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ABSTRACT
Large multiobject spectroscopic surveys require automated algorithms to optimize their observing strategy. One of the most
ambitious upcoming spectroscopic surveys is the 4MOST survey. The 4MOST survey facility is a fibre-fed spectroscopic
instrument on the VISTA telescope with a large enough field of view to survey a large fraction of the southern sky within a few
years. Several Galactic and extragalactic surveys will be carried out simultaneously, so the combined target density will strongly
vary. In this paper, we describe a new tiling algorithm that can naturally deal with the large target density variations on the sky
and which automatically handles the different exposure times of targets. The tiling pattern is modelled as a marked point process,
which is characterized by a probability density that integrates the requirements imposed by the 4MOST survey. The optimal tilling
pattern with respect to the defined model is estimated by the tiles configuration that maximizes the proposed probability density. In
order to achieve this maximization a simulated annealing algorithm is implemented. The algorithm automatically finds an optimal
tiling pattern and assigns a tentative sky brightness condition and exposure time for each tile, while minimizing the total execution
time that is needed to observe the list of targets in the combined input catalogue of all surveys. Hence, the algorithm maximizes
the long-term observing efficiency and provides an optimal tiling solution for the survey. While designed for the 4MOST survey,
the algorithm is flexible and can with simple modifications be applied to any other multiobject spectroscopic survey.

Key words: methods: miscellaneous – techniques: miscellaneous – surveys.

1 IN T RO D U C T I O N

An integral part of the preparation of any multiobject spectroscopic
survey is the construction of the tiling pattern (the set of centres and
orientations on the sky of the observational field, ‘tiles’) – we need
to know where to point the telescope and for how long each tile
should be observed. In general, there are two approaches for finding
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an optimal tiling pattern. In the first approach, the tiling pattern is
constructed on the fly, and the job of the tiling algorithm is to find the
next telescope pointing, while taking into account already observed
fields and targets. An example is the heuristic Greedy algorithm
(Robotham et al. 2010) that is used in the Galaxy And Mass Assembly
(GAMA) survey (Driver et al. 2009; Liske et al. 2015) and will be
used in the Taipan survey (da Cunha et al. 2017).

In the second approach, the tiling pattern is constructed before
the survey starts, and is usually used to cover a given sky area
uniformly. This approach is successfully used in the Two Degree
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Figure 1. Required exposure-time map in equatorial coordinates for low-resolution (LR) targets, based on current 4MOST mock catalogues, both Galactic
and extragalactic. The required exposure times and associated target densities vary significantly from one sky region to another. Exposure times have been
calculated using the 4MOST Exposure Time Calculator assuming a fixed median seeing of 0.8 arcsec and airmass 1.2 for all targets. The targets are limited to
declination between −85 and +5 deg. The footprints of the different sub-surveys in 4MOST are clearly visible. The same set of targets is used in the examples
presented in Section 4.

Field Galaxy Redshift Survey (2dFGRS; Colless et al. 2001), the
Sloan Digital Sky Survey (SDSS; Blanton et al. 2003), the Six-
degree Field (6dF) Galaxy Survey (Jones et al. 2004), and the
WiggleZ survey (Drinkwater et al. 2010). For these surveys, an
adaptive tiling algorithm is used, where the uniform distribution
of field centres is successively altered to more closely follow the
target distribution. This algorithm is effective in providing uniform
targeting completeness over the sky.

The Greedy algorithm (Robotham et al. 2010) works very well for
dense surveys, where the same sky region is visited several times.
In contrast, an adaptive tiling algorithm is used when a given sky
region needs to be covered with a minimum number of fields. In
the 4MOST survey (de Jong et al. 2019; Walcher et al. 2019), both
of these aspects must be optimized, so a new algorithm needs to be
developed.

The 4MOST survey is a spectroscopic survey that will observe
millions of targets covering almost the entire southern sky. The
4MOST survey consists of many sub-surveys covering different
areas in the sky, which have very different number densities of
targets. Fig. 1 shows the estimated exposure time in the sky based
on the current 4MOST mock catalogues and the present survey
strategy (Guiglion et al. 2019). In Fig. 1, we have combined the
targets from the 10 4MOST consortium surveys: the Milky Way
Halo Low-Resolution Survey (Helmi et al. 2019), the Milky Way
Halo High-Resolution Survey (Christlieb et al. 2019), the Milky Way
Disc and Bulge Low-Resolution Survey (4MIDABLE-LR; Chiappini
et al. 2019), the Milky Way Disc and Bulge High-Resolution Survey
(4MIDABLE-HR; Bensby et al. 2019), the eROSITA Galaxy Cluster
Redshift Survey (Finoguenov et al. 2019), the Active Galactic Nuclei
Survey (Merloni et al. 2019), the Wide-Area VISTA Extragalactic
Survey (WAVES; Driver et al. 2019), the Cosmology Redshift
Survey (CRS; Richard et al. 2019), the One Thousand and One
Magellanic Fields Survey (1001MC; Cioni et al. 2019), and the Time-
Domain Extra-galactic Survey (TiDES; Swann et al. 2019). The mock
catalogues are based either on Gaia catalogues (Gaia Collaboration
2016, 2018) or on the Galaxia model of the Galaxy (Sharma et al.
2011), or on MultiDark simulations augmented with models of
galaxies and clusters (Klypin et al. 2016; Comparat et al. 2019),
or on TAO mocks (Bernyk et al. 2016), or on GALFORM mocks

(Cole et al. 2000; Lagos et al. 2012). They represent reasonably well
each survey individually. Future work on mock catalogues should
accurately reproduce the cross-correlation between surveys. In the
4MOST surveys, most of the targets that will be observed are known
from previous surveys and selected beforehand. The only exception
is a small fraction of transients from the TiDES survey that will
be selected based on live LSST observations. Since the number of
transients is small and their spatial distribution is not clustered, we
will ignore these targets in the current paper and we assume that all
targets and their estimated exposure times are known.

The 4MOST field of view covers approximately four square
degrees and is hexagonally shaped. It is covered by 1624 LR and
812 high-resolution (HR) spectrograph fibres. On average, there are
391 LR and 196 HR spectrograph fibres per square degree. Fibres
are placed with a regular pattern in the field of view and have some
range of movement that allows them to be aligned to targets of
interest (see Fig. 2). Tempel et al. (2020) give a detailed overview
of the capabilities and efficiency of the probabilistic fibre-to-target
assignment algorithm developed specifically for the 4MOST survey.
In order to apply the probabilistic targeting algorithm, we need a
pre-defined tiling pattern that is optimized for the input targets and
takes the constraints and requirements of the 4MOST facility and
surveys into account. The most significant factor in determining the
scientific impact of the 4MOST will be efficiency – maximizing fibre
occupancy and minimizing observational overheads.

The aim of this paper is to find an optimal tiling solution that
increases survey efficiency. We propose an algorithm based on
marked point processes. The idea is to model the tiling pattern as
a marked point process, where each tile is considered as a free
object, whose parameters (location, exposure time, etc.) need to
be determined. A mathematically similar approach is successfully
used to detect galaxy filaments (Tempel et al. 2014, 2016) and
galaxy groups (Tempel et al. 2018) in spectroscopic galaxy surveys.
Although the detection of cosmic web elements and finding the
optimal tiling pattern are seemingly very different applications,
mathematically both applications are pattern detection problems that
can be tackled with the marked point process approach.

This paper is organized as follows. In Section 2, we describe
the tiling challenge and define the inputs for, and the outputs of, the
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4628 E. Tempel et al.

Figure 2. 4MOST field of view with LR and HR spectrograph fibres at their
home positions.

proposed tiling algorithm. In Section 3, we describe the marked point
process framework that we use to solve the optimal tiling problem.
In Section 4, we illustrate the proposed algorithm with examples.
Conclusions are drawn in Section 5.

2 T I L I N G C H A L L E N G E

The challenge we are facing in 4MOST survey preparation is how to
most efficiently observe all required targets in the input catalogues,
while maximizing the fibre usage and minimizing the total time
(including overhead time) required to successfully observe the given
set of targets. This can be considered as a tiling pattern optimization
problem. In the current paper, we define a tile as a single science
exposure. In order to observe a given set of targets, we need a tiling
pattern induced by the survey’s input catalogues.

Each tile has a fixed sky coordinate (field centre) and instrument
position angle. Several tiles with the same sky coordinates and
position angle can be combined into one observing block (OB).
Within one OB, tiles can have different exposure times and each tile
has its own fibre-to-target configuration.

An algorithm that defines an optimal tiling pattern for the 4MOST
survey should take into account the following aspects:

(i) Each tile has an individual exposure time that takes into account
the requested exposure times of targets in the field of view. The
exposure time is attached to each tile, assuming that it is observed
in a fixed sky brightness condition (i.e. bright, grey, or dark). This
separates tiles into B/G/D groups.1

(ii) Tiles can be combined into OBs, which allows reducing
the overhead time associated with telescope movement and field
acquisition. One OB can contain one or many tiles with the same
sky brightness condition (B/G/D) observed during one telescope
pointing. The duration of one OB is limited by the total exposure
time (approximately 1 h per OB).

1Separation into B/G/D (bright/grey/dark observing conditions) groups is
somewhat arbitrary. In general, any number of groups can be used if it is nec-
essary and if it helps to increase survey efficiency without overcomplicating
the problem.

(iii) In 4MOST there are two-resolution modes – high and LR.
The fibre pattern for each of them is fixed and both of them are
used simultaneously (see Fig. 2). Each sub-survey specifies whether
they want to use the high or the LR. The optimal tiling algorithm
then aims to optimize both HR and LR observations at the same
time.

(iv) Some sub-surveys can have specific requirements that affect
the tiling pattern. For example, if a region in the sky is covered by
several OBs (due to repeatability and/or high density of targets), then
the centres of the OBs should preferentially avoid each other. Such a
strategy will help to mitigate fixed fibre patterns. It will also tend to
reduce visually striking contributions of the shape of the 4MOST field
of view in the selection functions. Additionally, some sub-surveys
require contiguous coverage of the sky, which translates to no gaps
between tiles, while other sub-surveys wish to cover largest possible
sky area and gaps between tiles are not a problem. An optimal tiling
algorithm should be able to take into account these various scientific
requirements from the different surveys.

In general, to find the optimal tiling is a complicated problem
that is interlinked with many other aspects of survey optimization,
including, for example, fibre-to-target assignment algorithm and
the OB scheduling algorithm. The latter affects the division of
tiles between different sky brightness conditions and the tentative
exposure times of the tiles. For multiplex surveys such as the
4MOST survey, it is computationally unfeasible to solve all problems
simultaneously. In this paper, to reduce the complexity of the survey
optimization, the optimal tiling problem is solved independently with
clearly defined inputs and outputs. The input data for the proposed
tiling algorithm are described in Section 2.1 and the output data are
defined in Section 2.2.

The main aim of the proposed tiling algorithm is to find an
optimal set of tiles that is required to observe a given set of targets.
A probabilistic fibre to target assignment algorithm that uses the
tiles as an input is described in Tempel et al. (2020). For the
proposed algorithm, it is not important in which order the tiles are
observed. The latter is a scheduling problem, which will be solved
independently from the tiling and the fibre-to-target assignment
algorithms.

2.1 Input data for the tiling algorithm

The input data for the tiling algorithm are the following. We have
a fixed set of targets, where for each target we have the following
parameters:

(i) RA, Dec.: coordinates on the celestial sphere (‘sky plane’).
(ii) Low or high resolution: a flag that specifies whether the target

should be observed with an LR or HR spectrograph fibre.
(iii) T B

exp, T G
exp, T D

exp: required exposure times2 of the target in
bright, grey, and dark sky conditions, respectively.

(iv) fcompl: the probability that the target should be successfully
observed. To fulfill the survey science goals, some sub-surveys
require only a fraction of targets from their input catalogues.

During the 4MOST five-year survey, approximately 32 per cent
of the observing time is bright, 21 per cent is grey, and 47 per cent

2The required exposure time during real observations also depends on the sky
transparency and seeing conditions. In this paper, we ignore this effect and
assume an average conditions everywhere.
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is dark.3 The generated tiling pattern (total exposure time for D/G/B
conditions) should roughly follow these fractions.

Because of the telescope and instrument design, the maximum
exposure time for a single exposure is limited. In this paper, we
assume that the maximum exposure time is 30 min. Additionally,
the total time (summed exposure times plus overheads) for a single
OB is typically around 1 h. In this paper, we adopt a maximum OB
length of 75 min, which is also feasible. This allows the observation
of two 30 min science exposures in a single OB.

Because of the overhead time for each exposure/tile and for each
OB,4 several tiles/exposures are combined into one OB, which helps
to reduce the total overhead time. Additionally, since overhead
is constant (it does not depend on exposure times), this choice
should reduce the total number of tiles, which tends to yield longer
exposures.

2.2 Expected output of the tiling algorithm

The tiling algorithm should find the tiling pattern that allows optimal
observation of the given set of targets. The output of the tiling
algorithm is the list of OBs, where for each OB we have the following
parameters:

(i) RA, Dec.: the coordinates of the centre of an OB.
(ii) Position angle: an angle determining the rotation of the field

(hexagon) in the sky.
(iii) B/G/D flag: a flag specifying whether the OB should be

preferentially observed during bright, grey, or dark sky conditions.
(iv) List of tiles and exposure times: one or several

tiles/exposures. The tiling algorithm should give the number of tiles
for each OB. Tiles in one OB can have different exposure times. The
algorithm should determine the expected exposure time for each tile.
The sum of these exposures plus the overhead time is the total time
for a single OB.

The distribution of OBs/tiles in the sky and exposure times per
tiles should allow the observation of the required set of targets in
the input catalogue, while minimizing unused/wasted observational
time (e.g. empty fibres, overexposure). In general, the optimal tiling
solution allows to successfully observe the required set of targets
with a minimum amount of time.

2.3 Proposed tiling algorithm in a nutshell

In the next section, we describe the mathematical framework of
the proposed optimal tiling algorithm and provide all the necessary
details. To help understand the general concept of the algorithm, here
we present a general outline of the process.

In the proposed algorithm, we model the tiling pattern as a marked
point process (see Sections 3.1 and 3.2), where the number of
tiles, together with the location and exposure time of each tile, are
free parameters. An optimal tiling pattern is defined via an energy
function: the global minimum of this energy function defines the

3The fraction of bright, grey, and dark time depends on the thresholds of
sky brightness levels adopted. The current estimates are based on the ESO
definitions for bright, grey, and dark sky conditions (https://www.eso.org/sc
i/observing/phase2 p101/ObsConditions.html).
4In this paper, each OB has an overhead of 3.5 min and each exposure/tile
has an additional overhead of 4.4 min (https://www.4most.eu/cms/facility/
capabilities/). These overhead times are current estimates and might change
before the 4MOST survey starts.

optimal tiling pattern. We define the energy function as a sum of
individual components, where each optimizes a certain aspect of
the tiling pattern. The most important energy function component is
computed using a statistical fibre-to-target assignment algorithm.
This allows us to compare the generated tiling pattern with the
targets in the input catalogue, in order to estimate the time that
would still be needed in order to observe the required targets in the
input catalogue (‘missing’ time) and to estimate the time that remains
unused due to empty fibres. Additional energy function components
are used to minimize the total overhead time and to divide the
tiles between pre-defined sky conditions, while minimizing the total
time that is necessary in order to observe all required targets in the
input catalogue. We also define an energy function with components
that allow us to define the interactions between tiles in a way that
potentially minimizes the impact of the fixed tiling pattern on the
final selection function of the survey.

The optimization challenge we are facing involves a large number
of parameters, whereas the number of free parameters (the number
of tiles) is itself a free parameter. The proposed algorithm finds
itself the number of tiles. The minimization of the energy function is
achieved via a simulated annealing (SA) algorithm, which is a global
optimization method that avoids local minima.

3 MARKED POI NT PRO CESS FOR
DETERMI NI NG OPTI MAL TI LI NG PATT ERN

3.1 Mathematical set-up of the problem

The key assumption of our proposed algorithm is that the tiling
pattern is a configuration of random interacting objects driven by the
probability density of a marked point process. The solution of the
optimal tiling pattern is given by the construction and manipulation
of such a probability density. The probability density we propose
takes into account all the observational constraints and requirements
from all surveys. Statistical inference using this probability density
is done using Markov chain Monte Carlo (MCMC) techniques. Such
a probability density can be written as

p(y | θ ) ∝ exp [−U (y | θ )] , (1)

where U (y | θ ) is the energy function, y is the pattern of objects (tiles
in the sky), and θ is the vector of model parameters. The marked point
processes driven by probability densities in equation (1) are known
in the literature as a Gibbs point processes. The energy function
U (y | θ ) can be further written as the sum of several components that
take into account different aspects of the optimization problem (see
Section 3.2).

The Bayesian framework allows the introduction of the knowledge
regarding the parameters via a posterior distribution p(θ ). This allows
writing the joint distribution of the tiling pattern and the model
parameters:

p(y, θ ) = p(y | θ ) p(θ ). (2)

A joint tiling pattern and parameter estimator is given by the
maximum of the probability density (2):

(ŷ, θ̂ ) = arg max
�×�

p(y, θ ) = arg max
�×�

p(y | θ ) p(θ ), (3)

where � is the pattern configuration space and � represents the
parameter space. The estimator given by (3) can be computed using
an SA algorithm (van Lieshout 1994; Stoica, Gregori & Mateu 2005).

For simplicity and in order to reduce the computational cost,
most of the model parameters θ are fixed during the Monte Carlo
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Table 1. Parameter values in our tiling algorithm during test simulations.
The last column gives the reference to the equation or section, where the
parameter is used or discussed.

Parameter Value Unit Reference

cmiss 1.0 Equation (6)
cwasted 0.5 Equation (6)
smax 0.1 deg Equation (6)
cLR 2/3 Equations (7) and (8)
cHR 1/3 Equations (7) and (8)
ρLR

fib 391 Equation (9)

ρHR
fib 196 Equation (9)

csci fib 0.85 Equation (9)
coverhead 0.5 Equation (14)
T tile

overhead 4.4 min Equation (14)

T OB
overhead 3.5 min Equation (14)

ctiles 2.0 Equation (15)
Rlim 0.8 deg Equation (15)
cB 5.0 Equation (16)
cG 3.5 Equation (16)
cD 2.0 Equation (16)
pb 0.2 Section 3.3 and equation (17)
pd 0.2 Section 3.3 and equation (17)
Tmin 5 min Section 3.3
Tmax 30 min Section 3.3
pc 0.6 Section 3.3
prnd

b 0.4 Section 3.3 and equation (18)

pOB
b 0.6 Section 3.3 and equation (18)

Nexpected 30 000 Section 3.3 and equation (18)
p

pos
c 0.3 Section 3.3

p
exp
c 0.3 Section 3.3

pBGD
c 0.3 Section 3.3

pOB
c 0.1 Section 3.3

T0 1.0 Section 3.3
α 0.995 Section 3.3 and equation (20)
Ncycles 500 Section 3.3
Nmoves 250 000 Section 3.3

simulation. In this paper, the estimation of these parameters is done
using an educated guess and via trial and error, whenever necessary.
The free parameters of the model are described in Section 3.2 and
the parameter values used in this paper are given in Table 1. The
model parameters θ can be estimated if the tiling pattern is available
following Stoica et al. (2017) and the references therein.

3.2 Model construction

Let W be a spatial observation window of Lebesgue measure ν(W).
In this paper, W is a finite region in the sky plane (sky area reachable
by the 4MOST facility). A simple point process on W is a finite
random configuration of points xi ∈ W, i = 1, . . . , n such that xi �= xj

whenever i �= j, where n is the number of points in a point process.
Characteristics or marks can be attached to the points via a probability
distribution. A finite random configuration of marked points is a
marked point process if the distribution of only the locations is a
simple point process. For further reading on marked point processes
we recommend the monographs by van Lieshout (2000) and Møller
& Waagepetersen (2004). In this paper, tiles are considered as marked
points and they are modelled as a marked point process.

The generating object (a marked point) of the tiling pattern is given
by a tile y = (α, δ, PA, iBGD, Texp). The tile centre coordinates are
given by α, δ ∈ W, where α, δ are right ascension and declination
in the sky. The mark is represented by the following parameters: PA

is a position angle, iBGD is the sky condition flag, and Texp gives the
exposure time of the tile. To find the optimal tiling pattern means to
find the set of tiles y = y1, y2, . . . , yNtiles that are needed to observe a
given set of targets t = t1, t2, . . . , tNtar . While the number of targets
Ntar and parameters of targets (see Section 2.1) are known, the number
of tiles Ntiles and parameters of each tile (α, δ, PA, iBGD, Texp) are the
subject of optimal tiling pattern determination described in Section 2.

The optimal tiling estimator is defined by the tiling configuration
that maximizes the probability density in equation (1) as it minimizes
the corresponding energy function U (y | θ ). For the problem at hand,
the energy function U (y | θ ) is constructed as follows:

U (y | θ ) = Utargets(y | θ ) + Uoverhead(y | θ )

+Utiles(y | θ ) + UBGD(y | θ ), (4)

where each component in the energy function takes into account
different aspects in the optimal tiling challenge. The energy function
U (y | θ ) is calculated for a given set of tiles y and using a fixed set of
targets t. Each component of the energy function is described below
in detail. The function Utargets(y | θ ) takes into account the exposure
times of targets and is used to minimize the summed exposure time of
tiles that is needed to observe a given set of targets t; Uoverhead(y | θ )
minimizes the overhead associated with each OB and individual
exposures; Utiles(y | θ ) is used to optimize the placement of tiles with
respect to each other; and UBGD(y | θ ) is introduced to comply with
the available fraction of observational time in bright, grey or dark
sky conditions.

The definition of the terms of each energy function component (see
below) together with the values of the parameters lead to a locally
stable model. This means that the contribution to the general energy
function of a new tile to an existing configuration is bounded below.
This property implies the integrability of the model. The local stabil-
ity is also required in order to obtain the required convergence prop-
erties for the simulation algorithm of the model (van Lieshout 2000;
van Lieshout & Stoica 2003; Møller & Waagepetersen 2004). In the
following, we describe the implementation details of each of the
energy function components and of the MCMC simulation method.

3.2.1 Utargets(y | θ )

This is the most important component of the energy function. This
component ensures that the targets in the input catalogue are observed
efficiently. The energy function Utargets(y | θ ) is based on all targets
and all tiles in the sky. While minimizing this energy we find the best
tiling that allows optimal observation of a given set of targets. This
is defined as

Utargets(y | θ ) = 1

A(FoV)

“
S

Us
targets(y | θ )ds, (5)

Us
targets(y | θ ) = [

cmissT
s

miss + cwastedT
s

wasted

]
for {t ∈ t : ‖t − s‖ < smax} , (6)

where S ∈ W is the region in the sky where targets are located.
The inverse of the normalization constant in front of the surface
integral, A(FoV), is the area of one 4MOST field of view. This gives
the energy (missing and wasted time) as an average quantity per one
field of view. For a region s in the sky, the function Us

targets is estimated
based on targets closer than smax = 0.1 deg from the centre of region
s. In a circle with radius 0.1 deg there are on average 12 LR and 6
HR spectrograph fibres. For simplicity, the integral in equation (5) is

MNRAS 497, 4626–4643 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/497/4/4626/5881331 by U
niversity of D

urham
 user on 22 O

ctober 2020
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estimated as a sum over HEALPIX5 pixels (Górski et al. 1999) in the (H
= 4, N = 3) member of the HEALPIX family of equal-area projections
from the sky to the plane (Calabretta & Roukema 2007). We use the
HEALPIX Nside parameter of 1024, which gives around 1300 pixels
in one 4MOST field of view. The smax defines the smoothing scale
for the Us

targets energy function component.
In equation (6), T s

miss is the exposure time that is missing in order
to observe all targets in region s and T s

wasted is the observational time
that is not used for science targets. Wasted time counts, the time that
is not used at all for science targets (e.g. empty fibres) and counts the
time over which science targets were overexposed. Positive constants
cmiss ≥ 0 and cwasted ≥ 0 can be used to fine tune the balance between
missing and wasted observations.

In this paper, the missing and wasted time is estimated as:

T s
miss =

∑
X∈[LR,HR]

cX

[
T s

req,X − T s
obs,X

]
, (7)

T s
wasted =

∑
X∈[LR,HR]

cX

[
T s

over−exp,X + T s
not−used,X

]
, (8)

where T s
req is the required exposure time in a region s in order to

observe all targets in this region; T s
obs is the exposure time that was

actually used to observe the targets in this region. The term T s
over−exp

takes into account the overexposure of targets and T s
not−used gives the

time that was not used for science targets (time lost because of empty
fibres). The missing and wasted time is calculated separately for LR
and HR. The parameters cLR and cHR can be used to control the
relative importance of LR and HR targets and fibres. In this paper,
we set cLR = 2/3 and cHR = 1/3, so that they reflect the number
density of LR and HR spectrograph fibres.

To calculate the quantities T s
req, T s

obs, T s
over−exp, and T s

not−used, we
have to assign fibres to targets. Tempel et al. (2020) describe
a probabilistic fibre-to-target assignment algorithm. However, this
algorithm is computationally expensive and in practice it cannot be
used in the proposed tiling algorithm. To generate an optimal tiling
pattern, we will use a simplified (and computationally faster) version
of the fibre-to-target assignment algorithm. The simplified version
described below does not assign real fibres to targets; it is only
used to statistically mimic the fibre-to-target assignment. Hence, the
simplified targeting used in this paper does not replace the need
for a probabilistic targeting such as the one proposed in Tempel
et al. (2020). In this paper, the calculation of T s

req, T s
obs, T s

over−exp, and
T s

not−used is performed as described below. The calculation of these
quantities is the same for LR and HR targets, except that the fibre
density is different for LR and HR fibres.

3.2.1.1 Calculation of T s
req To estimate the required exposure time

in a region s, we assume that any fibre can be placed on any target in
that region. The T s

req for LR targets is estimated as

T s
req,LR = 1

Ns
LR,fib

∑
t∈tLR

s

T D
exp(t) · fcompl(t), (9)

where the summation is over LR targets t that belong to region s, in
the sense that they are closer than smax to the centre of region s in
the sky. The set of LR targets that belong to region s is designated as
tLR
s . The parameter Ns

LR,fib gives the average number of LR fibres in
region s. It is estimated as

Ns
LR,fib = csci fib · ρLR

fib · A(s), (10)

5https://healpix.jpl.nasa.gov

where ρLR
fib defines the average LR fibre density in one field of view,

A(s) gives the area of region s and parameter csci fib ∈ [0 . . . 1] defines
the fraction of fibres that are available for science targets.6

The calculation of T s
req for HR targets is the same, except that we

use HR targets and HR fibre density ρHR
fib . In the 4MOST facility,

the average LR fibre density is ρLR
fib = 391 sq deg−1 and for HR it is

ρHR
fib = 196 sq deg−1.
In equation (9), we use exposure times for the dark sky condition.

Hence, equation (9) gives the minimum exposure time required to
observe all targets in the dark sky condition, assuming perfect fibre-
to-target assignment without any loss. Effectively, the perfect fibre-
to-target assignment is only used to estimate the missing time, T s

miss.
The simplified fibre-to-target assignment described below takes into
account the sky conditions associated with each OB and different
sky conditions are also included to calculate the T s

obs.

3.2.1.2 Calculation of T s
obs The observed exposure time T s

obs counts
the time that is used to observe targets in a region s. It is estimated
as

T s
obs,LR = 1

Ns
LR,fib

∑
t∈tLR

s

min [1.0, fobs(t)] · T D
exp(t) · fcompl(t), (11)

where notations are the same as in equation (9) and fobs(t) gives the
completion fraction for target t. If the summed exposure time of a
target t is equal or larger than the requested exposure time, then
effectively fobs(t) = 1.0.

The completion fraction fobs(t) for target t is estimated using the
simplified fibre-to-target assignment. For that we start with all tiles
that cover the region s. The set of these tiles is designated ys . We
assume that all fibres in region s can be used for all targets in that
region. This is an approximation, but since region s is relatively
small, it is a statistically unbiased approach. Since the exposure
times of tiles y ∈ ys can be different, the assignment of fibres/tiles
to targets itself is an optimization problem. In this paper, we do not
solve this extra optimization problem, for reasons of minimizing the
computational time. We instead use a simple scheme that provides an
efficient enough solution. The simplified fibre-to-target assignment
for LR targets in region s is done as follows.

(i) Initialize all tiles y ∈ ys in the region s. All tiles have the same
fixed number of LR fibres for science targets, NLR, fib. Initially, for all
tiles y ∈ ys , N alloc

fib (y) = 0, which is the number of allocated fibres in
tile y.

(ii) Select all LR targets t ∈ tLR
s in the region s. Sort all targets

t ∈ tLR
s for descending order of target exposure time T D

exp(t). For each
target, set the completion fraction to zero, fobs(t) = 0.

(iii) For each target, set the overexposure fraction to zero,
fover-exp(t) = 0.

(iv) Loop over targets t in the region s, starting from the target with
the longest exposure time T D

exp(t). For each target, allocate fibres as
follows:

(a) For target t, calculate completion fraction when observing
with field y ∈ ys . Completion fraction for target t in field y is
estimated as fy(t) = T y

exp/T
BGD

exp , where T y
exp is tile exposure

time and for the target exposure time T BGD
exp we use the sky

condition that matches with the tile condition i
y

BGD.

6The fraction is less than one, because some fibres are used for calibration or
are allocated as sky fibres.
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Figure 3. Schematic overview of the simplified fibre-to-target assignment
for the 4MOST surveys. The left-hand panels show LR targets in a small sky
area ordered based on the requested exposure times. On average, this sky area
includes 4.3 LR fibres (maximum Nfib value in the right-hand side panels).
The column widths give the target completion fractions fcompl. The column
heights are the requested exposure times. The right-hand panels show the
distribution of these targets divided between three exposures with 30, 20, and
10 min, respectively. The division of targets between three exposures is done
according to the algorithm described in Section 3.2.1. The upper panels show
nearly perfect fibre-to-target assignment. The lower panels show a fibre-to-
target assignment for targets, where the target distribution does not allow
for ideal allocation and some fibres are left empty. Different energy function
components are shown with different colours and patterns.

(b) Look through all tiles that are available in the region s.
Tile y is available for target t, if N alloc

fib (y) < NLR,fib and target t
is not yet observed with tile y.

(c) If there exists a tile y for which fobs(t) + fy(t) > 1.0, then
assign target t to the tile y, where fobs(t) + fy(t) is the lowest.
For that tile, increase the fibre allocation N alloc

fib (y) by fcompl. For
the target t, set fobs(t) = 1.0. For target t, set the overexposure
fraction foverexp(t) = fobs(t) + fy(t) − 1.0. Go to the next target in
the region s.

(d) If the condition in (c) is not met then allocate target t to
a tile, where fy(t) is the largest. For that tile, increase the fibre
allocation N alloc

fib (y) by fcompl. For the target t, set fobs(t) = fobs(t)
+ fy(t).

(e) If for any tile (y ∈ ys) N alloc
fib (y) is larger than the number

of available fibres Nfib, remove this tile from the available tile
list.

(f) Go to the point (b) and add target t to another tile y.
(g) If there are no tiles available (for example when the

requested target exposure time is larger than the total exposure
time in this region), go to the next target in the region s.

Since for each target we estimate the target completion fraction
fobs(t), equation (11) allows us to estimate the actual observed time
for dark sky conditions, and combining this with equation (9), allows
us to directly estimate the missing observational time T s

miss, see
equation (7).

The simplified fibre-to-target assignment is illustrated in Fig. 3.
The upper panels show an almost perfect fibre allocation. The lower
panels show target allocation in the case of a target distribution that

does not allow an optimal fibre allocation. Regardless of the tile
exposure times, some of the fibres are always empty, while long-
exposure targets are not fully observed. This situation can only be
improved by changing the target distribution in the sky. The proposed
tiling algorithm tries to minimize the time that is missing and the time
that is not used.

After the simplified fibre-to-target assignment, we have for each
target t ∈ tLR

s the completion fraction fobs(t) and for each tile y ∈ ys

we have the number of allocated fibres N alloc
fib (y). Additionally, if

target t was overexposed (fobs(t) > 1.0) we have the overexposed
fraction foverexp(t).

3.2.1.3 Calculation of T s
overexp Overexposed time in a region s is

estimated using the overexposed fraction of each target

T s
overexp,LR = 1

Ns
LR,fib

∑
t∈tLR

s

foverexp(t) · T D
exp(t) · fcompl(t), (12)

3.2.1.4 Calculation of T s
not−used The total time for empty fibres is

estimated as

T s
notused = 1

Ns
LR,fib

∑
y∈ys

{
max

[
0, Ns

LR,fib − N alloc
fib (y)

]} · T y
exp, (13)

where T y
exp is the exposure time of tile y.

3.2.2 Uoverhead(y | θ )

The energy function component for overheads, Uoverhead(y | θ ), is
introduced to reduce the total amount of overhead time that is
associated with each observation. For each science exposure, there
is additional T tile

overhead = 4.4 min overhead (including calibration).
Hence, for short exposures the fractional overhead is larger than for
long exposures. At the same time, there are many targets that require
short exposures, hence, short exposures are the optimal in some sky
regions. In addition to the overhead associated with each exposure,
there is additional overhead T OB

overhead = 3.5 min associated with each
OB. This mainly covers the time for the telescope to move from one
sky region to the other and thereafter acquiring the necessary guide
stars. To reduce the summed T OB

overhead, 4MOST will combine several
exposures into one OB.

The energy function that minimizes the overhead time is defined
as:

Uoverhead(y | θ ) = coverhead

[
NtileT

tile
overhead + NOBT OB

overhead

]
, (14)

where Ntile is the total number of tiles (exposures) and NOB is the
number of individual OBs in the tiling solution. The parameter
coverhead can be used to fine-tune the importance of overhead energy
component in the optimization process.

3.2.3 Utiles(y | θ )

One 4MOST field of view is a hexagon. If we have to cover sky
only once, then the optimal tiling is a beehive pattern. If some sky
regions should be observed many times, then the optimal pattern
should follow the target distribution in the sky. In intermediate cases,
where the sky should be covered only twice, the optimal tiling is
a beehive pattern that covers the sky twice. Since there is a small
overlap between neighbouring tiles (because of the curved spherical
surface of the sky), the two beehive patterns should be shifted with
respect to each other, which minimizes the number of overlaps in any
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sky location. To encourage this kind of pattern, the energy function
Utiles(y | θ ) is defined as

Utiles(y | θ ) = ctiles ·
NOB∑
i=1

{
Rlim

− min
[
Rlim, d

(
yOB

i , yOB
k �=i : k = 1 . . . NOB

)]}
, (15)

where d(yOB
i , yOB

k ) is the angular distance between two OB centres
and Rlim is the limiting radius. If the distance between OBs is larger
than Rlim then there is no penalty in the energy function. If the distance
between two OBs is smaller than Rlim, we add a small penalty to the
total energy U (y | θ ). Optimal Rlim should be close to the radius of
one field of view, which also minimizes the gaps between tiles. The
interaction between tiles defined with equation (15) is known as a
nearest neighbour interaction in the point processes applications (see
e.g. van Lieshout 2000).

If required by the surveys, a similar scheme can be used to force
gaps between OBs in some specific sky areas. In this case the
Utiles(y | θ ) should be defined individually for each sky region. In
this paper, for simplicity, we only test the energy function given with
equation (15).

3.2.4 UBGD(y | θ )

The energy function component Utargets(y | θ ) depends on whether a
given sky region is observed during bright, grey, or dark sky bright-
ness conditions. Since observations during dark time are generally
preferred, the previously introduced energy function components
highly prefer observations during dark time. However, the fraction of
total bright, grey, and dark time is fixed. To take that into account, we
introduce an energy function component UBGD(y | θ ) that somewhat
balances the total time between B/G/D.

This energy function component is defined as

UBGD(y | θ ) = cBNB
tile + cGNG

tile + cDND
tile, (16)

where N
B/G/D
tile is the number of tiles with B/G/D flag and cB/G/D

are constants. In practice, cD > cG > cB, which slightly encourages
bright and grey time tiles over dark time tiles. The parameters cB/G/D

should be chosen so that the fraction of the total bright, grey, and
dark time is as expected.

3.3 Simulation method

To simulate marked point processes, several techniques can be
used: spatial birth-and-death processes, Metropolis–Hastings (MH)
algorithms, reversible jump dynamics or exact simulation techniques
(Geyer & Møller 1994; Green 1995; Geyer 1999; Kendall & Møller
2000; van Lieshout 2000; van Lieshout & Stoica 2006; van Lieshout
2019).

In thispaper, we need to sample from the law p(y | θ ). This is done
by using an iterative Monte Carlo algorithm. In our case the model
parameters θ are fixed and conditional on θ , and the object pattern
is sampled from p(y | θ ) using an MH algorithm (Geyer & Møller
1994; Geyer 1999). The MH algorithm in this paper consists of three
types of moves.

(i) Birth: with a probability pb a new object ζ , sampled from the
birth rate b(y, ζ ), is proposed to be added to the present configuration
y. The new configuration y′ = y ∪ ζ is accepted with the probability

min

{
1,

pd

pb

d(y ∪ ζ, ζ )

b(y, ζ )

p(y ∪ ζ )

p(y)

}
. (17)

(ii) Death: with a probability pd an object ζ from the current
configuration y is proposed to be eliminated according to the death
proposal d(y, ζ ). The probability of accepting the new configuration
y\ζ (the set of objects y omitting the object ζ ) is computed by
inverting the ratio (17).

(iii) Change: with a probability pc we randomly choose an
object ζ old in the configuration y and propose to slightly change
its parameters using uniform proposals. The new object obtained is
ζ new. The new configuration y′ = y \ ζold ∪ ζnew is accepted with the
probability min{1, p(y′)/p(y)}.

For the death rate, we adopt the uniform choice d(y, ζ ) = 1/n(y),
where n(y) is the number of objects in the configuration. For the
birth proposal above, we have a mixture proposal with two types of
sub-moves:

(i) Random: with a probability prnd
b a new random tile (a new

OB with just one tile) is added to the configuration. The tile centre is
chosen uniformly in the sky (in the observed window W). For the new
tile, we assign a random position angle and a random exposure time
between Tmin and Tmax . For the new tile we also attach a B/G/D flag,
where the prior for the B/G/D flag is the fraction of time available in
bright, grey, or dark sky conditions.

(ii) Tile in an OB: with a probability pOB
b = 1.0 − prnd

b , we
choose an existing tile ζ ′ and add a new tile ζ to this OB. The
tile coordinates, position angle, and B/G/D flag become the same as
for the existing OB. The exposure time for the new tile is chosen
randomly between Tmin and Tmax .

The birth rate for the combined birth move is

b(y, ζ ) = prnd
b 1{ζ ∈ W }

ν(W )
+ pOB

b b̃(y, ζ ), (18)

b̃(y, ζ ) = 1

n(y)

∑
ζ ′∈y

1{ζ ∈ b(ζ ′, r)}
ν [b(ζ ′, r) ∩ W ]

, (19)

where ν(W) is the Lebesgue measure (sky area) of the observed
window W, b(ζ ′, r) is a ball centred in ζ ′ with radius r in the sky,
and 1{·} is the indicator function. For simplicity, we set the area
of the ball ν[b(ζ ′, r)] = 1 and ν(W) = Nexpected, where Nexpected is
the expected number of tiles in the converged solution. The actual
number of tiles may differ from the expected number and is mainly
determined by the energy function Utargets.

For the change move above, we adopt the following sub-moves:

(i) Position in the sky: with a probability ppos
c , we slightly shift

an OB centre (where the selected tile is in) and position angle with
respect to the OBs original values.

(ii) Exposure time: with a probability pexp
c , we slightly change

tile exposure time with respect to the original exposure time.
(iii) Change B/G/D flag: with a probability pBGD

c , we propose to
change the B/G/D flag for a selected OB.

(iv) Combine close tiles into the same OB: with a probability
pOB

c , we select randomly a tile and if there is another tile close to the
selected tile, we join both tiles into one OB.

The previously introduced birth, death, and change moves define
a Markov chain transition kernel which is φ – irreducible, Harris
recurrent, and geometric ergodic (van Lieshout 2000; Møller &
Waagepetersen 2004; Stoica et al. 2005).

In order to maximize p(y, θ ), the previously described sampling
mechanism is integrated into an SA algorithm. The SA is an iterative
algorithm that samples from p(y, θ )1/T , while T goes slowly to zero.
The following ingredients are needed in order to ensure convergence
of the SA algorithm: high value of the initial temperature, a

MNRAS 497, 4626–4643 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/497/4/4626/5881331 by U
niversity of D

urham
 user on 22 O

ctober 2020



4634 E. Tempel et al.

Figure 4. Optimal tiling pattern in the case of one visit. Each tile is shown
as a blue hexagon. Uniformly distributed targets (grey dots) are restricted in
the right ascension range 0. . . 40 deg and declination range −20. . . +20 deg.
For clarity, only 10 per cent of the targets are shown. Stitches in the tiling
pattern are due to the hexagons along the neighbouring edges being rotated
by 90 deg.

convergent sampling algorithm for the probability density and an
appropriate cooling schedule (van Lieshout 2000; Stoica et al. 2005).
We adopt the polynomial cooling schedule, where the temperature is
lowered as

Tk+1 = αTk, (20)

where k is a time-step in a simulation and 0 < α < 1.0 defines
the speed of temperature decrease. The initial temperature for the
simulation is set to T0. The temperature is lowered after every Nmoves,
which allows the system to reach a near-equilibrium state. In practice,
the Nmoves should be several times greater than the number of tiles in
the configuration. Altogether we change the temperature Ncycles time.
Hence, the total number of moves in our algorithm is Nmoves · Ncycles.

The MH algorithm described above does not require any tiling
initialization. The MCMC algorithm starts with zero tiles and
additional tiles are added to the tiling configuration during birth
moves. The final number of tiles in the configuration is mostly
determined by the Utargets energy function and is influenced by the
expected number of tiles, Nexpected.

4 A P P L I C AT I O N O F TH E T I L I N G A L G O R I T H M

4.1 Example using Poisson-distributed targets

As a first test, we generated Poisson-distributed targets in the sky and
ran the tiling algorithm on these points. The targets were restricted in
the right ascension range 0. . . 40 deg and declination range −20. . .
+20 deg. The number density of targets was slightly lower than the
number density of fibres. Hence, the expected optimal tiling pattern
covers the sky only once.

Fig. 4 shows the optimal tiling pattern generated using the
algorithm described in Section 3. An ideal theoretical tiling pattern
would be a perfect honey-comb pattern. However, the celestial sphere
is curved, the target region in the sky is restricted and the tiles should
not be located outside of the target region, so the perfect honey-comb

pattern cannot be achieved exactly. The stitches visible in Fig. 4 are
due to the orientation of tiles (hexagons) at the neighbouring edges
of the sky area being rotated by 90 deg. The orientation of tiles at
the field edges are determined by the sharp edge of the field and
fixed hexagon orientations are the only solution we found to produce
an optimal tiling that minimizes the tile area outside of the target
region. For a large field of view, these stitches are not present and the
algorithm generates a nearly perfect honey-comb pattern in the case
of one visit to each tile.

As a second test with Poisson-distributed targets, we doubled the
number of targets. Consequently, the expected perfect tiling covers
the sky twice. We use this test to show the effect of Utiles (see
Section 3.2.3) on the final tiling pattern. In Fig. 5, we show the
tiling pattern generated in two different cases. In the left-hand panel,
we show the tiling pattern where Utiles = 0.0, which means that there
are no interactions between tiles. In the right-hand panel of Fig. 5,
we show the tiling pattern where the repulsive interaction of tiles
is added, as described in Section 3.2.3. The parameter ctiles = 5.0,
which is relatively large to forces the tile centres maximally apart
from each other.

Fig. 5 clearly shows that the final tiling pattern depends on the
choice of Utiles. In the left-hand panel, in several locations two tiles are
put almost perfectly on top of each other. In the right-hand panel, the
distance between tile centres is maximized and the resulting pattern
appears more regular. In both cases, the number of tiles is practically
the same and both patterns cover the sky twice with minimal overlaps
and holes between tiles. Hence, Utiles has a negligible effect on the
survey efficiency. In the proposed algorithm, Utiles can be used to
influence the tiling pattern so that it maximizes the survey science
goals. Depending on the survey, these goals can be rather different.

The tiling solutions presented in Figs. 4 and 5 each show just
one realization of a solution to the optimal tiling problem. Since the
MCMC algorithm involves randomness, if we run the tiling algorithm
a second time with exactly the same parameters and different random
seeds, or using parallel computation as typically implemented (which
is what we currently have coded), the outcome will be slightly
different. For example, in Fig. 4, the stitches will appear in different
locations. Due to the complexity of the optimal tiling problem, it is
hard to define the optimal tiling pattern. In practice, there are many
optimal tiling patterns and the proposed algorithm only provides one
numerical realization of a solution to the problem. Due to the high-
dimensionality of the problem, there are many local minima that
are all approximately equal in practice and the MCMC algorithm
provides one local minimum as a final solution. The optimal tiling
pattern is defined via the energy function in equation (4) and depends
on its form and parameters. For different scientific applications the
optimal tiling pattern might be different and the proposed algorithm
allows to take this into account.

4.2 Example using mock catalogues

In this section, we test the proposed tiling algorithm in the case of a
varying number density of targets in the sky. Targets are taken from
the 4MOST mock catalogues, covering the Galactic and extragalactic
consortium surveys (see Section 1). The distribution of exposure
times and fcompl values for targets in our test region are shown in
Fig. 6. The upper panel in Fig. 7 shows the required exposure time
in a test sky region. The required exposure time is estimated with
equation (9). Fig. 7 shows the footprints of individual surveys in the
sky. The upper part of this figure shows the WAVES survey where
the number density of objects, as well as the required exposure time,
varies significantly even on small scales.
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Figure 5. Optimal tiling pattern in the case of two visits. Each tile is represented as a blue hexagon. Targets are restricted in the same area as in Fig. 4. On
the left-hand panel there are no interactions between tiles, Utiles = 0.0. On the right-hand panel, we use the repulsive interactions (see Section 3.2.3) where tile
centres are maximally pushed apart from each other. Clearly, the resulting tiling pattern depends on the type of interactions among tiles.

Figure 6. The distribution of exposure times (upper panel) and fcompl values
(lower panel) for the targets shown in Fig. 7. The distribution is shown in
arbitrary units. The minimum exposure time for all targets was set to 10
min. Most of the long-exposure targets are located in the WAVES region (see
Fig. 7). In the input catalogue, each sub-survey has a fixed fcompl value. The
variety of fcompl values shows that the completeness requirements in various
surveys are very different.

To generate the tiling for the selected test region, we restricted
ourselves to only LR targets and all tiles had the same sky brightness
condition. We generated the tiling pattern for two cases. In the first
case, we set Uoverhead = 0.0, so that each tile was considered to
be an individual OB with no penalty from the overhead during tile
generation. In the second case, we minimized the overhead associated
with each exposure and OB, we set coverhead = 0.5, and tiles were
collected into OBs wherever possible and efficient.

The middle and lower panels in Fig. 7 show the allocated exposure
time for these two cases. In general, the allocated time in different sky

regions is roughly the same for both cases. In the lower part of the test
region, the required exposure time is lower and there is less flexibility
there. Hence, a slight hint of the tiling pattern of individual hexagons
can be seen in the allocated exposure time shown in the lower panel
of Fig. 7. This is because tiles are collected into OBs and this part
of the region is mostly covered only twice. In general, we can see
that the allocated exposure time matches the required exposure times
very well. In many cases, even the small variations in the required
exposure time maps are well traced by the allocated exposure times.
The required and allocated exposure times are not directly matched
in our algorithm. During the optimization, we minimize the missing
and wasted time (see Section 3.2.1), which automatically results in an
excellent match between the required and allocated exposure times.

Fig. 8 shows the actual tiling pattern for the two cases shown in
the lower two panels of Fig. 7. This clearly emphasizes that if tiles
are collected into OBs, then we lose some flexibility when placing
tiles in the sky. This flexibility comes with the price of increased
overhead time. For this example, the summed exposure time without
the overhead time for the two cases is nearly identical, being around
860 h. However, the overhead for the first case is 446 h, while for
the second case it is 339 h. Hence, there is a balance between an
efficient survey (minimized overhead time) and an optimal tiling
pattern (flexibility of placing tiles). This balance depends on the
survey science goals and required completeness for a survey. The best
compromise should be determined during the survey optimization.

Fig. 9 shows the energy function Utargets and different components
of Utargets. Clearly, the WAVES region has the highest energy, as
it is the least efficient part of the selected test region, while at
the same time it has the largest Tmissing and Tnot used times. This is
because of the nature of the WAVES region. The target density varies
significantly at scales smaller than one 4MOST field of view. At
the same time, the exposure times of individual targets differ a lot.
As a consequence, there are regions where the allocated exposure
time is smaller than the required exposure time for single targets
and in the same regions there are empty fibres. A similar case is
illustrated in the lower panel of Fig. 3. The algorithm minimizes
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4636 E. Tempel et al.

Figure 7. The upper panel shows the required exposure time for different sky regions. Targets for the test region were selected from the 4MOST mock
catalogues. The required exposure time was calculated using equation (9). The upper region with a high number density of targets is the WAVES survey region
(Driver et al. 2019). Middle and lower panels show the allocated exposure times (sum of tiles exposures times) for the same test region. In the middle panel,
each tile is an individual OB, while in the lower panel, tiles are collected into OBs, to reduce the total overhead time. In both cases, the allocated exposure time
traces the required exposure time shown on the upper panel very well. Fig. 8 gives the actual tiling pattern in the sky for these two cases. Fig. 9 shows how well
the allocated exposure time matches with the required exposure time, while taking the fibre-to-target assignment into account.

the sum of the two components. Depending on the science goals,
the relative importance of the two components can be altered. For
example, WAVES requires high completeness for its science case,
so Tmissing should be more important than Tnot used. In the proposed
algorithm, these survey-specific requirements can be easily included,
while generating the final optimal tiling for the 4MOST survey.

Regarding the distribution of missing and not-used time in the
sky and the distribution of energy function Utargets, these are more

or less uniform outside and inside the WAVES region. The pro-
posed tiling algorithm finds the tiling that matches the required
exposure times and finds a solution, where missing and not-used
time is evenly distributed in the sky. Hence, the proposed tiling
algorithm does not seemingly prefer one sky region to the other. The
difference between WAVES and other regions is due to the different
target densities, completeness requirements, and exposure time
distributions.
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Optimal tiling algorithm 4637

Figure 8. Tiling pattern in the sky that corresponds to the allocated exposure times shown in the middle and lower panel in Fig. 7. Each OB is shown as a blue
hexagon. In the upper panel, each tile is an individual OB. In the lower panel, several tiles are collected into single OBs. Clearly, the flexibility of the tiling
pattern depends on the number of OBs.

While the left-hand panels in Fig. 9 show the energy function per
sky region, the right-hand panels show the same energy function per
tile, the energy function components are divided by the number of
tiles in a given sky region. While the summed energy is the lowest
in the middle of the region, the energy per tile is highest there. This
is because the number density of objects there is relatively low and
this region is covered mainly with one layer of tiles. Since there is
almost no flexibility for the tiling pattern in this region, the survey
efficiency largely depends on the match between the target density
and fibre density. The mismatch between these two is the reason
why the energy per tile is highest there. To conclude, the energy
function maps are useful for analysing the overall efficiency of the
generated tiling pattern. However, the tiling pattern should be used
together with the real fibre-to-target assignment and the actual survey
efficiency can be only assessed using the full survey simulation. This
is briefly analysed in the next section.

4.3 Tiling and probabilistic fibre-to-target assignment

The fibre-to-target assignment described in this paper is a simplified
approach that provides only a statistical solution and cannot be

used during real observations. In reality, the generated tiling pattern
will be used together with a more sophisticated fibre-to-target
assignment algorithm. In Tempel et al. (2020), we proposed a
probabilistic fibre-to-target assignment algorithm that takes into
account survey completeness requirements and varying number
densities of targets. In this section, we will adopt the tiling pattern
generated in Section 4.2 and use this together with the probabilistic
fibre-to-target assignment described in Tempel et al. (2020). For the
probabilistic fibre-to-target assignment, we use the pattern shown in
the upper panel of Fig. 8 as an input.

Fig. 10 shows the efficiency of the probabilistic fibre-to-target as-
signment algorithm. The upper panel shows the fraction of allocated
fibres. This is close to unity in the lower part of the figure. In the
upper part, the fraction of used fibres is on average greater than
95 per cent. The fraction of used fibres is lower than 90 per cent
only in some small regions. The low efficiency is in regions where
the completeness requirement is very high (WAVES region) or the
number density of objects is low (middle region in the figure). In
general, the adopted tiling pattern is not visible in the completeness
map and the completeness differences are caused by the different
number density of objects.
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4638 E. Tempel et al.

Figure 9. Diagnosis plots of the tiling algorithm. The left-hand column shows the energy function Utargets (lower panel) and its components Tmiss (upper panel)
and Tnot used (middle panel). In general, Tmiss counts the time that is missing to observe the required set of targets and Tnot used counts the time that is wasted
because of empty fibres. The Utargets is the combination of these (see Section 3.2.1). The right-hand panels show the same energy function components divided
by the number of tiles in a given sky region. This figure shows the energy function components for the tiling presented in the middle panel of Fig. 7.

The middle and lower panels in Fig. 10 show the fraction of
successfully observed objects and of used exposure time compared
with the required number of objects and exposure times. In most of
the figure, both fractions are greater than 90 per cent. The greatest
difference is in the WAVES region, where the number of observed
objects is close to the number of required objects, while the fraction
of used exposure time is lower. This is because in the WAVES region
we observe more of the required short-exposure targets, while some
long-exposure targets remain uncompleted (the total exposure time is
shorter than the requested exposure time for a target). This situation
can only be improved by making the tiling less efficient, while adding
more tiles (the fraction of allocated fibres will decrease) or increasing
the exposure time of tiles (the overexposure of short-exposure targets
will increase).

To summarize, the simplified fibre-to-target assignment used
during the tiling pattern generation works well and is a good
approximation of the probabilistic fibre-to-target algorithm presented
in Tempel et al. (2020). Further improvements of the simplified
fibre-to-target assignment algorithm should take into account survey-
specific requirements. This will be done during the 4MOST survey
optimization phase.

4.4 Tiling with bright, grey, and dark time division

To test the impact of UBGD during the tiling pattern generation, we
used all targets from the 4MOST mock catalogues. The distribution
of the required exposure time in the sky is shown in Fig. 1. The
tiling pattern was generated to have roughly 50 per cent of dark
tiles, 20 per cent of grey tiles, and 30 per cent of bright tiles. The
regions where these tiles should be located were not fixed beforehand.
The tiling algorithm decides based on T BGD

exp (t) which sky regions
should be observed during bright, grey, or dark sky conditions. The

fraction of tiles for each sky condition is a free parameter in the tiling
algorithm and can be tuned as necessary. Table 1 gives the parameters
that were used during the test simulation.

Fig. 11 shows the output tiling pattern for the full sky. In the
upper panel, the footprints of different sub-surveys in 4MOST are
clearly visible, including the Milky Way in the middle of the image,
the bulge region, and the Magellanic Clouds. Regarding the division
of tiles between pre-defined sky conditions, as expected, the Milky
Way and the Magellanic Clouds are mostly observed during bright
time because most of the stars are bright and the required exposure
time per object is roughly the same for all sky conditions. Most of
the extragalactic sky contains faint galaxies and AGNs, where the
required exposure time depends strongly on the sky condition. For
faint extended objects, the dark sky condition is highly preferred
and the tiling algorithm assigns most of the dark time tiles to the
extragalactic sky. Grey time is almost uniformly distributed and does
not have any clear preference in Galactic or extragalactic sky. In
general, the proposed tiling algorithm minimizes the total time that
is necessary to observe the given set of targets in the sky.

4.5 Performance analysis of the tiling algorithm

In this section, we analyse how well the algorithm performs compared
with slightly less optimized tiling solutions. In general, it is not
straightforward to compare the proposed algorithm with other avail-
able methods. The main reason is that different algorithms optimize
different aspects and it is not straightforward to define a common
merit function (often called a ‘metric’7) that can be easily compared.

7Not to be confused with the differential geometry sense of ‘metric’ that is
fundamental to the space–time of modern astronomy.
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Optimal tiling algorithm 4639

Figure 10. Output of probabilistic fibre-to-target assignment. Using the mock targets shown in the top panel of Fig. 7 and tiling map shown in the upper panel
of Fig. 8, we ran the survey simulation using the probabilistic fibre-to-target assignment presented in Tempel et al. (2020). See Section 4.3 for more details.
The upper panel shows the fraction of allocated fibres. The middle panel shows the number of successfully observed objects divided by the number of required
objects. The lower panel shows the fraction of observed exposure time out of required exposure time.

In Section 4.2, we presented two tiling solutions with and without
an overhead minimization (see Figs. 7 and 8). While both of them
required approximately the same amount of summed exposure time,
the tiling solution without the overhead optimization requires about
30 per cent more time for overheads. In this section, we extend
this analysis using the 4MOST mock catalogues and compare the
proposed algorithm performance against itself.

We ran the algorithm several times. During each test run, we
disabled one or many optimization options. This allows us to estimate
the effect of these optimization options. During these tests, we

either fixed the position angle of each tile, fixed the tiles exposure
times, disabled the overhead minimization, or applied several of
them together. Table 2 gives the summary statistics for these test
runs. As expected, the tiling with all optimization options enabled
provides the best results. With some optimization disabled, the final
tiling configuration requires up to eight per cent more telescope
time.

During all test runs we used the same 4MOST mock target
catalogues and the generated tiling uses exactly the same completion
criteria. Hence, all these test runs should provide roughly the same
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4640 E. Tempel et al.

Figure 11. Tiling pattern for all 4MOST mock catalogues. The distribution of targets in the mock catalogues is shown in Fig. 1. The upper panel shows all tiles
that are necessary to observe the required set of targets from the mock catalogues. The lower panels show the tiles for bright, grey, and dark sky conditions.
The division between different sky conditions works as expected. The Milky Way and the Magellanic Clouds are mostly observed during bright time, while the
extragalactic sky is mostly observed during dark time.
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Optimal tiling algorithm 4641

Table 2. Summary of algorithm performance tests. We applied the tiling algorithm to the 4MOST mock catalogues. We ran the algorithm with the default
parameters and with parameters where certain optimization options were disabled. In each test, the same set of targets was expected to be completed with the
same completion criteria. The table below gives the summary statistics for each generated tiling. As expected, the test with all optimization enabled gives better
results than tests with disabled optimization options.

Test name Ntile NOB Mean Texp Mean TOB Sum of Texp Sum of TOB Obs. frac. Extra Tobs Extra Ttotal

(min) (min) (h) (h) (per cent) (per cent) (per cent)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Defaulta 40503 12375 14.36 64.90 9694 13386 72.4 0.0 0.0
Fix PAb 40729 12428 14.36 64.99 9751 13462 72.4 0.6 0.6
Fix Texpc 35426 12283 17.70 67.24 10451 13765 75.9 7.8 2.8
Fix PA Texpd 35920 12564 17.70 66.68 10596 13963 75.9 9.3 4.3
No OHe 39305 19147 14.85 42.94 9731 13702 71.0 0.4 2.4
Not optf 36172 19909 17.70 43.65 10671 14485 73.7 10.1 8.2

aDefault tiling with all optimization options enabled.
bPosition angle of each tile is kept fixed during the MCMC run. Initial position angle for each tile is randomly determined.
cExposure time of each tile is fixed to 17.7 min, which allows three exposures during single OB.
dExposure time and position angle of tiles are kept fixed during the MCMC run.
eOverhead fraction is not minimized during the optimal tiling generation.
fExposure time and position angle of tiles are kept fixed and overhead fraction is not minimized during the MCMC run.
(1) Number of tiles in the final tiling configuration after the MCMC run.
(2) Number of OBs in the final tiling configuration after the MCMC run.
(3) Mean exposure time of tiles in the final tiling configuration.
(4) Mean OB length (including overheads) in the final tiling configuration. Maximum OB length is 70 min.
(5) Sum of exposure times of all tiles in the final tiling configuration. Total observational time.
(6) Sum of exposure times and overheads associated with each tile and OB. Total telescope time with overheads.
(7) Fraction of total time that is spent for observations.
(8) Extra observational time (without overheads) that is needed compared with the default tiling.
(9) Extra total telescope time (with overheads) that is needed compared with the default tiling.

scientific outcome.8 Although the generated tiling solutions are all
slightly different, each one of these solutions constitutes an optimal
solution given the parametrization used in the optimization process.
The final tiling solution is mostly determined by the underlying
target density. The disabled optimization options have only a second-
order effect on the final solution. Using a naive tiling that does not
follow the underlying target density would give a significantly worse
solution.

To conclude, the optimal tiling solution is mostly driven by the un-
derlying target density. The MCMC optimization of the tile position
angles, exposure times, and minimization of the overall overhead
fraction gives up to an eight per cent improvement compared with
the slightly less optimized tiling solutions.

5 C O N C L U S I O N S A N D D I S C U S S I O N

In this paper, we propose a tiling algorithm for multiobject spec-
troscopic surveys that is based on marked point processes. In the
algorithm, the optimal tiling pattern is modelled as a marked point
process where each tile is considered as a marked point or object.
Finding the optimal tiling solutions is equivalent to finding the set
of tiles with exposure times that is required to efficiently observe
the targets given in the input catalogue. The optimization problem is
solved using a Metropolis–Hastings algorithm with SA.

The proposed algorithm finds an optimal tiling pattern given
an input target catalogue. The algorithm finds the optimal tiling
solution in the sky regions that are observed once or several times.
Simultaneously, the algorithm finds an efficient solution in regions

8To estimate the real scientific merit of the generated tiling configurations
requires full simulation of the 4MOST observations. The generated tiling
pattern alone does not allow the estimation of the real scientific merit directly.

that should be visited multiple times. We found that the optimal
tiling pattern selected by the algorithm follows the underlying target
density very well. Hence, the algorithm can be used simultaneously
for surveys that require multiple visits and for surveys that need
uniform sky coverage.

The proposed algorithm does not assume a fixed exposure time per
observation. Assuming that the required exposure time per target is
available in the input catalogue data files, the algorithm determines
a tentative exposure time for each tile, while taking the overhead
time per each observation into account. In general, the algorithm
allows to minimize the total time that is needed to successfully and
efficiently observe the objects given in the input target catalogue.
Additionally, the algorithm can divide the tiles between different sky
conditions, assuming that the exposure time per target as a function
of sky condition is available.

Finding an optimal tiling solution requires a clear definition of a
merit function that should be maximized. In the proposed algorithm,
the merit function is defined via an energy function, where the
energy function takes different aspects of the optimal tiling problem
into account. The energy function defined in this paper optimizes
the fibre-to-target assignment, minimizes the total overhead time,
includes interactions between tiles, and forces the tiles to be divided
between pre-defined sky conditions. The balance between these
components can be fine tuned in the algorithm, based on the input
catalogue and the survey science goals.

The proposed algorithm is tested using the current mock cata-
logues of the 4MOST consortium surveys, covering the Milky Way
and extragalactic sky. We show that the generated optimal tiling
pattern matches the estimated required exposure time as a function
of sky coordinates very well. The optimal tiling pattern follows
the edges of different sub-survey patches in the sky, allowing the
generation of an efficient tiling that takes the target density variations
in the sky naturally into account. The generated tiling pattern is used
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together with the probabilistic fibre-to-target assignment algorithm
proposed in Tempel et al. (2020), showing very high fibre-usage
efficiency and survey completeness. In general, the optimal tiling
algorithm proposed in this paper is an input for the probabilistic
fibre-to-target assignment algorithm described in Tempel et al.
(2020).

The marked point process framework behind the proposed tiling
algorithm is very flexible and allows the redefinition of the described
energy function components or the introduction of new components.
For example, the interaction between tiles can be used to minimize
the gaps between individual tiles and to construct a tiling pattern
that uniformly covers a contiguous area of sky. When necessary, the
interaction energy can also be used to force gaps between tiles in order
to cover larger sky areas with the same number of tiles. Depending
on the survey science case, an appropriate interaction energy for
an optimal tiling pattern can be chosen. The exact definition of the
interaction energy for the 4MOST survey will be determined during
the 4MOST survey optimization phase.

The proposed algorithm generates a tiling pattern that is needed to
most efficiently observe the given set of targets in the input catalogue.
However, the tiling algorithm does not determine when each tile
should be observed. Neither does it constrain how much time is
available for the 4MOST survey. To solve this problem, one needs a
scheduling algorithm that determines which tiles should be observed
and when they should be observed. The scheduling problem can be
solved independently of the tiling challenge. A good scheduling
algorithm for the 4MOST survey will be developed during the
4MOST survey preparation and is not part of the algorithm proposed
in this paper.

Regarding the division of tiles between various pre-defined sky
conditions, in the algorithm the fraction of time that is available
during dark, grey, or bright sky conditions is currently considered.
In reality, the division between pre-defined sky conditions should
also take the distribution of tiles in the sky into account. This
is necessary, since certain sky regions are only visible during the
summer or winter periods and the algorithm should generate tiles
with various sky conditions everywhere in the sky. This shows
one possible improvement for the proposed tiling algorithm that
still needs to be studied. For the 4MOST survey, the need for this
improvement will be assessed in combination with the scheduling
algorithm. A simple solution is to observe some tiles during better
sky conditions than those assigned by the algorithm and to scale
the exposure time per tile accordingly. A more optimal but time-
consuming solution is to fine-tune the tiling algorithm parameters
so that the produced distribution of tiles with predefined sky
conditions follows the fraction of available time in different sky
regions.

Table 1 gives the free parameters of the tiling algorithm that
should be determined for an optimal tiling solution. Many of these
parameters affect the speed and convergence of the algorithm and
have only a minor impact on the final tiling solution. However, some
of the parameters have a direct impact on the optimal tiling solution
and should be determined while taking the input target catalogue and
survey science goals into account. One example is the parameters
cLR and cHR that determine the importance between the numbers of
LR and HR targets. In this paper, constant values are assumed across
the sky. However, if a sky region is dominated by LR targets, then
the optimization should take that into account. This can be achieved
by defining different cLR and cHR values in different parts of the
sky. These optimizations depend very strongly on the input target
catalogue and will be included in the algorithm during the 4MOST
survey preparation.

Computationally, the proposed algorithm is somewhat demanding.
In the 4MOST survey, we have approximately 40 000 individual
tiles and MCMC sampling and the optimization of large number
of tiles take some time. Additionally, during each MCMC step
we have to perform the fibre-to-target assignment. In the proposed
algorithm we use a statistical fibre-to-target assignment, which helps
to improve the speed of the algorithm significantly. Despite that, to
find an optimal tiling pattern for the full 4MOST survey (about 50
million targets and 40 thousand tiles) takes currently up to a few
days using 24 cores on a shared memory machine. The algorithm
scales reasonably well using OpenMP parallelization. It is not yet
tested, how well the algorithm scales using MPI parallelization.
The computation time can be potentially reduced by using better
optimization and parallelization. During real observations, the tiling
algorithm should be run at the beginning of the survey, in which
case a few days of computational time is not a problem. However,
during the execution of the survey, one might want to rerun the tiling
algorithm to optimize the tiling that better matches the remaining
targets, or because the input target catalogue has been updated.
In these cases, one does not have to run the tiling algorithm from
scratch. The MCMC sampling of the tiling pattern can be initialized
using the previous tiling solution. This will significantly reduce
the computational cost and allow the tiling pattern to be updated
during the survey within a reasonable amount of computational
time.

To conclude, the tiling algorithm presented in this paper is a
new approach to solving the optimal tiling challenge for multiobject
spectroscopic surveys. The current algorithm is a proposed solution
for the 4MOST survey and in combination with the probabilistic
fibre-to-target assignment presented by Tempel et al. (2020) solves
two major challenges faced during the 4MOST survey preparation.
With appropriate modifications, the algorithm that we propose can be
also applied to other forthcoming multiobject spectroscopic surveys.
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