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Abstract

Supermassive black holes (SMBHs) are thought to provide energy that prevents catastrophic cooling in the centers
of massive galaxies and galaxy clusters. However, it remains unclear how this “feedback” process operates. We use
high-resolution optical data to study the kinematics of multiphase filamentary structures by measuring the velocity
structure function (VSF) of the filaments over a wide range of scales in the centers of three nearby galaxy clusters:
Perseus, A2597, and Virgo. We find that the motions of the filaments are turbulent in all three clusters studied.
There is a clear correlation between features of the VSFs and the sizes of bubbles inflated by SMBH-driven jets.
Our study demonstrates that SMBHs are the main driver of turbulent gas motions in the centers of relaxed galaxy
clusters and suggests that this turbulence is an important channel for coupling feedback to the environment. Our
measured amplitude of turbulence is in good agreement with Hitomi Doppler line broadening measurement and
X-ray surface-brightness fluctuation analysis, suggesting that the motion of the cold filaments is well-coupled to
that of the hot gas. The smallest scales that we probe are comparable to the mean free path in the intracluster
medium. Our direct detection of turbulence on these scales provides the clearest evidence to date that isotropic
viscosity is suppressed in the weakly collisional, magnetized intracluster plasma.

Unified Astronomy Thesaurus concepts: Galaxy clusters (584); Supermassive black holes (1663); Intracluster
medium (858); Galaxy physics (612)

1. Introduction

Relaxed galaxy clusters often harbor a cool core, where
radiative cooling of the intracluster medium (ICM) is expected to
result in cooling flows of hundreds of -M yr 1

 in the absence of
heating (Fabian 1994). Feedback from active galactic nuclei
(AGNs) in forms of jets, radiation, and fast outflows is thought to
provide the energy to balance radiative cooling and suppress star
formation (McNamara et al. 2005). X-ray observations show
that AGN feedback generates “bubbles” and “ripples” in the
surrounding ICM (Fabian 2012). Based on X-ray measurements
of line widths (Hitomi Collaboration et al. 2016) and surface
brightness fluctuations (Zhuravleva et al. 2014, 2016), it is
suggested that cluster cores are turbulent. However, current X-ray
observatories have limited spatial and spectral resolutions, making
it impossible to probe turbulence directly, let alone its drivers.

The centers of cool-core clusters also frequently exhibit
extended filamentary structures that can be seen in the Hα
(Conselice et al. 2001; Olivares et al. 2019) and sometimes CO
(Edge 2001; McNamara et al. 2014). The existence of cold
filaments has been linked to the activities of supermassive black
holes (SMBHs) in the centers of galaxy clusters (Cavagnolo
et al. 2008; Tremblay et al. 2016), and the ensemble velocity
dispersion of the filaments has a similar amplitude as the mean
line of sight velocity dispersion of the hot ICM (Gaspari et al.
2018; Gendron-Marsolais et al. 2018). The filaments often show
perturbed kinematics and a lack of ordered motion on large
scales (Sarzi et al. 2006; Olivares et al. 2019). In other words, the
motion of the filaments appears turbulent.
In this work, we study the turbulent nature of multiphase

filaments by measuring their velocity structure functions
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(VSFs) in three nearby galaxy clusters: Perseus, A2597, and
Virgo. We describe the data and data processing in Section 2.
In Section 3, we connect the turbulent motions of the filaments
to the activities of SMBHs, and compare our measurements
with the X-ray analysis. In Section 4, we discuss the puzzling
features of the VSFs, the uncertainties of the analysis, and the
implications of our results, including constraints on micro-
scopic physics of the ICM. We conclude this work in Section 5.

2. Data Processing

The Perseus Hα filaments were observed using the optical
imaging Fourier transform spectrometer SITELLE at the
Canada–France–Hawaii Telescope (CFHT; Gendron-Marsolais
et al. 2018). SITELLE has a spatial resolution of 0 321×
0 321, and a spectral resolution of R=1800. The original
Perseus data cube was binned up by a factor of 2 to increase
the signal-to-noise ratio. The ionized filaments in Virgo and
A2597 was observed using the Multi Unit Spectroscopic
Explorer (MUSE) with a spatial sampling of 0 2 and a spectral
resolution of R=3000 (Sarzi et al. 2018; Tremblay et al. 2018;
Boselli et al. 2019). For Perseus and Virgo, the velocity in each
pixel of the velocity map is obtained as the peak of a Gaussian
profile fit to the Hα+N II complex, and for A2597, only Hα is
used in the fit. In Perseus, a small region in the center with a
radius of 6″ is excluded from the fitting due to contamination
from the AGN (Gendron-Marsolais et al. 2018). The molecular
gas in A2597 and Virgo was observed using the Atacama Large
Millimeter/submillimeter Array (ALMA) with a spatial resolu-
tion of 0 37 (Simionescu et al. 2018; Tremblay et al. 2018). See
Table 1 for a summary of data.

To understand the nature of the motion of these filaments, we
compute the VSFs for all three clusters. We first remove a
small fraction (<20%) of pixels with large velocity errors,
shown in the top panels of Figure 1. We have visually
examined pixels with very large velocity errors, and found that
they tend to be located either at the edge of filaments or in
isolation with an appearance similar to noise (even though it
could be from a real gas cloud that is very faint and poorly
resolved). Therefore, it is sensible to remove these pixels. The
value of the velocity error cut is chosen to be a few times
the median velocity error for each cluster. We have verified that
the results are not sensitive to the exact choice of this value. For
Perseus, an additional flux cut is applied to remove pixels with
low signal-to-noise (Gendron-Marsolais et al. 2018).

For each clean velocity map, we compute the first-order VSF
in the following way: for each pair of pixels, we record the

projected physical separation ℓ of the pair and compute the
velocity difference δv of the two pixels. The bottom panels of
Figure 1 show the distribution of ℓ. We then compute the
average absolute value of the velocity differences dá ñv∣ ∣ within
bins of ℓ. The uncertainties in the VSFs are obtained by
propagating the measurement errors.

3. Results

The left panels of Figure 2 show the velocity maps of the Hα
filaments in Perseus, A2597, and Virgo. The right panels show
the corresponding VSFs. A broad power-law slope confirms the
visual impression that the gas motion is turbulent. The VSFs of
all three clusters show a flattening on scales above a
characteristic pair separation, ranging from ∼10 kpc (for
Perseus) to ∼1–2 kpc (for Virgo). The flattening of VSF
indicates that this is the dominant driving scale of turbulence.
Right below this characteristic scale, the slope of the VSF is
∼1/3, and is consistent with the expectation of classical
Kolmogorov turbulence for an incompressible fluid. On smaller
scales, the slopes appear to be steeper, and vary from cluster to
cluster (see Section 4.1 for more discussions).
To better reveal the driving source of turbulence, we divide

the filaments in Perseus into inner (r<12 kpc) and outer
filaments (r>12 kpc). We choose this dividing radius
r=12 kpc such that there are comparable total numbers of
pixels in the inner and the outer regions. We have verified that
the results are not sensitive to the exact value of this radius.
As the top-right panel of Figure 2 shows, the VSF of the

inner filaments shows a similar shape as the VSF of all the
filaments, but a larger amplitude and a more prominent break at
r10 kpc. This is roughly the size of the inner X-ray bubbles
of Perseus (Fabian et al. 2003), suggesting that the driver of
turbulence is AGN feedback. On the other hand, the VSF of the
outer filaments does not show a clear break at such a scale.
Instead, the power continues to rise toward larger scales. This
suggests that the outer filaments likely probe turbulence driven
on larger scales. The VSF shows a bump at 20–30 kpc, which
is roughly the size of the outer bubble (Fabian et al. 2003).
Thus it is possible that the turbulent motion of the outer
filaments in Perseus is mainly caused by previous AGN
outbursts. However, with current measurements, we cannot rule
out the possibility that this area is dominated by turbulence
driven by large-scale structure formation (e.g., sloshing; Ryu
et al. 2008; ZuHone et al. 2018).
Hitomi has measured the line-of-sight velocity dispersion in

the core of Perseus at much lower spatial resolution (Hitomi
Collaboration et al. 2016). Our measured velocities at and
above the driving scale for the inner and outer filaments agree
with the Hitomi measurements of the inner and outer regions
(Hitomi Collaboration et al. 2018) of the Perseus core
(Figure 3). In addition, the VSF of the outer filaments shows
remarkable agreement with that inferred from the analysis of
X-ray surface brightness fluctuations of similar regions
(Zhuravleva et al. 2014) (see Appendix for detail).
The inner filaments of A2597 reveal a driving scale of

∼4 kpc (middle panels of Figure 2), which is also seen in the
VSF of the molecular gas observed by ALMA. The driving
scale is again consistent with the size of the inner X-ray
bubbles filled with radio-emitting plasma (Tremblay et al.
2012). For the outer filaments of A2597, the power continues to
rise toward larger separations. There is a clear bump between
20 and 30 kpc, which is roughly the distance to the outer X-ray

Table 1
Summary of Data

Hα (Resolutiona,
Seeing FWHM)

CO (Resolution,
Beam Size)

Perseus CFHT (255 pc, ∼0.42 kpc) N/A
A2597 MUSE (0.3 kpc, ∼1.5 kpc) ALMA (0.2 kpc, ∼0.9 kpc)
Virgo MUSEb (16 pc, ∼80 pc) ALMAc

Notes
a This is the pixel size of the velocity maps shown in Figure 2.
b MUSE data only covers the central ∼4 kpc of Virgo, and does not include the
outer filaments.
c ALMA has observed only one molecular complex at a projected distance of
3 kpc from the center of Virgo (Simionescu et al. 2018).
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bubbles that are visible on the X-ray map. This feature is also
seen in the VSF of the molecular gas. The X-ray observations
of A2597 show many shocks, bubbles, and ripples (Tremblay
et al. 2012). It is likely that AGN-driven turbulence dominates
the entire central region of A2597.

In Virgo (bottom panels of Figure 2), we again see a clear
connection between AGN feedback and turbulence. The
inferred driving scale in the center of Virgo is between 1 and
2 kpc, which is the size of the bright AGN jet (Marshall et al.
2002; the linear X-ray feature extending to the right) and also
the jet-driven bubble. ALMA has observed a molecular
complex located around the lower-left corner of the map
(Simionescu et al. 2018), and the measured velocity dispersion
is in good agreement with our results.

For all three clusters, the inferred driving scale is consistent
with the scenario that AGN feedback is the main driver of
turbulence in the centers of galaxy clusters. In addition, the
amplitude of the turbulent motion revealed by the VSF is also
consistent with this scenario. The largest velocity caused by
AGN feedback is roughly the velocity of the post-shock
material, which is -M c13

2 s( ) with M being the Mach number
of the shock and cs being the sound speed of the ICM (Li et al.
2017). The measured M in these clusters is ∼1.1–1.2
(Tremblay et al. 2012; Forman et al. 2017), and cs is a few
hundred km s−1. Therefore, the post-shock velocities are

∼100–200 km s−1. If turbulence is driven by buoyantly rising
bubbles, the largest velocities should be the velocities of the
bubbles, which are also expected to be a fraction of the sounds
speed (Robinson et al. 2004).

4. Discussions

4.1. The Steepening of the VSF

The steepening of the VSF on small scales is puzzling. We
first rule out the possibility that the steepening is due to seeing
(see Section 4.2 for more detailed discussions on the effects of
seeing and other uncertainties). A transition from subsonic
turbulence to supersonic turbulence would steepen the slope
from 1/3 to 1/2, as is seen in Perseus, and we do expect this
transition to happen at some point within the cold filaments
where the sound speed is low. However, the steepening
happens on scales much larger than the typical width of the
filaments (<1 kpc) in Perseus (Conselice et al. 2001).
Moreover, only Perseus has a ∼1/2 slope on small scales,
whereas the other two clusters show even steeper slopes, which
cannot be explained by supersonic turbulence.
We do not yet have a definitive explanation for the

steepening and the exact slopes of the VSFs. There are,
however, some interesting theoretical possibilities. On small
scales (from near and below the mean free paths down to

Figure 1. Top row, left to right: distribution of pair separations in Perseus, A2597, and Virgo. The gray areas denote where the number of pairs drops below 20% of
the peak. For Perseus and A2597, the peak scales are ∼15 kpc and ∼10 kpc, respectively. They roughly correspond to the radius of the regions that contain most of the
filaments. In Virgo, the peak scale corresponds to the size of the region observed by MUSE. Bottom row, left to right: distribution of velocity errors.
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Figure 2. Left panels: velocity maps of the Hα filaments overlaid on the X-ray residual images (shown in gray) in the centers of Perseus (Gendron-Marsolais
et al. 2018), A2597 (Tremblay et al. 2018), and Virgo (Sarzi et al. 2018; Boselli et al. 2019). Right panels: corresponding VSFs of the filaments. In the left panels, the
black cross indicates the position of the SMBH, and the black circles in Perseus and A2597 denote the separation of the inner and outer regions in our analysis. Black
contours show the low-frequency radio synchrotron emission. In the right panels, the thickness of the lines reflects the uncertainties from measurement errors. The
gray areas denote where uncertainties from sampling limit are large. To guide the eye, we also plot solid black lines with a slope of 1/3 for Kolmogorov turbulence
and orange dashed lines with steeper slopes. In all three clusters, the motion of the filaments is turbulent, and the features in the VSFs correspond to AGN activities.
The VSF of Perseus reveals a driving scale of 10 kpc, roughly the size of the inner bubbles. The two bumps in the VSF of A2597 correspond to the inner and outer
X-ray bubbles at ∼4 and ∼20–30 kpc. For Virgo, the inferred driving scale is ∼1–2 kpc, roughly the size of the inner bubble and also the jet (the bright linear feature
in the X-ray). The VSFs of the Hα filaments are consistent with those of the molecular gas observed by ALMA.
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Larmor radii), gas motion is likely dominated by Alfvén waves.
It is possible that the steepening of the VSF is a result of partial
dissipation of certain modes. Magnetic fields can also steepen
the kinetic power spectrum if magnetic tension suppresses the
nonlinear decay of g-modes (Bambic et al. 2018a).

Another interesting possibility is that the turbulence cascade
is affected by kinetic microinstabilities, such as firehose and
mirror instabilities (Kunz et al. 2014; Squire et al. 2019).
Magnetohydrodynamic waves, in particular, Alfvén waves,
may become unstable to these instabilities (Squire et al. 2017).
Turbulent energy in this case would be transferred non-locally
from large scales to the much smaller lengths relevant for
individual protons, which may result in a steeper spectrum.
Future theoretical investigations are required to help understand
how these instabilities affect the spectrum of turbulence.

It is also possible that we are seeing features unique to
turbulence driven by intermittent AGN feedback. The eddy
turnover time associated with scale ℓ can be estimated as
tℓ∼ℓ/vℓ. Our analysis of Perseus reveals a driving scale
L∼10 kpc, and the velocity at the driving scale is
vL∼140 km s−1. Thus tL∼70Myr. The period of AGN
outbursts can be estimated from the inferred age separation of
X-ray bubbles (Sanders & Fabian 2007), which gives a period
of ∼10Myr, much shorter than tL. It takes a few tL for
turbulence to cascade down from the driving scale L to the
dissipation scale, which means that the time it takes to establish
a classic Kolmogorov turbulence is an order of magnitude

longer than the intermittency of the driver. The same is true for
A2597 and Virgo.
AGN feedback as a turbulence driver is not only intermittent

(in the sense that it turns on and off on short timescales
compared with tL), its strength, driving scale, and the volume it
influences also all change over time. Each outburst grows from
small scales to large scales, as does its “sphere of influence.” In
this picture, the VSF steepening reflects a suppression of power
on small scales, and can be explained by the fact that a fraction
of the gas is not as perturbed. The less-perturbed gas may have
a Kolmogorov spectrum from the cascade of turbulence driven
by structure formation, supernova type Ia, and previous AGN
activities, but the amplitude is too low to be detected on scales
we are able to probe with confidence here.23

4.2. Limitations and Uncertainties

On small scales, optical observations are affected by
“seeing” due to turbulence in the Earth’s atmosphere. Seeing
may have a larger effect on the flux measurement, but less on
the line-of-sight velocity measurement. The reason is that even
though neighboring pixels would share photons due to seeing,
the velocity measurement is only sensitive to the shift of the
brightest component along the line of sight. To test the effects
of seeing, we have carried out a smoothing experiment where
we convolve the original Virgo data with a Gaussian 2D kernel
with FWHM equal to the observed one, as measured from
point-like sources in the MUSE field. We compare the original
VSF and the new VSF from the smoothing experiment, and
find that the overall effect of seeing is a mild suppression of
power on all scales (by less than 0.1 dex). One may naively
assume that seeing would only affect the VSF near and below
the seeing limit, but actually, the effect of seeing is that it
brings the velocity of every pixel closer to the average, which is
zero. Thus the effect is on all scales, instead of a simple
steepening on small scales.
Another source of uncertainties has to do with overlapping

filaments along the line of sight. In the central regions, an
individual line of sight can probe multiple Hα emitting clouds.
For all the pixels, we always fit with one Gaussian component.
We have individually inspected a large number of pixel fits in
Virgo, and verified that in case there are two components along
the line of sight (which are rare), the fit correctly locks onto the
strongest component. Thus even though the velocity dispersion
may become large due to overlapping filaments (Gendron-
Marsolais et al. 2018), the centroid velocity probes only the
velocity shift of the brightest filament, and is therefore robust.
We also know that the outer filaments do not tend to have this
overlapping issue (Conselice et al. 2001). The inner and outer
filaments show similar VSFs for both Perseus and A2597. This
confirms that the overlapping issue does not significantly affect
our analysis.
However, we do think that our results can be affected by

projection effect. That is, two pixels close to each other in
projection may not be physically close to each other, and may
show a rather large velocity difference. This affects the VSF on
smaller scales more, due to a smaller number of pairs and
smaller intrinsic velocity differences. Removing the projection
effect requires an understanding of the true 3D distribution of

Figure 3. Comparison with X-ray measurements of the Perseus cluster,
including Hitomi (Hitomi Collaboration et al. 2016) X-ray Doppler line
broadening measurements (Hitomi Collaboration et al. 2018) and Chandra
surface brightness fluctuation analysis (Zhuravleva et al. 2014). The thickness
of the lines reflects the uncertainties from measurement errors. Because Hitomi
measures line broadening along the entire line of sight over a rather large
projected area (∼20 kpc), we cannot derive a VSF from the measurements.
Thus we show the Hitomi point-spread function corrected line-of-sight velocity
dispersion measurements as horizontal lines with shaded regions reflecting the
measurement uncertainties. Hitomi Region 0 roughly corresponds to our inner
(r<12 kpc) region, and Hitomi Region 3 covers a large fraction of the outer
filaments (corresponding to our r>12 kpc region; Hitomi Collaboration
et al. 2018). The X-ray surface brightness fluctuation analysis for the
r<40 kpc region excludes r25 kpc region due to presence of bubbles
and shocks (see the Appendix for more detailed discussions). Thus it roughly
corresponds to the outer region of the Hα filaments. Our measured amplitudes
of turbulence based on the optical data are in remarkable agreement with the
X-ray results.

23 There is a hint of flattening of the VSF on small scales in A2597, especially
for the outer filaments, which may be probing turbulence driven by structure
formation.
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the filaments, which we currently do not have. The corrected
slope would likely be even steeper than what we show here, but
would not change our main conclusions.

On large scales, our measurements suffer from the sampling
limit. As Figure 1 shows, the total number of pairs decreases as
the separation gets larger than the size of the whole Hα
structure. Thus at large separations, we are only sampling a
small fraction of the whole volume, which can cause a bias.
The gray areas in the top panels of Figure 1 denote where the
number of pairs drops below 20% of the peak, and the
sampling uncertainties are considered large. They correspond
to the gray areas in Figure 2. To better assess the uncertainties
associated with the sampling limit, we have also examined
the distribution of δv at different scales. On scales where
we consider sampling uncertainties to be large, the absolute value
of the skewness tends to increase above ∼0.5–1. Therefore,
we caution against the over-interpretation of features in the VSFs
on very large scales.

Overall, our results do not appear to be significantly affected
by the limitations and uncertainties discussed here. Future
optical observations with even better spatial and spectral
resolutions will help improve the assessment of these
uncertainties.

4.3. Implications

Our results suggest that the motion of cold filaments is well-
coupled with the hot ICM. The origin of the Hα filaments and
their fate are still uncertain, but two scenarios would allow the
filaments to share the same turbulent motion of the hot ICM:
(1) if they originate from the hot gas, either due to thermal
instabilities or induced cooling (McCourt et al. 2012; Li &
Bryan 2014; Li et al. 2019), but are very short-lived (dissolve
quickly) such that they keep the memory of the turbulent
motion of the hot gas, and/or (2) if they are very “misty” and
quickly become co-moving with the hot gas (McCourt et al.
2018) even if they are created independently of it (Qiu et al.
2019). On the other hand, if the cold gas is poorly coupled to
the hot gas and follows ballistic trajectories, neighboring cold
filaments would move independently and show little kinematic
correlation. The measured VSF on small scales would be flatter
than Kolmogorov, and certainly flatter than what is mea-
sured here.

In addition, we can use the turbulent motion of the cold gas
to put constraints on microscopic transport processes in the hot
ICM. Figure 4 shows velocities as a function of scales
normalized by the Kolmogorov microscales. The Kolmogorov
microscale where the turbulent kinetic energy is dissipated into

heat, and is calculated as h = n


1 43( ) , where ν is the kinematic

viscosity and ò is the energy dissipation rate. The dynamic
viscosity μ, which is related to the kinetic viscosity as μ=ρν,
can be estimated as

m =
L- -

-T
5500 g cm s

10 K

ln

40
11 1 e

8

5 2 1

( )⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

where lnΛ is the Coulomb logarithm (Sarazin 1988). We
estimate ò based on our measured VSF on small scales, which
is slightly different from ò estimated using velocities at the
driving scale because the slopes of the VSFs are steeper than
Kolmogorov. For gas properties, we use Te=3 keV and

= -n 0.02 cme
3 for Perseus (Churazov et al. 2004); for A2597,

we use Te=2.7 keV and = -n 0.06 cme
3 (Tremblay et al.

2012); for Virgo, we use Te=1.6 keV and = -n 0.1 cme
3

(Zhuravleva et al. 2014).
According to direct numerical simulations (Ishihara et al.

2016), the gas viscosity affects pure hydrodynamic turbulence
on scales that are larger than the Kolmogorov microscale
(dashed gray line in Figure 4). Our detection of turbulence near
and below the Kolmogorov microscale suggests that isotropic
viscosity is suppressed in the ICM.
For comparison, we also plot in Figure 4 the measurement

for Perseus using the X-ray surface brightness analysis, which
assumes that density fluctuations follow the velocity field.
Using the optical data, we are able to probe scales more than an
order of magnitude smaller than X-ray observations of the same
cluster. In fact, the electron mean free paths in the centers of
Perseus and Virgo are ∼80 pc and ∼8 pc, respectively, about
1/3–1/2 the size of our resolution in the two clusters.
Figure 4 also includes the best X-ray constraint on viscosity

obtained from deep Chandra observations of the Coma cluster
(Zhuravleva et al. 2019), where the mean free paths and the
Kolmogorov microscales are larger. Our analysis based on the
optical data probes the velocity field directly, and shows
remarkable agreement with the conclusion of the X-ray surface
brightness analysis. Both measurements support suppressed
effective viscosity in the bulk intergalactic plasma, suggesting
that the microphysics of the ICM is driven by magnetic fields
operating below the Coulomb mean free path.

4.4. Turbulence as a Heating Source

It has been suggested that the dissipation of turbulence can
balance radiative cooling in the centers of galaxy clusters based
on the analysis of X-ray surface brightness fluctuations (e.g.,
Zhuravleva et al. 2014). The turbulent heating rate can be

Figure 4. VSFs with scales normalized by the Kolmogorov microscales. Also
shown are the best constraints obtained previously using the X-ray surface
brightness fluctuation analysis of the Coma cluster. For comparison, we have
also plotted the Perseus X-ray analysis for the r<40 kpc region (excluding
r25 kpc). The width of the X-ray curves shows 1σ statistical uncertainties.
The dashed gray lines show the predictions from direct numerical simulations
(DNS) of hydrodynamic turbulence with Spitzer viscosity (right) and 10%
Spitzer viscosity (left; Ishihara et al. 2016). Our direct detection of turbulence
below the Kolmogorov microscales confirms the previous interpretation of the
X-ray surface brightness analysis: the effective viscosity in the ICM is
suppressed.
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estimated as r~Q v LL L
3 with L being the driving scale.

Because our measured VSFs are in excellent agreement with
the X-ray analysis within the scales that the X-ray observations
probe (near the driving scale), the heating rate is similar when
estimated using turbulence measured at the driving scale.

However, as discussed previously, the slopes of the VSFs
studied here tend to be steeper than Kolmogorov turbulence on
small scales. If the steepening is caused by suppression of
power on small scales, e.g., suppression of the nonlinear decay
of gravity waves (Bambic et al. 2018a), or AGN-driven
turbulence being nonuniform, the actual dissipation rate should
be somewhat lower than QL. On the other hand, if the
steepening is a result of partial dissipation, the heating rate does
not change.

Another concern with AGN-driven turbulence as the main
heating mechanism is that it may not propagate far enough to
heat up the whole core (Bambic et al. 2018b). However, our
VSFs reveal drivers at ∼20 kpc in Perseus and A2597, which
we interpret as mainly reflecting the motions of the drivers
themselves, not the propagations of turbulence from the very
center of the cluster. Our analysis shows that turbulence at
larger distances from the cluster centers can be generated “

in situ” by rising bubbles and possibly shocks as a result of
AGN feedback. Therefore, our result is overall consistent with
turbulence as an important heating mechanism.

5. Conclusions and Final Remarks

Our study demonstrates the power of high-resolution integral
field unit observations in helping us understand the kinematics
of multiphase gas. We show that AGN feedback is the main
driver of turbulence in the centers of galaxy clusters. The result
naturally serves as a test for numerical models of AGN
feedback. In addition, it also serves as an excellent test for
models of cool gas. Our detection of turbulence near the mean
free path of the ICM supports suppressed effective viscosity.
The slope of the VSF on small scales deviates from the
classical Kolmogorov expectation, and points out directions for
future theoretical and observational investigations.

We would like to thank Paul Duffell, Peng Oh, Christopher
Reynolds, Anna McLeod, and Andrea Antoni for helpful
discussions. This work was partly performed at the Aspen
Center for Physics, which is supported by National Science
Foundation grant PHY-1607611. We acknowledge the techni-
cal support from the Scientific Computing Core of the Simons
Foundation.

Appendix
X-Ray Analysis of Fluctuations in the Hot Gas in Perseus

We use deep Chandra observations of the Perseus cluster
available in the archive. The initial data processing was done
following the standard procedure (Vikhlinin et al. 2005) that
includes the filtering of high background periods, calculating
the background intensity in each observation and application of
the latest calibration corrections. The point sources are detected
using the wvdecomp tool, and their significance are verified
(Zhuravleva et al. 2015). These point sources are excised from
the image accounting for the Chandra point-spread function
(PSF). The residual image of the cluster (the image of
fluctuations) is obtained from the initial cluster image divided
by the best-fitting model of the mean surface brightness profile.

We calculate the power spectrum of the X-ray surface
brightness fluctuations using the modified Δ-variance method,
which is suitable for non-periodic images with gaps (Arévalo
et al. 2012). We re-project the spectra, correct them for the PSF
and the unresolved point sources (Churazov et al. 2012). For
Perseus, we analyzed the images in the 0.5–3.5 keV band. In
this band, the resulting spectrum of fluctuations gives the 3D
power spectrum of density fluctuations. Using a statistical
linear relation between the power spectrum of density
fluctuations and velocity (Gaspari et al. 2014; Zhuravleva
et al. 2014), we obtained the power spectrum of gas motions in
Perseus.
The innermost r 25 kpc region is dominated by the

prominent structures associated with the bubbles of relativistic
plasma and shocks around them (Zhuravleva et al. 2015).
Therefore, we carefully select the region where the dynamics of
the hot X-ray gas is probed. This region is shown in Figure 5.
We effectively use fluctuations in the annulus ∼25–40 kpc. We
additionally check the nature of fluctuations in this region
(Arévalo et al. 2016; Churazov et al. 2016; Zhuravleva et al.
2016) and confirm that most fluctuations in these regions are of
isobaric nature.
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