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24 Abstract

25 The origin, transport pathways, and spatial variability of total organic carbon (OC)on the western 

26 Himalayan glaciers is poorly understood compared to that of black carbon (BC) and dust, but it 

27 is critically important to evaluate the climatic role of OC in the region. Applying the distribution 

28 of OC activation energy, 14C activity and radiogenic isotopes of 208Pb/204Pb, 207Pb/204Pb and 

29 206Pb/204Pb in glacial debris and atmospheric particulate matter (PM10 size fraction) we 

30 demonstrate that 98.3± 1.6% and 1.7± 1.6% of the OC in western Himalayan glaciers are derived 

31 from biomass and petrogenic sources, respectively. The δ13C and N/C composition shows that 

32 the biomass is a complex mixture of C3 vegetation and autochthonous photo-autotrophic inputs 

33 modified by heterotrophic microbial activity. The dataset reveals that the studied western 

34 Himalayan glacier has negligible contributions from fossil fuel derived particles, which contrasts 

35 to the central and eastern Himalayan glaciers that have significant contributions from fossil fuel 

36 sources. We show that this spatial variability of OC sources relates to regional differences in air-

37 mass transport pathways and precipitation regimes over the Himalaya. Moreover, our 

38 observation suggests that biomass-derived carbon could be the only primary driver of carbon-

39 induced glacier melting in the western Himalaya.
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41 1. Introduction

42 Worldwide glaciers are losing mass at an average rate of 0.48± 0.20 meter water-

43 equivalent per year (m w.e. yr−1)1, with the rate of Himalayan glacier mass wastage nearly 

44 doubling (−0.43± 0.14 m w.e.yr−1) in recent years.2 This accelerated mass loss is considered to 

45 be primarily related to the well-established long-term increase of the Earth’s near surface 

46 temperature and anthropogenic climate change.3,4 In addition to this warming, the reduction of 

47 surface ice albedo by ice surface deposits of dark colored impurities constitutes an additional 

48 control of glacier melting rate.5–7 Impurities that darken the ice surface and directly increase the 

49 heat absorption and thus enhance ice melting comprise dust, BC (black carbon, e.g., soot), and 

50 other forms of OC not derived from combustion.8–11
 In this study, OC refers to the total organic 

51 carbon that comprises the entire pool of organic carbon including both organic and elemental 

52 carbon. Further, we classify the OC as OCff (fossil fuel) and OCbio (biomass) referring to OC 

53 derived from either fossil fuel or biomass sources, such as biomass burning derived particles, 

54 atmospheric organic matters, and glacial microbes.5

55 The contribution to glacier surface darkening by particle matter and its attendant impact 

56 on glacial melt across high Asian mountain glaciers is variable. For example, the main 

57 contributor to glacier surface warming in Eastern Himalaya and Central Asia is BC, while 

58 mineral dust is a dominant factor in the western Himalaya.12 As a result, previous studies have 

59 mainly focused on BC and dust, owing to their greater heat absorption capacities.13–16 

60 Heretofore, limited research on total OC has led to substantial uncertainties and incomplete 

61 knowledge of the impact of OC in the Himalaya and Tibetan Plateau.17–19 Thus, given the almost 

62 20% albedo reduction related to OC for glaciers in Asia12, a thorough assessment of the origin, 

63 transport pathways, and spatial distribution of OC is paramount to reduce the uncertainties in 
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64 estimating the impact of carbon on the rate of glacial melting of Himalayan glaciers. In addition 

65 to the albedo effect of light absorbing impurities, carbonaceous aerosols also warm up the air 

66 mass over glaciers, and support microbial life22, both of which further contributes to enhanced 

67 rates of glacier melting. It is also noteworthy that algal or microbial communities on the glacier 

68 surface act as a sink for carbon and other impurities, and may yield a greater positive feedback 

69 on glacier melting when compared to OCff.23. As such, constraints on the composition of OC will 

70 help better quantify the future impact of increasing anthropogenic emission surrounding 

71 Himalayan glaciers (Figure S1), and its attendant controls on the hydrological regimes of glacier-

72 sourced large river systems such as the Indus, Ganges, and Brahmaputra. The findings will also 

73 aid in quantifying the contribution of Himalayan glaciers melt to eustatic sea-level rise1, 

74 currently estimated to raise sea level by 0.52 cm by the end of 21st century.24

75 In contrast to model-based approaches26-28, recent radiocarbon measurements on BC 

76 particles deposited on glaciers and in aerosols revealed a much higher (~50%) fossil fuel 

77 contribution across the Himalayan-Tibetan Plateau.25 These radiocarbon measurements were 

78 however restricted to the central and eastern Himalayan region, which falls under the strong 

79 influence of the Indian Summer Monsoon. Further, the eastern and western areas of the 

80 Himalayan region have different climatology, hydrology, meteorology, as well as glacier 

81 behavior and dynamics.29–31 The large geographical spread (~2500 km) of the Himalaya over 

82 different climate regimes makes it very difficult to extend the findings of one climate regime to 

83 the other. Moreover, in-situ OC measurements of glacier and snow samples in the western 

84 Himalaya including Hindu-Kush and Karakoram region are not available, despite the fact that the 

85 western region holds >70% of the total ice mass of the Himalaya.32 With one-sixth of the world’s 

86 population dependent on the Himalayan glacier meltwater and the increase in anthropogenic 
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87 emissions in the Indian subcontinent (Figure S1), understanding the origin and transport 

88 pathways of OC on the western Himalayan glaciers and its impact on glacier melting rate is an 

89 issue of global significance.

90 To understand the origin, transport pathways and spatial variability of OC on the western 

91 Himalayan glaciers, this study focuses on the source area and origin of dust and OC on the 

92 ablation zone (>4500 m a.s.l.) of the Chhota Shigri Glacier (CSG, 32.2° N, 77.5° E) in the 

93 Lahaul-Spiti valley of the western Himalaya, India (Figure 1). Cryoconite and supra-glacial 

94 moraine sediments from the CSG surface were investigated to characterize the origin of 

95 carbonaceous particles. Cryoconites are small water filled depressions containing a dark colored 

96 mixture of dust, OC, BC, and microbes collected over several years. Further, to constrain the 

97 source end-members, atmospheric particulate matter (PM10) were collected in Harsil (31.1° N; 

98 78.7° E; 2634 m a.s.l.) and Kanpur (26.1° N; 80.2° E).The Harsil site is located in a high altitude 

99 remote Himalayan forested area that records a history of major forest fires (Figure S3). Harsil is 

100 >125 km from major urban settlements and industrial activities, thus the collected aerosol at 

101 Harsil serves as the best proxy for the OCbio and pristine Himalayan end-member. To obtain the 

102 best estimate of  OCff aerosol, a sample was collected from ~5 Km north of a coal-fired thermal 

103 power plant (Panki Thermal Power Plant) and a kilometer west of a National Highway (NH91) 

104 in Kanpur –one of the largest industrialized centers in the Indo-Gangetic plain (Figure 1). 

105 Analysis of samples followed a multi-disciplinary approach, coupling organic and inorganic 

106 geochemical tracers including Ramped Pyrolysis Oxidation (RPO), 14C activity, δ13C, 

107 208Pb/204Pb, 207Pb/204Pb, 206Pb/204Pb, TOC, N, and heavy metal concentrations with Hybrid Single 

108 Particle Lagrangian Integrated Trajectory Model (HYSPLIT) air mass trajectory modeling was 

109 used to determine OC origin and transport pathways identification.
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110 2. Materials and Methods
111 2.1 Sampling details

112 Cryoconite debris was collected from 20 sites in the ablation zone (4515 - 4928 m a.s.l.) of 

113 the CSG during July, 2017. In addition to cryoconite, 5 moraine debris samples were also 

114 collected. The samples were first dried on a hot plate at ~70 °C to remove the moisture content. 

115 Moraine debris samples were sieved to get bulk (DB <3 mm) and particulate (<63 µm: DF) 

116 fraction for geochemical analysis. Bulk cryoconite and moraine debris samples (DB and DF) 

117 were ground to a homogeneous powder (20μm size) in an agate mil for further chemical analysis. 

118 Atmospheric particulate matter (PM10 size fraction) sampling in Kanpur and Harsil were carried 

119 out using high-volume (1000 L/min) atmospheric aerosol samplers (Envirotech PM10 sampler, 

120 model APM 460 DXNL). In Kanpur and Harsil, PM10 sampler was operated for 24 (on January 

121 1, 2016) and 48 hours (April 12 to April 14, 2016), respectively. Detailed sampling protocol 

122 description is outlined in Nizam and Sen, 2018.33

123 2.2 Ramped Pyrolysis Oxidation (RPO), 14C ages, bulk δ13C, N and C analysis

124 The RPO analysis was carried out at the National Ocean Sciences Accelerator Mass 

125 Spectrometer facility (NOSAMS, Woods Hole Oceanographic Institution). The RPO instrument 

126 involves continuous sample heating, with the CO2 evolved being trapped for dual C-isotope 

127 analysis. Importantly, RPO analyzes 100% of the OC in the sample, irrespective of the nature of 

128 the OC. Two cryoconite (C9 and C14), one moraine (DF6), and two aerosol samples were 

129 selected for RPO analysis. The instrumental makeup and analytical protocol adopted for RPO 

130 analysis has been described in detail in previous studies.34,35 Briefly, 30–70 mg powder sample 

131 aliquots were loaded into a pre-combusted (at 850 °C for 5 hours) quartz reactor, heated at a 5 °C 

132 min -1 ramp rate in a two-stage oven. This incremental heating leads to the release of CO2, which 

133 was cryogenically purified, trapped and flame sealed into a glass tube containing nuggets of Ag 
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134 (~10 mg) and CuO (~100 mg). The CO2 concentration in the carrier gas (in parts per million by 

135 volume, ppm CO2) is continuously measured at a resolution of 1 second by an infrared gas 

136 analyzer. CO2 collected at user-defined temperature intervals is referred to as RPO fractions. 

137 Each RPO fraction collected is graphitized with the radiocarbon abundance determined via 

138 Accelerated Mass Spectrometry at NOSAMS and reported as fraction modern (Fm). Meanwhile, 

139 a 10% split of each RPO fraction was used for stable isotopes (δ13C) analysis using a dual-inlet 

140 Isotope Ratio Mass Spectrometer (IRMS). 

141 The δ13C values are expressed in part per mill (‰) notation relative to Vienna Pee Dee 

142 Belemnite (VPDB). The Fm and δ13C ratios of the RPO fractions are reported in Table 1. In 

143 addition, bulk δ13C, total organic carbon (OC), total nitrogen (N) were also measured in all of the 

144 cryoconite and selected moraine samples using IRMS at Woods Hole Oceanographic Institution 

145 (Table S1). The bulk δ13C value calculated as the mass weighted average of all RPO fractions 

146 showed good agreement with the measured bulk δ13C value, with the exception of moraine 

147 sample DF6. The mismatch appears to be driven by the high δ13C value of the first RPO fraction 

148 collected for this sample. We inferred this enriched stable isotope composition is related to some 

149 technical error during IRMS analysis. The results for all of the RPO (and IRMS) analyses were 

150 blank and kinetic isotope fractionation corrected.36 Corrected data was used to calculate the 

151 activation energy distribution using the rampedpyrox python package37, which has been 

152 described in detail in previous studies.35 Radiocarbon age (in 14C yr BP) was calculated using 

153 corrected Fm values and the Libby half-life as: age = -8033 ln (Fm).

154 2.3 Lead isotope analysis 

155 Ten cryoconite and two moraine samples (DF) were selected for Pb isotopes analysis. 

156 The Pb isotopic data was obtained from the Radiogenic Isotope Facility from the Department of 
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157 Earth and Atmospheric Sciences at the University of Alberta. Approximately 4-12 mg of sample 

158 powder (depending on lead abundance), was dissolved in ultrapure HF/HNO3 at 100°C for 2 

159 days. Sample solutions were then evaporated under ULPA-filtered air and converted to chlorides 

160 using 6N HCl, then bromides using 2N HBr.  The Pb was purified by standard anion exchange 

161 chromatography using HBr and HCl as eluents under ULPA-filtered conditions. The isotopic 

162 composition of Pb then measured by Nu Plasma MC-ICPMS in static analysis mode. The 

163 measured Pb isotope ratios were corrected for instrumental mass bias using the agreed value for 

164 203Tl/205Tl ratio measured simultaneously with each Pb analysis.38 Overall reproducibility of any 

165 Pb isotope measurement is based on >6 years of analyses of SRM981 Pb isotope standard. At the 

166 first uncertainty level, the reproducibility of the SRM981 measured isotopic ratios are: 

167 206Pb/204Pb = 0.016%; 207Pb/204Pb = 0.018%; 208Pb/204Pb = 0.018%. The most widely accepted 

168 values for this Pb isotope standard are those determined by double-spiked TIMS analysis in 

169 previous study39, which are: 206Pb/204Pb = 16.936; 207Pb/204Pb = 15.489; 208Pb/ 204Pb = 36.701. 

170 The absolute values of Pb isotope ratios for SRM981 determined during the course of the 

171 analyses report here are: 206Pb/204Pb = 16.936; 207Pb/204Pb = 15.488; 208Pb/204Pb = 36.690. The 

172 Pb isotope ratios are reported in Table 2.

173 2.4 Heavy metal analysis

174 Heavy metal concentration analyses were performed in Indian Institute of Technology 

175 Kanpur on a Quadrupole Inductively Coupled Plasma Mass Spectrometer (ThermoFisher 

176 Scientific, Q-ICP-MS) system. Briefly, approximately 25 mg of sample powder was digested 

177 using a mixture of HF (3 parts) and HNO3 (1 part) for. Six procedural blanks, Reference Material 

178 SBC-1 (Shale) from US Geological Survey (USGS) were also digested following the same 

179 procedures. The final concentrations were blank corrected using the average procedural blank 
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180 concentrations and matrix effect was corrected by In normalization (Table S1). Average blank 

181 corrections were less than 1% for most of the elements. The measured Sc, V, Cr, Ni, Cu, Zn and 

182 Pb concentration of SBC-1 were 20± 1, 205± 3, 101± 2, 81± 1, 30± 0.2, 191± 2 and 33± 1 (1 SD, 

183 n = 6), respectively, which is in close agreement with the USGS certified values of 20± 0.2, 220± 

184 1.4, 109± 1, 83± 0.8, 31± 0.6, 186± 2 and 35± 0.3, respectively.

185 2.5 Air Mass Back Trajectory Analysis 

186 Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) modeling 

187 was used to compute the air parcel back trajectories for every hour for five different sites that 

188 includes Leh, ChhotaShigri, Thorong, Qiangyong, and Yulong sites for the year 2016 (Figure 1). 

189 The archived meteorological analysis from National Centers for Environmental Prediction 

190 (NCEP) Global Data Assimilation System (GDAS) model was used to estimate the trajectories. 

191 Annual as well as seasonal trajectory analysis was carried out to elucidate the major source 

192 regions of air mass reaching the Himalaya (Figure 1 and Figure S2). A total of 24x365 or 8760 

193 trajectory pairs were simulated for each of the sites. A density map was created at a resolution of 

194 0.25o x 0.25o resolution to obtain fraction of total trajectories passing through each of the grid 

195 cell. This provided an indication of the percentage or probability of influence of each grid point 

196 to the air mass reaching the receptor site. Two contour intervals of 0.1 and 0.5 that represented 

197 10 and 50% trajectories passing through any grid was created for each site.  

198 3. Results and Discussion

199 The distribution of OC activation energy (Ea), δ13C, and 14C content (expressed as 

200 fraction modern, Fm) for cryoconite, moraine sediments (particulate fraction) and PM10 were 

201 compared to fingerprint the sources of OC (Figure 2). Activation energy is a proxy for OC 

202 reactivity, and each OC pool has a distinct Ea distribution reflecting its overall bonding 
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203 environment (e.g. molecular composition, association with mineral surfaces).35 Using Ea, δ13C 

204 and 14C ages, it is thus possible to fingerprint the sources of OC. For example, biomass-derived 

205 OC have lower Ea (<150 kJ mol-1), high Fm (~1.0), and modern ages, whereas fossil-derived OC 

206 possess higher Ea (>150 kJ mol-1) and Fm = 0.40 Among the fossil sources, OC derived from 

207 Himalayan petrogenic sources (OCpetro) has a much higher Ea (≥200 kJ mol-1,) than fossil fuel 

208 derived OC (OCf f < 200 kJ mol-1).40,41

209 The PM10 collected at Harsil and Kanpur has distinct Ea distributions and 14C 

210 compositions (Table 1, Figure 2). The Ea distributions of Harsil and Kanpur PM10 OC show a 

211 predominant peak at ca. 135 and 165 kJ mol-1, respectively. The Harsil PM10 OC is also 

212 characterized by young 14C ages (RPO Fm values >0.94; bulk Fm = 0.99). A predominant Ea 

213 peak at ca. 135 kJ mol-1 and young 14C ages of Harsil PM10 OC clearly corresponds to OCbio.40 It 

214 is possible that some of the particles could contain soil organic carbon (SOC). However, SOC is 

215 expected to be pre-aged, as observed in mineral soils globally and suspended sediments of 

216 Himalayan sourced rivers.42,43 Further, dust contributions from arid areas (e.g., Thar Desert) 

217 would similarly be expected to carry an old 14C signature owing to conditions promoting organic 

218 matter preservation. Our data is not consistent with SOC inputs as it shows a flat, near-modern 

219 14C ages across the Ea spectrum. In contrast, Kanpur PM10 OC is characterized by lower Fm 

220 values (0.4<Fm<0.8; bulk Fm = 0.64) and corresponding older 14C ages. A predominant Ea peak 

221 at ca. 165 kJ mol-1 and older 14C ages of Kanpur PM10 OC reveal significant contributions from a 

222 fossil fuel source. The lower Ea peak in Kanpur PM10 OC (ca. 135 kJ mol-1) also points towards 

223 some OCbio contribution. A simple binary mixing calculation revealed that the Kanpur PM10 OC 

224 is composed of ca. 36% OCff and 64% OCbio. The PM10 RPO data further suggest that OCbio and 
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225 OCff have overlapping Ea distributions, although OCff is more heavily concentrated at higher Ea 

226 values.

227 OC in cryoconite and moraine sediment have similar Ea distributions with peak reactivity 

228 between ca. 125 kJ mol-1 and 150 kJ mol-1. The low Ea and high Fm values, and modern 14C ages 

229 support that OC in these RPO fractions is derived from recently fixed OC sources (OCbio, Fm~1, 

230 modern age) such as biomass burning, autochthonous photoautotrophic biomass and 

231 heterotrophic microorganisms. Overall, the Ea and 14C signature of cryoconite and moraine 

232 sediments are similar to Harsil PM10, confirming an overwhelmingly dominant OCbio input to 

233 both cryoconite and moraine sediments. A small portion of cryoconite and moraine OC is 

234 characterized by high Ea (>180 kJ mol-1) and low Fm values (older 14C ages). The presence of 

235 aged OC exclusively at high Ea values however precludes OCff as a source, because Kanpur 

236 PM10 RPO data show that OCff is distributed over the entire Ea spectrum. Instead, we argue that 

237 the high Ea RPO fractions contain a mixture of biomass and petrogenic (rock-derived, OCpetro) 

238 OC. Indeed, OCpetro has been shown to be characterized by high Ea (i.e. >200 kJ mol-1) and Fm 

239 values equal to 0.40 A mass balance approach assuming a binary mixing of 14C dead OC and 

240 biomass-derived OC with a 14C age equal to that of Harsil PM10, shows that 1.7± 1.6% of OC in 

241 cryoconite and moraine sediment is derived from 14C-dead sources. This proportion translates 

242 into a C concentration of 0.02± 0.02%. Such a low concentration of 14C-dead OC is consistent 

243 with the expected OCpetro concentration in the high-grade crystalline rocks of the CSG catchment 

244 and Himalayan rocks in general.44 It is also lower than the average OC content of bulk moraine 

245 samples (0.064± 0.020%), which, based on bulk geochemical characterization are dominated by 

246 OCpetro. We conclude that cryoconite and moraine sediment have negligible OCff and contain a 

247 mixture of OCbio (98.3± 1.6%) and minor OCpetro inputs (1.7± 1.6%).
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248 Additionally, we used stable carbon isotopes (δ13C) to further establish the source of 

249 OCbio in the cryoconite and moraine sediment. The majority of the cryoconite samples have a 

250 distinct δ13C composition with respect to surrounding moraine sediments, as well as to 

251 cryoconite samples from Greenland and the Arctic.45,46 The δ13C in cryoconite samples ranges 

252 between -24.9 to -18.2‰ (average -21.8± 1.7‰, n=20, 1s.d.), which is higher than for moraine 

253 sediments (-22.5 to -26.7‰, average -24.2± 1.3‰, n=10, 1s.d.). In general, carbonaceous aerosol 

254 derived from burnt C3 type biomass sources in the Indian subcontinent should have a δ13C value 

255 of ca. -26‰47, which can exhibit a maximum fractionation up to 0.5‰ due to burning emission 

256 effect.48 Burning induced 13C fractionation of C3 type vegetation is therefore insufficient to 

257 explain the observed δ13C enrichment in cryoconite. Therefore, it can be postulated that 

258 cryoconite draws some of its enriched δ13C signature from additional sources or processes.

259 The δ13C enrichment in cryoconite samples can be best explained by contributions from 

260 photo-autotrophic and heterotrophic micro-organisms in supraglacial cryoconite that produces 

261 enrichment of N and δ13C values.22,46 Biomass humification processes could also produce 

262 enriched δ13C values, but the RPO-14C data are incompatible with significant SOC inputs. The 

263 N/C vs δ13C plot (Figure 3A) suggests that cryoconite samples are composed of a mixture of 13C 

264 depleted and N-poor organic matter that could correspond to a primary C3-derived OC, with 13C 

265 enriched and N-rich organic matter that reflects microbial communities growing in the snow/ice 

266 environment. According to the RPO data, the 13C-rich, N-rich component is also enriched in 14C 

267 (i.e. it has been fixed recently) and relatively labile, further suggesting it corresponds to 

268 microbial biomass and/or algae. However, finer apportionment of the different sources of 

269 biospheric OC in cryoconite samples would require compound-specific biomarker data. To 

270 summarize, our data suggest that the OC in cryoconite and moraine sediments is a complex 
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271 mixture of C3 type biomass and autochthonous photo-autotrophic inputs modified by 

272 heterotrophic microbial activity. An overall biomass source signature is also supported by heavy 

273 metal ratios (Zn/Pb vs Cu/Pb; Figure 3B), assuming that the metal ratios retained the source 

274 signature during transportation and transformation changes.

275 In addition to carbon systematics and heavy metal concentrations, 206Pb/204Pb and 

276 208Pb/204Pb were used as additional independent tracer to identify the residues of fossil fuel 

277 signature on the CSG. The radiogenic Pb isotopes (Table 2), as well as heavy metal enrichment 

278 (these are) factor (Figure S4) also support the absence of a fossil fuel signature in cryoconite and 

279 moraine sediment from the CSG. Moreover, the 206Pb/204Pb, 208Pb/204Pb overlap with that of the 

280 Himalayan crust (Figure 4). The highly linear correlation between 206Pb/204Pb and 208Pb/204Pb 

281 further implies that these elements are sourced from two dominant endmembers. Mixing 

282 calculations using Pb isotope systematically show a negligible anthropogenic contribution (<1%, 

283 Figure 4). The triple lead isotope data (207Pb/206Pb versus 208Pb/206Pb) also supports the absence 

284 of anthropogenic pollutant contribution in the studied glacier site (Figure S5). Our results differ 

285 from previous findings that the Himalayan glaciers in general receive significant long-range 

286 transported dust from Africa, Middle East, and Thar desert, as well as from the Indo-Gangetic 

287 plain, India.49,50

288 The OC activation energy distribution, 14C, δ13C, 208Pb/204Pb, 207Pb/204Pb and 206Pb/204Pb, 

289 TOC, N, and heavy metal concentrations, therefore, suggest that the studied western Himalayan 

290 glaciers have negligible contribution from OC derived from fossil fuel combustion sources. The 

291 difference between our findings and a previous study reporting ~50% fossil fuel sourced carbon 

292 contribution in central and eastern Himalayan glaciers25 can be explained by air mass transport 

293 pathways and rainfall intensity. A HYSPLIT air mass trajectory modeling results reveal that the 
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294 eastern and central Himalayan glaciers that have received up to half of the BC from fossil fuel 

295 sources draw a significant fraction of their air mass from the heavily polluted Indo-Gangetic 

296 Plains (IGP) (Figure 1). In contrast, annual and seasonal (Figure 1 and Figure S2) air mass back 

297 trajectory modeling at the study site shows that the western Himalayan regions receive limited 

298 air-mass transport from the polluted IGP and less rainfall when compared to central and eastern 

299 Himalaya, confirming the limited transport of ambient anthropogenic pollutants from the IGP. 

300 The estimated glacial mass loss rates between 2000-2016 in western, central, and eastern 

301 Himalaya are similar (-0.40, -0.35, -0.53 m w.e yr-1, respectively).51 Glacial mass loss rate 

302 reported for the CSG (-0.56 m w.e.yr-1 between 2002 and 2014)52 is slightly higher than regional 

303 averages. Since glacial mass loss is similar across the Himalaya and CSG is essentially free of 

304 OCff, our observation suggests that OCbio would be the primary driver of carbon-induced glacier 

305 melting in the western Himalaya. Direct aerosol measurements studies over the western and 

306 northwestern Himalaya hill stations also supports a predominant burnt carbon biomass 

307 source.53,54 Given that it is well known that OCff  particles are more readily transported over long-

308 distances compared to OCbio
55, and thus, if OCbio were transported from geographically distant 

309 sources, OCff particles were expected to be similar or higher in concentration compared to OCbio 

310 in western Himalayan glaciers. The near absence of OCff and prevalence of local air mass 

311 circulation therefore indicate that carbonaceous particles in western Himalaya are only derived 

312 from locally burnt biomass sources. Thus, given that OC emissions are projected to be 21-28 Tg 

313 by 205056, leading to new climate policies to curb global carbon emissions in urban centers, 

314 considering the impact of local carbonaceous aerosols on glacier mass loss in the western 

315 Himalaya is necessary to model the change in the glacial mass of western Himalayan glaciers. 
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634

635 Figure 1. Climatological rainfall (TRMM_3B42_v7) with overlain trajectory density plot 
636 for few glaciers in the Himalayan-Tibetan Plateau region. The line contours represent the 
637 fractional number of trajectories passing through a particular grid of spatial-resolution (0.25o x 
638 0.25o). For clarity, only two contours (of values 0.5 and 0.1) are shown for each receptor site. 
639 Here, 168-h HYSPLIT back trajectory starting from each of the five-receptor site for every hour 
640 (24x365) of the year 2016 were used. Thorong, Qiangyong, and Yulong sites have ~50%fossil 
641 fuel derived carbon.25 Stars represent the aerosol sampling location and highlighted large 
642 polygon is our glacier-sampling site. The figure shows that there is a marked difference between 
643 the rainfall amounts between the western and eastern Himalayan glacier sites with eastern 
644 Himalaya obtaining higher rainfall. The 0.5 and 0.1 contour intervals show that the western 
645 Himalayan glacier sites are mostly influenced by air mass from western parts of the Himalaya, 
646 whereas central and eastern Himalayan glaciers are impacted by air mass from the Indo-Gangetic 
647 Plains (IGP) which is characterized by high level of anthropogenic activities (Figure 
648 S1).Seasonal trajectory density plots further show that wind trajectory origin is near similar 
649 irrespective of the seasons with most trajectories originating over a small region around the 
650 studied glacier (Figure S2).
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653 Figure 2. Apportionment of OC sources from RPO analysis. OC activation energy (Ea) 
654 distributions (p (0, E) of (A1) aerosol (Kanpur Aerosol: KA, Harsil Aerosol: HA) and (B1) 
655 glacier samples (cryoconite: C9 and C14, moraine fine fraction: DF6).  Radiocarbon (Fm in 
656 fraction) composition of each RPO fraction of the samples with associated radiocarbon age (in 
657 cal kyr BP) and stable carbon (δ13C in ‰) are plotted in middle (A2 and B2) and lower panel 
658 (A3 and B3) respectively.  Peak reactivity at ca. 165 kJ mol-1 and associated low Fm value and 
659 old 14C ages highlights OCff contributions in KA. Low OC thermal recalcitrance (peak <150 kJ 
660 mol-1) and associated high Fm values and modern ages comparable to OCbio and HA reflects 
661 recently fixed sources. OC in glacier samples contain small contributions of high Ea material 
662 reflecting binary mixing between a dilute petrogenic end member and a more concentrated 
663 biomass/biospheric end member. Dashed line in both the middle panel represents modern 
664 radiocarbon age.
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665

666
667
668 Figure 3.OC source inference from stable C isotopes, N/C and heavy metal ratios. (A) Bulk 
669 OC, elemental (N/C) and isotopic (δ13C) mixing diagram showing the composition of cryoconite 
670 and moraine samples compared to that of tentative endmembers. Nitrogen and 13C enrichment in 
671 cryoconite compared to bulk moraine suggests mixing between 13C-poor, N-poor OM 
672 characteristic of biomass and 13C-rich, N-rich OM typical of algae/microbes dwelling on glacier 
673 surface. Linear mixing trend between fine and bulk moraine suggests mixing between petrogenic 
674 and biospheric input. Literature references: C3 plant, C4 plant and aquatic algae57, snow and ice 
675 algae22,58,59, Indian aerosol.47 (B) Heavy metal ratios in glacier samples compared to biomass, 
676 Indian coal, flyash60 and crude oil.61
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677

678 Figure 4. Mixing arrays in 206Pb204Pb versus 208Pb204 isotopic space. The yellow circles and 
679 red triangles are new data points; literature data is shown with colored fields and open symbols 
680 within the field denotes their average composition. Thick black, dashed green and black lines are 
681 2-component mixing lines. The color-filled stars are end-member composition used in mixing 
682 calculations.  The curves B1 and B2 defines mixing of Indian ore with Himalayan sediment (HS) 
683 and local crust (LC), respectively, while B3 represents mixing between LC and HS composition.  
684 Curves B4 is a mixing line between Indian ore with a sediment mixture comprising of 50% HS 
685 and 50% LC. We selected HS (206Pb/204Pb = 18.81, 208Pb/204Pb = 39.99, Pb = 26.7 ppm)62 and 
686 LC (206Pb204Pb = 20.15, 208Pb204Pb = 39.79, Pb = 33 ppm)63 as a natural source end member. As 
687 an anthropogenic source end member representative, Indian ore (206Pb/204Pb = 16.42, 208Pb/204Pb 
688 = 37.27, Pb = 4000 ppm)64,65 was chosen with the view that Pb used in various anthropogenic 
689 activities are mined from these ore inherit its source signature. Literature references for other 
690 regional source end-members are: Indian shield66, Indian coal67, US coal fly ash68, IGB aerosol69–

691 72,Sahara73,74, European loess75, Chinese loess and desert76–78, Thar76, US loess78, unleaded 
692 gasoline79, vehicular exhaust80, leaded gasoline81,82 and US-Australian ore.83
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693 Table 1. RPO analysis results for cryoconite (C9 and C14), moraine (DF6) and aerosol samples 

694 (KA: Kanpur Aerosol, HA: Harsil Aerosol).

Sample-RPO T(°C) mF Ea (1 σ) Fm (2 σ) δ13C 14C age

fraction min max µg C (kJ mol-1) (fraction modern) (‰)   (calyr BP)
C9-F1 150 300 100.3 138 ± 6 1.0191 ± 0.0020 -20.57 >Modern
C9-F2 300 326 106.6 140 ± 4 1.0408 ± 0.0021 -18.37 >Modern
C9-F3 326 361 112.1 146 ± 7 1.0399 ± 0.0020 -18.07 >Modern
C9-F4 361 412 102.5 157 ± 8 1.0126 ± 0.0026 -18.77 >Modern
C9-F5 412 480 90.3 171 ± 9 0.9822 ± 0.0019 -20.03 145±15
C9-F6 480 794 88.0 191 ± 13 0.7947 ± 0.0021 -21.00 1850±20
C14-F1 150 318 136.4 136 ± 7 1.0563 ± 0.0021 -24.93 >Modern
C14-F2 318 375 135.0 148 ± 6 1.0529 ± 0.0021 -22.99 >Modern
C14-F3 375 465 135.0 165 ± 9 1.0137 ± 0.0023 -23.58 >Modern
C14-F4 465 560 100.0 188 ± 8 0.788 ± 0.0018 -25.1 1910±20
C14-F5 560 850 36.8 208 ± 14 0.4609 ± 0.0039 -27.17 6220±70
DF6-F1 150 298 108.0 132 ± 8 1.0461 ± 0.0022 -10.76 >Modern
DF6-F2 298 336 100.1 142 ± 6 1.0485 ± 0.0025 -22.43 >Modern
DF6-F3 336 387 109.0 153 ± 8 1.0063 ± 0.0023 -22.28 >Modern
DF6-F4 387 483 100.6 168 ± 10 0.9688 ± 0.0020 -23.17 255±15
DF6-F5 483 784 57.6 193 ± 15 0.6068 ± 0.0020 -24.71  4010±30
KA-F1 125 306 104.1 130 ± 11 0.8155 ± 0.0019 -27.66 1640±20
KA-F2 306 377 100.3 147 ± 10 0.7982 ± 0.0018 -26.17 1810±20
KA-F3 377 425 103.1 166 ± 6 0.6182 ± 0.0018 -25.11 3860±25
KA-F4 425 462 102.0 171 ± 6 0.5237 ± 0.0022 -24.60 5200±35
KA-F5 462 655 101.4 183 ± 8 0.4179 ± 0.0017 -24.91 7010±30
HA-F1 125 293 53.6 127 ± 11 0.9884 ± 0.0030 -26.83 95±25
HA-F2 293 335 51.9 142 ± 6 1.0096 ± 0.0036 -26.23 >Modern
HA-F3 335 385 52.8 152 ± 7 1.0029 ± 0.0033 -24.78 >Modern
HA-F4 385 439 52.1 165 ± 6 0.9775 ± 0.0033 -23.23 180±25
HA-F5 439 605 34.0 175 ± 7 0.9364 ± 0.0039 -22.13 530±35
mF: Mass of carbon (as CO2) contained in RPO fraction F
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696 Table 2. Radiogenic lead isotope composition of selected cryoconite (Cx) and moraine (DF) samples.

Sample id 208Pb/204Pb 2SE 207Pb/204Pb 2SE 206Pb/204Pb 2SE 207Pb/206Pb 2SE
C1 38.91787 0.00546 15.70946 0.00182 18.78705 0.00159 0.83616 0.00003
C3 39.13549 0.00684 15.73477 0.00250 18.80094 0.00244 0.83691 0.00004
C5 39.23825 0.00680 15.74825 0.00218 19.02939 0.00224 0.82757 0.00005
C9 38.67497 0.00868 15.67102 0.00286 18.65789 0.00250 0.83991 0.00005
C11 38.67167 0.00520 15.68224 0.00166 18.55690 0.00178 0.84508 0.00003
C13 38.58314 0.00728 15.68314 0.00250 18.50767 0.00242 0.84740 0.00004
C14 38.38955 0.00552 15.65890 0.00204 18.32318 0.00202 0.85456 0.00003
C17 38.40762 0.00426 15.66683 0.00146 18.35741 0.00139 0.85343 0.00003
C18 38.40409 0.00630 15.65812 0.00242 18.30283 0.00202 0.85551 0.00004
C19 38.21132 0.00476 15.63569 0.00164 18.15303 0.00163 0.86133 0.00003
DF6 38.42784 0.00562 15.68993 0.00208 18.40597 0.00196 0.85239 0.00005
DF12 39.74669 0.00720 15.76498 0.00246 19.32824 0.00226 0.81567 0.00003
Note: Total Pb concentration in blank = 0.2 ± 0.16 ppb (1 S.D., n=4), Reproducibility uncertainty level = 1σ
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