := 84

π3 xζ(3) + 8

π
x3 log(πx) − 8

π

(
11

6
+ log 2

)
x3 − 3x(1 − x)

+ 48πx5
k∑

n=0

|B(2n + 2)|(22n+1 − 1)

(n + 1)(2n + 5)! π2nx2n − 96

π4

∑
n odd
n≤m

dn

n4 sinnπx.

It turns out that ψk,m → ψ as k,m → ∞, but the convergence is poor as x approaches 1.
Thus we make use of the symmetry of ψ and consider the symmetrization

φ
k,m
0 (x) :=

⎧⎪⎪⎨
⎪⎪⎩

1

μ
ψk,m(x) if 0 ≤ x ≤ 1/2,

1

μ
ψk,m(1 − x) if 1/2 < x ≤ 1.

Then φ
k,m
0 converges rather rapidly to φ0, as shown by the following estimate.

LEMMA 9.5. For all k,m ∈ Z+, with m odd,

sup
0≤x≤1

∣∣φk,m
0 (x) − φ0(x)

∣∣ ≤ 4−kζ(2k + 4)

πμ(2k + 4)4 + 2e−(m+2)π

μ(m + 2)4 .

For example, sup0≤x≤1 |φ9,5
0 (x) − φ0(x)| < 10−10.

PROOF. A standard series expansion, valid for 0 ≤ x < 2π , is

S2(x) = x − x logx + x3

2

∞∑
n=0

|B(2n + 2)|
(n + 1)(2n + 3)!x

2n;(9.10)
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see, for example, equation (4.28) of [27] or Proposition 3.1 of the more readily accessible
[28]. Differentiation in (9.5) gives S′

4(x) = C3(x) and C′
3(x) = −S2(x), so we may integrate

(9.10) twice, term by term, using the initial values C3(0) = ζ(3) and S4(0) = 0, to get

S4(x) = xζ(3) + x3

6
logx − 11

36
x3 − x5

2

∞∑
n=0

|B(2n + 2)|
(n + 1)(2n + 5)!x

2n,(9.11)

for 0 ≤ x < 2π . It follows from (9.11) that, for 0 ≤ x < 1,

S4(πx) − 1

16
S4(2πx) = 7

8
πxζ(3) + π3

12
x3 log(πx) − π3

12

(
11

6
+ log 2

)
x3

+ π5x5

2

∞∑
n=0

|B(2n + 2)|(22n+1 − 1)

(n + 1)(2n + 5)! π2nx2n.

(9.12)

Then substituting (9.12) for S(x) in (9.7) and (9.8), we get for 0 ≤ x < 1,

ψ(x) = 84

π3 xζ(3) + 8

π
x3 log(πx) − 8

π

(
11

6
+ log 2

)
x3 − 3x(1 − x)

+ 48πx5
∞∑

n=0

|B(2n + 2)|(22n+1 − 1)

(n + 1)(2n + 5)! π2nx2n − 96

π4

∑
n odd

dn

n4 sinnπx.

(9.13)

Since φ0(x) = μ−1ψ(x), it follows that

sup
0≤x≤1/2

∣∣φ0(x) − φ
k,m
0 (x)

∣∣ ≤ 3π

μ

∑
n>k

|B(2n + 2)|π2n

(n + 1)(2n + 5)! + 96

π4μ

∑
n odd
n>m

dn

n4 .

Here, since |B(2�)| = 2ζ(2�)(2�)!/(2π)2�,

3π

μ

∑
n>k

|B(2n + 2)|π2n

(n + 1)(2n + 5)! ≤ 3

πμ

∑
n>k

ζ(2n + 2)

(2n + 2)4 2−2n ≤ 3

πμ

ζ(2k + 4)

(2k + 4)4

∞∑
n=k+1

4−n,

since ζ(·) is decreasing. Moreover, a similar bound to (9.3) gives

∑
n odd
n>m

dn

n4 ≤ 2
∑
n odd
n>m

e−nπ

n4 ≤ 2

1 − e−2π

e−(m+2)π

(m + 2)4 .

With the numerical bound 96 < π4(1 − e−2π), this completes the proof. �

Important for the asymptotics of the normalized gap distribution given in Theorem 2.3 is
the behaviour of φ0(x) as x → 0 (see Theorem 10.1 below). Here the expression (9.13) is
misleading at first glance, as the next result shows.

LEMMA 9.6. We have that φ0(x) ∼ (3/μ)x2 as x → 0.

PROOF. First note that, using [6], page 287, to evaluate the sum involving tanh,

∑
n odd

nan = 4
∑
n odd

tanh(nπ/2)

n3 − π
∑
n odd

1

n2 = π3

8
− 3π

4
ζ(2) = 0.(9.14)
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Then from (2.4) with (9.7), (9.9), and (9.14) we obtain, as an alternative to (9.8),

ψ(x) = 24

π4

∑
n odd

an(sinnπx − nπx)

= 96

π4 S(x) + 3x2 − 84ζ(3)

π3 x − 96

π4

∑
n odd

dn

n4 (sinnπx − nπx).

(9.15)

Here S(x) = 7
8πxζ(3)+ o(x2) as x → 0, by (9.12). Since |y − siny| = O(y3) as y → 0, and

dn = O(e−nπ ), the final sum in (9.15) is absolutely convergent, uniformly for x ∈ [0,1], and
hence is O(x3). Thus (9.15) gives ψ(x) ∼ 3x2 as x → 0. �

10. Limiting gap statistics. This section contributes to the proof of Theorem 2.3, by
establishing the corresponding limit statements for the approximating interval-splitting pro-
cess appearing in Theorem 2.2, building on work of Brennan and Durrett [12, 13]. We work
in a more general setting to emphasize which elements of r0 and φ0 contribute to the tail
asymptotics of the normalized gap density g0. Also, because the approximation between the
nucleation process and the interval-splitting limit works well only for large times (see Sec-
tion 7), we derive our results on the interval-splitting process started from arbitrary initial
conditions. To this end, for n0 ∈ Z+ and z ∈ �n0 , we write P

r,�
n0,z for the law of the interval-

splitting process S = (Sn0,Sn1, . . . , ) with Sn0 = z and evolving for n ≥ n0 according to (2.3)
with parameters r and �. Here is the main result of this section.

THEOREM 10.1. Let α,b ∈ (0,∞), β ∈ R+, r(�) = �α , and φ be a bounded probability
density on [0,1] with φ(x) = φ(1 − x) for all x ∈ [0,1] and φ(x) ∼ bxβ as x → 0. Define
�(B) = ∫

B φ(x)dx for all B ∈ B. Let S be an interval-splitting process with parameters
r and �, and let �n,i , i ∈ [n + 1], denote the lengths of the gaps in Sn. For x ∈ [0,1], let
Cn(x) = max{m ∈ {0,1, . . . , n + 1} : ∑m

i=1 �n,i ≤ x}.
(i) For all n0 ∈ Z+ and all z ∈ �n0 , limn→∞ supx∈[0,1] |n−1Cn(x) − x| = 0, Pr,�

n0,z-a.s.
(ii) There exists a continuous probability density function g on R+ such that for all n0 ∈

Z+, all z ∈ �n0 , and all x ∈ R+,

lim
n→∞

1

n + 1

∑
i∈[n+1]

1
{
(n + 1)�n,i ≤ x

} =
∫ x

0
g(y)dy, P

r,�
n0,z-a.s. and in L1.(10.1)

(iii) There exist constants cg,0, cg,∞, θ ∈ (0,∞) such that

g(x) ∼ cg,0x
β as x → 0, and g(x) ∼ cg,∞x2a−2 exp

(−θxα)
as x → ∞,

where in the latter case, a = limx→0 φ(x).

REMARK 10.2. In the case of a uniform splitting distribution, where φ(x) ≡ 1 for x ∈
[0,1], one has the explicit expression (see Remark 10.4 below) that

g(x) = α�(2/α)

�(1/α)2 exp
{
−

(
�(2/α)

�(1/α)

)α

xα

}
.

There are two parts to the proof of Theorem 10.1. One is to translate the results of [12,
13], which pertain to a continuous-time interval-splitting model started from a unit interval,
to our setting, to obtain a characterization of the density g in terms of distributional fixed-
point equations. The second part of the proof is an analysis of these fixed-point equations to
obtain the tail asymptotics. We start with the second part.
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The fixed-point description goes as follows. Let X and T be random variables on R+ with
probability density functions fX and fT respectively, given by

fX(x) = 2e−2xφ
(
e−x)

and

fT (x) = cT

∫ e−x

0
sφ(s)ds, where

1

cT

=
∫ ∞

0
ue−2uφ

(
e−u)

du.

Define the distribution of random variables Q and Z via the fixed-point equation

(Q,Z)
d= (

Ze−αT ,Ze−αX + ξ
)
, Q ≥ 0,Z ≥ 0,(10.2)

where the Z,T ,X, and ξ on the right-hand side are independent, and ξ is exponentially
distributed with unit mean. The second coordinate equality in (10.2) determines uniquely
the distribution of Z by for example, Theorem 1.5(i) and Lemma 1.4(a) of [41]; the first
coordinate equality then specifies the distribution of Q. We will show that the g in (10.1) is
given in terms of the density q of the random variable Q1/α ; the next result gives asymptotics
for q .

LEMMA 10.3. Let α,b ∈ (0,∞), β ∈ R+, r(�) = �α , and φ be a bounded probability
density on [0,1] with φ(x) = φ(1 − x) for all x ∈ [0,1] and φ(x) ∼ bxβ as x → 0. Then the
random variable Q1/α whose distribution is characterized by (10.2) has a density q which is
continuous on R+, and there exist constants cq,0, cq,∞ ∈ (0,∞) such that

q(x) ∼ cq,0x
1+β as x → 0 and q(x) ∼ cq,∞x2a−1 exp

(−xα)
as x → ∞,

where in the latter case, a = limx→0 φ(x).

PROOF. Let FZ(r) := P(Z ≤ r). By (10.2), conditioning on ξ and then X, for r ≥ 0,

FZ(r) =
∫ r

0
e−u

P
(
Ze−αX ≤ r − u

)
du

= 2
∫ r

0
due−u

∫ ∞
0

e−2xφ
(
e−x)

FZ

(
(r − u)eαx)

dx.

With the change of variable v = r − u, this says

FZ(r) = 2e−r
∫ r

0
dvev

∫ ∞
0

e−2xφ
(
e−x)

FZ

(
veαx)

dx,

which is continuously differentiable, so fZ(r) := F ′
Z(r) exists and is continuous. Also

P
(
Ze−αX ≤ r

) = 2
∫ ∞

0
e−2xφ

(
e−x)

FZ

(
reαx)

dx.

Since FZ is continuously differentiable, we can differentiate under the integral to get that
Y := Ze−αX has a density fY satisfying

fY (r) = 2
∫ ∞

0
e(α−2)xφ

(
e−x)

fZ

(
reαx)

dx.

Then since Z is distributed as Y + ξ , we can write

FZ(r) =
∫ r

0
fY (y)P(ξ ≤ r − y)dy = 2

∫ r

0
dy

(
1 − e−(r−y)) ∫ ∞

0
e(α−2)xφ

(
e−x)

fZ

(
yeαx)

dx.

Differentiating we obtain

fZ(r) = 2e−r
∫ r

0
dyey

∫ ∞
0

e(α−2)xφ
(
e−x)

fZ

(
yeαx)

dx.
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With the substitution u = yeαx , we get, for r ≥ 0,

fZ(r) = 2

α
e−r

∫ r

0
dyeyy

2−α
α

∫ ∞
y

u− 2
α φ

(
(y/u)1/α)

fZ(u)du.(10.3)

We use the relation (10.3) to derive asymptotics of fZ(r) as r → 0. Fix ε > 0. For u ≥ Ky,
K > 1, we have y/u ≤ 1/K . Choosing K > 1 large enough (depending on ε), this means
φ((y/u)1/α) ≤ (b + ε)(y/u)β/α for all y > 0 and all u ≥ Ky. Hence∫ ∞

Ky
u− 2

α φ
(
(y/u)1/α)

fZ(u)du ≤ (b + ε)yβ/α
∫ ∞
Ky

u− 2+β
α fZ(u)du.

On the other hand, let A := supx∈[0,1] φ(x), which is finite. Then, for all y ∈ R+,∫ Ky

y
u− 2

α φ
(
(y/u)1/α)

fZ(u)du ≤ AB(Ky)

∫ Ky

y
u− 2

α du, where B(y) := sup
0≤u≤y

fZ(u).

It follows from (10.3) that for C a finite constant depending on K , for all r ∈R+,

fZ(r) ≤ C

∫ r

0
B(Ky)dy + 2

α
(b + ε)

∫ r

0
dyy

2+β−α
α

∫ ∞
Ky

u− 2+β
α fZ(u)du.(10.4)

We apply (10.4) successively to get a bound. Let rk = K−k . Suppose that for constants
Ck, γk ∈ R+ we have fZ(r) ≤ Ckr

γk for r ∈ [0, rk]. We bound the u-integral in (10.4) via∫ ∞
Ky

u− 2+β
α fZ(u)du ≤ Ck

∫ rk

Ky
uγk− 2+β

α du + r
− 2+β

α

k

≤ Ck+1 + Ck+1y
1+γk− 2+β

α log(1/y),

for some Ck+1 < ∞ and all y ∈ [0, rk+1]. Thus from (10.4) we get, for all r ∈ [0, rk+1],
fZ(r) ≤ Ck+1r

1+γk log(1/r) + Ck+1r
2+β
α ≤ Ck+1r

γk+1,

where γk+1 =
(

1

2
+ γk

)
∧

(
2 + β

α

)
,

redefining Ck+1 as necessary. Starting with the bound fZ(r) ≤ C0 = supx∈[0,1] fZ(x) < ∞
for r ∈ [0, r0], we iterate this argument from γ0 = 0 to get, for some finite k,

fZ(r) ≤ Ckr
2+β
α for all r ∈ [0, rk].(10.5)

Using the bound (10.5) now in (10.4) shows that, for all r sufficiently small,

fZ(r) ≤ 2

2 + β
c1(b + ε)r

2+β
α , where c1 =

∫ ∞
0

u− 2+β
α fZ(u)du,(10.6)

the c1 being a finite positive constant, since (10.5) shows that the integral does not blow up
near zero. The other direction is similar: from (10.3) we have

fZ(r) ≥ 2

α
(b − ε)e−r

∫ r

0
dyy

2+β−α
α

∫ ∞
Ky

u− 2+β
α fZ(u)du

≥ 2

2 + β
c1(b − ε)e−r r

2+β
α − C

∫ r

0
dyy

2+β−α
α

∫ Ky

0
u− 2+β

α fZ(u)du.

With the upper bound from (10.6) we get that the negative term here is O(r1+ 2+β
α ) as r → 0.

Since ε > 0 was arbitrary, we conclude that

fZ(r) = (
cZ,0 + o(1)

)
r

2+β
α as r → 0,(10.7)

where cZ,0 := 2bc1
2+β

, with c1 defined in (10.6).
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Now we turn to the random variable Q1/α . Note that the density fT of T satisfies fT (t) ∼
cT ,∞e−(2+β)t as t → ∞ where cT ,∞ := bcT

2+β
∈ (0,∞). It follows that fT (t) ≤ Ce−(2+β)t for

some C < ∞ and all t ∈ R+. For r ∈ R we have from (10.2) that

P(− logQ > rα) = P(αT − logZ > rα) =
∫ ∞

0
fT (t)FZ

(
e(t−r)α)

dt.

Since FZ is continuously differentiable, and since P(− logQ > rα) = P(Q1/α ≤ e−r ), we
can differentiate under the integral sign to see that Q1/α has a density q which satisfies

e(α−1)rq
(
e−r) = α

∫ ∞
0

eαtfT (t)fZ

(
eα(t−r)) dt

= eαr
∫ ∞

e−αr
fT

(
logu

α
+ r

)
fZ(u)du.

(10.8)

Here fT is bounded and continuous, so the dominated convergence theorem shows that the
second integral in (10.8) is continuous over r ∈ R, and hence q(r) is continuous over r ∈
(0,∞). We now use the first integral in (10.8) to derive the asymptotics of q near zero. By

(10.7) there exists C < ∞ such that fZ(r) ≤ Cr
2+β
α for all r ∈ R+. Thus∫ r/2

0
eαtfT (t)fZ

(
eα(t−r)) dt ≤ Ce−(2+β)r

∫ r/2

0
eαt dt ≤ Ceαr/2e−(2+β)r .

Similarly, for any ε > 0 and all t > r/2 with r sufficiently large,∫ ∞
r/2

eαtfT (t)fZ

(
eα(t−r)) dt ≤ (cT ,∞ + ε)

∫ ∞
r/2

eαte−(2+β)tfZ

(
eα(t−r)) dt

= (cT ,∞ + ε)eαr−(2+β)r
∫ ∞
−r/2

eαs−(2+β)sfZ

(
eαs) ds,

using the change of variable s = t − r . The r → ∞ limit of the s-integral here converges to
c1/α, with c1 the integral defined at (10.6). Thus we get, for all r sufficiently large,∫ ∞

r/2
eαtfT (t)fZ

(
eα(t−r)) dt ≤

(
c1cT ,∞

α
+ ε

)
eαr−(2+β)r .

A similar argument in the other direction shows that, for all r sufficiently large,∫ ∞
r/2

eαtfT (t)fZ

(
eα(t−r)) dt ≥

(
c1cT ,∞

α
− ε

)
eαr−(2+β)r .

It follows from (10.8) and the above estimates that

q(r) = (
cq,0 + o(1)

)
r1+β as r → 0,(10.9)

where cq,0 := bc1cT

2+β
, with c1 as defined at (10.6).

Next we turn to the upper tail estimates. In this case we will use Brennan and Durrett’s
expression for the moment generating function of Z and a Tauberian theorem. Brennan and
Durrett also give an expression for the moment generating function of Q, but monotonicity
properties, helpful for deducing density asymptotics via the Tauberian argument, are easier to
demonstrate for Z. Recalling that Z has the same distribution as Y + ξ , for Y, ξ independent
and ξ exponential with unit mean, we have

P(Z ≤ r) =
∫ r

0
e−s

P(Y ≤ r − s)ds = e−r
∫ r

0
eu
P(Y ≤ u)du.
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Differentiation gives fZ(r) = P(Y ≤ r) − P(Z ≤ r), and so f ′
Z(r) = fY (r) − fZ(r). Thus

d

dr

(
erfZ(r)

) = er(f ′
Z(r) + fZ(r)

) = erfY (r) ≥ 0.

Hence erfZ(r) is nondecreasing; this is the helpful monotonicity property mentioned above.
Using Brennan and Durrett’s formula for the moments of Z ([13], page 114), we see

mZ(t) := E
(
etZ) =

∞∑
k=0

tk
k∏

j=1

1

1 − h(jα)
,(10.10)

where

h(t) :=
∫ ∞

0
e−txfX(x)dx = 2

∫ ∞
0

e−(2+t)xφ
(
e−x)

dx.

Since X is nondegenerate, h(t) < 1 for all t > 0. Moreover, since φ(e−x) ∼ φ(x) ∼ bxβ as
x → 0, we may apply Laplace’s method (see, e.g., [42], pages 55–58) to obtain

h(t) ∼ 2b�(1 + β)t−1−β as t → ∞.(10.11)

It follows from (10.11) that mZ(t) < ∞ provided |t | < 1; indeed, as we will see, the in-
formation we need is contained in the asymptotics of mZ(t) as t ↑ 1. Consider the Laplace
transform m̃Z associated with erfZ(r), namely

m̃Z(t) :=
∫ ∞

0
e−txexfZ(x)dx = mZ(1 − t),

which is finite for t ∈ (0,1). We will use a Tauberian theorem to relate the r → ∞ asymp-
totics of erfZ(r) to the t → 0 asymptotics of m̃Z(t). From (10.10), we have

m̃Z(t) =
∞∑

k=0

(1 − t)k exp
k∑

j=1

log
(

1

1 − h(jα)

)
.(10.12)

Here we have from (10.11) that, as j → ∞,

log
(

1

1 − h(jα)

)
= log

(
1 + h(jα)

1 − h(jα)

)
= 2b�(1 + β)(jα)−1−β + O

(
j−2−β)

.

It follows that, as k → ∞,

k∑
j=1

log
(

1

1 − h(jα)

)
=

⎧⎨
⎩

2b

α
log k + log c2 + o(1) if β = 0,

log c2 + o(1) if β > 0,
(10.13)

where c2 ∈ (0,∞) is a constant depending on α,β , and φ.
If β > 0, then (10.12) and (10.13) show that m̃Z(t) = ∑∞

k=0(1 − t)k(c2 + o(1)), where the
o(1) is as k → ∞, and is uniform in t > 0. It is elementary to deduce that

m̃Z(t) ∼ c2/t as t → 0, if β > 0.(10.14)

On the other hand, suppose that β = 0. Then we have from (10.12) and (10.13) that m̃Z(t) =∑∞
k=0(1 − t)k(c2 + o(1))k2b/α , where the o(1) is as k → ∞, and is uniform in t . It is a

consequence of a standard Abelian theorem for power series that
∑∞

k=0(1 − t)kkρ ∼ �(1 +
ρ)t−ρ−1 as t ↓ 0. Thus we deduce that

m̃Z(t) ∼ �

(
1 + 2b

α

)
c2t

− 2b
α

−1 as t → 0, if β = 0.(10.15)
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Defining a := limx→0 φ(x), so a = 0 if β > 0 and a = b if β = 0, we can combine the
asymptotics (10.14) and (10.15) into the single statement that, for some c̃Z,0 ∈ (0,∞),

m̃Z(t) ∼ c̃Z,0t
−1−(2a/α) as t → 0.(10.16)

Together with the fact that erfZ(r) is nondecreasing, the asymptotics (10.16) allow us to
apply a monotone-density Tauberian theorem (e.g., [18], page 446) to deduce

fZ(r) = (
cZ,∞ + o(1)

)
r2a/αe−r as r → ∞,(10.17)

where cZ,∞ ∈ (0,∞). Rewriting the first equality in (10.8), we have

q(r) = αrα−1
∫ ∞

0
eαtfT (t)fZ

(
eαt rα)

dt.(10.18)

From (10.18), with the change of variable u = eαt and the fZ asymptotics from (10.17),

q(r) = (
cZ,∞ + o(1)

)
r2a+α−1

∫ ∞
1

fT

(
α−1 logu

)
u2a/αe−urα

du,

as r → ∞. Since limx→0 fT (x) = cT /2 (by symmetry of φ), the asymptotics of the latter
integral can be obtained by Laplace’s method (e.g., [42], pages 55–58), which gives

q(r) = (
cq,∞ + o(1)

)
r2a−1e−rα

as r → ∞,

where cq,∞ := cT cZ,∞
2 . This completes the proof. �

PROOF OF THEOREM 10.1. Define the distribution function

G(x) := 1

ρ

∫ x

0

q(y)

y
dy for x ∈R+,(10.19)

where q is the density of the random variable Q1/α and ρ := E(Q−1/α) ∈ (0,∞). Brennan
and Durrett [13] consider a continuous-time embedding of the interval-splitting process in
which an interval of length � splits at rate r(�) = �α , and, when it splits, does so according to
�. Starting at time t = 0 with a single gap of length 1, let it denote the number of intervals
at time t ∈ R+ and let et,i , i ∈ [it ], denote the lengths of those intervals, listed left to right.
For x ∈ [0,1], let ct (x) := max{m ∈ {0,1, . . . , it} : ∑m

i=1 et,i ≤ x}, the number of intervals
wholly contained in [0, x]. The result of [13], page 113, says that

(10.20) lim
t→∞ t−1/αit = ρ, a.s., and lim

t→∞
1

it

∑
i∈[it ]

1
{
t1/αet,i ≤ x

} = G(x) a.s.,

where G is given by (10.19), while Theorem 1.1 of [12], pages 1027–1028, shows that

lim
t→∞

ct (x)

it
= x, a.s., for all x ∈ [0,1].(10.21)

Now we extend the model to permit an arbitrary initial configuration z ∈ �n0 at time t = 0.
Then the initial gaps j ∈ [n0 + 1] have lengths u1, . . . , un0+1, say, with

∑n0+1
j=1 uj = 1. The

process evolves independently on each gap. Let izj,t denote the number of intervals at time

t ∈ R+ for the process restricted to initial gap j , and let izt = ∑n0+1
j=1 izj,t denote the total

number of intervals. Also let ez
j,t,i , i ∈ [izj,t ], denote the interval lengths for the process in

interval j . The process in interval j is a copy of the process on the single initial interval
[0,1], but with all lengths scaled by a factor of uj , which entails a time-scaling of uα

j ; in
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particular, izj,t has the same distribution as iuα
j t , and the collection ez

j,t,i , i ∈ [izj,t ], has the
same distribution as ujeuα

j t,i , i ∈ [iuα
j t ]. Thus (10.20) implies that

lim
t→∞ t−1/αizj,t = ρuj , a.s., and

lim
t→∞

1

izj,t

∑
i∈[izj,t ]

1
{
t1/αez

j,t,i ≤ x
} = G(x), a.s.

(10.22)

Also, if ez
t,i , i ∈ [izt ] are the (aggregated) interval lengths, listed left to right, then

1

izt

∑
i∈[izt ]

1
{
t1/αez

t,i ≤ x
} = ∑

j∈[n0+1]

izt,j

izt

1

izt,j

∑
i∈[izj,t ]

1
{
t1/αez

j,t,i ≤ x
}
.

Since
∑n0+1

j=1 izj,t = izt and
∑n0+1

j=1 uj = 1, we conclude from (10.22) that, for any z ∈ �n0 ,

(10.23) lim
t→∞ t−1/αizt = ρ, a.s. and lim

t→∞
1

izt

∑
i∈[izt ]

1
{
t1/αez

t,i ≤ x
} = G(x), a.s.

If τ0 = 0 and τn ∈ R+ denotes the time of the nth splitting event, then Sn0,Sn0+1, . . . is
embedded at times τ0, τ1, . . . of the continuous-time process stated at Sn0 = z. Given Sn,
n ≥ n0, let �n,1, . . . , �n,n+1 denote the lengths of the gaps, so izτn

= n + 1 and �n,i = ez
τn,i .

Translating (10.23) into discrete time thus gives

lim
n→∞ τ−1/α

n n = ρ, a.s., and

lim
n→∞

1

n + 1

∑
i∈[n+1]

1
{
τ 1/α
n �n,i ≤ x

} = G(x) a.s.
(10.24)

Let Gn denote the σ -algebra generated by S0, . . . ,Sn and τ0, . . . , τn. Then, for Un a uniform
random variable on [n + 1], independent of Gn, set �̃n = (n + 1)�n,Un , so that

P(�̃n ≤ x | Gn) = 1

n + 1

∑
i∈[n+1]

1
{
τ 1/α
n �n,i ≤ xτ 1/α

n (n + 1)−1}
.

Since, by (10.24), (n + 1)τ
−1/α
n → ρ, a.s., for any ε > 0 and all n sufficiently large,

P(�̃n ≤ x | Gn) ≤ 1

n + 1

∑
i∈[n+1]

1
{
τ 1/α
n �n,i ≤ x

(
ρ−1 + ε

)}
,

by monotonicity, so that, by (10.24), lim supn→∞ P(�̃n ≤ x | Gn) ≤ G(x(ρ−1 + ε)), a.s. By a
similar argument in the other direction, and continuity of G given at (10.19), we get, a.s.,

lim
n→∞P(�̃n ≤ x | Gn) = 1

ρ

∫ x/ρ

0

q(y)

y
dy =

∫ x

0
g(z)dz,

where g(x) := q(x/ρ)

ρx
.

(10.25)

This establishes the a.s. convergence result in (10.1) with g(x) as displayed, and the L1

convergence follows by the bounded convergence theorem. This proves (ii). Moreover,
Lemma 10.3 shows that g as defined in (10.25) is continuous on (0,∞), and satisfies the
asymptotics for g given in part (iii) of the theorem, with cg,0 = cq,0ρ

−2−β , cg,∞ = cq,∞ρ−2a ,
and θ = ρ−α . Thus (iii) is also proved.
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For part (i), fix x ∈ [0,1] and let jx = min{j ∈ [n0 + 1] : ∑j
i=1 ui ≥ x}, so that jx is the

index of the initial gap that contains x. Let x′ = ∑jx−1
i=1 ui , so 0 ≤ x′ ≤ x. Then

cz
t (x) := max

{
m ∈ {

0,1, . . . , izt
} :

m∑
i=1

ez
t,i ≤ x

}
= cz

jx,t (x) + ∑
j<jx

izj,t ,(10.26)

where cz
jx,t (x) means the number of intervals at time t contained in initial gap jx (whose left

endpoint is at x′) that fall wholly in [0, x]. By scaling, cz
j,t (x), izj,t have the same distribution

as cuα
j t (

x−x′
uj

), iuα
j t , and so we have from (10.21) and (10.22) that

izj,t ∼ ρt1/αuj for all j and cz
jx,t (x) ∼ izjx,t

(
x − x′

ujx

)
∼ ρt1/α(

x − x′).
Together with (10.26), this implies that cz

t (x) ∼ ρt1/αx. It follows from (10.23) that
cz
t (x)/izt → x, a.s., and thus we get (i) after translating the result into discrete time. �

REMARK 10.4. In the special case where φ(x) ≡ 1 (uniform splitting), the explicit so-

lutions to (10.10), (10.3), and (10.18) are mZ(t) = (1 − t)− α+2
α for |t | < 1, and

fZ(r) = r2/α

�(1 + 2
α
)
e−r and q(r) = 2r

�(1 + 2
α
)
e−rα

, r ∈ R+,

so that ρ = �(1/α)/�(2/α) (cf. [13], page 113), which with (10.25) justifies Remark 10.2.
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