Timing and amount of southern Cascadia earthquake subsidence over 1 the past 1,700 years at northern Humboldt Bay, California, USA 2 3 Jason S. Padgett^{1,2}, Simon E. Engelhart¹, Harvey M. Kelsey³, Robert C. Witter⁴, Niamh Cahill⁵ and Eileen 4 Hemphill-Halev³ 5 6 ¹Department of Geography, Durham University, Durham DH1 3LE,, UK 7 ²Department of Geosciences, University of Rhode Island, Kingston, Rhode Island 02881, USA 8 9 ³Department of Geology, Humboldt State University, Arcata, California 95524, USA ⁴U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska 99508, USA 10 ⁵Department of Mathematics and Statistics, Maynooth University, Kildare, Ireland 11 12 ABSTRACT 13 Stratigraphic, lithologic, foraminiferal, and radiocarbon analyses indicate that at 14 least four abrupt mud-over-peat contacts are recorded across three sites (Jacoby Creek, 15 McDaniel Creek, and Mad River Slough) in northern Humboldt Bay, California 16 (~44.8°N, -124.2°W). The stratigraphy records subsidence during past megathrust 17 earthquakes at the southern Cascadia subduction zone, ~40 km north of the Mendocino 18 Triple Junction. Maximum and minimum radiocarbon ages on plant macrofossils from 19 above and below laterally extensive (>6 km) contacts suggest regional synchroneity of 20 subsidence. The shallowest contact has radiocarbon ages consistent with the most recent 21 great earthquake at Cascadia in 250 cal yr BP (1700 CE). Using Bchron and OxCal 22 software, we model ages for the three older contacts of ~875, ~1,120 and ~1,620 cal yr 23 BP. 24 For each of the four earthquakes, we analyze for a across representative 25 mud-over-peat contacts selected from McDaniel Slough. Changes in fossil foraminiferal 26 assemblages across all four contacts reveal sudden relative sea-level (RSL) rise (land 27 subsidence) with lasting submergence (decades to centuries). To estimate subsidence 28 during each earthquake, we reconstructed RSL rise across the contacts using the fossil 29

30 for aminiferal assemblages in a Bayesian transfer function. The coseismic subsidence

31	estimates are 0.85 \pm 0.46m for the 1700 CE earthquake, 0.42 \pm 0.37 m for the ~875 cal yrs
32	BP earthquake, 0.79 ± 0.47 m for the ~1,120 cal yrs BP earthquake, and ≥ 0.93 m for the
33	\sim 1,620 cal yrs BP earthquake. The subsidence estimate for the 1,620 cal yrs BP
34	earthquake is a minimum because the pre-subsidence paleoenvironment likely was above
35	the upper limit of foraminiferal habitation. The subsidence estimate for the \sim 875 cal yrs
36	BP earthquake is less than (<50%) the subsidence estimates for other contacts and
37	suggests that subsidence magnitude varied over the past four earthquake cycles in
38	southern Cascadia.
39	
40	1. INTRODUCTION
41	Many of Cascadia's coastal wetlands host extensive stratigraphic evidence for
42	coseismic subsidence induced by earthquake rupture on the subduction megathrust. Over
43	three decades of coastal paleogeodetic research on these natural archives has greatly
44	improved our understanding of Cascadia plate boundary processes (Atwater, 1987;
45	Darienzo, 1987; Peterson and Darienzo, 1991; Atwater et al., 1992; Nelson, 1992; Nelson

et al., 1996; Shennan et al. 1996; Atwater and Hemphill-Haley, 1997; Kelsey et al., 2002;

47 Witter et al., 2003; Hawks et al., 2010; 2011; Engelhart et al., 2013, Wang et al., 2013;

48 Milker et al., 2017). However, current coastal datasets do not resolve fundamental

49 questions in Cascadia subduction zone (CSZ) science, such as estimation and variability

⁵⁰ in past earthquake magnitude and the potential for persistent earthquake rupture

51 boundaries. These questions require in part better earthquake chronologies and thus

⁵² prompt the first question, given adequate radiocarbon age determinations for contacts that

represent subduction zone earthquakes, which Bayesian age models optimally model

earthquake ages? Additionally, one of the challenges of better defining the variability in 54 rupture length and magnitude for past subduction zone earthquakes bears on the 55 uncertainty of evidence used to correlate paleoearthquake histories from one paleoseismic 56 site to others along the margin. Thus, the other outstanding question we address is, what 57 is the needed level of resolution, both of age ranges for specific paleoearthquakes and 58 subsidence amounts for specific paleoearthquakes, to correlate earthquake records within 59 study areas at one paleoseismic site, or correlate of earthquake records among different 60 coastal paleoseismic sites. 61

Stratigraphic correlation of wetland stratigraphy within a marsh, over tens to 62 hundreds of meters, can often be straightforward. However, it becomes increasingly 63 difficult with distance, both across multiple marshes within a single estuary and over tens 64 to hundreds of kilometers between estuaries (Nelson et al., 1996; Milker et al., 2016). For 65 evidence of earthquakes prior to the well-documented 1700 CE earthquake, radiocarbon 66 dating techniques can test models of stratigraphic correlation within and across sites. Yet 67 in many cases radiocarbon age errors can be on the order of several hundred years, which 68 presents difficulties when attempting to correlate stratigraphic contacts among estuaries 69 recording earthquakes that have 200-500 year recurrence intervals, (Atwater, 1987; 70 Adams, 1990; Nelson, 1992; Nelson et al., 1996; Shennan et al. 1996; Atwater and 71 Hemphill-Haley, 1997; Kelsey et al., 2002; Witter et al., 2003; Nelson et al., 2008; 72 Goldfinger et al., 2012; Enkin et al., 2013; Milker et al., 2016). Promisingly, new 73 methods that incorporate multiple minimum and maximum limiting ages of in-situ plant 74 macrofossils found above and below subsidence contacts (Nelson et al., 2006; 2008; 75 Kemp et al., 2013; Milker et al., 2017) and Bayesian statistics (e.g., Bronk Ramsey, 2008; 76

77	Parnell et al., 2008) produce more accurate chronologies with better precision of
78	stratigraphic ages to aid in correlation (Kelsey et al., 2005; Goldfinger, 2012; Enkin et al.,
79	2013; Garrett et al., 2013; Milker et al., 2016; Dura et al., 2017; Witter et al., 2019;
80	Nelson et al., 2019).
81	Equally as important to defining the timing of past plate boundary rupture is
82	quantifying the amount of coseismic vertical deformation. Early Cascadia coastal
83	research utilized qualitative and quantitative methods to estimate coseismic subsidence
84	with accompanying errors that were either poorly defined for qualitative approaches or
85	typically $\pm 0.5-1.0$ m for early quantitative methods (e.g., TWINSPAN, DCA; Shennan et
86	al, 1996). Such errors are generally too large to distinguish differences between
87	earthquakes or between sites. In order to improve estimates of coseismic subsidence,
88	subsequent research at Cascadia has focused on the development of quantitative
89	microfossil-based transfer functions primarily using foraminifera (e.g., Jennings and
90	Nelson, 1992; Guilbault et al., 1995; 1996; Nelson et al., 2008; Hawkes et al., 2010;
91	2011; Engelhart et al., 2013; 2015; Milker et al., 2015; 2016). Foraminiferal-based
92	transfer functions use the modern species-elevation relationships to relate fossil
93	assemblages to past tidal elevations and enable researchers to assess differences in
94	coseismic subsidence estimates. Cascadia foraminiferal transfer function analysis has
95	been applied to one earthquake at many sites (Hawkes et al., 2011; Wang et al., 2013;
96	Kemp et al., 2018) and over multiple earthquake cycles at a single site (e.g., Milker et al.,
97	2016; Nelson et al., 2019). For example, Wang et al. (2013) use foraminiferal transfer
98	function subsidence estimates to model along-strike slip heterogeneity during the 1700
99	CE earthquake and highlight large spatial gaps within the paleogeodetic database, e.g.,

northern California and Washington. Recent refinement and expansion of the Cascadia
foraminiferal-based transfer function has led to development of a Bayesian transfer
function (BTF), which can model non-unimodal taxa-elevation relationships, improves
the availability of modern analogues for fossil samples, and is capable of handling
sediment and microfossil mixing through assigning simple informative priors based on
lithology (Kemp et al., 2018).

Northern Humboldt Bay was one of the first locations recognized to contain 106 stratigraphic evidence of past Cascadia subduction zone earthquakes (Vick, 1988; Clarke 107 and Carver, 1992; Valentine 1992). However, the complicated stratigraphic record has 108 led to disparate interpretations by various research groups that are yet to be clarified. For 109 example, there remains no consensus on the number of past CSZ earthquake-induced 110 subsidence contacts or the magnitude of coseismic deformation archived within the 111 wetland stratigraphy. These open questions have resulted in paleoseismic interpretations 112 113 that range from three to six earthquakes over the past ~1900 yrs, (e.g., Vick 1988, Clark and Carver 1992; Valentine, 1992; Pritchard, 2004; Valentine et al., 2012). Both limited 114 radiocarbon constraints and a general lack of microfossil analysis likely contribute 115 towards inconsistent stratigraphic correlations and lack of criteria to distinguish contacts 116 caused by megathrust earthquakes or other mechanisms. However, the development of 117 improved chronostratigraphic methods and quantitative foraminiferal-based transfer 118 functions makes it timely to refine the northern Humboldt Bay paleoseismic history. 119 The goals of this paper are, first, to provide high-quality age determinations for 120

times of wetland subsidence within the northern Humboldt Bay estuary, second, to
construct a paleoseismic chronology for the site, third, to provide high-precision

estimates of subsidence during past subduction zone earthquakes, and fourth, to
reevaluate and update regional (43.5°-40.5°N) correlations of paleoearthquakes in the
southern Cascadia subduction zone. Our results suggest that northern Humboldt Bay has
recorded four CSZ earthquakes over the past 1,700 years and that the amount of
coseismic subsidence and possibly earthquake magnitude varied in the past four Cascadia
earthquakes.

129

130 **2. SETTING**

The southern Cascadia subduction zone, from the Coos Bay coastal area to Cape 131 Mendocino (Fig 1), is a portion of the subduction zone where improved paleoseismic data 132 would enable better informed models of along-strike heterogeneity during the most recent 133 (1700 CE), and older, subduction zone earthquakes (Wang et al., 2013; Milker et al., 134 2016; Kemp et al., 2018). Southern Cascadia archives the temporally longest onshore 135 paleoseismic records observed along the whole subduction zone with earthquake histories 136 extending back to 6,700 years documented at the Sixes River, Bradley Lake, and Coquille 137 River sites (Kelsey et al., 2002; 2005; Witter et al., 2003; Fig. 1). However, the two 138 largest spatial data gaps with no paleoseismic information along the entire subduction 139 zone are also in southern Cascadia (Fig. 1). These spatial data gaps are the ~75-km-long 140 coastal reach north of Humboldt Bay and the ~85-km-long coastal reach north of the 141 Crescent City area (Fig. 1b). These spatial data gaps occur because the coastal 142 environments appear to lack a stratigraphic record that preserves RSL changes 143 (Hemphill-Haley et al., 2019). Even though investigations at Lagoon Creek (<20 km 144 south of Crescent City) have reported evidence for tsunami inundation as much as 3,500 145

146	yrs ago (Abramson, 1998; Garrison-Laney, 1998), many of the freshwater lacustrine and
147	wetland environments near Crescent City record a limited extent of stratigraphic evidence
148	for coseismic subsidence, e.g., Sand Mine marsh (Peterson et al., 2011; Simms et al.,
149	2019; Hemphill-Haley et al., 2019). Finding subsidence stratigraphy in the spatial gaps
150	north and south of Crescent City may not be realized, even with more field
151	reconnaissance, if conditions preclude the accommodation space required to document
152	stratigraphic evidence of late Holocene RSL changes (Kelsey et al., 2015; Dura et al.,
153	2016). We chose an alternative approach to ultimately improving models of along-strike
154	heterogeneity in southern Cascadia; namely, we reevaluate the paleoseismic record in
155	northern Humboldt Bay, a site where subsidence stratigraphy has been documented but
156	where previous legacy studies did not attain scientific consensus on the subduction zone
157	earthquake record.

Despite northern Humboldt Bay being a focal point of southern Cascadia 158 paleoseismic research over the past 30 years, the stratigraphic framework and 159 paleoseismic history has remained unresolved. Vick (1988) was the first to describe the 160 tidal wetland stratigraphy at northern Humboldt Bay and focused on the stratigraphy at 161 Mad River Slough. Even though Vick (1988) observed five submergence contacts, based 162 on stratigraphic mapping and six radiocarbon ages, he concluded that at least four 163 submergence contacts represent coseismic subsidence. Subsequent investigations 164 extended stratigraphic mapping and paleoseismic correlations beyond Mad River Slough 165 and consequently developed both similar (Valentine, 1992; Clarke and Carver, 1992;) 166 and diverging (Pritchard, 2004; Valentine et al., 2012) interpretations. Valentine (1992), 167 Clarke and Carver (1992), and Valentine et al., (2012) correlate stratigraphic contacts and 168

169	ages to other paleoseismic data from proximate trenching and wetland sites and conclude
170	that four-to-six megathrust events have occurred over the past 2,000 yrs. In contrast,
171	Pritchard (2004) focused solely on the tidal wetland stratigraphic record within the
172	northern Humboldt Bay estuary and conclude that the tidal wetland stratigraphy records
173	evidence for three-to-four megathrust earthquakes over the past 1,900 yrs. Even though
174	specific correlations and conclusions have differed, the common theme throughout the
175	research conducted at northern Humboldt Bay is that the complicated stratigraphy has
176	restricted conclusionary findings and further research is required to refine the
177	understanding of the paleoseismic history.
178	We studied stratigraphy beneath three tidal marshes that fringe the northern
179	portion of Humboldt Bay: Mad River Slough, McDaniel Creek, and Jacoby Creek. These
180	areas are protected and managed by U.S. Fish & Wildlife Service Humboldt Bay
181	National Wildlife Refuge or the City Arcata, California (Fig. 2). Northern Humboldt Bay
182	is separated from the Pacific Ocean by the \sim 20-25 m high Lanphere-Ma-le'l Dunes (Fig.
183	2c; Vick, 1988; Pickart and Hesp, 2019). At the mouth of Mad River Slough, a NOAA
184	tide gauge station registers the semidiurnal tidal range (Mean Highest High Water,
185	MHHW – Mean Lowest Low Water, MLLW) at 2.36 m (Fig. 2c; ID: 9418865). Because
186	over half of northern Humboldt Bay surface area is exposed at low tide, most of the
187	environments of the lagoon system are tidal channels and low-tide mud flats (Eicher,
188	1987). Low marshes form at elevations around mean high water (MHW) and high
189	marshes form at elevations around mean higher high water (MHHW; Pritchard, 2004).
190	Flora and fauna within northern Humboldt Bay are typical for Cascadia tidal
191	wetland plant and animal distributions (Pritchard, 2004; Hawkes et al., 2010; Engelhart,

192	2015; Kemp et al., 2018). Plant communities of lower marsh environments, around mean
193	tide level (MTL), include Distichlis spicata, Salicornia virginica, Spartina densiflora,
194	and Triglochin maritimum (Eicher, 1987). In high marsh environments plant communities
195	include Castilleja exserta, Distichlis spicata, Grindelia spp., Jaumea carnosa, Spartina
196	alterniflora, and Triglochin maritimum (Eicher, 1987). Kemp et al. (2018) show that
197	intertidal benthic foraminiferal communities are comparable along the west coast of
198	North America from ~35.5 -50° N. Benthic foraminiferal communities differ along an
199	intertidal gradient such that higher marsh environments, around MHHW, are often
200	dominated by Trochaminita spp., Haplophragmoides spp., Balticammina
201	pseudomacrescens, Trochammina inflata, and Jadammina macrescens. Whereas at
202	elevations from ~MHW down to MTL, increasing percentages of Miliammina fusca,
203	Ammobaculites spp., Reophax spp., and calcareous foraminifera species are reported
204	(Guilbault et al., 1995; 1996; Nelson et al., 2008; Hawkes et al., 2010; 2011; Engelhart et
205	al., 2013a, 2013b; Pilarcyk et al., 2014; Milker et al., 2015a, 2015b; 2016; Kemp et al.,
206	2018).
207	We selected three study sites because the existing wetland stratigraphic
208	framework reflects a complicated stratigraphic record of earthquake subsidence. The
209	stratigraphic sections typically consist of repeated abrupt mud-over-peat and mud-over-
210	upland soil contacts, where a peat or upland soil is sharply overlain by tidal mud and then
211	the tidal mud gradually grades upward into an overlying organic-rich unit.
212	

3. RESEARCH APPROACH AND METHODS

214	In order to evaluate if stratigraphy is evidence of megathrust-induced land-level
215	changes, we utilize a strategy refined by over three decades of research along the
216	Cascadia margin through the context of land-level changes expressed by contrasting
217	stratigraphic units within intertidal sediments (Atwater, 1987; Hemphill-Haley, 1995;
218	Nelson et al., 1996; Kelsey et al., 2002; Witter et al., 2003; Hawkes et al., 2011;
219	Engelhart et al., 2013; Shennan et al., 2016; Milker et al., 2017). Our approach utilizes
220	four of the criteria proposed by Nelson et al., (1996) and Shennan et al., (2016) to test for
221	identifying coseismic subsidence in tidal-wetland stratigraphic sequences. These criteria
222	include 1) lateral extent of stratigraphic contacts, 2) suddenness of submergence, 3)
223	amount of submergence, 4) regional synchroneity of submergence, which are determined
224	by employing stratigraphic mapping, lithostratigraphic analysis, foraminiferal analysis,
225	and radiocarbon dating techniques combined with potential correlations with other plate
226	boundary earthquake records in southern Cascadia. We do not discuss the "coincidence
227	of tsunami deposit" criterion because we found no evidence for a tsunami deposit above
228	any buried organic-rich units. The \sim 20-25 m high, Lanphere-Ma-le'l Dunes may have
229	protected northern Humboldt Bay from tsunami inundation (Vick, 1988; Pickart and
230	Hesp, 2019).

Our research approach is three-fold; 1) lithostratigraphic analysis (describe subsurface stratigraphy at multiple core locations across three sites), 2) Chronologic analysis using Bayesian age models (constrained by radiocarbon AMS ages of plant macrofossils) and 3) relative sea-level reconstructions (estimate paleoenvironmental elevation changes using fossil foraminiferal data and an existing BTF; Kemp et al., 2018).

238 **3.1 Lithostratigraphic analysis**

239

3.1.1 Stratigraphic description and sampling

We compiled stratigraphic descriptions from 31 core locations over a >6 km 240 transect at Mad River Slough (6), McDaniel Creek (15), and Jacoby Creek (10) moving 241 west to east (landward) along the northern shore of northern Humboldt Bay (Fig. 2). 242 Wetland stratigraphy consists of clastic mud and interbedded organic-rich units. A clastic 243 244 "mud" refers to a grey to olive grey massive to finely (1-3mm) bedded silt and clay. An "organic-rich unit" refers to a dark oxidized salt marsh peat or an upland soil. A 245 "submergence contact" is either a mud-over-peat or mud-over-upland soil contact. 246 Using a 30 mm wide gouge core, we mapped abrupt (1 mm), sharp (1-5 mm), 247 clear (5-10 mm), and gradual (>10mm) submergence contacts up to ~4 m depth below 248 the ground surface. Grain size, sedimentary structures, contacts, thickness, and facies 249 changes were described in the field using general stratigraphic methods in combination 250 with the Troels-Smith (1955) method for describing organic-rich sediment. Stratigraphic 251 unit descriptions include peat, muddy peat, peaty mud, and mud. Organic percentages 252 determined by qualitative field assessment (Troels-Smith, 1955) for peat, muddy peat, 253 and peaty mud are 100%-75%, 75%-50%, and 50%-25%, respectively. Silt and clay units 254 that consist of <25% organics by volume are described as "mud". For lab analyses, we 255 selected representative segments (50 cm) of key stratigraphic intervals that visually 256 contained the sharpest contacts between the mud-over-peat and mud-over-upland soil 257 258 contacts and/or abundant in-situ plant macrofossils. Samples were collected for

radiometric and biostratigraphic analyses using either an Eijkelkamp peat sampler or a 60
 mm gouge core.

261 3.1.2 Stratigraphic Imaging

Contact sharpness and continuity is not always clear from optical inspection. 262 Therefore, we followed recent studies in Cascadia (e.g., Goldfinger et al., 2012; Milker et 263 al., 2016) and Alaska (e.g., Briggs et al., 2014; Witter et al., 2019) and obtained high-264 resolution imagery in order to analyze fossil core density contrasts. We examined density 265 imagery of multiple representative cores prior to selecting the optimal core and 266 stratigraphic intervals for counting foraminifera as well as selecting material for 267 radiocarbon dating. Computerized tomography (CT) scans were conducted at Oregon 268 State University College of Veterinary Medicine and Rhode Island South County 269 Hospital, following the methods outlined in Rothwell and Rack (2006) and Davies et al. 270 (2011). At Oregon State University, density measurements were collected at 120 kVp and 271 200 mA and a pitch of 0.5s (100 mAs) using a Toshiba Aquilion 64-slice CT system. For 272 visualization purposes, the resulting images were processed with a "bone" algorithm to 273 generate coronal images every millimeter across the core. At Rhode Island South County 274 Hospital, density scans were collected with 32-slice GE LightSpeed scanner at 120 kVp 275 and 200-600 mA (depending on the fossil core thickness) core and a pitch of 0.969:1. X-276 radiation (X-ray) images, collected with a Shimadzu UD150B-40 and imaged with a Fuji 277 FCR XL-2 at the University of Rhode Island Health Center, also illuminate density 278 differences within the collected sediment cores. The fossil core images were processed 279 using Horos and Adobe Illustrator software. 280

281 3.1.3 Surveying to sea-level datum

282	Sample elevations for each core were acquired using RTK-GPS. Data collected by
283	the RTK-GPS was post-processed using Online Positioning User Service,
284	(https://www.ngs.noaa.gov/OPUS/) to obtain North American Vertical Datum 1988
285	(NAVD88) orthometric elevations. To establish elevations with respect to a tidal datum,
286	we took RTK-GPS measurements of the tidal benchmarks associated with the temporary
287	tide gauge installation (12/01/1978 to 03/31/1979) at Mad River Slough (NOAA ID:
288	9418865). The vertical precision of the RTK measurements are less than 4 cm.
289	3.2 Chronologic analysis
290	3.2.1 Radiocarbon dating
291	Plant macrofossils were collected from above and below key contacts to provide
292	24 bracketing maximum and/or minimum-ages for each organic-rich unit upper contact at
293	all three sites. We focused on samples that were found in growth position and/or close
294	(<3 cm) to submergence contacts and that have the potential to tightly constrain the
295	timing of the organic-rich unit burial, such as rhizomes of salt-marsh plants that have a
296	known relationship to the surface of the marsh ($n=13$). We also collected detrital
297	fragments of plants including stems (n=8) and wood fragments (n=1), and seeds and seed

casings (n=2). Discrete stratigraphic intervals, that range from 0.5 cm to 1.5 cm, were

sampled from cores and disaggregated on a glass plate under a binocular microscope.

298

300 Occasionally, high-resolution CT scans and X-radiographic images aided in targeting

³⁰¹ organic materials to be extracted from sediments. Selected material, usually plant

³⁰² rhizome, stem, or seed, was cleaned of all attached sediment particles and rootlets; then

oven dried at ~50° C for 24 hrs (Kemp et al., 2013; Nelson et al, 2015; Törnqvist et al.,

³⁰⁴ 2015). Once dried and weighed, samples were sent to National Ocean Science

Accelerator Mass Spectrometer (NOSAMS) laboratory at Woods Hole Oceanographic Institute for analysis. The AMS radiocarbon age results were calibrated with OxCal (version 4.2.4; Bronk Ramsey and Lee, 2013) using the IntCall3 calibration curve for terrestrial samples (Reimer et al., 2013) and are reported with the standard two-sigma uncertainty in calendar years before 1950 (cal yr BP).

310

3.2.2 Bayesian Age-models

We developed a representative, estuary-wide composite stratigraphy to be used in the construction of three Bayesian age models. The composite stratigraphy incorporates maximum and minimum plant macrofossil samples that were selected as close to the upper contacts of the buried organic-rich units as possible. Outlier ages, as well as anomalously older and younger ages than stratigraphic position would suggest, were not incorporated into the composite stratigraphic section used in model development.

Bayesian age-depth modeling has been used by many RSL investigations that 317 seek to refine the timing of past changes in RSL and decrease the error envelopes of 318 sediment accumulation histories (e.g., Garrett et al., 2013; Witter et al., 2015; Dura et al., 319 2017). Model choice is a vital component of reducing timing uncertainties and the 320 consistency of accumulation rates should be considered (Wright et al., 2017). If 321 deposition is seasonal, steady, and predictable, for example a lake bottom, then an OxCal 322 'U-sequence' command (Bronk Ramsey, 2008; 2009a) would be a good age model 323 option because deposition is assumed to be fairly uniform. However, if a sedimentation 324 rate is variable then models that can account for randomness in deposition can be more 325 suitable e.g., Bchron (Parnell et al., 2008) or OxCal 'P-sequence' (Bronk Ramsey, 2008; 326 2009a). In contrast, if only an order is known, a more conservative model such as OxCal 327

'Sequence' command is appropriate, which only defines an order for events and groups 328 of events (Bronk Ramsey, 1995). In regard to the ability to capture sedimentation rate 329 variability, within their confidence intervals OxCal 'P-sequence' and Bchron outperform 330 other age modeling programs (Trachsel and Telford, 2016; Wright et al., 2017). 331 Typically, tidal wetland stratigraphic investigations obtain a chronologic dataset, 332 construct a numerical age-depth model, and test the results to other regional datasets. 333 However, little work has considered the potential differences in the age estimate results 334 that could be imposed by the numerical age-model of choice. Moreover, often only the 335 modeling program is cited without the specific type of model identified and/or explained 336 (Milker et al., 2016; Nelson et al., 2020). We attempt to address this gap by comparing 337 useful Bayesian age-depth models, in order to assess the variability in age estimates that 338 may be imposed by model choice. 339

Three Bayesian age models with different assumptions are utilized to estimate 340 time of organic-rich unit burial, OxCal 'Sequence' and 'P-sequence' commands (Bronk 341 Ramsey, 1995; 2008; 2009a), and Bchron (version 4.3.0; Haslett and Parnell, 2008). The 342 OxCal 'Sequence' command only incorporates the relative positioning of the age 343 constraints within the composite stratigraphy, i.e., does not incorporate a modeled 344 sedimentation rate to further refine the ages of subsidence contacts. In contrast, OxCal 345 'P-sequence' and Bchron model sedimentation rates based on age constraint depths and 346 accumulation rate parameters (Trachsel and Telford, 2016). OxCal 'P-sequence' allows 347 for variable sediment accumulation as a Poisson process controlled by the user defined 348 'k-parameter'. We follow the approach of Bronk Ramsey (2008) and Enkin et al., (2013) 349 for determining the optimal value of k by selecting the highest k value to give a 350

satisfactory agreement with the actual dating information. Bchron also incorporates 351 sample depths to further constrain the age estimate by modeling a sedimentation rate 352 between age constraint intervals but, in contrast to OxCal 'P-sequence,' does so without 353 the user defining a sedimentation rate parameter. Instead, Bchron is based on modeling 354 piecewise linear accumulations, where increments are independent and arrive in a 355 Poisson fashion, which allows for abrupt changes in accumulation rates (Haslett and 356 Parnell, 2008; Trachsel and Telford, 2016). Modeled sedimentation rates trim the 357 predicted age resulting in a more precise estimate. However, the accuracy will be 358 dependent on an appropriate density of radiocarbon dates that can identify changes in 359 sedimentation rate that may be expected post-earthquake and that exceed the long-term 360 (centennial-scale) average. Using more than one Bayesian age modeling technique, each 361 with different assumptions, enables us to assess the impacts of model choice on the 362 variability of age estimates. 363

364

3.2.3 Regional Paleoseismic Timing Correspondence

Based on our comparison of Bayesian modeling techniques, described below 365 (section 4), we prefer results from the OxCal 'Sequence' modeling technique. Thus, we 366 compare the age distributions derived from OxCal 'Sequence' results from northern 367 Humboldt Bay with the timing of plate-boundary earthquakes at other sites along the 368 southern Cascadia coastal estuarine and lacustrine environments from 43.5°-40.5° N, 369 which include Eel River (Li, 1992), southern Humboldt Bay (Patton, 2004), Lagoon 370 Creek (Abramson, 1998; Garrison-Laney 1998), Bradley Lake (Kelsey et al., 2005), 371 Coquille River (Witter et al., 2003) and Talbot Creek, which is tributary to South Slough 372 in the Coos Bay region of Southern Oregon (Milker et al, 2016). We also compare 373

offshore turbidite data that has been interpreted to reflect shaking produced by great 374 earthquakes (Goldfinger et al., 2012). We do not include paleoseismic data from Sixes 375 River into our comparison because, since about 2000 years ago, the lower Sixes River 376 Valley has not recorded (or minimally recorded) coseismic subsidence. i.e., earthquakes 377 did not drop the lower valley into the intertidal range (Kelsey et al., 2002). Bradley Lake 378 and Lagoon Creek are coastal lacustrine environments that are inferred to have recorded 379 tsunami inundation coincident with plate-boundary earthquakes. Eel River, southern and 380 northern Humboldt Bay, Coquille River, and Talbot Creek are estuarine marshes that 381 have recorded evidence for both coseismic land-level changes and occasionally 382 subsequent tsunami inundation. Offshore turbidite chronology provides the longest 383 stratigraphic records of CSZ paleoseismic history. Each location included in our 384 comparison has recorded evidence of megathrust earthquakes within the past ~2000 385 years. 386

387

388 **3.3 Relative sea-level reconstructions**

389 3.3.1 Foraminifera

Fossil foraminifera species assemblages are indicative of paleo-intertidal environments. We followed standard sample preparation and analysis techniques of fossil foraminiferal found within wetland stratigraphy (e.g. Scott and Medioli, 1982; de Rijk, 1995; Horton and Edwards, 2006). Fossil foraminifera were concentrated by sieving 1 cm intervals of sediment (~3cm³) from collected cores over 500- and 63-micron sieves and retaining the material between those size fractions. The 500-micron sieve was checked for larger foraminifera before material was discarded. Fossil samples were analyzed until

397	at least 200 dead foraminifera were identified, or until the entire sample was enumerated
398	(Fatela and Taborda, 2002). Following after Kemp et al. (2018), only samples with >30
399	foraminifera were used in the production of quantitative RSL reconstructions because
400	low abundances may reflect a non in-situ assemblage and/or may not be representative of
401	the depositional environment. Foraminifera were identified following taxonomy based on
402	Hawkes et al. (2010) and Milker et al. (2015). Additionally, we combine
403	Haplophragmoides spp following Kemp et al. (2018). We apply a pairwise comparison
404	test of modern and fossil foraminiferal assemblages in order to confirm that all fossil
405	assemblages have modern analogs.

406 3.3.2 Transfer Function

Sudden RSL change caused by subsidence during past great earthquakes along the 407 Cascadia coastal margin can be quantified using fossil foraminifera (found within 408 subsidence stratigraphy) and a transfer function (Guilbault et al., 1995; 1996; Nelson et 409 al., 2008, Hawkes et al., 2010; 2011; Engelhart et al., 2013; Wang et al., 2013; Milker et 410 al., 2016; Kemp et al., 2018). Early fossil foraminifera transfer functions utilized a local 411 (same site) training set of foraminiferal assemblages and tidal elevations (Guilbault et al., 412 1995; 1996; Nelson et al., 2008). Later efforts progressed to regional modern training sets 413 where more robust taxa-elevation relationships were constructed based on compilations 414 from several marsh sites (Hawkes et al., 2010; 2011; Engelhart et al., 2013; Wang et al., 415 2013; Milker et al., 2016). Generally, a larger modern dataset provides a higher diversity 416 of modern analogs and covers more natural variability; but a larger modern dataset is 417 often accompanied with reduced precision (Horton and Edwards, 2005). More recently, 418 Kemp et al. (2018) developed a BTF that incorporates an extended West Coast modern 419

420	foraminifera training set, allows for flexible species-response curves, and can formally
421	incorporate information about elevation from additional proxies, e.g., other microfossil
422	groups, δ^{13} C, or lithologic/stratigraphic context, which combine to produce more
423	informed estimates of RSL reconstruction and extends applicability of the methodology
424	(Cahill et al., 2016; Holden et al., 2017). We follow Kemp et al. (2018) and use lithology
425	to provide constraints for RSL reconstructions. The lithology ranges from either clastic
426	dominated (tidal flat) to low salt-marsh sediment, which most likely accumulates at
427	elevations between mean low water (MLW) and MHHW (20-200 SWLI; standardized
428	water level index), or organic-rich high salt marsh, which most likely accumulates at
429	elevations around MHW to the Highest Occurrence of Foraminifera (HOF; 180-252
430	SWLI; Kemp et al., 2018). Although clastic sediment can accumulate at elevations below
431	20 SWLI, we follow the assumptions of Kemp et al. (2018). The BTF does not
432	incorporate a lithologic constraint of a forest or upland soil unit, as it occurs above HOF
433	and foraminifera cannot inform such elevations. In order to evaluate if a fossil
434	assemblage has a modern analog, we used the Bray-Curtis distance metric. Due to low
435	species diversity, a threshold of less than the 20th percentile is appropriate for salt marsh
436	foraminifera modern and fossil assemblage pairings (Kemp and Telford, 2015).

438 **4. RESULTS**

We first describe wetland stratigraphy across the three sites. Then, we present radiocarbon ages that constrain the timing of organic-rich unit burial. Using the radiocarbon age results, we correlate buried organic-rich units among all the sites using lithology, depth, and age. Next, we present radiocarbon age modeling in order to assign

age ranges for the submergence contacts. Finally, using foraminiferal analyses, we
 present estimates of subsidence across submergence contacts at McDaniel Creek.

We focus our foraminiferal analysis on stratigraphic sections collected at McDaniel Creek because it archives the largest spatial extent of subsidence stratigraphy within northern Humboldt Bay. One exception is analysis of a single stratigraphic section from Mad River Slough because of the limited spatial extent of a contact that is not found at McDaniel Creek. To derive a subsidence estimate we use the distributions of the reconstructed RSL elevations from the first unmixed centimeter intervals above and below the subsidence contact.

452

4.1 Wetland Stratigraphy

In cores, we observed grey mud units sharply overlying dark organic-rich units, 453 which we refer to as a submergence contact (Fig 3; Table 1). The organic-rich units 454 contain humified organic matter and plant macrofossils. The clastic muds contain sparse 455 plant macrofossils and were often massive and occasionally finely bedded. We did not 456 observe any sand layers between an organic-rich unit and overlying mud across the 457 estuary. In general, the shallowest organic-rich units are well defined and widespread, 458 while deeper organic-rich units are often less distinct, more humified, and have a more 459 restricted lateral extent. Stratigraphic mapping identified five submergence contacts at 460 Mad River Slough, four submergence contacts at McDaniel Creek and three submergence 461 contacts at Jacoby Creek (Fig. 3; Table 1). We reoccupied previously described wetland 462 stratigraphic sections (Vick, 1988; Clarke and Carver, 1992; Valentine, 1992; Pritchard, 463 2004; Valentine et al., 2012) and further extended the spatial extent of wetland 464 stratigraphic mapping in northern Humboldt Bay. In doing so, we document submergence 465

contacts that have not been previously described at McDaniel Creek and Jacoby Creek
 marshes.

468 4.1.1 Mad River Slough

We reoccupied six coring sites of Vick (1988) in the southern portion of Mad 469 River Slough and observed similar stratigraphy (Fig. 3b). We observed five submergence 470 contacts at MR.2 and MR.7; but based on lithology and depth, we can correlate four 471 submergence contacts across the six-location survey at Mad River Slough (Figs. 2b and 472 3b; Table 1). Core top elevations differ from the west to the east side of the main tidal 473 channel, 2.1 m and 1.4 m respectively (NAVD88). The shallowest organic rich unit is a 474 well-developed peat, observed at every core location, and is relatively thick. The second 475 deepest from the surface (all following descriptions follow this orientation) organic-rich 476 unit is a relatively thin peat and observed <8 cm below the lower contact of the overlying 477 peat unit. The second and fifth deepest organic-rich units were only observed at the same 478 two core locations, MR.2 and MR.7 (Figs. 2b and 3b; Table 1). The third deepest organic-479 rich unit was observed at every core location and ranges from a rooted mud to a peat 480 between the core locations. The fourth deepest was observed on both sides of the main 481 channel and described as a peat unit. The deepest organic-rich unit is a humified peat. 482 Although all the submergence contacts are at least clear, the fourth and fifth deepest 483 organic-rich units have less distinct upper contacts (Table 1). In summary, five 484 submergence contacts were observed at two core locations, three submergence contacts 485 were observed at two core locations, and two submergence contacts were observed at two 486 core locations (Fig. 3b). Mad River Slough archives the highest amount of stratigraphic 487 variability throughout the estuary (Fig. 3b; Table 1). 488

4.1.2 McDaniel Creek

We expanded upon the stratigraphic descriptions of Pritchard (2004) by
describing 15 core locations further west-northwest (Figs. 2a and 3c). South of the dike,
core elevations range from 2.0 to 2.3 m and north of the dike core elevations range from
1.8 to 2.0 m (NAVD88).

Based on lithology and depth, we correlate four submergence contacts across a 494 15-core survey at the McDaniel Creek site. The shallowest organic-rich unit was 495 observed at every core location survey and varies from a muddy peat to a peat both across 496 multiple core locations and also within the unit. The second deepest organic-rich unit was 497 overserved at nine locations and varies from a rooted mud to a muddy peat between 498 locations and within the unit. The third deepest organic-rich unit was observed at ten 499 locations and varies from rooted mud to a peat between locations and within the unit. The 500 fourth deepest organic-rich unit was observed at nine core locations and is a humified 501 organic-rich unit. We observed a less distinct upper contact for the fourth deepest 502 organic-rich unit than compared to the shallower organic-rich units (Table 1). In 503 summary, four submergence contacts were observed at five core locations while three 504 submergence contacts were observed at seven core locations. The organic content of both 505 the second and third deepest buried organic-rich units increase to the northeast towards 506 the modern channel. McDaniel Creek archives the largest lateral extent of submergence 507 contacts throughout the estuary. 508

509 4.1.3 Jacoby Creek

510 Similar to previous investigations (Valentine, 1992; Pritchard, 2004), we observed 511 one submergence contact close to the mouth of Jacoby Creek at *JC.6*. We extended

stratigraphic mapping ~200-400 m farther to the north at the marsh and observed three 512 submergence contacts within the top 200 cm of the marsh stratigraphy (Figs. 2d and 3c). 513 Across a ten-core transect, three submergence contacts were correlated based on 514 depth in cores and lithology. Elevations of the core tops range from 1.95 to 2.39 m 515 (NAVD88). At the northern and southern extents of the survey transect in cores only one 516 submergence contact was observed. At four core locations in the mid-section of the 517 marsh, three submergence contacts were observed within 200 cm below the salt marsh 518 519 surface. The shallowest organic-rich unit was observed at eight core locations and ranges from bold, well-developed peat to a muddy peat within the unit. The second deepest 520 organic rich unit was observed at seven core locations and ranges from a peat to a muddy 521 peat both within the unit and across multiple core locations. The deepest organic rich-unit 522 was observed at six core locations, is a highly-humified upland soil, and overlies pebbly-523 sand alluvial sediments. In summary, at Jacoby Creek we observed three submergence 524 contacts at four core locations, two submergence contacts at three locations, and one 525 submergence contact at three core locations. Jacoby Creek core sites have the highest 526 core top elevations, cover the smallest surface area, and have the shallowest wetland 527 stratigraphic section in northern Humboldt Bay. 528

529

4.1.4 Radiocarbon Ages

We obtained 24 radiocarbon ages of plant macrofossils to determine the timing of paleoenvironmental changes across the upper contacts of buried organic-rich units (Table 2). Whenever possible, we used identifiable plant material. Both minimum and maximum age samples were found above and below the three deepest submergence contacts and constrain the timing of those paleoenvironmental changes. Although we obtained 24

radiocarbon ages, we exclude three dates identified as outliers in stratigraphic sequences. We infer that downward bioturbation and/or root penetration has resulted in a younger age than stratigraphic position would suggest (sample *JC.14.02.D.100-101*), and detrital reworking and deposition has resulted in anomalous older dates than stratigraphic position suggests (*JC.14.02.D.103-104* and *JC.14.02.D.103-105*) (Fig. 3c; Table 2). The calibrated ages range from modern to 1575–1707 cal yr BP, indicating the sediments accumulated over the last two millennia (Table 2).

From Mad River Slough we obtained seven radiocarbon ages that provide a 1700-542 year chronology (Table 2). One maximum age (307–1 cal yr BP) from the shallowest 543 organic-rich unit falls within last \sim 300 yr radiocarbon calibration plateau. The age of a D. 544 spicata rhizome derived from the second deepest buried organic-rich unit is consistent 545 with previous paleoseismic dating results of the same unit (e.g., Valentine et al., 2012). 546 Previous investigations have suggested that the second deepest submergence contact 547 could represent subsidence from a CSZ earthquake; however, we did not observe similar 548 stratigraphy or radiocarbon age anywhere else within the marsh or across the estuary 549 (Fig. 3; Tables 1 and 2;). Maximum ages from the third deepest organic rich unit are 550 consistent (956-912 cal yr BP and 956-802 cal yr BP, respectively) and aid in correlation 551 of stratigraphy across the marsh. The burial timing of the fourth organic-rich unit is 552 constrained by a minimum age (1057–961 cal yr BP) and a maximum age (1280–1183 553 cal yr BP). Within the deepest organic-rich unit, we dated roughly 25 Atriplex and 554 Potamogeton seeds, which provide maximum age constraint (1690–1545 cal yr BP; Table 555 2). 556

From McDaniel Creek, nine radiocarbon ages combine to provide a 1700-year
chronology (Table 2). One maximum age (283-1 cal yr BP) from the shallowest organic-
rich unit falls within last ~300 yr radiocarbon calibration plateau. The timing of burial for
the second organic-rich unit is constrained by two maximum ages (965–929 cal yr BP
and 951–804 cal yr BP) and one minimum age (926–798 cal yr BP). Two ages (1302–
1190 cal yr BP and 1399–1328 cal yr BP) from the third deepest organic-rich unit
provide maximum age constraints of the peat unit. Due to the availability of
representative stratigraphy during the initial field and dating efforts, one maximum age
(1399–1328 cal yr BP) was taken from 15 cm below the upper contact of the unit. Two
maximum ages (1708–1614 cal yr BP and 1695–1565 cal yr BP) and a minimum age
(1707–1575 cal yr BP) tightly constrain the timing of burial for the fourth deepest
organic-rich unit.

From Jacoby Creek we obtained eight radiocarbon ages from a single core (JC.2), 569 which provides a 1700-year chronology (Table 2). One maximum age (289–1 cal yr BP) 570 from the shallowest organic-rich unit falls within last ~300 yr radiocarbon calibration 571 plateau. Maximum ages were derived from the second and third buried organic-rich units 572 (1277–1181 cal yr BP and 1694–1558 cal yr BP, respectively). Two minimum ages, that 573 may be detrital, were derived from plant macrofossils found within mud units directly 574 overlying the two deeper buried organic-rich units (1166–968 cal yr BP and 1692–1561 575 cal yr BP, respectively). 576

Also, at *JC.2* we observed a \sim 7 cm thick slightly organic unit, which was \sim 5 cm beneath the shallowest organic-rich unit (Fig. 2d). Although we did not recognize a lithological change from visual inspection in the field, a density contrast within the core

was identified through CT analysis. Due to the similarity to a contact observed in two 580 cores at Mad River Slough (MR.2 and MR.7) we obtained three maximum ages on this 581 slightly organic-rich unit (modern (post 1950 CE), 1263–1082 cal yr BP, and 1333–1285 582 cal yr BP). Either downward root penetration, bioturbation, or contamination of the core 583 during extraction may explain the anomalously young modern age. The two older 584 radiocarbon ages are stratigraphically inconsistent (Table 2) with the ages from the 585 deeper two buried organic-rich units, possibly indicating the re-deposition of older 586 material. Therefore, we hypothesize that this contact may have been eroded at Jacoby 587 Creek sometime prior to the 250 yrs BP earthquake. Because these three radiocarbon ages 588 are inconsistent with ages of the rest of the core and are not in stratigraphic order, we do 589 not include them within the composite stratigraphy used in the development of Bayesian 590 age models. 591

592 4.1.5 Correlation of Stratigraphy Among the Study Sites

The age results provide context for stratigraphic correlations both within the 593 marsh as well as across the estuary. In total, we observed five mud-over-peat and/or mud-594 over-upland soil contacts within the tidal wetland stratigraphy at northern Humboldt Bay. 595 However, correlation of only four submergence contacts is supported by stratigraphic 596 mapping, depth and radiocarbon age overlap. We assign submergence contacts with letter 597 designations by depth, e.g., contact A is the shallowest submergence contact. We 598 correlate three submergence contacts, e.g., A, D, and E, across all three marsh sites, 599 contact C across two marsh sites (Mad River Slough and McDaniel Creek), and Contact 600 601 B was only observed at one marsh (Mad River Slough).

602 *Contact A*

603	Contact A is the upper contact of the shallowest, most distinct, and most wide-
604	spread buried organic-rich unit observed at northern Humboldt Bay. Three maximum-
605	limiting radiocarbon ages, one from each marsh, of an in-growth position rhizome and
606	two herbaceous stems ≤ 10 mm below the contact, range between 283–1 cal yr BP to 307–
607	1 cal yr BP, and corroborate stratigraphic correlation across the estuary (Table 2).
608	Contact A has radiocarbon ages consistent with previous research at Cascadia (Atwater,
609	1987; Nelson, 1992; Nelson, 1995; Satake et al., 1996; Satake et al., 2003; Atwater et al,
610	2005), which infers that the contact dates from the 250 cal yr BP (1700 CE) earthquake.
611	For the remainder of the paper, we will refer to Contact A as the contact formed due to
612	subsidence from the 1700 CE earthquake.
613	Contact B
614	Contact B has the most limited lateral extent within the estuary as it was only
614 615	observed in cores <i>MR.2</i> and MR.7 at Mad River Slough, which are less than 30 m apart
614615616	observed in cores <i>MR.2</i> and MR.7 at Mad River Slough, which are less than 30 m apart (Fig. 2b; Table 1). At 161.5 and 166.5 cm core depth at <i>MR.2</i> and <i>MR.7</i> , the sharp upper
614615616617	observed in cores $MR.2$ and $MR.7$ at Mad River Slough, which are less than 30 m apart (Fig. 2b; Table 1). At 161.5 and 166.5 cm core depth at $MR.2$ and $MR.7$, the sharp upper contact of organic rich-unit has ~7mm of relief and is <10 cm below the base of the
614615616617618	contact B has the most limited lateral extent within the estuary as it was only observed in cores $MR.2$ and $MR.7$ at Mad River Slough, which are less than 30 m apart (Fig. 2b; Table 1). At 161.5 and 166.5 cm core depth at $MR.2$ and $MR.7$, the sharp upper contact of organic rich-unit has ~7mm of relief and is <10 cm below the base of the buried 1700 CE peaty unit that forms Contact A. The organic-rich unit of Contact B is 2-
 614 615 616 617 618 619 	contact B has the most limited lateral extent within the estuary as it was only observed in cores $MR.2$ and MR.7 at Mad River Slough, which are less than 30 m apart (Fig. 2b; Table 1). At 161.5 and 166.5 cm core depth at $MR.2$ and $MR.7$, the sharp upper contact of organic rich-unit has ~7mm of relief and is <10 cm below the base of the buried 1700 CE peaty unit that forms Contact A. The organic-rich unit of Contact B is 2- 4 cm thick and contains 0.25-0.5 cm thick intercalated clastic beds. The overlying 8-10
 614 615 616 617 618 619 620 	observed in cores <i>MR.2</i> and MR.7 at Mad River Slough, which are less than 30 m apart (Fig. 2b; Table 1). At 161.5 and 166.5 cm core depth at <i>MR.2</i> and <i>MR.7</i> , the sharp upper contact of organic rich-unit has ~7mm of relief and is <10 cm below the base of the buried 1700 CE peaty unit that forms Contact A. The organic-rich unit of Contact B is 2-4 cm thick and contains 0.25-0.5 cm thick intercalated clastic beds. The overlying 8-10 cm thick mud unit contains~0.25 cm thick intercalated slightly-rooted beds. One
 614 615 616 617 618 619 620 621 	observed in cores <i>MR.2</i> and MR.7 at Mad River Slough, which are less than 30 m apart (Fig. 2b; Table 1). At 161.5 and 166.5 cm core depth at <i>MR.2</i> and <i>MR.7</i> , the sharp upper contact of organic rich-unit has ~7mm of relief and is <10 cm below the base of the buried 1700 CE peaty unit that forms Contact A. The organic-rich unit of Contact B is 2-4 cm thick and contains 0.25-0.5 cm thick intercalated clastic beds. The overlying 8-10 cm thick mud unit contains~0.25 cm thick intercalated slightly-rooted beds. One maximum age of an in-situ plant macrofossil found within 1 cm below contact B, 511–
 614 615 616 617 618 619 620 621 622 	observed in cores <i>MR.2</i> and MR.7 at Mad River Slough, which are less than 30 m apart (Fig. 2b; Table 1). At 161.5 and 166.5 cm core depth at <i>MR.2</i> and <i>MR.7</i> , the sharp upper contact of organic rich-unit has ~7mm of relief and is <10 cm below the base of the buried 1700 CE peaty unit that forms Contact A. The organic-rich unit of Contact B is 2-4 cm thick and contains 0.25-0.5 cm thick intercalated clastic beds. The overlying 8-10 cm thick mud unit contains~0.25 cm thick intercalated slightly-rooted beds. One maximum age of an in-situ plant macrofossil found within 1 cm below contact B, 511–476 cal yr BP, does not overlap with any other radiocarbon age obtained in our
 614 615 616 617 618 619 620 621 622 622 623 	observed in cores <i>MR.2</i> and MR.7 at Mad River Slough, which are less than 30 m apart (Fig. 2b; Table 1). At 161.5 and 166.5 cm core depth at <i>MR.2</i> and <i>MR.7</i> , the sharp upper contact of organic rich-unit has ~7mm of relief and is <10 cm below the base of the buried 1700 CE peaty unit that forms Contact A. The organic-rich unit of Contact B is 2-4 cm thick and contains 0.25-0.5 cm thick intercalated clastic beds. The overlying 8-10 cm thick mud unit contains~0.25 cm thick intercalated slightly-rooted beds. One maximum age of an in-situ plant macrofossil found within 1 cm below contact B, 511–476 cal yr BP, does not overlap with any other radiocarbon age obtained in our investigation (Table 2).

Based on stratigraphic mapping and radiocarbon age overlap, contact C was observed at Mad River Slough and McDaniel Creek. Four maximum ages and one minimum age constrain the timing of contact C. A rhizome in growth position <10 mm above the contact at *MD.06* ranges in age from 926–798 cal yr BP (Table 2). Three rhizomes in growth position and a herbaceous stem each within <10 mm below the contact range in age from 956–802 cal yr BP (Table 2).

631 Contact D

Based on stratigraphic mapping and radiocarbon age overlap, contact D was observed at every marsh within the northern Humboldt Bay estuary. Two minimum ages and three maximum ages constrain the timing of Contact D, one from each marsh. A *Grindelia spp.* stem <25 mm above the contact and a rhizome in growth position <15mm from the contact range in age from 1166–961 cal yr BP. Three maximum age samples of a rhizome in growth position, rhizome fragments, and stem fragments were each found within 15 mm below the contact and range in age from 1399–1181 cal yr BP (Table 2).

639 *Contact E*

Based on stratigraphic mapping and radiocarbon age overlap, contact E was 640 observed at every marsh within the northern Humboldt Bay estuary. Two minimum ages 641 and four maximum ages of plant microfossils constrain the timing of contact E. Minimum 642 ages of wood fragments and a herbaceous stem, both <30 mm above the contacts, have an 643 age range of 1707–1561 cal yr BP. One minimum age, 1707–1575 cal yr BP, is older 644 than three of the four maximum ages. The four maximum ages on two rhizomes in 645 growth position, one rhizome or stem, and ~25 Atriplex and Potamogeton seeds <20 mm 646 below the contact have a combined age range of 1708–1558 cal yr BP (Table 2). 647

649

4.2 Modeling the Timing of Abrupt Submergence

650	We constructed a representative composite stratigraphic section using 16
651	radiocarbon ages across the estuary (Fig. DR2). Ages were assigned to appropriate depth
652	intervals relative to the upper contact of buried organic-rich units that were
653	stratigraphically widespread; contacts A, C, D, and E. The composite stratigraphy was
654	based on the stratigraphy observed at MD.5 (Figs. 2c and 3a), where contacts A, C, D,
655	and E, were described at the depths of 126, 173, 246, and 312 cm from the surface,
656	respectively (Fig. DR2). We do not model contact B or include the maximum age
657	constraint obtained at this contact within the composite stratigraphy because of a lack of
658	correlative stratigraphy at McDaniel Creek to allow its placement onto the composite
659	stratigraphic section. We do not model contact A due to the limitations of radiocarbon
660	imposed by a plateau in the calibration curve post 1650 CE (Reimer et al., 2013). The
661	assumption that contact A represents the CSZ 1700 CE megathrust earthquake is
662	consistent with the tsunami modeling of Satake et al., (1996) and Satake et al. (2003),
663	tree ring ages from Nelson et al., (1995), reservoir corrected offshore ages on
664	foraminifera that are not subject to the radiocarbon calibration plateau (Goldfinger et al.,
665	2012; 2013), and our three maximum limiting radiocarbon ages of contact A (Fig. 3 and
666	Table 2).

The estuary-wide composite stratigraphy (Fig. DR2), based on the stratigraphy observed at *MD.5* (Figs. 1 and 2), was used in the construction of the three Bayesian age models (Fig. 4). We employ the OxCal 'Sequence' as a simple Bayesian age model using stratigraphic position to order ages as well as the more complicated OxCal 'P-sequence' 671 and

672

673

and Bchron age models, which incorporate depths and variable sedimentation rates, to develop paleoseismic chronologies at northern Humboldt Bay and evaluate the effect that model and software choices have on our results (Figs. DR1-7).

In general, each of the Bayesian age models show strong agreement on the timing 674 675 of burial for each of the modelled contacts (Fig. 4; Table 3). For contacts C, D, and E, the variability of modelled mean ages range over 38 years, 25 years, and 19 years 676 respectively (Table 3). For contacts C and D, Bchron provides narrower age ranges than 677 OxCal 'Sequence' and 'P-sequence' models, which is the result of the model assigned 678 sedimentation rate between age constraints. For contact E, all modelled mean age ranges 679 are essentially identical (within four years; Fig. 4; Table 3). The tight age overlap for 680 contact E result is likely based on the combination of 1) the narrow radiocarbon age 681 range of 147 years between the youngest minimum (1692–1561 cal yr BP) and oldest 682 maximum (1708–1614 cal yr BP) and 2) the close depth distribution of our age 683 constraints, i.e., two minimum ages within the first <3 cm above the contact and four 684 maximum ages within the first 2 cm below the contact (Fig. 3; Table 2; and Fig. DR2). 685 For each modeled contact age, the OxCal 'P-sequence' age model produces 686 broader age ranges than OxCal 'Sequence' and Bchron models. The relatively broad age 687 range results may be attributed to the assigned k value. For the northern Humboldt Bay 688 chronologic data and following Bronk Ramsey (2008) and Enkin et al. (2013), we 689 determined the optimal k is 0.1 cm^{-1} , meaning that variations in deposition rate occur on 690 average about every 0.1 cm (Table 2; Table DR 1-27; Fig. DR1-2). A large k value 691 directs a more uniform sedimentation rate (Bronk Ramsey, 2008;), which can over-692 constrain the age model (i.e., narrower age ranges) and result in low agreement indices 693

694	(Enkin et al., 2013; Tables DR1, 15-27). In contrast, a small k value allows for a greater
695	randomness in the deposition rate and weights superposition of samples over sample
696	depth (Bronk Ramsey, 2008), which result in less constrained age ranges (i.e., wider age
697	ranges) and high agreement indices (Enkin et al., 2013; Tables DR1-14). Therefore, when
698	k is small and radiocarbon age constraints are clustered around contacts of interest,
699	OxCal 'P-sequence' models more conservative age ranges (Table 3; Fig. 4; DR4-6). For
700	example, the timing of burial for contact D is constrained by 309 years between the oldest
701	minimum limiting age (1166–968 cal yr BP) and youngest maximum limiting age (1277–
702	1181 cal yr BP); the more conservative OxCal 'P-sequence' modelled age for contact D
703	has the largest range of 277 years, whereas OxCal 'Sequence' and Bchron model less
704	conservative age ranges of 227 and 140 years, respectively (Table 3).
705	
706	4.3 Foraminiferal Analyses of Buried-soil Subsidence at McDaniel Creek
707	We selected representative sediment cores for foraminiferal analyses from
708	McDaniel Creek because it archives the largest lateral extent of contacts A, C, D, and E
709	(Fig. 5; Tables DR28-32). Further, we analyzed contact B from Mad River Slough due to
710	the absence of this contact at McDaniel Creek and Jacoby Creek and our aim to identify

whether it may be related to a subduction zone earthquake (Table DR29). Sudden and

⁷¹² lasting foraminiferal community assemblage changes were found across four abrupt-

sharp contacts; A, C, D, and E (Fig. 5; Tables DR28, 30-32). We did not apply the BTF

to the fossil data across contact B because there was only a minimal change in fossil

⁷¹⁵ for aminiferal assemblages between the organic-rich unit and the overlying clastic mud

(Table DR29). The BTF results show that contact A and contact D record a similar

717	amount of subsidence, contact C archives the smallest amount of subsidence, and contact
718	E records the largest magnitude of subsidence. Pairwise comparison of modern and fossil
719	foraminiferal assemblages were well below the 20th percentile threshold, indicating that
720	all fossil assemblages had modern analogs.
721	For contacts A, C, D, and E, we first describe the lithology around the
722	representative contact and then provide a description of the foraminiferal biostratigraphy.
723	Contact A
724	At MD.03, the shallowest buried organic-rich unit abrupt upper contact is at 115
725	cm core depth (Fig. 5a). The organic-rich brown peat unit is 8 cm thick and capped by a
726	grey mud that extends >25cm. The CT scan of $MD.03$ shows an abrupt 1-2 mm contact
727	with \sim 5 mm of relief and fine bedding within the overlying mud unit from 97-115 cm
728	core depth overlying indicated by alternating yellow and orange layers (Fig. 4a) that
729	represent differing densities of sediment.
730	For a miniferal assemblages in the brown peat unit are dominated by B .
731	pseudomacrescens (27-54%), T. inflata (7-39%), and J. macrescens (5-33%), which is
732	consistent with a MHHW salt marsh environment. Samples in the mud overlying the peat
733	unit show an increase in the abundance of M. fusca (5 to 14%), Reophax spp. (0.05-3%),
734	Ammobaculites spp. (0-1.4%), and J. macrescens (25 to 54%) and a decrease in the
735	abundance of <i>B. pseudomacrescens</i> (12 to 29%) and <i>T. inflata</i> (16 to 27%). The presence
736	of Ammobaculites spp., Reophax spp., and increase of M. fusca is consistent with a tidal
737	flat environment near MTL (Fig. 4; Kemp et al., 2018). The fossil foraminifera BTF
738	reconstruction suggests 0.85 ± 0.46 m of subsidence (Fig. 5a; Table 4; Table DR28).
739	Contact B

740	At MR.2, we found no distinct change in foraminiferal assemblages across contact
741	B (Table DR29). Within the organic-rich unit fossil assemblages are primarily composed
742	of B. pseudomacrescens (38-49%), J. macrescens (23-32%), T. inflata (16-20%) and M.
743	fusca (0-1%), which is consistent with a peat soil forming near MHHW. Although
744	samples in the mud overlying the peat unit show a slight increase in the abundance of M .
745	fusca (2-3%), Reophax spp. (0-1%), and T. inflata (22-25%), there are also moderate to
746	high abundances of <i>B. pseudomacrescens</i> (38-41%) and <i>J. macrescens</i> (21-29%), which
747	is also consistent with an environment forming between mean high water (MHW) and
748	MHHW (Table DR29).
749	Based on a lack of lateral extent of the contact, lack of radiocarbon age overlap
750	within the estuary, and minimal fossil foraminiferal assemblage change, we do not apply
751	the BTF to the fossil foraminifera assemblage data from contact B and we infer that it
752	does not represent coseismic subsidence induced from megathrust rupture. Instead, we
753	infer that this organic-rich unit is the base of the organic-rich unit below contact A and
754	that the 8-10 cm thick mud that separates these organic rich units could be a local
755	hydrographic event; a possible candidate cause is an overtopping of the Mad River levee
756	that is 6 km to the north-northeast.
757	Contact C
758	At MD.6, the upper contact of the second deepest buried organic-rich unit at 170.5
759	cm core depth is sharp and separates a muddy peat from an overlying mud (Fig. 5b). The
760	brown muddy peat unit is 6 cm thick and capped by a grey mud that extends >20cm. CT

images show a sharp \sim 3 mm contact with \sim 5mm of undulating relief and >6 cm of

verlying mud that contains detrital organics and/or paleoburrow. The semi-vertical void

that extends across the CT image is possibly a crack that occurred during sediment
 collection and/or shipping (Fig. 5b).

765	Foraminifera in the light brown muddy peat unit dominantly consist of <i>B</i> .
766	pseudomacrescens (12-40%) and T. inflata (24-36%), which is consistent with a MHHW
767	salt marsh environment. Samples in the grey mud overlying the peat unit show an
768	increase in the abundance of <i>M. fusca</i> (21 to 33%) and <i>J. macrescens</i> (27 to 37%) and a
769	decrease in the abundance of <i>B. pseudomacrescens</i> (4 to 9%), which is consistent with an
770	environment below but in close proximity to MHW. The fossil foraminifera BTF
771	reconstruction shows 0.42 \pm 0.37 m of subsidence (Fig.5b; Table 4, Table DR30).
772	Contact D
773	The CT scan of <i>MD</i> .13 shows a sharp contact at 248 cm to have \sim 14mm of
774	undulating relief and separates an 8 cm thick organic-rich unit, where the upper 3 cm is a
775	light brown muddy peat and the lower 5 cm are a grey-brown rooted mud, from a >25 cm
776	thick finely bedded grey mud.
777	Foraminifera in the organic-rich unit dominantly consist of <i>B. pseudomacrescens</i>
778	(3-48%), T. inflata (9-71%), and J. macrescens (22-52%), which is consistent with a
779	MHHW salt marsh environment. Although samples in the grey mud overlying the peat
780	unit are also dominated by J. macrescens (27-38%), T. inflata (15-19%), and B.
781	pseudomacrescens (12-18%) the assemblages show a marked increase in the abundance
782	of <i>M. fusca</i> (14 to 17%) and contain <i>Ammobaculites</i> spp. (~1%) and <i>Reophax</i> spp. (~1%),
783	which are typically associated with a tidal flat environment near MTL (Kemp et al.,
784	2018). For the subsidence estimate we use the distributions of the reconstructed RSL
785	elevations that are 2 cm apart and are the first unmixed centimeter intervals above and

786 b

787

below the mud-over-peat contact. The fossil foraminifera BTF reconstruction shows 0.79 ± 0.47 m of subsidence across contact D (Fig. 5c; Table 4; Table DR31).

788 *Contact E*

At *MD*.5, the sharp upper contact of the deepest buried organic-rich unit is at 308 cm depth, undulates over >15 mm, and separates a dark grey-black organic-rich unit from an overlying grey mud (Fig. 5d). The organic rich unit is 12 cm thick and is overlain by a grey mud that extends thicker than 25 cm. X-ray analysis shows that the overlying grey mud infiltrated into the underlying highly humified and friable organic rich unit below (Fig. 5d).

The fossil foraminifera assemblages further support the interpretation of mixing 795 across contact E. The foraminifera assemblages in the humified organic rich unit have 796 decreasing abundances, from 200 to <30, with distance below (4cm) the contact and are 797 dominated by *M. fusca* (48-52%), *T. inflata* (35-38%) and contain low abundances of 798 *Reophax* spp. (<1%); such an assemblage is typically indicative of an environment that 799 formed below MHW. However, while foraminifera abundances above the deepest 800 organic rich unit are consistent with other analyzed intervals (>200 individuals) the 801 decreasing abundances of foraminifera with distance from the upper contact of the 802 organic-rich unit is consistent with mixing (e.g., Engelhart et al., 2013; Milker et al., 803 2015). Based on visual appearance in photo and X-ray imagery, decreasing foraminiferal 804 abundances, and similarity to foraminiferal assemblages within the overlying clastic mud 805 unit we interpret that foraminifera assemblages found within the organic-rich unit are not 806 in-situ or indicative of the depositional environment. Moreover, Engelhart et al., (2015) 807 report diatom analysis of core JC.14.02A at Jacoby Creek that suggests the organic-rich 808

809	unit formed as a dry upland surface and not salt marsh. Therefore, considering the diatom
810	data at JC.14.02A, correlation of radiocarbon ages, and a lack of in-situ fossil
811	foraminiferal assemblages, we conclude that the fourth deepest organic-rich unit
812	represents a depositional environment that formed above the highest occurrence of
813	foraminifera. Foraminifera in the grey mud above the organic-rich unit are dominated by
814	M. fusca (60-65%) and T. inflata (25-31%), while Ammobaculites spp. and Reophax spp.
815	are both present at ~1%, signifying an assemblage that formed are around MTL. Based
816	on the first interval that contains in-situ fossil foraminifera above the organic-rich unit,
817	we subtract the reconstructed RSL elevation for this interval, as predicted by the BTF,
818	from the elevation of the highest occurrence of foraminifera in northern Humboldt Bay
819	which is 2.5 m (NAVD 88). Therefore, fossil foraminifera assemblages can only provide
820	a minimum-limiting estimate for subsidence of ≥ 0.93 m (Fig. 5d; Table 4: Table DR32).

822 **5. DISCUSSION**

We provide multiple lines of evidence for four megathrust earthquakes since 823 1,700 cal yrs BP in northern Humboldt Bay (Table 5). These results prompt important 824 questions, introduced above, about age modeling techniques that best constrain the ages 825 of past subduction zone earthquakes and questions about needed levels of resolution in 826 both the chronology of paleoearthquakes and the amount of coseismic subsidence during 827 paleoearthquakes such that individual paleoearthquakes can be correlated along the 828 Cascadia margin. In the following, we address the questions in the context of the northern 829 Humboldt Bay tidal wetland stratigraphic record and compare the northern Humboldt 830 Bay paleoearthquake record to other regional paleoseismic sites, and, finally, looking into 831
the possibility of correlating variable subsidence data for different earthquakes among
sites in southern Cascadia.

834

5.1 Northern Humboldt Bay Paleo Subduction Zone Earthquake Record

836 5.1.1 Revisions to the tidal wetland stratigraphy in northern Humboldt Bay

Our new lithologic, biostratigraphic, and chronologic analyses allow us to provide 837 a refined paleoseismic history of subduction zone earthquakes for northern Humboldt 838 Bay. Tidal wetland stratigraphic records are a proven means for reconstructing 839 paleoearthquakes at subduction zones globally. The record of mud-over-peat and mud-840 over-upland soil contacts are convincing lines of evidence for land subsidence induced by 841 great (M>8) and giant (M>9) earthquakes (e.g., Atwater, 1987). However, since the 842 stratigraphic record at Cascadia was initially linked to such earthquakes (e.g., Atwater, 843 1987; 1992; Atwater and Yamaguchi, 1991; Darienzo and Peterson, 1990; Nelson, 1992), 844 there has been continued focus on other processes that may cause similar stratigraphy to 845 coseismic subsidence (Long and Shennan, 1994; Allen, 1997; 2000; Nelson et al., 1998), 846 which has led to the development of the rigorous stratigraphic research framework that 847 underpins modern coastal subduction zone paleoseismology (Nelson et al., 1996; 848 Shennan et al., 2016). Many of the foundational tidal wetland stratigraphic papers for 849 northern Humboldt Bay preceded the development of this framework (e.g., Vick, 1988; 850 Clark and Carver 1992, Valentine, 1992) so that even later review articles (e.g., Valentine 851 et al., 2012) may not adequately represent the uncertainty in the tidal wetland stratigraphy 852 mapped at different sites by different researchers. 853

854	This uncertainty is highlighted by the complicated stratigraphy at Mad River
855	Slough, specifically a contact observed by previous researchers that we refer to as contact
856	B (e.g., Vick 1988, Clark and Carver 1992; Valentine, 1992; Valentine et al., 2012).
857	Previous research was not able to conclude if contact B represents megathrust-induced
858	coseismic subsidence because of the limited spatial extent of the contact, (contact B is
859	observed only at MRS-3 core location of Vick, 1988), no radiocarbon age correlation
860	within the estuary (Clark and Carver, 1992; Valentine 1992; Valentine et al., 2012), and
861	limited qualitative microfossil analysis (Valentine et al., 2012). Additionally, even though
862	Pritchard (2004) reoccupied several core and outcrop stratigraphic description locations
863	of previous researchers (Vick, 1988; Clark and Carver, 1992; and Valentine 1992),
864	including MRS-3 of Vick (1988), contact B was not included within their stratigraphic
865	descriptions. Moreover, several previous researchers correlate contact B to evidence from
866	other proximate paleoseismic wetland stratigraphic and trench investigations (e.g.,
867	Valentine, 1992; Clarke and Carver, 1992; Valentine et al., 2012). We contend that
868	across-site/estuary correlations based on the relatively large error range of radiocarbon
869	ages on bulk peat samples (e.g., Clarke and Carver, 1992; Valentine et al. 2012), relative
870	order inferences placed on narrowly supported hypothetical composite stratigraphic
871	sections (e.g., Fig. 16 of Valentine, 1992; Valentine et al. 2012), and a lack of within-site
872	radiocarbon age replications (e.g., Clarke and Carver, 1992; Valentine, 1992; Valentine et
873	al., 2012) provide insufficient evidence for correlation beyond a small area of marsh in a
874	single, potentially complicated stratigraphic section. Therefore, differing stratigraphic
875	observations and limited radiocarbon age constraints are primarily responsible for the

previous, differing correlations and conclusions of paleoseismic investigations at northern
Humboldt Bay.

However, our extended stratigraphic descriptions (Figs. 2, 3 and Table 1) and 878 robust radiocarbon dataset (Table 2) from new coring at McDaniel Creek and Jacoby 879 Creek allows us to provide further clarification. Our new results do not provide any 880 additional evidence for a contact of the age of contact B at other northern Humboldt Bay 881 sites. Instead, we suggest that contact B is likely the result of a simpler explanation of 882 physical processes within Mad River Slough and could be related to the overtopping of 883 the Mad River levee during an unusual flood event (Cahoon et al., 1996; Friedrichs and 884 Perry, 2001), local marsh-edge slumping (Allen, 1989; Gabet, 1998), or soil creep 885 (Mariotti et al., 2016), which could all potentially create non-seismic induced 886 submergence-like stratigraphy over small spatial scales (Nelson et al., 1996; 2006; 887 Shennan et al., 2016). Barring further evidence from additional sites within northern 888 Humboldt Bay, based solely on our observations we suggest contact B is not 889 representative of a CSZ megathrust-induced subsidence. 890

However, we acknowledge the maximum ages derived from the organic-rich unit 891 below contact B overlap with the age of the T2 turbidite (Goldfinger et al., 2012). It is 892 possible that subsidence smaller than the threshold required to record it consistently in 893 the salt-marsh sediments across northern Humboldt Bay could be invoked to correlate 894 this very sparse record with T2 (e.g., Nelson et al., 1996; Shennan et al., 2016). 895 Nonetheless the currently available coastal observations, limited spatial evidence for 896 contact B, and a lack of foraminiferal assemblage change across contact B (Table DR29), 897 favor other local processes over megathrust-induced subsidence. 898

899	Greater confidence can now be assigned given our estuary-wide stratigraphic
900	correlations based on: 1) an increase in the spatial density and extent of stratigraphic
901	descriptions beyond those from previous northern Humboldt Bay paleoseismic
902	investigations (i.e., at McDaniel Creek and Jacoby Creek sites) and, 2) our robust
903	radiocarbon age dataset, which elucidates stratigraphic correlations throughout the
904	estuary (Tables 1 and 2). At northern Humboldt Bay, four stratigraphic contacts meet the
905	criteria (Hemphill-Haley, 1995; Nelson et al., 1996; Shennan et al., 2016) for coseismic
906	subsidence; contacts A, C, D, and E (Table 5). This result is consistent with portions of
907	the findings from the previous research (Vick, 1988; Clark and Carver 1992, Valentine,
908	1992; Pritchard, 2004; Valentine et al., 2012). Based on our stratigraphic mapping and
909	radiocarbon ages, McDaniel Creek archives the most consistent wetland stratigraphic
910	record of CSZ rupture in north Humboldt Bay (Figs. 2 and 3). This is in contrast to
911	previous research that has focused on Mad River Slough as the type section in northern
912	Humboldt Bay (Vick, 1988; Valentine, 1992; Clarke and Carver 1992; Valentine et al.,
913	2012). We contend that due to inconsistent and variable stratigraphy, and the potential
914	influence of slough processes (e.g., Nelson et al., 1998), that the Mad River Slough
915	stratigraphic record should be treated with caution.
916	5.1.2 Radiocarbon age modeling of southern Cascadia earthquake chronology:
917	advantages and disadvantages of alternative Bayesian age models
918	Our work refining the northern Humboldt Bay radiocarbon dataset and
919	constructing Bayesian age models (Fig. 4 and Table 3) provides opportunity for testing,
920	calibrating, and refining chronologic models. We move beyond traditional radiocarbon-

based dating approaches by assessing the results of multiple Bayesian age models, which

922	may improve the accuracy and precision of earthquake chronologies. For earthquakes
923	prior to 1700 CE, even the most conservative age model (OxCal 'Sequence') provides
924	narrower age distributions (age ranges of between 94 and 227 years) than previous
925	paleoseismic investigations at northern Humboldt Bay (e.g., Vick, 1988; Valentine 1992;
926	Clarke and Carver, 1992; Valentine et al., 2012); 924–816 cal yr BP, 1,231–1,004 cal yr
927	BP, and 1,669–1,575 cal yr BP (Table 3). The timing of earthquakes may be refined
928	further by incorporating modeled sedimentation rates between radiocarbon age (OxCal
929	'P-sequence' and Bchron models).
930	We select an age-model that ignores sedimentation rate for three reasons. Despite
931	the often narrower age distributions provided by Bchron (which incorporates
932	sedimentation rates), the OxCal 'Sequence' age estimates are the most reliable for the
933	paleoseismic activity at northern Humboldt Bay. First, if the age constraints above
934	(minimum age) and below (maximum age) a contact of interest are derived close (e.g.,
935	~<3-4 cm) to the contact of interest and have considerable age range overlaps then each
936	of the three Bayesian models we tested provide nearly identical age estimates, e.g.,
937	contact E (Table 3). Therefore, a modeled sedimentation rate does not always improve
938	the modeled age estimate if the data constraints are consistent. Second, our radiocarbon
939	data set cannot resolve the variations in post-seismic sedimentation in northern Humboldt
940	Bay wetlands. Near Portage, Alaska, Atwater et al., (2001), document environmental
941	changes over three decades after the great 1964 Alaska earthquake. Sedimentation was
942	rapid within the first several months and then slowed in the decades following as the
943	previous vegetation and environments re-established (Atwater et al., 2001). Therefore,
944	post-seismic variable sedimentation rates likely vary over time frames less than the

945	uncertainty of radiocarbon ages. Unlike the use in passive margins of sedimentation-rate-
946	informed age models where sedimentation rates are likely to be more consistent (e.g.,
947	Kemp et al., 2009, 2011; Wright et al., 2017), care should be taken in active margins
948	when constructing age models that, perhaps unwittingly, are modelling an uncertain and
949	variable sedimentation rate. Third, the development of a composite stratigraphy (multiple
950	age constraints derived from multiple cores) requires that stratigraphic correlations are
951	accurate and estimates sedimentation rate from a composite stratigraphic section.
952	Although radiocarbon age overlap can provide confidence in stratigraphic correlation,
953	sedimentation/accumulation rates and erosional histories are not consistent throughout an
954	entire wetland environment (Letzsch and Frey, 1980; Allen, 2000). Differences in
955	sedimentation rates will affect the modeled age-estimates (e.g., Tables DR1-27 and Figs.
956	DR1, 3-5) and combining chronologic constraints into a composite chronology (e.g., Fig.
957	DR 2) assumes that the differences in sedimentation/accumulation rates are negligible.
958	By selecting an age-model that doesn't model a sedimentation rate, we avoid this
959	potential error.

Although there are problems with finding a single representative core location with abundant quality dating material (e.g., in-situ plant macrofossils and/or seeds), future research should consider acquiring dates from within a single core where possible. This approach would circumvent the need to build composite chronologies and allow greater confidence in testing the applicability of modeled sedimentation rates to constrain timing of earthquakes at Cascadia. Additional dates from adjacent core sites could be used to verify stratigraphic correlations.

967

5.2 Correlating the Northern Humboldt Bay Earthquake Record to Other

969 Paleoseismic Records on the Southern Cascadia Subduction Zone

- Northern Humboldt Bay may have experienced both full and partial ruptures over 970 the late Holocene (e.g., Goldfinger et al., 2012). Our AMS radiocarbon ages provide an 971 unambiguous chronology for earthquake-induced subsidence at northern Humboldt Bay 972 even without Bayesian age modeling. The precision of the conservative OxCal 973 'Sequence' age model tightly constrains the timing of earthquake subsidence (Fig. 4; 974 975 Table 3) and allow for increased confidence in correlation over 10-100 km's (Fig. 6). This refined chronostratigraphic approach provides a means with which to test the 976 interpretation of varying rupture length along strike. In testing models for subduction 977 zone ruptures, we anticipate that sites close together should show the same or similar 978 coseismic inference (Shennan et al., 2016). Therefore, we examine regional southern 979 Cascadia paleoseismic records and correlate age overlap with the paleoseismic 980 chronology at northern Humboldt Bay for earthquake contacts C, D. and E (Fig. 6). 981 Below we highlight age estimate overlap and offer plausible explanations for lack of age 982 estimate overlap when appropriate. 983
- 984 5.2.1 Earthquake Contact C, ~875 cal. yrs. .BP

Although the OxCal 'Sequence' model age distribution for contact C overlaps with age ranges of plate-boundary evidence at Talbot Creek, Bradley Lake, Eel River and the timing of turbidite T3, there is a lack of correlation at Coquille River, Lagoon Creek, and southern Humboldt Bay (Fig. 6). The southern Humboldt Bay site (Patton, 2004) contains earthquake evidence below the inferred CSZ 1700 CE contact and above a deeper and older buried organic-rich unit upper contact. Therefore, the undated contact at

991	southern Humboldt Bay could potentially contain a correlative age distribution with
992	contact C at northern Humboldt Bay. At Lagoon Creek, no tsunami deposit is found with
993	an age distribution that overlaps with contact C (Abramson, 1998; Garrison-Laney,
994	1998). This may be explained by foredune sequence heights sufficiently high to present a
995	barrier to tsunami inundation, although why that should be an issue for this event and not
996	others is not clear. Another potential explanation may be that because the age of tsunami
997	deposit W at Lagoon Creek is derived from detrital material, the age may not represent a
998	close maximum age.
999	There are at least three potential explanations why there is a lack of correlation
1000	with contact C and evidence at Coquille River (Witter et al., 2003): 1) no earthquake
1001	occurrence at Coquille River; 2) formation threshold, where slip on the megathrust was
1002	insufficient to cause enough vertical deformation to be recorded by the salt marsh; and 3)
1003	preservation threshold, where the coastal system had not fully recovered/reset from the
1004	previous earthquake rupture, ~1170-1370 cal. yrs. BP (e.g., Benson et al, 2001). A
1005	preservation threshold seems an unlikely cause in that there was >200 years between the
1006	previously documented earthquake and our inferred timing for contact C (Witter et al.,
1007	2003). There are correlative age distributions further north at Talbot Creek (Fig. 6),
1008	southern Washington, and Vancouver Island (Nelson et al., 2006) and also to the south at
1009	Eel River (Fig. 6). However, at Talbot Creek, Milker et al., (2016) report little to no
1010	subsidence across their correlative contact B, and northern Humboldt Bay contact C also
1011	records the least amount of subsidence over the four most recent earthquake cycles.
1012	Minimal subsidence at the above two sites does support the inference of insufficient
1013	coseismic deformation (i.e., formation threshold) at the Coquille River during the

earthquake that caused the formation of contact C. Moreover, because the turbidite
evidence for T3 suggests a margin-wide megathrust rupture with a relatively large mass
and bed thickness at numerous sites (Goldfinger et al., 2012; 2013), could imply that the
majority of slip was shallow and farther offshore, potentially limiting the creation and
preservation of onshore evidence during this event in southern Cascadia.

1019 5.2.2 Earthquake Contact D, ~1,120 cal. yrs. BP

The OxCal 'Sequence' model age distribution for contact D overlaps with age ranges for evidence of plate-boundary earthquakes at Eel River, Lagoon Creek, Bradley Lake, Coquille River, Talbot Creek, and the T3a and T4 turbidites. There is no correlation with southern Humboldt Bay (Fig. 6). Although southern Humboldt Bay (Patton, 2004) contains an undated buried organic-rich unit that could potentially correlate with either contact C or D at northern Humboldt Bay, the undated unit cannot correlate to both.

Therefore, a preservation threshold not being met is the most likely explanation 1027 for the lack of stratigraphic evidence for a plate-boundary earthquake at southern 1028 Humboldt Bay during the earthquake that caused the burial of contact D at northern 1029 Humboldt Bay. Southern Humboldt Bay may not have fully recovered/reset from the 1030 previous earthquake rupture (i.e., preservation threshold) because the age of buried soil 3 1031 upper contact is estimated to be 1,350-2,150 cal. yrs. BP (Patton, 2004), which is 1032 potentially <200 years prior to the age of contact D (Fig. 6). Although a heterogenous slip 1033 distribution and/or an insufficient amount of coseismic deformation (i.e., formation 1034 1035 threshold) could explain the lack of stratigraphic record at southern Humboldt Bay, such an explanation seems unlikely because we estimate 0.79 ± 0.47 m of subsidence ~20 km 1036

away. Additionally, a 'no earthquake occurrence' explanation also seems unlikely 1037 because there are correlative ages of stratigraphic evidence for plate-boundary rupture 1038 both to the north, e.g., Talbot Creek and Coquille River, and to the south at Eel River as 1039 well as corresponding age distributions for tsunami deposits at Bradley Lake and Lagoon 1040 Creek. Moreover, Goldfinger et al. (2012) suggest that the earthquake that caused T4 was 1041 a full margin rupture and the earthquake that caused T3a turbidite was a southern 1042 Cascadia rupture, which extended for 444 km and encompasses basins offshore of all 1043

- 1044 sites south of 43 degrees north (Fig. 6).

5.2.3 Earthquake Contact E, ~1,620 cal. yrs. BP 1045

All seven onshore sites (Fig. 6) record evidence for a plate-boundary earthquake 1046 and the offshore turbidite T5 ages overlap with the age distribution for contact E. There 1047 are abundant corresponding age distributions for contact E both offshore, throughout 1048 southern Cascadia (Fig. 6), and further north along the Cascadia margin including central 1049 Oregon and southern Washington (Shennan et al., 1996; Nelson et al., 1996; 1998; 1050

Nelson et al., 2004; Atwater et al, 2004: Graehl et al., 2014). 1051

5.2.4 Summary: Southern Cascadia Subduction Zone Ruptured All At Once in Each of 1052

the Four Earthquakes Recorded at Humboldt Bay 1053

In summary, in examining the paleoseismic chronology at northern Humboldt 1054 Bay for earthquake contacts C, D and E, we document age overlap with earthquakes at 1055 the other six paleoseismic sites northward from the Eel River estuary to South Slough, an 1056 along-margin distance of ~310 km (Fig. 6). The exceptions are the ~875 cal yr BP 1057 earthquake that is not recorded at southern Humboldt Bay and Coquille River and the 1058 ~1,120 cal yr BP earthquake that is not recorded at southern Humboldt Bay. Given that 1059

preservation threshold (i.e., the system had not fully recovered/reset from the previous
earthquake rupture) is a reasonable justification for why these two sites do not have
complete overlap of earthquake records, we infer that the southern Cascadia margin, at
least from the Eel River estuary north to South Slough, could rupture all at once in each
of the four subduction zone earthquakes that we document at northern Humboldt Bay.
And our inference leaves open the possibility that all the earthquakes recorded in
northern Humboldt Bay may also be full-margin ruptures.

1067

1068 5.3 Implications for understanding spatial and temporal variability in subsidence 1069 amounts at Cascadia

1070 5.3.1 Expanding the 1700 CE Subsidence Record

Our BTF coseismic subsidence estimate, 0.85 ± 0.46 cm (Fig. 5; Table 4), extends 1071 the latitudinal range of foraminifera-based transfer function estimates for the 1700 CE 1072 1073 earthquake (Hawkes et al., 2010; 2011; Wang et al., 2013; Milker et al., 2016; Kemp et al., 2018). Additionally, our 1700 CE coseismic subsidence estimate is consistent with 1074 both the "preferred" model of Wang et al., (2013) as well as a previous qualitative 1075 subsidence estimate based on diatom analysis at Jacoby Creek of 0-1.64 m (Pritchard, 1076 2004), although with a significant improvement in precision. An increase in the density 1077 of coseismic subsidence estimates from southern Cascadia coastline will improve 1078 knowledge of a highly complicated and dynamic region of the margin (Goldfinger et al., 1079 2012; Wang et al., 2013; Kemp et al., 2018). 1080 Given the spatial variation observed elsewhere in Cascadia for 1700 CE (Kemp et 1081

al., 2018) it is appropriate to investigate the degree of spatial variation along the southern

Cascadia region. For example, the Coquille River and northern Humboldt Bay are 1083 separated by ~275 km along strike and in-between there are several coastal paleoseismic 1084 sites that do not have quantitative microfossil RSL reconstructions despite potentially 1085 containing suitable environments. North of our study site, subsidence stratigraphy of the 1086 CSZ 1700 CE earthquake may exist at Euchre Creek (~42.55° N; Witter et al., 2001) and 1087 Sand Mine Marsh (~41.74° N; Peterson et al., 2011; Hemphill-Haley et al., 2019), 1088 although the prospect remains uncertain. To the south of our study site, there is definite 1089 potential to develop new records at southern Humboldt Bay (~40.69° N; Patton, 2004) 1090 and at the mouth of the Eel River (~40.62° N; Li, 1992) that would further supplement 1091 CSZ 1700 CE paleogeodetic database. The aforementioned spatial gaps are areas that 1092 represent areas with large uncertainties of 3-D elastic dislocation models and are close to 1093 hypothetical patch boundaries of the "preferred" model of Wang et al., (2013). Our new 1094 estimate is the first step in bringing the density of estimates in this region closer to that of 1095 coastal Oregon. 1096

1097 5.3.2 Correlating variable subsidence data for different earthquakes among sites in 1098 southern Cascadia: significance and uncertainties

Modern instrumented ruptures suggest that slip during large megathrust
earthquakes is heterogenous (e.g., Chlieh et al., 2007; Lorito et al., 2011; Lee et al., 2011;
Yokota et al., 2011; Wei et al., 2012), a feature that is now also suggested by 15
quantitative microfossil derived coseismic subsidence estimates over ~900 km along the
Cascadia margin for the CSZ 1700 CE earthquake (e.g., Wang et al., 2013; Kemp et al.,
2018). Heterogenous rupture is also a likely characteristic of earlier earthquakes as well
(e.g., Goldfinger et al., 2012; Atwater et al., 2014; Shennan et al., 2016; Goldfinger et al.,

1106	2017). Our new results add to data that point to variability in coseismic subsidence
1107	estimates by suggesting that the amount of coseismic subsidence has varied between
1108	earthquakes. To investigate this temporal variability requires a similar density of
1109	quantitative estimates of coseismic land-level changes for earthquakes prior to 1700 CE.
1110	Extending this record back in time is complicated not only by the current sparse
1111	record of precise subsidence estimates (e.g., Milker et al., 2016) but also by the inherent
1112	uncertainties in correlating chronologies along the margin reconstructed from
1113	radiocarbon age estimates that span centuries or greater. However, with recent datasets
1114	from Cascadia (e.g., Milker et al., 2016; Nelson et al., 2020) combined with our results,
1115	some initial insights may be gleaned about variability in rupture prior to 1700 CE.
1116	The penultimate earthquake recorded in the land-based paleoseismic record at
1117	Cascadia apparently produced less subsidence than the 1700 CE earthquake. Our new
1118	record from northern Humboldt Bay demonstrates that the penultimate earthquake at 924-
1119	816 cal. yrs. BP produced smaller subsidence (0.42 ± 0.37 m) than either the 1700 CE or
1120	two older earthquakes at 1,232–1,005 cal yr BP and 1,669–1,575 cal yr BP (estimates of
1121	0.85 ± 0.46 , 0.79 ± 0.47 m and ≥0.93 m, respectively). Similarly, at Nehalem River in
1122	northern Oregon, subsidence during the 1700 CE and 1568-1361 cal yr BP earthquakes
1123	was 1.1 ± 0.5 m and 1.0 ± 0.4 m, but perhaps as low as 0.7 ± 0.4 m during the
1124	penultimate earthquake at 942–764 cal yr BP (Nelson et al., 2020), although there is
1125	variability in this estimate from a second site $(1.0 \pm 0.4 \text{ m})$ that may suggest similar
1126	amounts of subsidence. The South Slough estuary in southern Oregon shows a similar
1127	pattern of variability in subsidence estimates. Evidence from Crown Point (Hawkes et al.,
1128	2011) and Talbot Creek (Milker et al., 2016) suggest minimum amounts of subsidence of

1129	(0.85 and 0.36m, respectively) during the 1700 CE earthquake. Yet, a potential
1130	earthquake contact recorded at Talbot Creek with a large age range (1020–545 cal yr BP)
1131	shows almost no subsidence (0.01 m). This is preceded by an earthquake dated to 1280-
1132	1190 cal yr BP that produced 0.63–0.65m of subsidence (Milker et al., 2016). Given the
1133	low subsidence estimate for the 1020–545 cal yr BP contact, Milker et al., (2016) are
1134	rightly cautious in interpreting this as an earthquake as opposed to formation by
1135	hydrodynamic processes. However, if this contact was caused by an earthquake that had
1136	smaller subsidence amounts, then the Talbot Creek record provides further support for
1137	lower subsidence in the land-based record at Cascadia across much of the margin during
1138	the penultimate earthquake compared to the preceding and following earthquakes.
1139	At northern Humboldt Bay the penultimate earthquake at ~875 cal yr BP overlaps
1140	with the age distribution of the margin-wide turbidite deposit of T3 (~800 cal yr BP),
1141	which is inferred to represent a full margin rupture (Goldfinger et al., 2012). Given the
1142	potential evidence for lower subsidence during the ~875 cal yr BP earthquake, an
1143	accompanying margin-wide rupture and tsunami implies that either less slip is required to
1144	induce a full margin turbidite and/or more slip occurred offshore during this earthquake
1145	implying that slip distribution varies between great and giant earthquakes at Cascadia.
1146	However because T3 is one of the largest turbidites in the turbidite sequence (Goldfinger
1147	et al. 2012), slip distribution seems to be a better explanation for the relatively lower
1148	subsidence during the ~875 cal yr BP earthquake rather than less slip being required to
1149	produce a full-margin rupture. Further land-based records with high-precision
1150	chronologies and microfossil-based estimates of subsidence are required to further
1151	evaluate this possibility.

1152 CONCLUSIONS

High-precision chronostratigraphic methods and quantitative RSL reconstructions 1153 refine our understanding of the paleoseismic history at northern Humboldt Bay. The tidal 1154 wetland stratigraphy at northern Humboldt Bay contains four stratigraphic sequences 1155 (three mud-over-peat contacts and one mud-over-upland soil contact) consistent with 1156 megathrust induced subsidence. Based on stratigraphic, chronologic, fossil foraminifera 1157 analyses, and timing estimate comparisons to evidence of plate boundary earthquakes at 1158 other paleoseismic sites, we conclude that contacts A, C, D, and E record subsidence 1159 during past CSZ plate boundary earthquakes. Data for contact B, found only at Mad 1160 River Slough, are insufficient to infer that contact B records a great earthquake, and we 1161 1162 infer that the contact formed through local non-seismic hydrographic processes associated with the slough. Multiple minimum and maximum limiting ages of in-situ 1163 plant macrofossils found above and below subsidence contacts, combined with the 1164 construction of Bayesian age models, provide the tightest age distributions for three plate 1165 boundary earthquakes along the southern Cascadia coastline (the three next-oldest 1166 earthquakes after the 1700 CE subduction zone earthquake). These tightly bounded ages 1167 are 924–816 cal yr BP, 1,231–1,004 cal yr BP, and 1669–1,575 cal yr BP (Table 3). The 1168 stratigraphic evidence for four plate boundary earthquakes at northern Humboldt Bay 1169 corresponds with stratigraphic evidence from six proximal coastal paleoseismic locations 1170 $(43.5^{\circ}-40.5^{\circ} \text{ N})$. In the course of investigating earthquake chronology, we had occasion 1171 to consider sedimentation-rate-informed Bayesian age models and decided that within the 1172 active plate-tectonic setting of coastal wetlands situated on subduction zone margins, an 1173

1174	age model using dense sampling around earthquake contacts and no applied
1175	sedimentation rate was better than age models that incorporate sedimentation rates.
1176	We reconstruct RSL elevations by applying a foraminiferal Bayesian transfer
1177	function to fossil data from representative stratigraphic sequences (three mud-over-peat
1178	contacts and one mud-over-upland soil contact) collected at McDaniel Creek marsh and
1179	provide the first fully quantitative estimates of coseismic subsidence for northern
1180	Humboldt Bay, CA. The coseismic subsidence estimates are 0.85 ± 0.46 m for the 1700
1181	CE earthquake, 0.42 \pm 0.37 m for the ~875 cal yr BP earthquake, 0.79 \pm 0.47 m ~1,120 cal
1182	yr BP earthquake, and ≥ 0.93 m for the ~1,620 cal yr BP earthquake (Fig 5; Table 4). The
1183	subsidence estimate for the oldest earthquake is a minimum because the
1184	paleoenvironment prior to the earthquake likely formed above the upper limit of
1185	foraminiferal habitation (Fig 5; Table 4). Our coseismic subsidence estimates provide
1186	high-resolution data for future modeling of Cascadia earthquakes and offer insight into
1187	the inherent variability in coseismic subsidence over multiple earthquake cycles. In order
1188	to further address remaining paleoseismic uncertainties, future Cascadia coastal
1189	paleoseismology investigations should seek to address remaining spatial gaps and
1190	incorporate high-resolution lithostratigraphic imagery, high-precision dating techniques,
1191	and fully quantitative microfossil-based relative sea-level reconstructions. Specifically,
1192	our results highlight the need for additional precise paleoseismic chronologies and, if
1193	possible, coseismic subsidence estimates from southern Cascadia at sites (Fig. 6) such as
1194	at Eel River (~40.65° N), southern Humboldt Bay (~40.7° N), Lagoon Creek (~41.9° N),
1195	and Sand Mine Marsh (~41.74° N).

1197 ACKNOWLEDGEMENTS

This work was supported by the Earthquake Hazards Program of the U.S. 1198 Geological Survey. Research supported by the U.S. Geological Survey (USGS), 1199 Department of the Interior, under USGS award numbers G14AP00128 and G19AP00105 1200 to SEE and G14AP000129 to EHH and HMK. The views and conclusions contained in 1201 this document are those of the authors and should not be interpreted as necessarily 1202 representing the official policies, either express or implied, of the U.S. Government. 1203 Research further supported by the National Science Foundation (EAR-1419844) and the 1204 Northern California Geological Society, Richard Chambers Memorial Scholarship 2017 1205 to JSP. We thank Dylan Caldwell for conducting an RTK-GPS survey, Byron Halavik, 1206 1207 Erin Quinn, and Casey Loofbourrow for the their field support efforts, Jaime Delano and Alan Nelson for their help with Figure 1A, and the Humboldt State University Geology 1208 Department for providing access to field equipment and lab facilities. We thank Science 1209 1210 Editor Rob Strachan for overseeing the science review. Reviews by Chris Goldfinger, Lydia Staisch, an anonymous reviewer and Associate Editor Stefano Mazzoli 1211 substantially improved the manuscript. This is a contribution to International Geoscience 1212 Program 639 (IGCP-639) "Sea-level changes from minutes to millennia". 1213

1215 **REFERENCES**

- Abramson, H.F., 1998. Evidence for tsunamis and earthquakes during the last 3500 years *from Lagoon Creek, a coastal freshwater marsh, northern California* (M.S. thesis,
 Humboldt State University).
 Adams, J., 1990. Paleoseismicity of the Cascadia subduction zone: Evidence from
- Adams, J., 1990. Falcoseismerty of the Caseadra subduction zone. Evidence from
 turbidites off the Oregon-Washington margin. *Tectonics*, 9(4), pp.569-583.
 Allen, J.R.L., 1989. Evolution of salt-marsh cliffs in muddy and sandy systems: a
- Allen, J.R.L., 1989. Evolution of salt-marsh cliffs in muddy and sandy systems: a
 qualitative comparison of British west-coast estuaries. *Earth Surface Processes and Landforms*, 14(1), pp.85-92.
- Allen, J.R.L., 1997. Simulation models of salt-marsh morphodynamics: some
 implications for high-intertidal sediment couplets related to sea-level change.
 Sedimentary Geology, *113*(3-4), pp.211-223.
- Allen, J.R., 2000. Morphodynamics of Holocene salt marshes: a review sketch from the
 Atlantic and Southern North Sea coasts of Europe. *Quaternary Science Reviews*,
 19(12), pp.1155-1231.
- Atwater, B.F., 1987. Evidence for great Holocene earthquakes along the outer coast of
 Washington State. *Science*, *236*(4804), pp.942-944.
- Atwater, B.F., 1992. Geologic evidence for earthquakes during the past 2000 years along
 the Copalis River, southern coastal Washington. *Journal of Geophysical Research: Solid Earth*, 97(B2), pp.1901-1919.
- Atwater, B.F. and Hemphill-Haley, E., 1997. *Recurrence intervals for great earthquakes of the past 3,500 years at northeastern Willapa Bay, Washington* (No. 1576).
 USGPO; Information Services [distributor].
- Atwater, B.F., Tuttle, M.P., Schweig, E.S., Rubin, C.M., Yamaguchi, D.K. and Hemphill Haley, E., 2003. Earthquake recurrence inferred from paleoseismology.
 Developments in Quaternary Sciences, 1, pp.331-350.
- Benson, B.E., Atwater, B.F., Yamaguchi, D.K., Amidon, L.J., Brown, S.L., and Lewis,
 R.C., 2001, Renewal of Tidal Forests in Washington State after a Subduction
 Earthquake in A.D. 1700: Quaternary Research, v. 56, p. 139–147, doi:
 10.1006/gres.2001.2251.
- Ramsey, C.B., 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. *Radiocarbon*, *37*(2), pp.425-430.
- Bronk Ramsey, C., 2008. Radiocarbon dating: Revolutions in Understanding.
 Archaeometry, 50(2), pp.249-275.
- Ramsey, C.B., 2009, Bayesian analysis of radiocarbon dates: Radiocarbon, v. 51, p. 337–
 360.
- Bronk Ramsey, C., 2009b, Dealing with outliers and offsets in radiocarbon dating:
 Radiocarbon, v. 51, p. 1023–1045, https:// doi .org /10 .1017
 /S0033822200034093.
- Ramsey, C.B. and Lee, S., 2013. Recent and planned developments of the program OxCal. *Radiocarbon*, 55(2), pp.720-730.
- Cahill, N., Kemp, A.C., Horton, B.P. and Parnell, A.C., 2016. A Bayesian hierarchical
 model for reconstructing relative sea level: from raw data to rates of change.
 Climate of the Past, *12*(2), pp.525-542.

1260	Cahoon, D.R., Lynch, J.C. and Powell, A.N., 1996. Marsh vertical accretion in a southern
1261	California estuary, USA. Estuarine, Coastal and Shelf Science, 43(1), pp.19-32.
1262	Clarke, S.H. and Carver, G.A., 1992. Late Holocene tectonics and paleoseismicity,
1263	southern Cascadia subduction zone. Science, 255(5041), pp.188-192.
1264	Darienzo, M.E. and Peterson, C.D., 1990. Episodic tectonic subsidence of late Holocene
1265	salt marshes, northern Oregon central Cascadia margin. <i>Tectonics</i> , 9(1), pp.1-22
1266	Darienzo, M.E., Peterson, C.D. and Clough, C., 1994. Stratigraphic evidence for great
1267	subduction-zone earthquakes at four estuaries in northern Oregon, USA. Journal
1268	of Coastal Research, pp.850-876.
1269	Davies, M.H., Mix, A.C., Stoner, J.S., Addison, J.A., Jaeger, J., Finney, B. and Wiest, J.,
1270	2011. The deglacial transition on the southeastern Alaska Margin: Meltwater
1271	input, sea level rise, marine productivity, and sedimentary anoxia.
1272	Paleoceanography and Paleoclimatology, 26(2).
1273	de Rijk, S., 1995. Salinity control on the distribution of salt marsh foraminifera (Great
1274	Marshes, Massachusetts). The Journal of Foraminiferal Research, 25(2), pp.156-
1275	166.
1276	Dura, T., Horton, B.P., Cisternas, M., Ely, L.L., Hong, I., Nelson, A.R., Wesson, R.L.,
1277	Pilarczyk, J.E., Parnell, A.C. and Nikitina, D., 2017. Subduction zone slip
1278	variability during the last millennium, south-central Chile. Quaternary Science
1279	<i>Reviews</i> , 175, pp.112-137.
1280	Engelhart, S.E., Horton, B.P., Nelson, A.R., Hawkes, A.D., Witter, R.C., Wang, K.,
1281	Wang, P.L. and Vane, C.H., 2013. Testing the use of microfossils to reconstruct
1282	great earthquakes at Cascadia. <i>Geology</i> , 41(10), pp.1067-1070.
1283	Engelhart, S.E., Horton, B.P., Vane, C.H., Nelson, A.R., Witter, R.C., Brody, S.R. and
1284	Hawkes, A.D., 2013. Modern foraminifera, δ 13 C, and bulk geochemistry of
1285	central Oregon tidal marshes and their application in paleoseismology.
1286	Palaeogeography, Palaeoclimatology, Palaeoecology, 377, pp.13-27.
1287	Engelhart, S.E., Hemphill-Haley, E., Kelsey, H.M., and Padgett, J.S. Refined Estimates of
1288	Coseismic Subsidence along the Southern Cascadia Subduction Zone in Northern
1289	Humboldt Bay (Arcata Bay): Collaborative Research with University of Rhode
1290	Island and Humboldt State University. No. G14AP00128 and G14AP00129. U.S.
1291	Geological Survey.
1292	Enkin, R.J., Dallimore, A., Baker, J., Southon, J.R. and Ivanochko, T., 2013. A new high-
1293	resolution radiocarbon Bayesian age model of the Holocene and Late Pleistocene
1294	from core MD02-2494 and others, Effingham Inlet, British Columbia, Canada;
1295	with an application to the paleoseismic event chronology of the Cascadia
1296	Subduction Zone. Canadian Journal of Earth Sciences, 50(7), pp.746-760.
1297	Fairbanks, R.G., Mortlock, R.A., Chiu, T.C., Cao, L., Kaplan, A., Guilderson, T.P.,
1298	Fairbanks, T.W., Bloom, A.L., Grootes, P.M. and Nadeau, M.J., 2005.
1299	Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired
1300	230Th/234U/238U and 14C dates on pristine corals. <i>Quaternary Science Reviews</i> ,
1301	24(16-17), pp.1781-1796.
1302	Fatela, F. and Taborda, R., 2002. Confidence limits of species proportions in microfossil
1303	assemblages. Marine Micropaleontology, 45(2), pp.169-174.
1304	Friedrichs, C.T. and Perry, J.E., 2001. Tidal salt marsh morphodynamics: a synthesis.
1305	Journal of Coastal Research, pp.7-37.

1306	Gabet, E.J., 1998. Lateral migration and bank erosion in a saltmarsh tidal channel in San
1307	Francisco Bay, California. Estuaries, 21(4), pp.745-753.
1308	Garrett, E., Shennan, I., Woodroffe, S.A., Cisternas, M., Hocking, E.P. and Gulliver, P.,
1309	2015. Reconstructing paleoseismic deformation, 2: 1000 years of great
1310	earthquakes at Chucalén, south central Chile. Quaternary Science Reviews, 113,
1311	pp.112-122.
1312	Garrison-Laney, C.E., 1998. Diatom evidence for tsunami inundation from Lagoon
1313	Creek, a coastal freshwater pond, Del Norte County, California (Doctoral
1314	dissertation, Humboldt State University).
1315	Gehrels, W.R., Belknap, D.F. and Kelley, J.T., 1996. Integrated high-precision analyses
1316	of Holocene relative sea-level changes: lessons from the coast of Maine.
1317	Geological Society of America Bulletin, 108(9), pp.1073-1088.
1318	Graehl, N.A., Kelsey, H.M., Witter, R.C., Hemphill-Haley, E. and Engelhart, S.E., 2015.
1319	Stratigraphic and microfossil evidence for a 4500-year history of Cascadia
1320	subduction zone earthquakes and tsunamis at Yaquina River estuary, Oregon,
1321	USA. Bulletin, 127(1-2), pp.211-226.
1322	Goldfinger, C., Nelson, C.H., Morey, A.E., Johnson, J.E., Patton, J.R., Karabanov, E.B.,
1323	Gutierrez-Pastor, J., Eriksson, A.T., Gracia, E., Dunhill, G. and Enkin, R.J., 2012.
1324	Turbidite event historyMethods and implications for Holocene paleoseismicity
1325	of the Cascadia subduction zone (No. 1661-F). US Geological Survey.
1326	Guilbault, J.P., Clague, J.J. and Lapointe, M., 1995. Amount of subsidence during a late
1327	Holocene earthquake—evidence from fossil tidal marsh foraminifera at
1328	Vancouver Island, west coast of Canada. Palaeogeography, Palaeoclimatology,
1329	<i>Palaeoecology</i> , <i>118</i> (1), pp.49-71.
1330	Guilbault, J.P., Clague, J.J. and Lapointe, M., 1996. Foraminiferal evidence for the
1331	amount of coseismic subsidence during a late Holocene earthquake on Vancouver
1332	Island, west coast of Canada. <i>Quaternary Science Reviews</i> , 15(8), pp.913-937.
1333	Haslett, J. and Parnell, A., 2008. A simple monotone process with application to
1334	radiocarbon-dated depth chronologies. Journal of the Royal Statistical Society:
1335	Series C (Applied Statistics), 57(4), pp.399-418.
1336	Hawkes, A.D., Horton, B.P., Nelson, A.R. and Hill, D.F., 2010. The application of
1337	intertidal foraminifera to reconstruct coastal subsidence during the giant Cascadia
1338	earthquake of AD 1700 in Oregon, USA. Quaternary International, 221(1),
1339	pp.116-140.
1340	Hawkes, A.D., Horton, B.P., Nelson, A.R., Vane, C.H. and Sawai, Y., 2011. Coastal
1341	subsidence in Oregon, USA, during the giant Cascadia earthquake of AD 1700.
1342	<i>Quaternary Science Reviews</i> , 30(3), pp.364-376.
1343	Hemphill-Haley, E., 1995. Diatom evidence for earthquake-induced subsidence and
1344	tsunami 300 yr ago in southern coastal Washington. Geological Society of
1345	<i>America Bulletin</i> , 107(3), pp.367-378.
1346	Hemphill-Haley, E., Kelsey, H.M., Graehl, N., Casso, M., Caldwell, D., Loofbourrow,
1347	C., Robinson, M., Vermeer, J., and Southwick, E., 2019, Recent sandy deposits at
1348	five northern California coastal wetlands - Stratigraphy, diatoms, and implications
1349	for storm and tsunami hazards. U.S. Geological Survey Scientific Investigations
1350	<i>Report 2018–5111</i> , 187 p., <u>https://doi.org/10.3133/sir20185111</u> .
1351	

1352	Holden, P.B., Birks, H.J.B., Brooks, S.J., Bush, M.B., Hwang, G.M., Matthews-Bird, F.,
1353	Valencia, B.G. and Van Woesik, R., 2017. BUMPER v1. 0: a Bayesian user-
1354	friendly model for palaeo-environmental reconstruction.
1355	Horton, B.P. and Edwards, R.J., 2005. The application of local and regional transfer
1356	functions to the reconstruction of Holocene sea levels, north Norfolk, England.
1357	<i>The Holocene</i> , 15(2), pp.216-228.
1358	Horton, B. P., & Edwards, R. J., 2006. Quantifying Holocene Sea Level Change Using
1359	Intertidal Foraminifera: Lessons from the British Isles. Cushman Foundation for
1360	Foraminiferal Research Special Publication, 40, 97.
1361	Jull, A.J.T., 2007a. Radiocarbon dating: AMS method. In: Elias, S.A. (Ed.),
1362	Encyclopedia of Quaternary Science. Elsevier, Amsterdam, pp. 2911–2918.
1363	Kelsey, H.M., Witter, R.C. and Hemphill-Haley, E., 1998. Response of a small Oregon
1364	estuary to coseismic subsidence and postseismic uplift in the past 300 years.
1365	Geology, 26(3), pp.231-234.
1366	Kelsey, H.M., Witter, R.C. and Hemphill-Haley, E., 2002. Plate-boundary earthquakes
1367	and tsunamis of the past 5500 yr, Sixes River estuary, southern Oregon.
1368	Geological Society of America Bulletin, 114(3), pp.298-314.
1369	Kelsey, H. M., Nelson, A. R. Witter, R. C., and Hemphill-Haley, E. 2005, Tsunami
1370	history of an Oregon coastal lake reveals a 4,600 year record of great earthquakes
1371	on the Cascadia subduction zone, Geological Society of America Bulletin, 117,
1372	1009-1032.
1373	Kelsey, H.M., Engelhart, S.E., Pilarczyk, J.E., Horton, B.P., Rubin, C.M., Daryono,
1374	M.R., Ismail, N., Hawkes, A.D., Bernhardt, C.E. and Cahill, N., 2015.
1375	Accommodation space, relative sea level, and the archiving of paleo-earthquakes
1376	along subduction zones. Geology, 43(8), pp.675-678.
1377	Kemp, A.C., Horton, B.P., Culver, S.J., Corbett, D.R., van de Plassche, O., Gehrels,
1378	W.R., Douglas, B.C. and Parnell, A.C., 2009. Timing and magnitude of recent
1379	accelerated sea-level rise (North Carolina, United States). Geology, 37(11),
1380	pp.1035-1038.
1381	Kemp, A.C., Horton, B.P., Donnelly, J.P., Mann, M.E., Vermeer, M. and Rahmstorf, S.,
1382	2011. Climate related sea-level variations over the past two millennia.
1383	Proceedings of the National Academy of Sciences, 108(27), pp.11017-11022.
1384	Kemp, A.C., Nelson, A.R. and Horton, B.P., 2013. Radiocarbon dating of plant
1385	macrofossils from tidal-marsh sediment. in: Shroder, J. F., (ed.) Treatise on
1386	Geomorphology, 14, 370-388, Academic Press, San Diego.
1387	Kemp, A.C., Cahill, N., Engelhart, S.E., Hawkes, A.D. and Wang, K., 2018. Revising
1388	Estimates of Spatially Variable Subsidence during the AD 1700 Cascadia
1389	Earthquake Using a Bayesian Foraminiferal Transfer Function. Bulletin of the
1390	Seismological Society of America, 108(2), pp.654-673.
1391	Letzsch, W.S. and Frey, R.W., 1980. Deposition and erosion in a Holocene salt marsh,
1392	Sapelo Island, Georgia. Journal of Sedimentary Research, 50(2), pp.529-542.
1393	Li, W.H., 1992. Evidence for the late Holocene coseismic subsidence in the Lower Eel
1394	River valley, Humboldt county, Northern California: An application of
1395	foraminiferal zonation to indicate tectonic submergence (Doctoral dissertation,
1396	Humboldt State University).

1397	Lorito, S., Romano, F., Atzori, S., Tong, X., Avallone, A., McCloskey, J., Cocco, M.,
1398	Boschi, E. and Piatanesi, A., 2011. Limited overlap between the seismic gap and
1399	coseismic slip of the great 2010 Chile earthquake. <i>Nature Geoscience</i> , 4(3),
1400	p.173.
1401	Mariotti, G., Kearney, W.S. and Fagherazzi, S., 2016. Soil creep in salt marshes.
1402	<i>Geology</i> , 44(6), pp.459-462.
1403	Milker, Y., Horton, B.P., Vane, C.H., Engelhart, S.E., Nelson, A.R., Witter, R.C., Khan,
1404	N.S. and Bridgeland, W.T., 2015. Annual and seasonal distribution of intertidal
1405	foraminifera and stable carbon isotope geochemistry, Bandon Marsh, Oregon,
1406	USA. The Journal of Foraminiferal Research, 45(2), pp.146-155.
1407	Milker, Y., Nelson, A.R., Horton, B.P., Engelhart, S.E., Bradley, L-A., and Witter, R.C.,
1408	2016. Differences in coastal subsidence in southern Oregon (USA) during at least
1409	six prehistoric megathrust earthquakes. Quaternary Science Reviews.
1410	Nelson, A.R., 1992. Discordant 14C ages from buried tidal-marsh soils in the Cascadia
1411	subduction zone, southern Oregon coast. <i>Quaternary Research</i> , 38(1), pp.74-90.
1412	Nelson, A.R., Shennan, I. and Long, A.J., 1996a. Identifying coseismic subsidence in
1413	tidal-wetland stratigraphic sequences at the Cascadia subduction zone of western
1414	North America. Journal of Geophysical Research: Solid Earth, 101(B3), pp.6115-
1415	6135.
1416	Nelson, A.R., Jennings, A.E. and Kashima, K., 1996b. An earthquake history derived
1417	from stratigraphic and microfossil evidence of relative sea-level change at Coos
1418	Bay, southern coastal Oregon. Geological Society of America Bulletin, 108(2),
1419	pp.141-154.
1420	Nelson, A.R., Sawai, Y., Jennings, A.E., Bradley, L.A., Gerson, L., Sherrod, B.L.,
1421	Sabean, J. and Horton, B.P., 2008. Great-earthquake paleogeodesy and tsunamis
1422	of the past 2000 years at Alsea Bay, central Oregon coast, USA. Quaternary
1423	<i>Science Reviews</i> , <i>27</i> (7), pp.747-768.
1424	Nelson, A.R., Ota, Y., Umitsu, M., Kashima, K. and Matsushima, Y., 1998. Seismic or
1425	hydrodynamic control of rapid late-Holocene sea-level rises in southern coastal
1426	Oregon, USA?. <i>The Holocene</i> , 8(3), pp.287-299.
1427	Nelson, A.R., Asquith, A.C. and Grant, W.C., 2004. Great earthquakes and tsunamis of
1428	the past 2000 years at the Salmon River estuary, central Oregon coast, USA.
1429	Bulletin of the Seismological Society of America, 94(4), pp.1276-1292.
1430	Nelson, A.R., Hawkes, A.D., Sawai, Y., Engelhart, S.E., Witter, R., Grant-Walter, W.C.,
1431	Bradley, L.A., Dura, T., Cahill, N. and Horton, B., 2020. Identifying the greatest
1432	earthquakes of the past 2000 years at the Nehalem River Estuary, Northern
1433	Oregon Coast, USA. <i>OpenQuaternary</i> ., 6(2), pp.1-30.
1434	Parnell, A.C., Haslett, J., Allen, J.R., Buck, C.E. and Huntley, B., 2008. A flexible
1435	approach to assessing synchroneity of past events using Bayesian reconstructions
1436	of sedimentation history. Quaternary Science Reviews, 27(19-20), pp.1872-1885.
1437	Patton, J., 2004, Late Holocene coseismic subsidence and coincident tsunamis, southern
1438	Cascadia subduction zone, Hookton Slough, Humboldt Bay, California. M.S.
1439	thesis, Humboldt State University, /6p.
1440	Pickart, A.J. and Hesp, P.A., 2019. Spatio-temporal geomorphological and ecological
1441	evolution of a transgressive dunefield system, Northern California, USA. <i>Global</i>
1442	and planetary change, 172, pp.88-103.

1443	Pritchard, C. J., 2004. Late Holocene relative sea-level changes, Arcata Bay, California:
1444	Evaluation of freshwater syncline movement using coseismically buried soil
1445	horizons. M.S. thesis, Humboldt State University, Department of Geology.
1446	Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck,
1447	C.E., Cheng, H., Edwards, R.L., Friedrich, M. and Grootes, P.M., 2013. IntCal13
1448	and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP.
1449	<i>Radiocarbon</i> , 55(4), pp.1869-1887.
1450	Rothwell, R.G. and Rack, F.R., 2006. New techniques in sediment core analysis: an
1451	introduction. Geological Society, London, Special Publications, 267(1), pp.1-29.
1452	Satake, K., Shimazaki, K., Tsuji, Y. and Ueda, K., 1996. Time and size of a giant
1453	earthquake in Cascadia inferred from Japanese tsunami records of January 1700.
1454	Nature, 379(6562), p.246.
1455	Satake, K., Wang, K. and Atwater, B.F., 2003. Fault slip and seismic moment of the 1700
1456	Cascadia earthquake inferred from Japanese tsunami descriptions. Journal of
1457	Geophysical Research: Solid Earth, 108(B11).
1458	Schlosser, S., and A. Eicher. 2012. The Humboldt Bay and Eel River Estuary Benthic
1459	Habitat Project. California Sea Grant Publication T-075. 246 p.
1460	Scott, D.B. and Medioli, F.S., 1980. Living vs. total foraminiferal populations: their
1461	relative usefulness in paleoecology. Journal of Paleontology, pp.814-831.
1462	Shennan, I., Long, A.J., Rutherford, M.M., Green, F.M., Innes, J.B., Lloyd, J.M., Zong,
1463	Y. and Walker, K.J., 1996. Tidal marsh stratigraphy, sea-level change and large
1464	earthquakes, I: a 5000 year record in Washington, USA. Quaternary Science
1465	<i>Reviews</i> , 15(10), pp.1023-1059.
1466	Trachsel, M. and Telford, R.J., 2017. All age-depth models are wrong, but are getting
1467	better. The Holocene, 27(6), pp.860-869.
1468	Troels-Smith, J., 1955. Karakterisering af lose jordarter. Characterization of
1469	unconsolidated sediments.
1470	Törnqvist, T.E., de Jong, A.F. and van der Borg, K., 1990. Comparison of AMS 14C ages
1471	of organic deposits and macrofossils: a progress report. Nuclear Instruments and
1472	Methods in Physics Research Section B: Beam Interactions with Materials and
1473	<i>Atoms</i> , 52(3-4), pp.442-445.
1474	van de Plassche, O., 1979, Sea-level research in the provinces of south Holland,
1475	Netherlands: Proceedings of the "1978 international symposium of coastal
1476	evolution in the Quaternary", Sao Paulo, Brazil, p. 534-551.
1477	van de Plassche, O., van der Borg, K. and de Jong, A.F., 1998. Sea level-climate
1478	correlation during the past 1400 yr. <i>Geology</i> , 26(4), pp.319-322.
1479	Valentine DW 1997 Late Holocene stratigraphy Humboldt Bay California: evidence
1400	valentine, D. (., 1992. Eate Hotocone stratigraphy, Hambolat Buy, Catijornia. evidence
1480	for late Holocene paleoseismicity of the southern Cascadia subduction zone. M.S.
1480 1481	for late Holocene paleoseismicity of the southern Cascadia subduction zone. M.S. thesis, Humboldt State University.
1480 1481 1482	 for late Holocene paleoseismicity of the southern Cascadia subduction zone. M.S. thesis, Humboldt State University. Valentine, D.W., Keller, E.A., Carver, G., Li, W.H., Manhart, C. and Simms, A.R., 2012.
1480 1481 1482 1483	 for late Holocene paleoseismicity of the southern Cascadia subduction zone. M.S. thesis, Humboldt State University. Valentine, D.W., Keller, E.A., Carver, G., Li, W.H., Manhart, C. and Simms, A.R., 2012. Paleoseismicity of the southern end of the Cascadia subduction zone,
1480 1481 1482 1483 1484	 for late Holocene paleoseismicity of the southern Cascadia subduction zone. M.S. thesis, Humboldt State University. Valentine, D.W., Keller, E.A., Carver, G., Li, W.H., Manhart, C. and Simms, A.R., 2012. Paleoseismicity of the southern end of the Cascadia subduction zone, northwestern California. Bulletin of the Seismological Society of America, 102(3),
1480 1481 1482 1483 1484 1485	 for late Holocene paleoseismicity of the southern Cascadia subduction zone. M.S. thesis, Humboldt State University. Valentine, D.W., Keller, E.A., Carver, G., Li, W.H., Manhart, C. and Simms, A.R., 2012. Paleoseismicity of the southern end of the Cascadia subduction zone, northwestern California. <i>Bulletin of the Seismological Society of America</i>, 102(3), pp.1059-1078.
1480 1481 1482 1483 1483 1484 1485 1486	 for late Holocene paleoseismicity of the southern Cascadia subduction zone. M.S. thesis, Humboldt State University. Valentine, D.W., Keller, E.A., Carver, G., Li, W.H., Manhart, C. and Simms, A.R., 2012. Paleoseismicity of the southern end of the Cascadia subduction zone, northwestern California. Bulletin of the Seismological Society of America, 102(3), pp.1059-1078. Vick, G.S., 1988. Late Holocene paleoseismicity and relative sea level changes of the
1480 1481 1482 1483 1483 1484 1485 1486 1487	 for late Holocene paleoseismicity of the southern Cascadia subduction zone. M.S. thesis, Humboldt State University. Valentine, D.W., Keller, E.A., Carver, G., Li, W.H., Manhart, C. and Simms, A.R., 2012. Paleoseismicity of the southern end of the Cascadia subduction zone, northwestern California. Bulletin of the Seismological Society of America, 102(3), pp.1059-1078. Vick, G.S., 1988. Late Holocene paleoseismicity and relative sea level changes of the Mad River Slough, northern Humboldt Bay, California. M.S. thesis, Humboldt

1489	Wang, P.L., Engelhart, S.E., Wang, K., Hawkes, A.D., Horton, B.P., Nelson, A.R. and
1490	Witter, R.C., 2013. Heterogeneous rupture in the great Cascadia earthquake of
1491	1700 inferred from coastal subsidence estimates. Journal of Geophysical
1492	Research: Solid Earth, 118(5), pp.2460-2473.
1493	Wirth, E.A. and Frankel, A.D., 2019. Impact of Down-Dip Rupture Limit and High-
1494	Stress Drop Subevents on Coseismic Land-Level Change during Cascadia
1495	Megathrust Earthquakes. Bulletin of the Seismological Society of America, 109(6),
1496	pp.2187-2197.
1497	Witter, R.C., Kelsey, H.M. and Hemphill-Haley, E., 2001. Pacific storms, El Nino and
1498	tsunamis: competing mechanisms for sand deposition in a coastal marsh, Euchre
1499	Creek, Oregon. Journal of Coastal Research, pp.563-583.
1500	Witter, R.C., Kelsey, H.M. and Hemphill-Haley, E., 2003. Great Cascadia earthquakes
1501	and tsunamis of the past 6700 years, Coquille River estuary, southern coastal
1502	Oregon. Geological Society of America Bulletin, 115(10), pp.1289-1306.
1503	Witter, R.C., Jaffe, B., Zhang, Y. and Priest, G., 2012. Reconstructing hydrodynamic
1504	flow parameters of the 1700 tsunami at Cannon Beach, Oregon, USA. Natural
1505	<i>Hazards</i> , <i>63</i> (1), pp.223-240.
1506	Witter, R.C., Zhang, Y.J., Wang, K., Priest, G.R., Goldfinger, C., Stimely, L., English,
1507	J.T. and Ferro, P.A., 2013. Simulated tsunami inundation for a range of Cascadia
1508	megathrust earthquake scenarios at Bandon, Oregon, USA. Geosphere, 9(6),
1509	pp.1783-1803.
1510	Witter, R., Briggs, R., Engelhart, S.E., Gelfenbaum, G., Koehler, R.D., Nelson, A., Selle,
1511	S.L., Corbett, R. and Wallace, K., 2019. Evidence for frequent, large tsunamis
1512	spanning locked and creeping parts of the Aleutian megathrust. Bulletin, 131(5-6),
1513	pp.707-729.
1514	

1516 FIGURE CAPTION LIST

1517

Figure 1 A. Physiography and major features of the Cascadia subduction zone (base map data source: GEBCO Compilation Group (2019) GEBCO 2019 Grid,

doi:10.5285/836f016a-33be-6ddc-e053-6c86abc0788e) and modified from Nelson et al.,

(2020). The deformation front of the subduction-zone megathrust fault on the ocean floor

(black barbed line) is near the bathymetric boundary between the continental slope andabyssal plain. Dots mark estuaries, lagoons, or lakes with evidence for coastal

subsidence, tsunamis, and/or turbidites accompanying subduction-zone earthquakes, B.

Location map of the southern Cascadia coastline. Dots mark estuaries or lakes with

- evidence for coastal subsidence and/or tsunami.
- 1527

Figure 2. Location maps A. Humboldt Bay, B. Mad River Slough, C. McDaniel Creek, D.Jacoby Creek.

1530

Figure 3. Simplified lithostratigraphy of northern Humboldt Bay at A. McDaniel Creek, B. Mad River Slough and C. Jacoby Creek. Parenthesized numbers below the core site numbers are elevations of individual core sites, accurate to the nearest cm. Core depths are shown relative to present-day elevation. Calibrated ¹⁴C ages (ka; mode of ¹⁴C

distribution rounded to the nearest century) are shown for samples above and below contacts (more complete radiocarbon age data in Table 2).

1537

Figure 4. Alternative age models of subsidence contacts C, D, and E from northern Humboldt Bay using Bchron (green), OxCal Sequence model (orange), and OxCal Psequence model (blue).

1541

Figure 5. Plots showing McDaniel Creek stratigraphy for four contacts, A. Contact A at
MD.3; B. Contact C at MD.6; C. Contact D at MD.13; and D. Contact E at MD.5. The
plots include photo images, CT scans (rainbow scale; warm colors=more dense and cool
colors=less dense), percent foraminifera (grey bar), and results of BTF reconstructed sea
level with error bars that represent 1σ uncertainties. HOF, (highest occurrence of
foraminifera). SWLI (standardized water level index).

1548

Figure 6. Comparison of dated mud-over-peat and mud-over-upland soil contacts beneath 1549 southern Cascadia salt marshes (Talbot Creek: Milker et al, 2016; Coquille River: Witter 1550 et al., 2003; Southern Humboldt Bay: Patton, 2004; Eel River: Li, 1992) and tsunami 1551 deposits at Lagoon Creek (Abramson, 1998 and Garrison-Laney, 1998) and Bradley Lake 1552 (Kelsey et al., 2005) with OxCal Sequence modeled timing of subsidence contacts for 1553 northern Humboldt Bay and ages of marine turbidites (vertical black arrows show 20 1554 uncertainties from Goldfinger et al., 2012). Evidence Absent* To date evidence of 1555 coseismic subsidence in the time range ca. 500-2000 yrs BP has not been found in the 1556 latitude range 41.7-42.9°N. Absence of evidence may be because megathrust slip was 1557 insufficient to cause vertical deformation to be recorded by the salt marsh and/or because 1558 vertical deformation was further offshore and only minimal vertical deformation occurred 1559

- at coastal sites. There is also the possibility that, for the above time and latitude range, further field work in salt marshes may reveal subsidence stratigraphy

Table 1. Attributes of buried organic-rich units from cores.										
Number of	Depth range of	Nature of buried	Thickness range	Thickness range of						
cores that	buried organic-rich	organic-rich unit	of organic-rich	mud deposit						
sample the	unit	upper contact	unit (cm)	overlying buried						
unit	upper contact (cm)	11		organic-rich unit						
	· · · · · · · · · · · · · · · · · · ·			(cm)						
				()						
Mad River Slough										
6	94-136	5a, 1s	15-35	68-97						
2	169-174	1a, 1s	3-4	5-7						
6	184-227	3a, 2s, 1c	8-20	24-65						
4	234-275	3s, 3c	15-20	32-72						
2	295-303	2c	4-12	12-17						
McDaniel Creek										
15	78-145	11a, 3s, 1c	5-24	60-110						
9	171-213	3a, 4s, 2c	4-12	18-62						
10	226-257	2a, 4s, 4c	4-33	32-110						
9	250-380	2s, 4c, 2g	4-13	16-196						
	Ja	coby Creek								
8	48-116	6a, 2s	8-18	11-86						
6	113-133	2s, 4c	5-11	18-70						
6	163-203	1s, 4c, 1g	4-8	16-118						
	Ta Number of cores that sample the unit 6 2 6 4 2 6 4 2 15 9 10 9 10 9 8 6 6	Table 1. Attributes of buNumber of cores that sample the unitDepth range of buried organic-rich unitunitupper contact (cm)Mad694-136 169-1746184-227 234-2754234-275 295-3037Med Med1578-145 99171-213 1010226-257 99250-380 4848-116 66113-133 66163-203	Table 1. Attributes of buried organic-rich unNumber of cores that unitDepth range of buried organic-rich unitNature of buried organic-rich unit upper contactunitunitupper contact (cm) 6 94-1365a, 1s 5a, 1s2169-1741a, 1s 66184-2273a, 2s, 1c 3s, 3c2295-3032c C $McDaniel Creek$ 151578-14511a, 3s, 1c 3a, 4s, 2c10226-2572a, 4s, 4c 2s, 4c, 2g9250-3802s, 4c, 2g 2s, 4c, 2g B 48-1166a, 2s 66113-1332s, 4c 2s, 4c, 1g	Table 1. Attributes of buried organic-rich units from cores.Number of cores that sample the unitDepth range of organic-rich upper contactNature of buried organic-rich unit upper contactThickness range of organic-rich unit (cm) $Mad River Slough$ Mad River SloughMad River Slough694-1365a, 1s15-352169-1741a, 1s3-46184-2273a, 2s, 1c8-204234-2753s, 3c15-202295-3032c4-12McDaniel CreekMacDaniel Creek1578-14511a, 3s, 1c5-249171-2133a, 4s, 2c4-1210226-2572a, 4s, 4c4-339250-3802s, 4c, 2g4-1310226-2572a, 4s, 4c4-339250-3802s, 4c, 2g4-131013-1332s, 4c5-111013-1332s, 4c5-111013-1332s, 4c4-131013-1331s, 4c, 1g4-8						

Note: Depth and thicknesses are rounded to the nearest centimeter: thicknesses <1 cm are rounded to the nearest millimeter.

*Contacts: a-abrupt, 1 mm; s-sharp, 1-5 mm; c-clear, >5-10 mm; g-gradual, >10 mm. Number refers to number of observations.

Calibrated	Analytical	Lab Number	¹³ C (‰)	Site	Depth (cm)	Description of Dated	Age	Contact
Age (2σ cal	Age (1σ 14C			Identifier		Material	inter-	
yr BP)*	yrs BP)†						pretation	
				Mad	River Slough:			
307 - 1	235±20	OS-117742	-24.84	MR.14.02.B	140.5-141.5	Herbaceous stem	Maximum	А
511 - 476	420±15	OS-117743	-13.89	MR.14.02.B	161.5-162.5	Distichlis rhizome	Maximum	В
956 - 802	990±20	OS-117744	-11.39	MR.14.02.B	225.5-226	2 Distichlis rhizomes	Maximum	С
956 - 912	1000 ± 15	OS-119964	-26.65	MR.14.05.B	188.5-189	Herbaceous stem	Maximum	С
1057 - 961	1100 ± 20	OS-117822	-24.8	MR.14.02.A	273-273.5	Detrital grindelia stem	Minimum	D
1280 - 1183	1290±15	OS-119965	-25.69	MR.14.05.C	246-247	Rhizome	Maximum	D
1690 - 1545	1690±20	OS-118743	-25.57	MR.14.02.A	297.50-298.25	~25 seeds (atriplex and potamogeton)	Maximum	Е
				Mcl	Daniel Creek:			
283 - 1	170±15	OS-119960	-24.32	MD.14.03.C	117-118	Herbaceous stem	Maximum	А
926 - 798	955±15	OS-119963	-25.64	MD.14.06.C	168.5-169.5	Rhizome	Minimum	С
951 - 804	990±15	OS-117738	-26.03	MD.14.06.C	169.5-170.5	2 rhizomes	Maximum	С
965 - 929	1040±15	OS-117739	-26.82	MD.14.03.C	212.5-213.5	Rhizome	Maximum	С
1399 - 1328	1480±15	OS-119962	-27.84	MD.14.05.A	276-277	Rhizome and stem fragments	Maximum	D
1302-1190	1340 ± 20	OS-134119	-14.11	MD.17.13.D	250-251	Rhizome fragment	Maximum	D
1707 - 1575	1740±15	OS-119961	-27.06	MD.14.05.B1	306.5-307.5	Herbaceous stem (detrital?)	Minimum	Е
1695 - 1565	1720±15	OS-117740	-28.02	MD.14.05.B1	308-309	2 rhizomes	Maximum	Е
1708 - 1614	1750±15	OS-117741	-15.26	MD.14.04.B	379.5-380.5	Distichlis rhizome	Maximum	Е
				Ja	coby Creek:			
289 - 1	195±15	OS-117608	-13.5	JC.14.02.C	81-82	Distichlis rhizome	Maximum	А
1263 - 1082	1240 ± 20	OS-123307	-12.82	JC.14.02.D	104-105	Herbaceous stem (detrital?)	Outlier	N/A
1333 - 1285	1390+20	OS-124863	-24.62	JC.14.02.D	103-105	Potamogeton seed casings (detrital?)	Outlier	N/A
Modern	>Modern	OS-125075	-16.36	JC.14.02.B	100-101	Herbaceous stem (detrital?)	Outlier	N/A
1166 - 968	1130±20	OS-119878	-26.64	JC.14.02.D	130-130.5	Rhizome	Minimum	D
1277 - 1181	1280±20	OS-117609	-27.65	JC.14.02.C	125.5-126	Rhizome fragments	Maximum	D
1692 - 1561	1710±15	OS-119959	-28.43	JC.14.02.C	167.5-168	Wood fragment (detrital)	Minimum	Е
1694 - 1558	1710±20	OS-117610	-27.4	JC.14.02.C	170-171.5	Rhizome or stem	Maximum	Е

Table 2. Summary of northern Humboldt Bay radiocarbon ages

*Calibrated ages in calendar years before 1950 (BP) were calculated using OxCal (version 4.3.4, Bronk Ramsey [2009a]; 95% probability distribution at 2σ) with the IntCal13 dataset of Reimer et al. (2013). [†]Age, calculated using a radiocarbon half-life of 5568 years and reported at one standard deviation in radiocarbon years before 1950 by the National Ocean

Sciences Accelerator Mass Spectrometry Facility, Woods Hole, Massachusetts.

[§]Site identifier codes: MR, Mad River Slough; MD, McDaniel Creek; JC, Jacoby Creek.

Contact	OxCal 4.2 'Sequence'				OxCal 4.2 'P_Sequence'				Bchron calibrated age (yrs BP)						
	calibrated age (yrs BP)					calibrated age (yrs BP)									
	From	То	μ*	σ*	m*	From	То	μ	σ	m	From	То	μ	σ	m
С	924	816	874	30	877	935	825	905	24	917	939	845	867	47	880
D	1,231	1,004	1,117	61	1,118	1,280	1,003	1139	85	1,165	1,273	1,133	1,142	96	1,145
E	1,669	1,575	1,618	28	1,615	1,693	1,595	1,637	32	1,620	1,682	1,587	1,630	59	1,625

Table 3. Summary of Bayesian age models

1 * μ , mean; σ , one standard deviation; m, mode.

		2	
Contact	Core site	Depth of	Subsidence estimate (m)
		contact	
		(cm)	
А	MD.3	115	0.85 ± 0.46
С	MD.6	170	0.42 ± 0.37
D	MD.13	222	0.79±0.47
Е	MD.5	307	≥0.93

Table 4. Summary of subsidence estimates

Table 5. Burled organic field unit autoutes consistent with subduction calliquake origin										
Contact	Sharp (<3mm) contact between buried organic-rich unit and overlying mud	Long-lasting relative sea-level rise (overlying mud >10cm thick)	Fine to very fine sand layer immediately overlies submergence contact	Foraminifera assemblages consistent with abrupt relative sea- level rise across contact	The contact is laterally extensive, e.g., observed across estuary	Calibrated age range (2σ) of buried organic-rich unit is chronologically consistent with regional record of Cascadia subduction zone earthquakes				
						cartiquakes				
A	v	v		v	v	v				
В	\checkmark									
С	\checkmark	\checkmark		\checkmark	~√	\checkmark				
D	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark				
Е	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark				
~not observed at Ja	coby Creek									

T 11 C D 1		• • • •	•	• .1 1 1	. • . • . •	
Table & Ruried ore	ante rich	unit offrihutor	consistent u	with subduc	tion partho	make origin
Table J. Duricu 012	and num	unit autioutes	v Consisioni w	viui subuuc	uon carine	IUAKC OTIETIT

С 0 •15 16 250 m Old Samoa Rd 40.8636° N -•17 N •18 12 ●13 6 - 40.86° N 9. 4 11^{• 8•} 5• •4 •3 124.108° W 124.103° W

- GSA Data Repository 2020###
- 2
- ³ "Timing and amount of southern Cascadia earthquake subsidence
- 4 over the past 1,700 years at northern Humboldt Bay, California,
- 5 USA"
- 6
- 7

Table DR1. This table summarizes criteria used to select the Poisson k parameter. The criteria come from 26 different model runs using different values of k.

<i>k</i> value	Agreement Index (model)	Number of A indices <60%	Mean Confidence Interval (yr)	Standard Deviation	Normalized Age Deviation	Standard Deviation
0.003	70.1	2	89.47	40.09	0.95	1.04
0.005	69.7	3	89.12	39.75	0.76	0.60
0.007	69.9	1	83.88	36.72	0.98	1.03
0.01	71.5	1	83.59	37.01	1.04	1.08
0.02	68.4	2	87.94	40.49	0.99	1.21
0.03	65.6	2	86.18	36.94	1.01	0.95
0.04	65.1	3	85.18	38.26	0.82	0.62
0.05	66.4	2	83.00	39.05	0.95	0.76
0.06	60.6	2	78.00	35.33	1.11	1.10
0.07	59.8	3	66.65	32.26	1.53	1.34
0.08	62.3	3	81.29	39.57	1.22	0.98
0.09	58.3	4	85.88	44.25	1.18	1.24
0.1	56.5	5	87.53	46.50	1.16	1.04
0.2	34.1	5	92.56	44.21	4.35	11.39
0.3	14.2	6	61.06	47.63	3.77	4.69
0.4	6.6	6	55.06	42.38	11.34	19.90
0.5	8.7	6	54.71	42.78	6.19	8.31
0.6	6.1	6	60.94	48.75	8.41	14.84
0.8	8.2	6	55.35	48.56	7.10	9.76
1	5.9	6	59.06	48.26	4.48	6.49
2	4.2	6	79.41	44.14	6.21	10.10
3	3.6	6	56.47	34.85	7.93	11.51
4	1.2	8	56.24	36.50	12.14	17.13
5	1.1	9	55.24	32.31	7.03	12.38
6	0.6	10	51.24	33.82	8.37	8.95
8	0	11	19.47	7.43	20.57	16.90
10	0	11	17.94	5.61	15.46	10.46

							-						Amodel=	70.1					Normalized
	UNMODELLED (BP)						MODELLED (BP)						Aoverall=	77.8				Confidence	Age
	from	to	%	μ	σ	m	from	to	%	μ	σ	m	Acomb	Α	LP	С		Interval (yr)	Deviation ¹
2014	L .			-						-									
Boundary surface	-63	-64	95.4	-63	0	-63	-63	-64	95.4	-63	0	-63		100		100)		
1700 CE							251	250	95.4	250	0	250				100)		
R_Date MD.14.06.168.5-169.5	926	798	95.4	860	39	850	934	804	95.5	909	28	920		80.1		80.6	i	130.00	1.75
EQ2				==			935	832	95.4	919	18	924				95.5			
R_Date MR.14.02.B.225-226	955	802	95.4	9 02	40	921	934	915	95.4	924	6	925		161.6		96.3		19.00	3.67
R_Date MD.14.06.C.169.5-170.5	952	803	95.3	913	31	923	934	917	95.4	926	4	926		128.3		93.4		17.00	3.25
R_Date MR.14.05.B.188.5-189.5	959	910	95.4	926	19	927	939	916	95.4	927	5	927		120.9		89.2		23.00	0.20
R_Date MD.14.03.C.212.5-213.5	965	928	95.4	947	11	947	961	921	95.4	937	11	934		70.5		88.3		40.00	0.91
R_Date MR.14.02.A.273-273.5	1058	961	95.4	1008	30	1004	1059	966	95.4	1009	27	1003		98.6		55.6	i	93.00	0.04
R_Date JC.14.02.D.125.5-126	1072	969	95.4	1025	34	1021	1060	974	95.4	1015	27	1009		99.8		60.6	i	86.00	0.37
EQ3				==			1284	967	95.4	1132	116	1132				57.2			
R_Date JC.14.02.D.130-130.5	1278	1181	95.4	1229	29	1233	1284	1184	95.4	1251	28	1263		91.9		71.7	'	100.00	0.79
R_Date MR.14.05.C.246-247	1281	1182	95.4	1232	31	1240	1285	1185	95.4	1256	27	1266		98.5		76.9)	100.00	0.89
R_Date MD.17.13.D.250-251	1302	1190	95.4	1278	20	1283	1298	1188	95.4	1266	24	1272		64.6		87.1		110.00	0.50
R_Date MD.14.05.A.276-277	1401	1326	95.4	1363	18	1363	1395	1320	95.4	1360	18	1361		97.4		100)	75.00	0.17
R_Date JC.14.02.C.168.5-169.5	1695	1557	95.4	1618	41	1609	1690	1569	95.4	1629	34	1617		114.6		5	i	121.00	0.32
R_Date MD.14.05.B1.306.5-307.5	1707	1604	95.4	1654	30	1658	1692	1571	95.4	1632	33	1618		82.2		3.8	:	121.00	0.67
EQ4				==			1691	1572	95.4	1632	33	1618				3.5			
R_Date MR.14.02.A.297.5-298	1690	1544	95.4	1594	33	1588	1691	1572	95.4	1633	33	1618		57.4		3.6	i	119.00	1.18
		Warnir	ng! Poo	or agre	em	ent - A	= 57.4%(A'c= 60.0	0%)											
R_Date JC.14.02.C.170-171.5	1693	1561	95.4	1616	39	1606	1692	1572	95.4	1633	33	1619		106.8		3.6	i	120.00	0.52
R_Date MD.14.04.B.379.5-380.5	1709	1614	95.4	1659	28	1658	1694	1571	95.4	1636	32	1621		58.5		4.5		123.00	0.72
		Warnir	ng! Poo	or agre	em	ent - A	= 58.5%(A'c= 60.0)%)											
R_Date MD.14.05.B1.308-309	1695	1565	95.4	1632	40	1622	1695	1571	95.5	1638	33	1621		128		5.4		124.00	0.18
Boundary base of section				==			1695	1571	95.5	1638	33	1621				5.4			
P_Sequence Northern Humboldt				==													Mean=	89.47	0.95
				==													StDev=	40.09	1.04

11 Table DR2. This table summarizes the raw OxCal P-sequence output using k = 0.003.

						-	-		-										
													Amodel=	69.7					Normalized
	UNMODELLED (BP)						MODELLED (BP)						Aoverall=	78.2				Confidence	Age
	from	to	%	μ	σ	m	from	to	%	μ	σ	m	A _{comb}	Α	L	ΡC		Interval (yr)	Deviation ¹
2014																			
Boundary surface	-63	-64	95.4	-63	0	-63	-63	-64	95.4	-63	0	-63		100		100)		
1700 CE							251	250	95.4	250	0	250				100)		
R_Date MD.14.06.168.5-169.5	926	798	95.4	860	39	850	934	805	95.4	908	28	918		87.2		77.2	2	129.00	1.71
EQ2				==			935	835	95.4	918	19	923				69.7	7		
R_Date MR.14.02.B.225-226	955	802	95.4	902	40	921	935	913	95.4	924	11	925		158.1		94	1	22.00	2.00
R_Date MD.14.06.C.169.5-170.5	952	803	95.3	913	31	923	935	917	95.4	926	7	926		125.3		94.5	5	18.00	1.86
R_Date MR.14.05.B.188.5-189.5	959	910	95.4	926	5 19	927	938	916	95.4	928	5	928		122		92	2	22.00	0.40
R_Date MD.14.03.C.212.5-213.5	965	928	95.4	947	11	947	960	921	95.4	936	10	933		69		92.9)	39.00	1.10
R_Date MR.14.02.A.273-273.5	1058	961	95.4	1008	30	1004	1059	969	95.4	1011	26	1005		99		56.9)	90.00	0.12
R_Date JC.14.02.D.125.5-126	1072	969	95.4	1025	34	1021	1061	976	95.4	1017	27	1013		100.9		51.7	7	85.00	0.30
EQ3				==			1285	971	95.4	1159	108	1198				25.8	3		
R_Date JC.14.02.D.130-130.5	1278	1181	95.4	1229	29	1233	1283	1185	95.4	1245	30	1258		96.3		73.5	5	98.00	0.53
R_Date MR.14.05.C.246-247	1281	1182	95.4	1232	31	1240	1284	1186	95.4	1250	30	1263		100.9		77.5	5	98.00	0.60
R_Date MD.17.13.D.250-251	1302	1190	95.4	1278	20	1283	1297	1187	95.4	1261	29	1271		59.6		71.7	1	110.00	0.59
		Warnin	g! Poo	r agre	eme	nt - A=	59.6%(A'c= 60.0%	%)											
R_Date MD.14.05.A.276-277	1401	1326	95.4	1363	18	1363	1396	1321	95.4	1361	18	1361		97.8		99.9	}	75.00	0.11
R_Date JC.14.02.C.168.5-169.5	1695	1557	95.4	1618	8 41	1609	1690	1570	95.4	1628	34	1617		114.5		3.6	5	120.00	0.29
R_Date MD.14.05.B1.306.5-307.5	1707	1604	95.4	1654	30	1658	1692	1571	95.3	1630	33	1618		81		3.1	L	121.00	0.73
EQ4				==			1692	1571	95.4	1631	33	1618				3.1	L		
R_Date MR.14.02.A.297.5-298	1690	1544	95.4	1594	33	1588	1692	1572	95.4	1632	33	1618		58		3.2	2	120.00	1.15
		Warnin	g! Poo	r agre	eme	nt - A=	58.0%(A'c= 60.0%	%)											
R_Date JC.14.02.C.170-171.5	1693	1561	95.4	1616	5 39	1606	1693	1572	95.5	1633	33	1619		106.6		3.1	L	121.00	0.52
R_Date MD.14.04.B.379.5-380.5	1709	1614	95.4	1659	28	1658	1695	1571	95.4	1636	33	1621		58.4		4.3	3	124.00	0.70
		Warnin	g! Poo	r agre	eme	nt - A=	58.4%(A'c= 60.09	%)											
R_Date MD.14.05.B1.308-309	1695	1565	95.4	1632	40	1622	1695	1572	95.4	1638	33	1621		127.8		5.2	2	123.00	0.18
Boundary base of section				==			1695	1572	95.4	1638	33	1621				5.2	2		
P_Sequence Northern Humboldt				==													Mean=	89.12	0.76
				==													StDev=	39.75	0.60

15 Table DR3. This table summarizes the raw OxCal P-sequence output using k = 0.005.

						-	_		1	1			A	<u> </u>				Normalized
					-								Amodel=	69.9	-			Normalizeu
	UNIVIODELLED (BP)				-		NODELLED (BP)						Aoverali=	//.6			Confidence	Age
	from	to	%	μ	σ	m	from	to	%	μ	σ	m	A _{comb}	Α	LP	, C	Interval (yr)	Deviation
20	014				_										_			
Boundary surface	-63	-64	95.4	-63	0	-63	-63	-64	95.4	-63	0	-63		100	_	100		
1700 CE							251	250	95.4	250	0	250			_	100		
R_Date MD.14.06.168.5-169.5	926	5 798	95.4	860	39	850	934	829	95.4	911	26	920		82.2		86	105.00	1.96
EQ2							935	851	95.4	919	17	923				88.1		
R_Date MR.14.02.B.225-226	955	802	95.4	902	40	921	934	914	95.4	924	6	925		159.4		92.6	20.00	3.67
R_Date MD.14.06.C.169.5-170.5	952	803	95.3	91 3	31	923	934	916	95.4	925	4	926		127.4		92.7	18.00	3.00
R_Date MR.14.05.B.188.5-189.	5 959	910	95.4	92 6	19	927	939	916	95.4	927	5	927		119		91.3	23.00	0.20
R_Date MD.14.03.C.212.5-213.5	965	928	95.4	947	11	947	960	922	95.4	937	10	934		74		91.7	38.00	1.00
R_Date MR.14.02.A.273-273.5	1058	961	95.4	1008	30	1004	1057	972	95.4	1011	25	1008		97.3		36.7	85.00	0.12
R_Date JC.14.02.D.125.5-126	1072	969	95.4	1025	34	1021	1060	975	95.4	1016	25	1012		101.7		33.6	85.00	0.36
EQ3				==			1285	970	95.4	1143	115	1192				12.6		
R_Date JC.14.02.D.130-130.5	1278	1181	95.4	1229	29	1233	1284	1185	95.4	1248	30	1262		93.2		37.2	99.00	0.63
R_Date MR.14.05.C.246-247	1283	. 1182	95.4	1232	31	1240	1285	1186	95.4	1251	29	1264		101.1		38.5	99.00	0.66
R_Date MD.17.13.D.250-251	1302	1190	95.4	1278	20	1283	1297	1187	95.4	1263	28	1271		61.1		33	110.00	0.54
R_Date MD.14.05.A.276-277	1403	1326	95.4	1363	18	1363	1396	1321	95.4	1361	18	1361		98		99.9	75.00	0.11
R_Date JC.14.02.C.168.5-169.5	1695	5 1557	95.4	1618	41	1609	1693	1570	95.4	1644	36	1655		108.3		4.6	123.00	0.72
R_Date MD.14.05.B1.306.5-307	.5 1707	1604	95.4	1654	30	1658	1694	1572	95.4	1648	35	1670		92.8		3.1	122.00	0.17
EQ4				==			1694	1573	95.4	1649	35	1673				2.7		
R_Date MR.14.02.A.297.5-298	1690	1544	95.4	1594	33	1588	1694	1574	95.4	1650	35	1674		49		2.5	120.00	1.60
		Warning	! Poor	agree	mer	nt - A=	49.0%(A'c= 60.0%	6)										
R_Date JC.14.02.C.170-171.5	1693	1561	95.4	1616	39	1606	1694	1575	95.5	1652	34	1674		100.7		2.3	119.00	1.06
R_Date MD.14.04.B.379.5-380.	5 1709	1614	95.4	1659	28	1658	1695	1602	95.4	1654	33	1675		63.9		2	93.00	0.15
R_Date MD.14.05.B1.308-309	1695	5 1565	95.4	1632	40	1622	1695	1603	95.4	1654	33	1675		131.2		2.2	92.00	0.67
Boundary base of section				==			1695	1603	95.4	1654	33	1675				2.2		
P Sequence Northern Humbold	t			==												Mean=	83.88	0.98
				==												StDev=	36.72	1.03

19 Table DR4. This table summarizes the raw OxCal P-sequence output using k = 0.007.

													Amodel=	71.5					Normalized
	UNMODELLED (BP)						MODELLED (BP)						Aoverall=	77.6				Confidence	Age
	from	to	%	μ	σ	m	from	to	%	μ	σ	m	Acomb	Α	LP	o C		Interval (yr)	Deviation ¹
2014																			
Boundary surface	-63	-64	95.4	-63	0	-63	-63	-64	95.4	-63	0	-63		100		100			
1700 CE							251	250	95.4	250	0	250				100			
R_Date MD.14.06.168.5-169.5	926	798	95.4	860	39	850	934	834	95.4	912	22	920		78.6		48.6		100.00	2.36
EQ2				==			935	878	95.4	917	16	922				40.4			
R_Date MR.14.02.B.225-226	955	802	95.4	902	40	921	934	914	95.4	924	6	925		159.6		88.3		20.00	3.67
R_Date MD.14.06.C.169.5-170.5	952	803	95.3	913	31	923	934	917	95.4	926	4	926		127.8		88.6		17.00	3.25
R_Date MR.14.05.B.188.5-189.5	959	910	95.4	926	19	927	939	916	95.4	928	6	927		120.4		88.1		23.00	0.33
R_Date MD.14.03.C.212.5-213.5	965	928	95.4	947	11	947	959	921	95.4	937	10	933		71.7		75.9		38.00	1.00
R_Date MR.14.02.A.273-273.5	1058	961	95.4	1008	30	1004	1056	974	95.4	1012	24	1010		97.6		55.4		82.00	0.17
R_Date JC.14.02.D.125.5-126	1072	969	95.4	1025	34	1021	1059	977	95.4	1017	24	1017		103.5		53.7		82.00	0.33
EQ3				==			1285	973	95.4	1148	117	1194				19.7			
R_Date JC.14.02.D.130-130.5	1278	1181	95.4	1229	29	1233	1283	1185	95.4	1250	29	1262		93.1		67.4		98.00	0.72
R_Date MR.14.05.C.246-247	1281	1182	95.4	1 <mark>232</mark>	31	1240	1285	1186	95.4	1254	27	1265		100		77		99.00	0.81
R_Date MD.17.13.D.250-251	1302	1190	95.4	1278	20	1283	1298	1187	95.4	1265	26	1272		64.9		81.4		111.00	0.50
R_Date MD.14.05.A.276-277	1401	1326	95.4	1 <mark>363</mark>	18	1363	1397	1321	95.4	1361	18	1361		98		100		76.00	0.11
R_Date JC.14.02.C.168.5-169.5	1695	1557	95.4	1618	41	1609	1693	1569	95.4	1643	37	1631		109		27.6		124.00	0.68
R_Date MD.14.05.B1.306.5-307.5	1707	1604	95.4	165 <mark>4</mark>	30	1658	1694	1571	95.4	1647	36	1668		90.5		27.5		123.00	0.19
EQ4				==			1694	1572	95.4	1649	35	1672				28.9			
R_Date MR.14.02.A.297.5-298	1690	1544	95.4	1594	33	1588	1694	1573	95.4	1650	35	1674		49.6		28.2		121.00	1.60
		Warnii	ng! Po	or agre	em	ent - A	= 49.6%(A'c= 60.	0%)											
R_Date JC.14.02.C.170-171.5	1693	1561	95.4	1616	39	1606	1694	1601	95.4	1652	34	1674		101.1		27.2		93.00	1.06
R_Date MD.14.04.B.379.5-380.5	1709	1614	95.4	1659	28	1658	1695	1574	95.4	1654	33	1675		63.7		30		121.00	0.15
R_Date MD.14.05.B1.308-309	1695	1565	95.4	163 <mark>2</mark>	40	1622	1696	1603	95.4	1655	33	1676		130.6		29.3		93.00	0.70
Boundary base of section							1696	1603	95.4	1655	33	1676				29.3			
P_Sequence Northern Humboldt				==													Mean=	83.59	1.04
																	StDev=	37.01	1.08

Table DR5. This table summarizes the raw OxCal P-sequence output using k = 0.01.

													Amodel=	68.4					Normalized
	UNMODELLED (BP)						MODELLED (BP)						Aoverall=	76.9	_			Confidence	Age
	from	to	%	μ	σ	m	from	to	%	μ	σ	m	A _{comb}	Α	LP	C		Interval (yr)	Deviation ¹
2014																			
Boundary surface	-63	-64	95.4	-63	0	-63	-63	-64	95.4	-63	0	-63		100		100			
1700 CE							251	250	95.4	250	0	250				100			
R_Date MD.14.06.168.5-169.5	926	798	95.4	860	39	850	934	805	95.4	907	30	919		83.2		69.3		129.00	1.57
EQ2				==			935	824	95.4	917	22	923				63.2			
R_Date MR.14.02.B.225-226	955	802	95.4	902	40	921	935	916	95.4	925	5	926		160.6		85.9		19.00	4.60
R_Date MD.14.06.C.169.5-170.5	952	803	95.3	913	31	923	934	917	95.4	926	4	926		126.8		87		17.00	3.25
R_Date MR.14.05.B.188.5-189.5	959	910	95.4	926	19	927	937	917	95.4	927	5	927		124.3		91.6		20.00	0.20
R_Date MD.14.03.C.212.5-213.5	965	928	95.4	947	11	947	957	921	95.4	935	9	932		64.2		50.2		36.00	1.33
R_Date MR.14.02.A.273-273.5	1058	961	95.4	1008	30	1004	1060	976	95.4	1019	25	1022		96.6		23.3		84.00	0.44
R_Date JC.14.02.D.125.5-126	1072	969	95.4	1025	34	1021	1060	980	95.4	1023	26	1026		102.5		21.5		80.00	0.08
EQ3				==			1284	976	95.4	1160	104	1196				40.5			
R_Date JC.14.02.D.130-130.5	1278	1181	95.4	1229	29	1233	1282	1184	95.4	1241	32	1255		98.4		24.5		98.00	0.38
R_Date MR.14.05.C.246-247	1281	1182	95.4	1737	31	1240	1284	1185	95.4	1246	32	1262		103		19.9		99.00	0.44
R_Date MD.17.13.D.250-251	1302	1190	95.4	1278	20	1283	1297	1186	95.4	1257	33	1270		57.9		16.8		111.00	0.64
		Warni	ng! Po	or agr	eem	nent - A	A= 57.9%(A'c= 60.	0%)											
R_Date MD.14.05.A.276-277	1401	1326	95.4	1363	18	1363	1399	1322	95.4	1362	18	1362		98.8		99.9		77.00	0.06
R_Date JC.14.02.C.168.5-169.5	1695	1557	95.4	1618	41	1609	1692	1570	95.4	1636	36	1619		110.8		16.1		122.00	0.50
R_Date MD.14.05.B1.306.5-307.5	1707	1604	95.4	1654	30	1658	1694	1572	95.4	1641	34	1621		88.6		14.5		122.00	0.38
EQ4				==			1694	1572	95.4	1641	34	1622				12.5			
R_Date MR.14.02.A.297.5-298	1690	1544	95.4	1594	33	1588	1693	1574	95.3	1642	34	1622		52		12.2		119.00	1.41
		Warni	ng! Po	or agr	eem	nent - A	A= 52.0%(A'c= 60.	0%)											
R_Date JC.14.02.C.170-171.5	1693	1561	95.4	1616	39	1606	1694	1574	95.4	1644	34	1623		102.3		12		120.00	0.82
R Date MD.14.04.B.379.5-380.5	1709	1614	95.4	1659	28	1658	1695	1574	95.4	1647	34	1627		62.3		12.2		121.00	0.35
R Date MD.14.05.B1.308-309	1695	1565	95.4	1632	40	1622	1695	1574	95.3	1648	34	1632		129.6		13		121.00	0.47
Boundary base of section				==			1695	1574	95.3	1648	34	1632				13			
P Sequence Northern Humboldt				==													Mean=	87.94	0.99
				==													StDev=	40.49	1.21

Table DR6. This table summarizes the raw OxCal P-sequence output using k = 0.02.

							-						Amodel=	65.6					Normalized
	UNMODELLED (BP)						MODELLED (BP)						Aoverall=	75.8				Confidence	Age
	from	to	%	μ	σ	m	from	to	%	μ	σ	m	A _{comb}	Α	LF	Р С		Interval (yr)	Deviation ¹
2014																			
Boundary surface	-63	-64	95.4	-63	0	-63	-63	-64	95.4	-63	0	-63		100		100			
1700 CE							251	250	95.4	250	0	250				100			
R_Date MD.14.06.168.5-169.5	926	798	95.4	860	39	850	933	835	95.4	908	25	918		86.4		12.8		98.00	1.92
EQ2				==			935	853	95.4	915	19	921				14.2			
R_Date MR.14.02.B.225-226	955	802	95.4	902	40	921	935	913	95.4	924	7	925		158.8		86.9		22.00	3.14
R_Date MD.14.06.C.169.5-170.5	952	803	95.3	913	31	. 923	935	916	95.4	926	4	926		126.5		78.5		19.00	3.25
R_Date MR.14.05.B.188.5-189.5	959	910	95.4	926	19	927	953	916	95.4	929	6	928		116.4		66.3		37.00	0.50
R_Date MD.14.03.C.212.5-213.5	965	928	95.4	947	11	. 947	956	922	95.4	935	9	932		70.9		79.7		34.00	1.33
R_Date MR.14.02.A.273-273.5	1058	961	95.4	1008	30	1004	1060	982	95.4	1028	23	1034		96		62.9		78.00	0.87
R_Date JC.14.02.D.125.5-126	1072	969	95.4	1025	34	1021	1062	986	95.4	1031	23	1037		102.1		62.4		76.00	0.26
EQ3				==			1285	980	95.4	1172	102	1206				48.1			
R_Date JC.14.02.D.130-130.5	1278	1181	95.4	1229	29	1233	1283	1185	95.4	1247	30	1261		94.5		77.4		98.00	0.60
R_Date MR.14.05.C.246-247	1281	1182	95.4	1232	31	1240	1285	1186	95.4	1250	30	1264		102.1		81.1		99.00	0.60
R_Date MD.17.13.D.250-251	1302	1190	95.4	1278	20	1283	1295	1187	95.4	1259	30	1269		54.5		79.7		108.00	0.63
		Warni	ng! Po	or agre	em	ent - A	= 54.5%(A'c= 60.	0%)											
R_Date MD.14.05.A.276-277	1401	1326	95.4	1363	18	1363	1400	1324	95.4	1362	18	1363		99.4		99.9		76.00	0.06
R_Date JC.14.02.C.168.5-169.5	1695	1557	95.4	<mark>1618</mark>	41	1609	1691	1570	95.4	1638	37	1621		110.2		7.4		121.00	0.54
R_Date MD.14.05.B1.306.5-307.5	1707	1604	95.4	1654	30	1658	1693	1571	95.4	1643	36	1623		88.3		6.2		122.00	0.31
EQ4				==			1694	1571	95.4	1644	36	1624				6.5			
R_Date MR.14.02.A.297.5-298	1690	1544	95.4	1594	33	1588	1693	1574	95.4	1645	35	1625		52.6		7.3		119.00	1.46
		Warni	ng! Po	or agre	em	ent - A	= 52.6%(A'c= 60.	0%)											
R_Date JC.14.02.C.170-171.5	1693	1561	95.4	1616	39	1606	1694	1575	95.3	1647	34	1630		101.9		7.7		119.00	0.91
R_Date MD.14.04.B.379.5-380.5	1709	1614	95.4	1659	28	1658	1694	1575	95.4	1648	34	1663		62.1		8.7		119.00	0.32
R_Date MD.14.05.B1.308-309	1695	1565	95.4	1632	40	1622	1695	1575	95.4	1650	33	1669		129.8		10.6		120.00	0.55
Boundary base of section				==			1695	1575	95.4	1650	33	1669				10.6			
P_Sequence Northern Humboldt																	Mean=	86.18	1.01
				==													StDev=	36.94	0.95

Table DR7. This table summarizes the raw OxCal P-sequence output using k = 0.03.

													Amodel=	65.1				Normalized
	UNMODELLED (BP)						MODELLED (BP)						Aoverall=	74.6			Confidence	Age
	from	to	%	μ	σ	m	from	to	%	μ	σ	m	A _{comb}	Α	LΡ	C	Interval (yr)	Deviation ¹
2014																		
Boundary surface	-63	-64	95.4	-63	0	-63	-63	-64	95.4	-63	0	-63		100		100		
1700 CE							251	250	95.4	250	0	250				100		
R_Date MD.14.06.168.5-169.5	926	798	95.4	860	39	850	934	828	95.4	909	28	919		84		67.9	106.00	1.75
EQ2			=	=			935	836	95.4	915	22	923				72.3		
R_Date MR.14.02.B.225-226	955	802	95.4	902	40	921	935	912	95.4	923	11	925		157.3		90.2	23.00	1.91
R_Date MD.14.06.C.169.5-170.5	952	803	95.3	913	31	923	935	916	95.4	925	7	926		125		92	19.00	1.71
R_Date MR.14.05.B.188.5-189.5	959	910	95.4	926	5 19	927	939	917	95.4	928	5	928		120.2		86.8	22.00	0.40
R_Date MD.14.03.C.212.5-213.5	965	928	95.4	947	11	947	955	921	95.4	934	8	932		65.8		90.8	34.00	1.63
R_Date MR.14.02.A.273-273.5	1058	961	95.4	1008	30	1004	1060	985	95.4	1029	22	1034		92.3		17.9	75.00	0.95
R_Date JC.14.02.D.125.5-126	1072	969	95.4	1025	34	1021	1063	988	95.4	1031	22	1036		104.6		16	75.00	0.27
EQ3			=	=			1284	979	95.4	1131	104	1094				8.9		
R_Date JC.14.02.D.130-130.5	1278	1181	95.4	1229	29	1233	1282	1184	95.4	1244	32	1260		95.2		47.4	98.00	0.47
R_Date MR.14.05.C.246-247	1281	1182	95.4	1232	31	1240	1284	1185	95.4	1249	31	1264		102.1		48.6	99.00	0.55
R_Date MD.17.13.D.250-251	1302	1190	95.4	1278	20	1283	1295	1186	95.4	1259	30	1270		55.3		68.5	109.00	0.63
		Warning! F	oor ag	reem	ent -	A= 55	.3%(A'c= 60.0%)											
R_Date MD.14.05.A.276-277	1401	1326	95.4	1363	18	1363	1400	1326	95.4	1363	18	1363		99.8		99.9	74.00	0.00
R_Date JC.14.02.C.168.5-169.5	1695	1557	95-4	1 618	41	1609	1689	1570	95.4	1623	31	1615		116.2		2.8	119.00	0.16
R_Date MD.14.05.B1.306.5-307.5	1707	1604	95.4	1 654	30	1658	1690	1572	95.4	1627	30	1617		79.5		2.1	118.00	0.90
EQ4			=	=			1690	1573	95.4	1628	30	1617				2		
R_Date MR.14.02.A.297.5-298	1690	1544	95.4	1594	33	1588	1691	1574	95.4	1629	30	1617		58.2		2	117.00	1.17
		Warning! F	oor ag	reem	ent -	- A= 58	.2%(A'c= 60.0%)											
R_Date JC.14.02.C.170-171.5	1693	1561	95.4	1 616	39	1606	1692	1574	95.4	1631	30	1618		106.8		2	118.00	0.50
R_Date MD.14.04.B.379.5-380.5	1709	1614	95-4	1 659	28	1658	1694	1573	95.4	1633	30	1619		57.7		2.5	121.00	0.87
		Warning! F	oor ag	reem	ent -	· A= 57	'.7%(A'c= 60.0%)											
R_Date MD.14.05.B1.308-309	1695	1565	95.4	1 632	40	1622	1695	1574	95.4	1634	30	1620		128.6		3.1	121.00	0.07
Boundary base of section			=	=			1695	1574	95.4	1634	30	1620				3.1		
P_Sequence Northern Humboldt			=	=												Mean	85.18	0.82
			=	-												StDev	38.26	0.62

Table DR8. This table summarizes the raw OxCal P-sequence output using k = 0.04.

						-							Amodel=	66.4				Normalized
	UNMODELLED (BP)						MODELLED (BP)						Aoverall=	75.2			Confidence	Age
	from	to	%	μ	σ	m	from	to	%	μ	σ	m	Acomb	Α	LP	C C	Interval (yr)	Deviation ¹
2014																		
Boundary surface	-63	-64	95.4	-63	0	-63	-63	-64	95.4	-63	0	-63		100		100		
1700 CE							251	250	95.4	250	0	250				100		
R_Date MD.14.06.168.5-169.5	926	798	95.4	-860	39	850	934	804	95.4	906	30	918		88.9		90.9	130.00	1.53
EQ2							935	828	95.4	916	22	923				87.3		
R_Date MR.14.02.B.225-226	955	802	95.4	_902	40	921	935	915	95.4	924	9	925		159.2		91.4	20.00	2.44
R_Date MD.14.06.C.169.5-170.5	952	803	95.3	913	31	923	934	917	95.4	926	5	926		126.1		93.7	17.00	2.60
R_Date MR.14.05.B.188.5-189.5	959	910	95.4	_926	19	927	936	918	95.4	928	4	928		123.6		92.6	18.00	0.50
R_Date MD.14.03.C.212.5-213.5	965	928	95.4	947	11	947	954	921	95.4	934	8	932		64.1		94.8	33.00	1.63
R_Date MR.14.02.A.273-273.5	1058	961	95.4	1008	30	1004	1061	987	95.4	1033	20	1039		97.6		79.4	74.00	1.25
R_Date JC.14.02.D.125.5-126	1072	969	95.4	1025	34	1021	1063	988	95.4	1035	21	1041		101		76.3	75.00	0.48
EQ3				==			1284	984	95.4	1150	101	1187				52.6		
R_Date JC.14.02.D.130-130.5	1278	1181	95.4	1229	29	1233	1282	1184	95.4	1243	32	1259		97.3		72.3	98.00	0.44
R_Date MR.14.05.C.246-247	1281	1182	95.4	1237	31	1240	1284	1185	95.4	1247	32	1263		104.4		72	99.00	0.47
R_Date MD.17.13.D.250-251	1302	1190	95.4	1278	20	1283	1295	1186	95.4	1254	33	1268		51.4		67.4	109.00	0.73
		Warnir	ng! Poo	or <mark>agre</mark>	eme	ent - A	= 51.4%(A'c= 60.0)%)										
R_Date MD.14.05.A.276-277	1401	1326	95.4	1363	18	1363	1400	1329	95.4	1363	17	1364		100.3		99.9	71.00	0.00
R_Date JC.14.02.C.168.5-169.5	1695	1557	95.4	1618	41	1609	1691	1570	95.4	1637	37	1620		109.2		18.5	121.00	0.51
R_Date MD.14.05.B1.306.5-307.5	1707	1604	95.4	1654	30	1658	1693	1573	95.4	1644	34	1625		91		14.1	120.00	0.29
EQ4				==			1694	1573	95.4	1645	34	1626				14.4		
R_Date MR.14.02.A.297.5-298	1690	1544	95.4	1 594	33	1588	1694	1574	95.4	1646	34	1627		49.9		14.7	120.00	1.53
		Warnir	ng! Poo	or <mark>agre</mark>	eme	ent - A	= 49.9%(A'c= 60.0)%)										
R_Date JC.14.02.C.170-171.5	1693	1561	95.4	1616	39	1606	1694	1575	95.4	1647	34	1631		101.3		14.6	119.00	0.91
R_Date MD.14.04.B.379.5-380.5	1709	1614	95.4	1659	28	1658	1695	1601	95.4	1649	33	1664		62.7		15.3	94.00	0.30
R_Date MD.14.05.B1.308-309	1695	1565	95.4	1632	40	1622	1695	1602	95.4	1650	33	1670		130		17.3	93.00	0.55
Boundary base of section				==			1695	1602	95.4	1650	33	1670				17.3		
P_Sequence Northern Humboldt				==												Mean=	83.00	0.95
				==												StDev=	39.05	0.76

Table DR9. This table summarizes the raw OxCal P-sequence output using k = 0.05.

													Amodel=	60.6					Normalized
	UNMODELLED (BP)						MODELLED (BP)						Aoverall=	70.7				Confidence	Age
	from	to	%	μ	σ	m	from	to	%	μ	σ	m	A _{comb}	Α	L	ΡC		Interval (yr)	Deviation ¹
2014																			
Boundary surface	-63	-64	95.4	-63	0	-63	-63	-64	95.4	-63	0	-63		100)		100		
1700 CE							251	250	95.4	250	0	250					100		
R_Date MD.14.06.168.5-169.5	926	798	95.4	860	39	850	934	828	95.4	909	27	919		84	ţ		92.8	106.00	1.81
EQ2							935	840	95.4	919	17	924					19.2		
R_Date MR.14.02.B.225-226	955	802	95.4	902	40	921	935	915	95.4	925	6	926		159.3	3		57.9	20.00	3.83
R_Date MD.14.06.C.169.5-170.5	952	803	95.3	913	31	923	935	917	95.4	926	4	927		124.9)		75.1	18.00	3.25
R_Date MR.14.05.B.188.5-189.5	959	910	95.4	926	19	927	936	918	95.4	928	4	928		125.5	5		39.8	18.00	0.50
R_Date MD.14.03.C.212.5-213.5	965	928	95.4	947	11	947	954	921	95.4	933	8	931		60.1	L		35.7	33.00	1.75
R_Date MR.14.02.A.273-273.5	1058	961	95.4	1008	30	1004	1064	988	95.4	1039	17	1043		95	5		58.9	76.00	1.82
R_Date JC.14.02.D.125.5-126	1072	969	95.4	1025	34	1021	1065	1000	95.4	1041	18	1045		100.9)		58.1	65.00	0.89
EQ3				==			1281	1002	95.5	1135	91	1142					34.9		
R_Date JC.14.02.D.130-130.5	1278	1181	95.4	1229	29	1233	1280	1182	95.4	1228	34	1234		105	5		28.4	98.00	0.03
R_Date MR.14.05.C.246-247	1281	1182	95.4	1232	31	1240	1282	1185	95.4	1232	35	1242		110.9)		30.2	97.00	0.00
R_Date MD.17.13.D.250-251	1302	1190	95.4	1278	20	1283	1293	1185	95.4	1239	38	1259		38.8	3		29.8	108.00	1.03
		Warn	ing! Po	oor agr	en	nent -	A= 38.8%(A'c= 60	.0%)											
R_Date MD.14.05.A.276-277	1401	1326	95.4	1363	18	1363	1400	1330	95.4	1364	17	1364		100.4	ļ		99.8	70.00	0.06
R_Date JC.14.02.C.168.5-169.5	1695	1557	95.4	1618	41	1609	1690	1567	95.4	1629	35	1616		111.7	7		9.8	123.00	0.31
R_Date MD.14.05.B1.306.5-307.5	1707	1604	95.4	1654	30	1658	1693	1574	95.4	1637	33	1620		86.4	ļ		2.8	119.00	0.52
EQ4				==			1693	1575	95.4	1638	32	1620					2.8		
R_Date MR.14.02.A.297.5-298	1690	1544	95.4	1594	33	1588	1693	1599	95.4	1639	33	1621		52.9)		0.4	94.00	1.36
		Warn	ing! Po	oor agr	en	nent -	A= 52.9%(A'c= 60	.0%)											
R_Date JC.14.02.C.170-171.5	1693	1561	95.4	1616	39	1606	1694	1600	95.4	1640	33	1621		104.1	L		0.4	94.00	0.73
R_Date MD.14.04.B.379.5-380.5	1709	1614	95.4	1659	28	1658	1694	1601	95.4	1642	32	1622		60.7	7		0.5	93.00	0.53
R_Date MD.14.05.B1.308-309	1695	1565	95.4	1632	40	1622	1695	1601	95.4	1644	32	1624		129.8	3		0.8	94.00	0.38
Boundary base of section				==			1695	1601	95.4	1644	32	1624					0.8		
P_Sequence Northern Humboldt				==													Mean=	78.00	1.11
				==													StDev=	35.33	1.10

43 Table DR10. This table summarizes the raw OxCal P-sequence output using k = 0.06.

													Amodel=	59.8					Normalized
	UNMODELLED (BP)						MODELLED (BP)						Aoverall=	69.9				Confidence	Age
	from	to	%	μ	σ	m	from	to	%	μ	σ	m	A _{comb}	Α	L	ΡC		Interval (yr)	Deviation ¹
2014																			
Boundary surface	-63	-64	95.4	-63	0	-63	-63	-64	95.4	-63	0	-63		100		100			
1700 CE							251	250	95.4	250	0	250				100			
R_Date MD.14.06.168.5-169.5	926	798	95.4	-860	39	850	934	829	95.4	908	27	918		86.9		92.7		105.00	1.78
EQ2				==			935	839	95.4	919	18	923				82.9			
R_Date MR.14.02.B.225-226	955	802	95.4	902	40	921	935	915	95.4	925	6	926		157.9		91.9		20.00	3.83
R_Date MD.14.06.C.169.5-170.5	952	803	95.3	913	31	923	935	918	95.4	927	4	927		123.1		92.7		17.00	3.50
R_Date MR.14.05.B.188.5-189.5	959	910	95.4	926	19	927	936	919	95.4	928	4	928		126.9		96.1		17.00	0.50
R_Date MD.14.03.C.212.5-213.5	965	928	95.4	-947	11	947	951	921	95.4	932	7	931		54.5		95		30.00	2.14
		Warnin	ig! Poc	or agre	eme	ent - A	= 54.5%(A'c= 60.0)%)											
R_Date MR.14.02.A.273-273.5	1058	961	95.4	1008	30	1004	1063	995	95.4	1037	19	1043		95.5		65.6		68.00	1.53
R_Date JC.14.02.D.125.5-126	1072	969	95.4	1025	34	1021	1065	985	95.4	1039	20	1044		100.5		66.2		80.00	0.70
EQ3				==			1283	996	95.3	1150	95	1187				62.1			
R_Date JC.14.02.D.130-130.5	1278	1181	95.4	1229	29	1233	1281	1183	95.4	1235	35	1252		100.8		60.1		98.00	0.17
R_Date MR.14.05.C.246-247	1281	1182	95.4	1232	31	1240	1283	1185	95.4	1239	35	1259		109.5		55		98.00	0.20
R_Date MD.17.13.D.250-251	1302	1190	95.4	1278	20	1283	1294	1185	95.4	1244	37	1265		42.4		52.4		109.00	0.92
		Warnin	ig! Poc	or agre	eme	ent - A	= 42.4%(A'c= 60.0)%)											
R_Date MD.14.05.A.276-277	1401	1326	95.4	1363	18	1363	1401	1330	95.4	1364	17	1365		100.6		99.9		71.00	0.06
R_Date JC.14.02.C.168.5-169.5	1695	1557	95.4	1618	41	1609	1625	1570	95.4	1607	14	1612		121.7		97.5		55.00	0.79
R_Date MD.14.05.B1.306.5-307.5	1707	1604	95.4	1654	30	1658	1629	1573	95.4	1612	11	1615		71.2		98.5		56.00	3.82
EQ4				==			1629	1573	95.4	1613	10	1615				98.6			
R_Date MR.14.02.A.297.5-298	1690	1544	95.4	1594	33	1588	1629	1574	95.4	1613	10	1616		64.1		98.6		55.00	1.90
R_Date JC.14.02.C.170-171.5	1693	1561	95.4	1616	39	1606	1630	1573	95.4	1614	10	1616		111.2		98.5		57.00	0.20
R_Date MD.14.04.B.379.5-380.5	1709	1614	95.4	1659	28	1658	1658	1571	95.4	1617	13	1617		53.7		98.5		87.00	3.23
		Warnin	ig! Poc	or agre	eme	ent - A	= 53.7%(A'c= 60.0)%)											
R_Date MD.14.05.B1.308-309	1695	1565	95.4	1632	40	1622	1682	1572	95.5	1619	16	1618		125		98.1		110.00	0.81
Boundary base of section				==			1682	1572	95.5	1619	16	1618				98.1			
P_Sequence Northern Humboldt				==													Mean=	66.65	1.53
				==													StDev=	32.26	1.34

47 Table DR11. This table summarizes the raw OxCal P-sequence output using k = 0.07.

													Amodel=	62.3				INC
	UNMODELLED (BP)						MODELLED (BP)						Aoverall=	/1.9		-	Confidence	_
	trom	to	%	μ	σ	m	from	to	%	μ	σ	m	A _{comb}	Α	LP	С	Interval (yr)	D
2014																		
Boundary surface	-63	-64	95.4	-63	0	-63	-63	-64	95.4	-63	0	-63		100		100		
1700 CE		_					251	250	95.4	250	0	250				100		
R_Date MD.14.06.168.5-169.5	926	798	95.4	-860	39	850	934	829	95.4	906	30	919		85.6		53.2	105.00	
EQ2							935	832	95.4	916	23	924				47		
R_Date MR.14.02.B.225-226	955	802	95.4	_902	40	921	935	916	95.4	925	9	926		160.4		95.4	19.00	
R_Date MD.14.06.C.169.5-170.5	952	803	95.3	913	31	923	935	918	95.4	926	4	926		126.8		94.9	17.00	
R_Date MR.14.05.B.188.5-189.5	959	910	95.4	_926	19	927	935	918	95.4	927	4	928		127.1		90.9	17.00	
R_Date MD.14.03.C.212.5-213.5	965	928	95.4	947	11	947	952	921	95.4	932	7	931		58.3		94.4	31.00	
		Warnir	ng! Poo	or <mark>agre</mark> e	eme	ent - A	= 58.3%(A'c= 60.0)%)										
R_Date MR.14.02.A.273-273.5	1058	961	95.4	1008	30	1004	1063	1005	95.4	1042	16	1045		94.8		92.2	58.00	
R_Date JC.14.02.D.125.5-126	1072	969	95.4	1025	34	1021	1065	1004	95.4	1043	16	1047		100.7		92.3	61.00	
EQ3				==			1283	1001	95.4	1141	95	1137				73.6		
R_Date JC.14.02.D.130-130.5	1278	1181	95.4	1229	29	1233	1282	1183	95.4	1238	34	1253		99.3		61	99.00	
R_Date MR.14.05.C.246-247	1281	1182	95.4	1232	31	1240	1284	1185	95.4	1241	34	1259		106.5		59.8	99.00	
R_Date MD.17.13.D.250-251	1302	1190	95.4	1278	20	1283	1293	1186	95.4	1248	36	1266		44.7		62.2	107.00	
		Warnir	ng! Poo	or agree	eme	ent - A	= 44.7%(A'c= 60.0)%)										
R_Date MD.14.05.A.276-277	1401	1326	95.4	1363	18	1363	1401	1331	95.4	1365	17	1365		100.8		99.9	70.00	
R_Date JC.14.02.C.168.5-169.5	1695	1557	95.4	1618	41	1609	1685	1567	95.4	1611	21	1612		119.7		81.6	118.00	
R_Date MD.14.05.B1.306.5-307.5	1707	1604	95.4	1654	30	1658	1688	1572	95.5	1617	19	1615		74.9		82.8	116.00	
EQ4				==			1688	1574	95.4	1618	19	1616				80.9		
R_Date MR.14.02.A.297.5-298	1690	1544	95.4	1594	33	1588	1689	1574	95.5	1619	19	1616		61.3		79.5	115.00	
R_Date JC.14.02.C.170-171.5	1693	1561	95.4	1616	39	1606	1689	1574	95.4	1620	19	1617		109.2		79.8	115.00	
R_Date MD.14.04.B.379.5-380.5	1709	1614	95.4	1659	28	1658	1690	1573	95.5	1621	19	1618		55.1		78.5	117.00	
		Warnir	ng! Poo	or agree	eme	ent - A	- = 55.1%(A'c= 60.0)%)										
R_Date MD.14.05.B1.308-309	1695	1565	95.4	1632	40	1622	1692	1574	95.4	1623	21	1619		127.2		77.7	118.00	
Boundary base of section				==			1692	1574	95.4	1623	21	1619				77.7		
P_Sequence Northern Humboldt				==												Mean=	81.29	
				==												StDev=	39 57	

Table DR12. This table summarizes the raw OxCal P-sequence output using k = 0.08.

							-						Amodel= 58.3						Normalized
	UNMODELLED (BP)						MODELLED (BP)						Aoverall= 67.7					Confidence	Age
	from	to	%	μ	σ	m	from	to	%	μ	σ	m	A _{comb} A		LP	c c		Interval (yr)	Deviation ¹
2014																			
Boundary surface	-63	-64	95.4	-63	8 0	-63	-63	-64	95.4	-63	0	-63	1	00		100)		
1700 CE							251	250	95.4	250	0	250				100)		
R_Date MD.14.06.168.5-169.5	926	798	95.4	86	39	850	934	830	95.4	910	25	919	84	.8		76.2	2	104.00	2.00
EQ2							935	862	95.4	919	16	923				87.8	3		
R_Date MR.14.02.B.225-226	955	802	95.4	902	40	921	934	916	95.4	925	5	926	160).4		93.7	7	18.00	4.60
R_Date MD.14.06.C.169.5-170.5	952	803	95.3	913	31	923	935	918	95.4	926	4	927	125	5.3		93.6	5	17.00	3.25
R_Date MR.14.05.B.188.5-189.5	959	910	95.4	926	19	927	935	918	95.4	928	4	928	126	5.4		88.1	L	17.00	0.50
R_Date MD.14.03.C.212.5-213.5	965	928	95.4	947	11	947	951	921	95.4	932	7	931	57	'.3		80.2	2	30.00	2.14
		Warni	ng! Po	or agr	eem	ent - A	A= 57.3%(A'c= 60.	.0%)											
R_Date MR.14.02.A.273-273.5	1058	961	95.4	1008	30	1004	1063	1000	95.4	1044	24	1045	95	6.6		35.3	3	63.00	1.50
R_Date JC.14.02.D.125.5-126	1072	969	95.4	1025	34	1021	1170	998	95.4	1046	25	1046	97	'.1		33.8	3	172.00	0.84
EQ3				==			1283	999	95.3	1137	89	1152				32.9	ð		
R_Date JC.14.02.D.130-130.5	1278	1181	95.4	1225	29	1233	1281	1182	95.4	1225	34	1203	105	.4		25.6	5	99.00	0.12
R_Date MR.14.05.C.246-247	1281	1182	95.4	1232	31	1240	1282	1185	95.4	1228	35	1206	113	.4		23.4	1	97.00	0.11
R_Date MD.17.13.D.250-251	1302	1190	95.4	1278	20	1283	1291	1185	95.4	1233	38	1242	33	.4		22.5	5	106.00	1.18
		Warni	ng! Po	or agr	eem	ent - A	A= 33.4%(A'c= 60.	.0%)											
R_Date MD.14.05.A.276-277	1401	1326	95.4	136-	18	1363	1401	1331	95.4	1365	17	1365	100	9.8		99.7	7	70.00	0.12
R_Date JC.14.02.C.168.5-169.5	1695	1557	95.4	1618	41	1609	1689	1566	95.4	1620	31	1614	115	.4		78.7	7	123.00	0.06
R_Date MD.14.05.B1.306.5-307.5	1707	1604	95.4	1654	30	1658	1691	1572	95.4	1627	29	1617	80).7		75.3	3	119.00	0.93
EQ4				==			1691	1573	95.4	1628	29	1617				75.2	2		
R_Date MR.14.02.A.297.5-298	1690	1544	95.4	1594	33	1588	1691	1598	95.4	1629	29	1618	56	5.9		73.7	7	93.00	1.21
		Warni	ng! Po	or agr	eem	ent - A	A= 56.9%(A'c= 60.	.0%)											
R_Date JC.14.02.C.170-171.5	1693	1561	95.4	1616	39	1606	1692	1600	95.4	1631	29	1618	106	6.6		74.5	5	92.00	0.52
R_Date MD.14.04.B.379.5-380.5	1709	1614	95.4	1659	28	1658	1694	1574	95.3	1632	29	1619	57	.4		75.4	1	120.00	0.93
		Warni	ng! Po	or agr	eem	ient - A	A= 57.4%(A'c= 60.	.0%)											
R_Date MD.14.05.B1.308-309	1695	1565	95.4	1632	40	1622	1695	1575	95.4	1634	30	1620	127	.8		74.1	L	120.00	0.07
Boundary base of section				=:			1695	1575	95.4	1634	30	1620				74.1	L		
P_Sequence Northern Humboldt				==													Mean=	85.88	1.18
				==	1												StDev=	44.25	1.24

55 Table DR13. This table summarizes the raw OxCal P-sequence output using k = 0.09.

													Amodel=	56.5					Normalized
	UNMODELLED (BP)						MODELLED (BP)						Aoverall=	64.9		_		Confidence	Age
	from	to	%	μ	σ	m	from	to	%	μ	σ	m	A _{comb}	Α	L	PC		Interval (yr)	Deviation ¹
Boundary surface	-63	-64	95.4	-63	0	-63	-63	-64	95.4	-63	0	-63		100		100)		
1700 CE							251	250	95.4	250	0	250				100)		
R_Date MD.14.06.168.5-169.5	926	798	95.4	860	39	850	934	822	95.4	905	30	917		88.6		85.4	l	112.00	1.50
EQ2				==			935	825	95.4	914	24	923				89	9		
R_Date MR.14.02.B.225-226	955	802	95.4	902	40	921	935	916	95.4	925	7	926		159		98.8	3	19.00	3.29
R_Date MD.14.06.C.169.5-170.5	952	803	95.3	913	31	923	935	918	95.4	927	4	927		124		96.9)	17.00	3.50
R_Date MR.14.05.B.188.5-189.5	959	910	95.4	926	19	927	935	920	95.4	928	4	928		127.5		98.1	L	15.00	0.50
R_Date MD.14.03.C.212.5-213.5	965	928	95.4	947	11	947	949	921	95.4	932	6	931		54.7		97.4	Ļ	28.00	2.50
		Warni	ing! Pc	or agr	eem	ent - /	A= 54.7%(A'c= 60	.0%)											
R_Date MR.14.02.A.273-273.5	1058	961	95.4	1008	30	1004	1167	1000	95.4	1045	25	1045		93		66.1	L	167.00	1.48
R_Date JC.14.02.D.125.5-126	1072	969	95.4	1025	34	1021	1169	999	95.4	1047	25	1047		97.3		60.6	5	170.00	0.88
EQ3				==			1280	1003	95.4	1139	85	1165				60.4	l l		
R_Date JC.14.02.D.130-130.5	1278	1181	95.4	1229	29	1233	1280	1182	95.4	1218	33	1199		109		45.5	5	98.00	0.33
R_Date MR.14.05.C.246-247	1281	1182	95.4	1232	31	1240	1281	1184	95.4	1220	34	1199		117.3		48.7	7	97.00	0.35
R_Date MD.17.13.D.250-251	1302	1190	95.4	1278	20	1283	1291	1183	95.3	1224	37	1200		27.8		46.3	3	108.00	1.46
		Warni	ing! Pc	o <mark>r agr</mark>	eem	ent - /	A= 27.8%(A'c= 60	.0%)											
R_Date MD.14.05.A.276-277	1401	1326	95.4	1363	18	1363	1401	1331	95.4	1365	17	1365		100.8		99.6	5	70.00	0.12
R_Date JC.14.02.C.168.5-169.5	1695	1557	95.4	1618	41	1609	1690	1567	95.4	1626	34	1615		111.2		35	5	123.00	0.24
R_Date MD.14.05.B1.306.5-307.5	1707	1604	95.4	1654	30	1658	1693	1592	95.4	1635	31	1619		86.2		27.3	3	101.00	0.61
EQ4							1693	1595	95.4	1637	32	1620				29.2	2		
R_Date MR.14.02.A.297.5-298	1690	1544	95.4	1594	33	1588	1692	1601	95.4	1638	32	1620		52.2		30.3	3	91.00	1.38
		Warni	ing! Pc	o <mark>r agr</mark>	eem	ent - /	A= 52.2%(A'c= 60	.0%)											
R_Date JC.14.02.C.170-171.5	1693	1561	95.4	1616	39	1606	1692	1602	95.4	1639	32	1621		103.1		30.1	L	90.00	0.72
R_Date MD.14.04.B.379.5-380.5	1709	1614	95.4	<mark>16</mark> 59	28	1658	1693	1603	95.4	1640	31	1621		60.8		30.2	2	90.00	0.61
R_Date MD.14.05.B1.308-309	1695	1565	95.4	1632	40	1622	1695	1603	95.4	1642	32	1622		129.2		32	2	92.00	0.31
Boundary base of section				==			1695	1603	95.4	1642	32	1622				32	2		
P_Sequence Northern Humboldt				==													Mean=	87.53	1.16
				==													StDev=	46.50	1.04

Table DR14. This table summarizes the raw OxCal P-sequence output using k = 0.1.

													Amodel=	34.1				Normalized
	UNMODELLED (BP)						MODELLED (BP)						Aoverall=	29.3			Confidence	Age
	from	to	%	μ	σ	m	from	to	%	μ	σ	m	A _{comb}	Α	LP	C	Interval (yr)	Deviation ¹
2014	1																	
Boundary surface	-63	-64	95.4	-63	0	-63	-63	-64	95.4	-63	0	-63		100		100		
1700 CE							251	250	95.4	250	0	250				100		
R_Date MD.14.06.168.5-169.5	926	798	95.4		39	850	933	831	95.4	909	24	917		92.3		96.7	102.00	2.04
EQ2				==			935	837	95.4	918	17	923				94.5		
R_Date MR.14.02.B.225-226	955	802	95.4	- 902	40	921	935	916	95.4	926	5	926		160.6		94	19.00	4.80
R_Date MD.14.06.C.169.5-170.5	952	803	95.3	913	31	923	935	918	95.4	926	4	927		125.8		95	17.00	3.25
R_Date MR.14.05.B.188.5-189.5	959	910	95.4	926	19	927	935	919	95.4	928	4	928		127.5		95.8	16.00	0.50
R_Date MD.14.03.C.212.5-213.5	965	928	95.4	947	11	947	949	921	95.4	932	6	931		55.9		92.4	28.00	2.50
		Warnii	ng! Po	or agr	em	ent - A	= 55.9%(A'c= 60.0)%)										
R_Date MR.14.02.A.273-273.5	1058	961	95.4	1008	30	1004	1175	1029	95.4	1138	50	1165		19.1		43.9	146.00	2.60
		Warnii	ng! Po	or agr	em	ent - A	= 19.1%(A'c= 60.0	0%)										
R_Date JC.14.02.D.125.5-126	1072	969	95.4	1025	34	1021	1175	1027	95.4	1139	50	1165		33.5		43.7	148.00	2.28
		Warnii	ng! Po	or agr	em	ent - A	= 33.5%(A'c= 60.0	J%)										
EQ3				==			1274	1030	95.4	1172	43	1183				72.2		
R_Date JC.14.02.D.130-130.5	1278	1181	95.4	122	29	1233	1274	1180	95.4	1199	19	1194		117.1		56.5	94.00	1.58
R_Date MR.14.05.C.246-247	1281	1182	95.4	1232	31	1240	1273	1181	95.4	1200	20	1195		126.7		50.1	92.00	1.60
R_Date MD.17.13.D.250-251	1302	1190	95.4	1272	20	1283	1277	1182	95.4	1201	22	1195		11.6		55.6	95.00	3.50
		Warnii	ng! Po	or agn	em	ent - A	= 11.6%(A'c= 60.0)%)										
R_Date MD.14.05.A.276-277	1401	1326	95.4	1363	18	1363	1401	1334	95.4	1366	17	1366		101.2		99.9	67.00	0.18
R_Date JC.14.02.C.168.5-169.5	1695	1557	95.4	1618	41	1609	1689	1566	95.4	1625	35	1614		106.8		35.8	123.00	0.20
R_Date MD.14.05.B1.306.5-307.5	1707	1604	95.4	1654	30	1658	1692	1572	95.4	1638	33	1621		86.8		21.8	120.00	0.48
EQ4							1693	1573	95.4	1640	33	1621				22.2	120.00	49.70
R_Date MR.14.02.A.297.5-298	1690	1544	95.4	1592	33	1588	1693	1574	95.4	1642	34	1622		51.2		23.7	119.00	1.41
		Warnii	ng! Po	or agr	em	ent - A	= 51.2%(A'c= 60.0)%)										
R_Date JC.14.02.C.170-171.5	1693	1561	95.4	1616	39	1606	1694	1574	95.4	1642	33	1622		101.2		22.8	120.00	0.79
R_Date MD.14.04.B.379.5-380.5	1709	1614	95.4	1659	28	1658	1694	1574	95.3	1643	33	1623		60.8		23.2	120.00	0.48
R_Date MD.14.05.B1.308-309	1695	1565	95.4	1632	40	1622	1696	1576	95.4	1646	33	1627		126		25.5	120.00	0.42
Boundary base of section				==			1696	1576	95.4	1646	33	1627				25.5		
P_Sequence Northern Humboldt																Mean=	92.56	4.35
																StDev=	44.21	11.39

63 Table DR15. This table summarizes the raw OxCal P-sequence output using k = 0.2.

		1	1		-		1 -	1			1							
													Amodel=	14.2				
	UNMODELLED (BP)						MODELLED (BP)						Aoverall=	9.8			Confidence	Normalized
	from	to	%	μ	σ	m	from	to	%	μ	σ	m	A _{comb}	Α	LP	С	Interval (yr)	Age Deviation ¹
2014																		
Boundary surface	-63	-64	95.4	-6	3 () -63	-63	-64	95.4	-63	0	-63		100		100		
1700 CE							251	. 250	95.4	250	0	250				100		
R_Date MD.14.06.168.5-169.5	926	5 798	95.4	-86	39	850	932	834	95.4	909	22	916		94.2		92	98.00	2.23
EQ2							935	855	95.4	918	16	923				93.5		
R_Date MR.14.02.B.225-226	955	802	95.4	90	40	921	. 935	918	95.4	926	6 4	927		158.1		90.6	17.00	6.00
R_Date MD.14.06.C.169.5-170.5	952	803	95.3	91	31	l 923	935	919	95.4	927	3	928		122.5		93.7	16.00	4.67
R_Date MR.14.05.B.188.5-189.5	959	910	95.4	92	19	927	935	920	95.4	928	3	929		130.8		98	15.00	0.67
R_Date MD.14.03.C.212.5-213.5	965	928	95.4	94	11	l 947	945	921	95.4	930	5	930		47.2		94.8	24.00	3.40
		Warni	ng! Po	or agr	eem	ent - A	= 47.2%(A'c= 60.	0%)										
R_Date MR.14.02.A.273-273.5	1058	961	95.4	100	30	0 1004	. 1175	1160	95.4	1166	10	1167		0.8		98	15.00	15.80
		Warni	ng! Po	or agr	eem	ent - A	= 0.8%(A'c= 60.0	%)										
R_Date JC.14.02.D.125.5-126	1072	969	95.4	102	34	1021	. 1175	1161	95.4	1166	10	1167		11.4		97.9	14.00	14.10
		Warni	ng! Po	or agr	eem	ent - A	= 11.4%(A'c= 60.	0%)										
EQ3							1202	1161	95.4	1180	16	1180				95.6		
R_Date JC.14.02.D.130-130.5	1278	1181	95.4	122	29	9 1233	1206	5 1181	95.4	1195	11	1193		118.3		85.6	25.00	3.09
R_Date MR.14.05.C.246-247	1281	. 1182	95.4	123	31	l 1240	1205	1182	95.4	1195	11	1194		128.2		83.5	23.00	3.36
R_Date MD.17.13.D.250-251	1302	1190	95.4	127	3 20) 1283	1206	5 1183	95.4	1196	12	1194		8.7		86.9	23.00	6.83
		Warni	ng! Po	or agi	eem	ent - A	= 8.7%(A'c= 60.0	%)										
R_Date MD.14.05.A.276-277	1401	1326	95.4	136	18	3 1363	1400	1335	95.4	1366	16	1367		101.9		99.3	65.00	0.19
R_Date JC.14.02.C.168.5-169.5	1695	5 1557	95.4	161	3 41	l 1609	1686	1565	95.4	1616	31	1610		109.9		16.6	121.00	0.06
R_Date MD.14.05.B1.306.5-307.5	1707	1604	95.4	165	1 30	1658	1690	1572	95.3	1629	30	1617		80.4		5	118.00	0.83
EQ4							1690	1574	95.4	1631	. 30	1618				4.8		
R_Date MR.14.02.A.297.5-298	1690	1544	95.4	159	33	3 1588	1692	1576	95.4	1633	31	1619		54.3		5.2	116.00	1.26
		Warni	ng! Po	or agr	eem	ent - A	= 54.3%(A'c= 60.	0%)										
R_Date JC.14.02.C.170-171.5	1693	1561	95.4	161	5 39	9 1606	1692	1578	95.5	1634	30	1619		104		5.2	114.00	0.60
R_Date MD.14.04.B.379.5-380.5	1709	1614	95.4	165	28	3 1658	1693	1577	95.4	1634	30	1620		57.6		5.2	116.00	0.83
		Warni	ng! Po	or agr	em	ent - A	= 57.6%(A'c= 60.	0%)										
R_Date MD.14.05.B1.308-309	1695	1565	95.4	163	40	1622	1695	1577	95.3	1637	31	1622		124.4		6	118.00	0.16
Boundary base of section							1695	1577	95.3	1637	31	1622				6		
P_Sequence Northern Humboldt																Mean=	61.06	3.77
				=:												StDev=	47.63	4.69

Table DR16. This table summarizes the raw OxCal P-sequence output using k = 0.3.

													Amodel= 6.6						Normalized
	UNMODELLED (BP)						MODELLED (BP)						Aoverall= 7.1		_			Confidence	Age
	from	to	%	μ	σ	m	from	to	%	μ	σ	m	A _{comb} A	I	LP	С		Interval (yr)	Deviation ¹
2014																			
Boundary surface	-63	-64	95.4	-63	0	-63	-63	-64	95.4	-63	0	-63	1	00		100			
1700 CE							251	250	95.4	250	0	250				100			
R_Date MD.14.06.168.5-169.5	926	798	95.4	860	39	850	932	836	95.4	910	20	916	97	<i>'</i> .6		99.1		96.00	2.50
EQ2							935	856	95.4	919	15	923				97.9			61.27
R_Date MR.14.02.B.225-226	955	802	95.4	902	40	921	935	918	95.4	926	4	927	159	9.2		95.2		17.00	6.00
R_Date MD.14.06.C.169.5-170.5	952	803	95.3	913	31	923	935	919	95.4	927	3	928	122	2.6		93.8		16.00	4.67
R_Date MR.14.05.B.188.5-189.5	959	910	95.4	926	19	927	936	920	95.4	928	3	929	131	7		98.4		16.00	0.67
R_Date MD.14.03.C.212.5-213.5	965	928	95.4	947	11	947	942	921	95.4	930	5	930	44	1.3		97.3		21.00	3.40
		Warni	ng! Po	or agr	eem	ent - A	a= 44.3%(A'c= 60.	0%)											
R_Date MR.14.02.A.273-273.5	1058	961	95.4	1008	30	1004	1174	1161	95.4	1167	3	1167	0).3		96.7		13.00	53.00
		Warni	ng! Po	or agr	eem	ent - A	A= 0.3%(A'c= 60.0	%)											
R_Date JC.14.02.D.125.5-126	1072	969	95.4	1025	34	1021	1174	1161	95.4	1167	3	1167	10).9		96.5		13.00	47.33
		Warni	ng! Po	or agr	eem	ent - A	A= 10.9%(A'c= 60.	0%)											
EQ3				==			1200	1161	95.4	1180	13	1179				95.7			
R_Date JC.14.02.D.130-130.5	1278	1181	95.4	1729	29	1233	1204	1183	95.4	1194	7	1193	118	8.8		95.7		21.00	5.00
R_Date MR.14.05.C.246-247	1281	1182	95.4	1232	31	1240	1205	1184	95.4	1194	7	1194	1	29		95.8		21.00	5.43
R_Date MD.17.13.D.250-251	1302	1190	95.4	1278	20	1283	1205	1184	95.4	1195	8	1194		8		95.7		21.00	10.38
		Warni	ng! Po	or agr	eem	ent - A	A= 8.0%(A'c= 60.0	%)											
R_Date MD.14.05.A.276-277	1401	1326	95.4	1363	18	1363	1401	1336	95.4	1367	16	1367	102	2.5		99.2		65.00	0.25
R_Date JC.14.02.C.168.5-169.5	1695	1557	95.4	1618	41	1609	1684	1564	95.4	1611	28	1607	111	9		11.8		120.00	0.25
R_Date MD.14.05.B1.306.5-307.5	1707	1604	95.4	1654	30	1658	1689	1574	95.3	1625	27	1616	75	5.7		2		115.00	1.07
EQ4							1690	1575	95.4	1627	27	1617				1.7			
R_Date MR.14.02.A.297.5-298	1690	1544	95.4	1594	33	1588	1691	1595	95.4	1629	28	1618	56	5.4		1.8		96.00	1.25
		Warni	ng! Po	or agr	eem	ent - A	= 56.4%(A'c= 60.	0%)											
R_Date JC.14.02.C.170-171.5	1693	1561	95.4	1616	39	1606	1691	1597	95.4	1629	28	1618	106	6.6		1.8		94.00	0.46
R_Date MD.14.04.B.379.5-380.5	1709	1614	95.4	1659	28	1658	1692	1598	95.4	1629	28	1618	54	1.7		1.7		94.00	1.07
		Warni	ng! Po	or agr	eem	ent - A	a= 54.7%(A'c= 60.	0%)											
R_Date MD.14.05.B1.308-309	1695	1565	95.4	1632	40	1622	1695	1598	95.4	1633	28	1621	123	3.5		1.9		97.00	0.04
Boundary base of section							1695	1598	95.4	1633	28	1621				1.9			
P_Sequence Northern Humboldt																M	lean=	55.06	11.34
				==												St	Dev=	42.38	19.90

Table DR17. This table summarizes the raw OxCal P-sequence output using k = 0.4.

					1		-						Amodol-	07					Normalized
					-								Amouel-	0.7 7 5	-			C C I	Λαρ
			~				NODELLED (BP)		~				AUverali-	7.5				Confidence	
	from	to	%	μ	σ	m	from	to	%	μ	σ	m	A _{comb}	A	LP	, C		Interval (yr)	Deviation
2014																			
Boundary surface	-63	-64	95.4	-63	0	-63	-63	-64	95.4	-63	0	-63		100		100)		
1700 CE							251	250	95.4	250	0	250				100)		
R_Date MD.14.06.168.5-169.5	926	798	95.4	860	39	850	931	840	95.4	911	18	916		99.5		99.6	5	91.00	2.83
EQ2							935	895	95.4	919	14	923				98.8	3		
R_Date MR.14.02.B.225-226	955	802	95.4	902	40	921	935	918	95.4	927	4	927		159.3		99.3	3	17.00	6.25
R_Date MD.14.06.C.169.5-170.5	952	803	95.3	913	31	923	935	920	95.4	927	3	928		123		99.4	1	15.00	4.67
R_Date MR.14.05.B.188.5-189.5	959	910	95.4	<mark>926</mark>	19	927	936	920	95.4	928	3	929		131.9		96.3	1	16.00	0.67
R_Date MD.14.03.C.212.5-213.5	965	928	95.4	947	11	947	941	921	95.4	930	4	930		42		97.3	3	20.00	4.25
		Warnin	g! Poo	r <mark>agre</mark> e	eme	nt - A=	42.0%(A'c= 60.0	%)											
R_Date MR.14.02.A.273-273.5	1058	961	95.4	1008	30	1004	1174	1161	95.4	1167	6	1167		0.4		97.2	2	13.00	26.50
		Warnin	g! Poo	r agree	eme	nt - A=	0.4%(A'c= 60.0%)											
R_Date JC.14.02.D.125.5-126	1072	969	95.4	1025	34	1021	1174	1161	95.4	1167	6	1167		10.9		97.8	3	13.00	23.67
		Warnin	g! Poo	r agree	eme	nt - A=	10.9%(A'c= 60.0	%)											
EQ3				==			1199	1162	95.4	1180	12	1180				94.4	1		
R_Date JC.14.02.D.130-130.5	1278	1181	95.4	1229	29	1233	1203	1183	95.4	1193	5	1193		118.7		82.8	3	20.00	7.20
R_Date MR.14.05.C.246-247	1281	1182	95.4	1232	31	1240	1203	1184	95.4	1193	5	1193		128.3		86	5	19.00	7.80
R Date MD.17.13.D.250-251	1302	1190	95.4	1278	20	1283	1204	1184	95.4	1193	5	1193		7.8		89	Ð	20.00	17.00
_		Warnin	g! Poo	r agree	eme	nt - A=	7.8%(A'c= 60.0%)											
R Date MD.14.05.A.276-277	1401	1326	95.4	1363	18	1363	1400	1338	95.4	1368	16	1368		102.6		99.3	3	62.00	0.31
R Date JC.14.02.C.168.5-169.5	1695	1557	95.4	1618	41	1609	1683	1565	95.4	1613	29	1607		108		40.5	5	118.00	0.17
R Date MD.14.05.B1.306.5-307.5	1707	1604	95.4	1654	30	1658	1689	1574	95.4	1627	28	1616		77		27.4	1	115.00	0.96
EQ4							1690	1575	95.5	1629	29	1617				26.3	1		
R Date MR.14.02.A.297.5-298	1690	1544	95.4	1594	33	1588	1692	1594	95.4	1631	29	1618		54.8		25.6	5	98.00	1.28
_		Warnin	g! Poo	r agree	eme	nt - A=	54.8%(A'c= 60.0	%)											
R Date JC.14.02.C.170-171.5	1693	1561	95.4	1616	39	1606	1692	1594	95.4	1632	29	1619		104.1		25.7	7	98.00	0.55
R Date MD.14.04.B.379.5-380.5	1709	1614	95.4	1659	28	1658	1693	1595	95.4	1632	29	1619		56.3		25.7	7	98.00	0.93
		Warnin	g! Poo	r agree	eme	nt - A=	56.3%(A'c= 60.0	%)											
R Date MD.14.05.B1.308-309	1695	1565	95.4	1632	40	1622	1695	, 1598	95.4	1636	29	1622		122.1		25.5	5	97.00	0.14
Boundary base of section							1695	1598	95.4	1636	29	1622				25.5	5		
P Sequence Northern Humboldt							1000										Mean=	54.71	6.19
		-			-						-				-	-			

Table DR18. This table summarizes the raw OxCal P-sequence output using k = 0.5.

79 Table DR19. This table summarizes the raw OxCal P-sequence output	t using $k = 0.6$.
--	---------------------

													Amodel=	6.1					
	UNMODELLED (BP)						MODELLED (BP)						Aoverall=	6.9				Confidence	Normalized Age
	from	to	%	μ	σ	m	from	to	%	μ	σ	m	Acomb	A	LP	с		Interval (yr)	Deviation ¹
2014																		() /	
Boundary surface	-63	-64	95.4	-63	0	-63	-63	-64	95.4	-63	0	-63		100		100			
1700 CE							251	250	95.4	250	0	250				100			
R_Date MD.14.06.168.5-169.5	926	798	95.4	860	39	850	930	829	95.4	910	20	915		101.2		97		101.00	2.50
EQ2					-		935	832	95.4	917	17	922				96.9			53.94
R_Date MR.14.02.B.225-226	955	802	95.4	902	40	921	. 935	916	95.4	925	14	927		157.4		95.4		19.00	1.64
R_Date MD.14.06.C.169.5-170.5	952	803	95.3	913	31	923	935	918	95.4	925	14	927		121.5		93.9		17.00	0.86
R_Date MR.14.05.B.188.5-189.5	959	910	95.4	926	19	927	936	920	95.4	926	14	928		130.4		97.3		16.00	0.00
R_Date MD.14.03.C.212.5-213.5	965	928	95.4	947	11	947	943	920	95.4	927	14	929		38.5		96.1		23.00	1.43
		Warn	ing! Po	oor ag	reen	nent -	A= 38.5%(A'c= 60	.0%)											
R_Date MR.14.02.A.273-273.5	1058	961	95.4	1008	30	1004	1174	1161	95.4	1167	5	1167		0.3		91.8		13.00	31.80
		Warn	ing! Po	oor ag	reen	nent -	A= 0.3%(A'c= 60.0)%)											
R_Date JC.14.02.D.125.5-126	1072	969	95.4	1025	34	1021	. 1174	1161	95.4	1167	5	1167		10.8		89.9		13.00	28.40
		Warn	ing! Po	oor ag	reen	nent -	A= 10.8%(A'c= 60	.0%)											
EQ3				=	F		1199	1162	95.4	1180	11	1180				93.3			
R_Date JC.14.02.D.130-130.5	1278	1181	95.4	1729	29	1233	1204	1183	95.4	1193	6	1192		118.6		78.1		21.00	6.00
R_Date MR.14.05.C.246-247	1281	1182	95.4	1232	31	1240	1204	1183	95.4	1193	6	1193		127.1		76.3		21.00	6.50
R_Date MD.17.13.D.250-251	1302	1190	95.4	1278	20	1283	1205	1184	95.4	1194	6	1193		7.7		76.3		21.00	14.00
		Warn	ing! Po	oor ag	een	nent -	A= 7.7%(A'c= 60.0	0%)											
R_Date MD.14.05.A.276-277	1401	1326	95.4	1363	18	1363	1400	1340	95.4	1369	15	1369		102.8		97.3		60.00	0.40
R_Date JC.14.02.C.168.5-169.5	1695	1557	95.4	1618	41	1609	1682	1564	95.4	1611	29	1606		106.9		10.8		118.00	0.24
R_Date MD.14.05.B1.306.5-307.5	1707	1604	95.4	1654	30	1658	1689	1572	95.4	1625	29	1616		73.6		2.1		117.00	1.00
EQ4							1690	1572	95.4	1627	29	1617				1.9			
R_Date MR.14.02.A.297.5-298	1690	1544	95.4	1594	33	1588	1691	1573	95.4	1630	30	1618		56.9		2.2		118.00	1.20
		Warn	ing! Po	oor ag	een	nent -	A= 56.9%(A'c= 60	.0%)											
R_Date JC.14.02.C.170-171.5	1693	1561	95.4	1616	39	1606	1692	1573	95.4	1630	30	1618		105		2.2		119.00	0.47
R_Date MD.14.04.B.379.5-380.5	1709	1614	95.4	1659	28	1658	1692	1573	95.3	1631	30	1619		54.2		2.2		119.00	0.93
		Warn	ing! Po	oor ag	reen	nent -	A= 54.2%(A'c= 60	.0%)											
R_Date MD.14.05.B1.308-309	1695	1565	95.4	1632	40	1622	1695	1575	95.4	1634	30	1622		120.7		2.5		120.00	0.07
Boundary base of section							1695	1575	95.4	1634	30	1622				2.5			
P_Sequence Northern Humboldt																М	lean=	60.94	8.41
				=	•											St	tDev=	48.75	14.84

													Amodel= 8.2					Normalized
	UNMODELLED (BP)						MODELLED (BP)						Aoverall= 7		_		Confidence	Age
	from	to	%	μ	σ	m	from	to	%	μ	σ	m	A _{comb} A	L	. P	С	Interval (yr)	Deviation ¹
2014																		
Boundary surface	-63	-64	95.4	-63	0	-63	-63	-64	95.4	-63	0	-63	1	00		100		
1700 CE							251	250	95.4	250	0	250				100		
R_Date MD.14.06.168.5-169.5	926	798	95.4	860	39	850	930	893	95.4	913	13	915	10	3.7		99.8	37.00	4.08
EQ2				==			934	904	95.4	920	10	922				99.3		
R_Data MR.14.02.B.225-226	955	802	95.4	902	40	921	935	919	95.4	927	3	927	16	2.3		97.4	16.00	8.33
R_Date MD.14.06.C.169.5-170.5	952	803	95.3	913	31	923	934	921	95.4	927	3	927	12	5.3		95.1	13.00	4.67
R_Date MR.14.05.B.188.5-189.5	959	910	95.4	926	19	927	935	921	95.4	928	3	928	13	4.4		93.1	14.00	0.67
R_Date MD.14.03.C.212.5-213.5	965	928	95.4	947	11	947	938	921	95.4	929	3	929		35		98.1	17.00	6.00
		Warni	ng! Po	or agre	em	ent - A	= 35.0%(A'c= 60.	0%)										
R_Date MR.14.02.A.273-273.5	1058	961	95.4	1008	30	1004	1174	1162	95.4	1167	5	1168		0.3		97.6	12.00	31.80
		Warni	ng! Po	or agre	em	ent - A	= 0.3%(A'c= 60.0	%)										
R_Date JC.14.02.D.125.5-126	1072	969	95.4	1025	34	1021	1174	1162	95.4	1168	5	1168	1).5		96.3	12.00	28.60
		Warni	ng! Po	or agre	em	ent - A	= 10.5%(A'c= 60.	0%)										
EQ3							1197	1164	95.4	1180	10	1180				98.5		
R_Date JC.14.02.D.130-130.5	1278	1181	95.4	1729	29	1233	1202	1183	95.4	1192	5	1192	11	3.4		92.3	19.00	7.40
R_Date MR.14.05.C.246-247	1281	1182	95.4	1232	31	1240	1202	1184	95.4	1193	5	1192	12	7.1		90.2	18.00	7.80
R_Date MD.17.13.D.250-251	1302	1190	95.4	1278	20	1283	1203	1184	95.4	1193	5	1192		7.7		90	19.00	17.00
		Warni	ng! Po	or agre	em	ent - A	= 7.7%(A'c= 60.0	%)										
R_Date MD.14.05.A.276-277	1401	1326	95.4	1363	18	1363	1401	1341	95.4	1370	15	1371	10	2.2		96	60.00	0.47
R_Date JC.14.02.C.168.5-169.5	1695	1557	95.4	1618	41	1609	1680	1563	95.4	1612	30	1605	10	2.9		2.9	117.00	0.20
R_Date MD.14.05.B1.306.5-307.5	1707	1604	95.4	1654	30	1658	1688	1572	95.4	1626	29	1615	7	2.7		0.3	116.00	0.97
EQ4							1689	1573	95.4	1628	30	1617				0.2		
R_Date MR.14.02.A.297.5-298	1690	1544	95.4	1594	33	1588	1690	1573	95.4	1631	30	1618	5	5.9		0.2	117.00	1.23
		Warni	ng! Po	or agre	em	ent - A	= 56.9%(A'c= 60.	0%)										
R_Date JC.14.02.C.170-171.5	1693	1561	95.4	1616	39	1606	1690	1573	95.4	1631	30	1618	10-	4.6		0.2	117.00	0.50
R_Date MD.14.04.B.379.5-380.5	1709	1614	95.4	1659	28	1658	1691	1573	95.4	1632	30	1619	54	1.2		0.2	118.00	0.90
		Warni	ng! Po	or agre	em	ent - A	= 54.2%(A'c= 60.	0%)										
R_Date MD.14.05.B1.308-309	1695	1565	95.4	1632	40	1622	1695	1576	95.4	1636	30	1622	12).4		0.3	119.00	0.13
Boundary base of section							1695	1576	95.4	1636	30	1622				0.3		
P_Sequence Northern Humboldt																Mean=	55.35	7.10
				==												StDev=	48.56	9.76

Table DR20. This table summarizes the raw OxCal P-sequence output using k = 0.8.

	1						1	-			_								
													Amodel=	5.9				Normalized	
	UNMODELLE	D (BP)					MODELLED (BP)						Aoverall=	6			Confidence	Age	
	from	to	%	μ	σ	m	from	to	%	μ	σ	m	A _{comb}	Α	LP	С	Interval (yr)	Deviation ¹	
Boundary surface	-63	-64	95.4	-63	0	-63	-63	-64	95.4	-63	0	-63		100		100			
1700 CE							251	250	95.4	250	0	250				100			
R_Date MD.14.06.168.5-169.5	926	798	95.4	860	39	850	930	830	95.4	911	17	915		105.3		97.7	100.00	3.00	
EQ2						=	935	901	95.4	918	15	922				97.4			
R_Date MR.14.02.B.225-226	955	802	95.4	902	40	9 21	935	918	95.4	925	14	927		158.8		97.8	17.00	1.64	
R_Date MD.14.06.C.169.5-170.5	952	803	95.3	913	31	923	935	919	95.4	925	14	927		122.5		97.5	16.00	0.86	
R_Date MR.14.05.B.188.5-189.5	959	910	95.4	926	19	9 27	935	919	95.4	926	14	928		132.2		97.5	16.00	0.00	
R_Date MD.14.03.C.212.5-213.5	965	928	95.4	947	11	9 47	938	920	95.4	926	14	929		29.4		96.1	18.00	1.50	
		Warnir	ng! Poc	or agre	enne	ent - A	= 29.4%(A'c= 60.0)%)											
R_Date MR.14.02.A.273-273.5	1058	961	95.4	1008	30	10 04	1174	1161	95.4	1167	8	1168		0.2		98	13.00	19.88	
		Warnir	ng! Poc	or agre	enne	ent - A	= 0.2%(A'c= 60.0%	%)											
R_Date JC.14.02.D.125.5-126	1072	969	95.4	1025	34	1021	1175	1161	95.4	1167	8	1168		10.2		98.5	14.00	17.75	
		Warnir	ng! Poc	or agre	em	ent - A	= 10.2%(A'c= 60.0)%)											
EQ3					=	=	1196	1164	95.4	1179	10	1180				99.5			
R_Date JC.14.02.D.130-130.5	1278	1181	95.4	1229	29	1233	1202	1182	95.4	1192	6	1191		118.4		95.1	20.00	6.17	
R_Date MR.14.05.C.246-247	1281	1182	95.4	1232	31	1240	1202	1183	95.4	1192	6	1192		126.5		94	19.00	6.67	
R_Date MD.17.13.D.250-251	1302	1190	95.4	1278	20	1283	1202	1184	95.4	1192	6	1192		7.6		93.7	18.00	14.33	
		Warnir	ng! Poc	or agre	em	ent - A	= 7.6%(A'c= 60.0%	%)											
R_Date MD.14.05.A.276-277	1401	1326	95.4	1363	18	1363	1400	1343	95.4	1371	15	1372		101.5		94.4	57.00	0.53	
R_Date JC.14.02.C.168.5-169.5	1695	1557	95.4	1618	41	1609	1679	1562	95.4	1610	30	1604		100.4		8.5	117.00	0.27	
R_Date MD.14.05.B1.306.5-307.5	1707	1604	95.4	1654	30	1658	1686	1572	95.4	1625	30	1615		69.8		4.5	114.00	0.97	
EQ4					=	==	1688	1573	95.4	1627	30	1616				4.5			
R_Date MR.14.02.A.297.5-298	1690	1544	95.4	1594	33	15 88	1690	1574	95.4	1630	31	1618		58.7		4.7	116.00	1.16	
		Warnir	ng! Poc	or agre	eme	ent - A	= 58.7%(A'c= 60.0	0%)											
R_Date JC.14.02.C.170-171.5	1693	1561	95.4	1616	39	1606	1690	1574	95.4	1630	31	1618		104.6		4.7	116.00	0.45	
R_Date MD.14.04.B.379.5-380.5	1709	1614	95.4	1659	28	1658	1690	1574	95.4	1630	31	1618		52.5		4.8	116.00	0.94	
		Warnir	ng! Poc	or agre	enn	ent - A	= 52.5%(A'c= 60.0	0%)											
R_Date MD.14.05.B1.308-309	1695	1565	95.4	1632	40	1622	1695	1578	95.4	1635	31	1622		119.8		5	117.00	0.10	
Boundary base of section							1695	1578	95.4	1635	31	1622				5			
P_Sequence Northern Humboldt						=										Mean=	59.06	4.48	
						==										StDev=	18 26	6.40	

Table DR20. This table summarizes the raw OxCal P-sequence output using k = 1.

	UNMODELLED (BP)						MODELLED (BP)						Aoverall=	2.4				Confidence	
	from	to	%	μ	σ	m	from	to	%	μ	σ	m	Acomb	A I	L P	с		Interval (yr)	D
Boundary surface	-63	-64	95.4	-63	0	-63	-63	-64	95.4	-63	0	-63		100		100	1		
1700 CE							251	250	95.4	250	0	250				100	1		
R_Date MD.14.06.168.5-169.5	926	798	95.4	860	39	850	926	803	95.4	865	44	836		99		17.7		123.00	
EQ2				=	=		930	815	95.4	871	44	838				15	r		
R_Date MR.14.02.B.225-226	955	802	95.4	902	40	921	934	830	95.4	876	45	841		97.5		14.1		104.00	
R_Date MD.14.06.C.169.5-170.5	952	803	95.3	913	31	923	934	831	95.4	877	45	841		67.8		14.1		103.00	
R_Date MR.14.05.B.188.5-189.5	959	910	95.4	926	19	927	934	831	95.4	877	45	841		61.6		14	,	103.00	
R_Date MD.14.03.C.212.5-213.5	965	928	95.4	947	11	947	934	831	95.4	877	45	842		8.6		13.9	1	103.00	
		Warr	ning!P	oor ag	reer	nent -	A= 8.6%(A'c= 60.0	0%)											
R_Date MR.14.02.A.273-273.5	1058	961	95.4	1008	30	1004	1175	1161	95.4	1168	5	1169		0.2		94.1		14.00	
		Warr	ning!P	oor ag	reer	nent -	A= 0.2%(A'c= 60.0	0%)											
R_Date JC.14.02.D.125.5-126	1072	969	95.4	1025	34	1021	1175	1161	95.4	1168	5	1169		9.6		95.5	·	14.00	
		Warr	ning!P	oor ag	reer	nent -	A= 9.6%(A'c= 60.0	0%)											
EQ3				=	=		1195	1165	95.4	1179	8	1180				99.7	,		
R_Date JC.14.02.D.130-130.5	1278	1181	95.4	1229	29	1233	1200	1181	95.4	1191	5	1191		117.8		98.2		19.00	
R_Date MR.14.05.C.246-247	1281	1182	95.4	1232	31	1240	1200	1182	95.4	1191	5	1191		122.3		98.4	,	18.00	
R_Date MD.17.13.D.250-251	1302	1190	95.4	1278	20	1283	1200	1182	95.4	1191	5	1191		7.1		98.4	,	18.00	
		Warr	ning!P	oor <mark>a</mark> g	reer	nent -	A= 7.1%(A'c= 60.0	0%)											
R_Date MD.14.05.A.276-277	1401	1326	95.4	1363	18	1363	1400	1345	95.4	1372	13	1373		103.5		96.2		55.00	
R_Date JC.14.02.C.168.5-169.5	1695	1557	95.4	1618	41	1609	1665	1555	95.4	1593	22	1594		105.2		72.7		110.00	
R_Date MD.14.05.B1.306.5-307.5	1707	1604	95.4	1654	30	1658	1678	1566	95.4	1606	23	1608		44.1		72		112.00	
		Warr	ning!P	oor ag	reer	nent -	A= 44.1%(A'c= 60	.0%)											
EQ4				=	F		1680	1569	95.4	1609	23	1610				72.8	1		
R_Date MR.14.02.A.297.5-298	1690	1544	95.4	1594	33	1588	1684	1571	95.4	1612	23	1613		78.2		73.7	,	113.00	
R_Date JC.14.02.C.170-171.5	1693	1561	95.4	1616	39	1606	1684	1571	95.4	1612	23	1613		113.5		73.7		113.00	
R_Date MD.14.04.B.379.5-380.5	1709	1614	95.4	1659	28	1658	1684	1571	95.4	1612	23	1613		35.7		73.6	1	113.00	
		Warr	ning! P	oor ag	reer	nent -	A= 35.7%(A'c= 60	.0%)											
R_Date MD.14.05.B1.308-309	1695	1565	95.4	1632	40	1622	1689	1574	95.4	1617	23	1618		111.7		76.2		115.00	
Boundary base of section							1689	1574	95.4	1617	23	1618				76.2			
P_Sequence Northern Humboldt				=	=												Mean=	79.41	
				=	F												StDev=	44.14	

Table DR21. This table summarizes the raw OxCal P-sequence output using k = 2.

						-			<u> </u>					_					
													Amodel= 3.6						Normalized
	UNMODELLED (BP)						MODELLED (BP)						Aoverall= 3					Confidence	Age
	from	to	%	μ	σ	m	from	to	%	μ	σ	m	A _{comb} A	L	. P	с		Interval (yr)	Deviation ¹
Boundary surface	-63	-64	95.4	-63	0	-63	-63	-64	95.4	-63	0	-63	10	0		100			
1700 CE							251	250	95.4	250	0	250				100			
R_Date MD.14.06.168.5-169.5	926	798	95.4	860	39	850	926	821	95.4	904	26	912	113.	4				105.00	1.69
EQ2				=:	+		930	826	95.4	910	26	918							
R_Date MR.14.02.B.225-226	955	802	95.4	902	40	921	934	832	95.4	916	26	924	15	8				102.00	0.54
R_Date MD.14.06.C.169.5-170.5	952	803	95.3	913	31	. 923	934	832	95.4	916	26	925	12	5				102.00	0.12
R_Date MR.14.05.B.188.5-189.5	959	910	95.4	926	19	927	934	832	95.4	916	26	925	110.	1				102.00	0.38
R_Date MD.14.03.C.212.5-213.5	965	928	95.4	947	11	. 947	934	832	95.4	917	26	925	10.	1				102.00	1.15
		Warn	ing! Po	or agi	een	nent - /	A= 10.1%(A'c= 60	.0%)											
R_Date MR.14.02.A.273-273.5	1058	961	95.4	1008	30	1004	1178	1163	95.4	1170	5	1170	0.	2		98.2		15.00	32.40
		Warn	ing! Po	or agi	een	nent - /	A= 0.2%(A'c= 60.0)%)											
R_Date JC.14.02.D.125.5-126	1072	969	95.4	1025	34	1021	1176	1163	95.4	1170	5	1170	8.	2		98.5		13.00	29.00
		Warn	ing! Pc	or ag	een	nent - /	A= 8.2%(A'c= 60.0	0%)											
EQ3				=:			1190	1169	95.4	1179	6	1180				99.4			
R_Date JC.14.02.D.130-130.5	1278	1181	95.4	1229	29	1233	1197	1182	95.4	1189	3	1189	116.	2		91.1		15.00	13.33
R_Date MR.14.05.C.246-247	1281	1182	95.4	1732	31	. 1240	1197	1182	95.4	1189	3	1190	115.	2		90.4		15.00	14.33
R_Date MD.17.13.D.250-251	1302	1190	95.4	1 <mark>27</mark> 8	20	1283	1198	1182	95.4	1189	3	1190	6.	3		91.3		16.00	29.67
		Warn	ing! Pc	or ag	een	nent - /	A= 6.3%(A'c= 60.0	0%)											
R_Date MD.14.05.A.276-277	1401	1326	95.4	1363	18	1363	1396	1347	95.4	1372	12	1372	107.	5		99.3		49.00	0.75
R_Date JC.14.02.C.168.5-169.5	1695	1557	95.4	1618	41	1609	1610	1556	95.4	1585	16	1587	103.	2		90.3		54.00	2.06
R_Date MD.14.05.B1.306.5-307.5	1707	1604	95.4	1654	30	1658	1620	1567	95.4	1597	17	1602	30.	5		89		53.00	3.35
		Warn	ing! Pc	or ag	een	nent - /	A= 30.5%(A'c= 60	.0%)											
EQ4				==	Ŧ		1623	1570	95.4	1600	17	1605				89.4			
R_Date MR.14.02.A.297.5-298	1690	1544	95.4	1594	33	1588	1625	1571	95.4	1602	17	1608	92.	1		89.7		54.00	0.47
R_Date JC.14.02.C.170-171.5	1693	1561	95.4	1616	39	1606	1625	1571	95.4	1602	17	1608	118.	1		89.9		54.00	0.82
R_Date MD.14.04.B.379.5-380.5	1709	1614	95.4	1659	28	1658	1625	1571	95.4	1602	17	1608	24.	6		89.8		54.00	3.35
		Warn	ing! Pc	or agi	een	nent - /	A= 24.6%(A'c= 60	.0%)											
R_Date MD.14.05.B1.308-309	1695	1565	95.4	1632	40	1622	1631	1576	95.4	1608	17	1613	105.	9		91.4		55.00	1.41
Boundary base of section							1631	1576	95.4	1608	17	1613				91.4			
P_Sequence Northern Humboldt				=:	-												Mean=	56.47	7.93
				=:													StDev=	34.85	11.51

⁹⁶ Table DR22. This table summarizes the raw OxCal P-sequence output using k = 3.

													Amodel=	1.2				
	UNMODELLED (BP)						MODELLED (BP)						Aoverall=	0.5			Confidence	Normalized Age
	from	to	%	μ	σ	m	from t	to	%	μ	σ	m	A _{comb}	Α	LP	с	Interval (yr)	Deviation ¹
Boundary surface	-63	-64	95.4	-63	0	-63	-63	-64	95.4	-63	0	-63		100		100		
1700 CE							251	250	95.4	250	0	250				100		
R_Date MD.14.06.168.5-169.5	926	798	95.4	860	39	850	919	804	95.4	839	34	828		77			115.00	0.62
EQ2				==			925	814	95.4	845	34	832					111.00	24.85
R_Date MR.14.02.B.225-226	955	802	95.4	902	40	921	928	828	95.4	851	34	836		61.1				
R_Date MD.14.06.C.169.5-170.5	952	803	95.3	913	31	923	929	828	95.4	851	34	836		34.7			101.00	1.82
		Warni	ng! Po	or agn	em	ent - A	= 34.7%(A'c= 60.09	%)										
R_Date MR.14.05.B.188.5-189.5	959	910	95.4	926	19	927	929	828	95.4	851	34	836		21.2			101.00	2.21
		Warni	ng! Po	or agn	em	ent - A	= 21.2%(A'c= 60.09	%)										
R_Date MD.14.03.C.212.5-213.5	965	928	95.4	947	11	947	929	828	95.4	851	34	836		1			101.00	2.82
		Warni	ng! Po	or agn	em	ent - A	= 1.0%(A'c= 60.0%	6)										
R_Date MR.14.02.A.273-273.5	1058	961	95.4	1008	30	1004	1178	1162	95.4	1170	3	1170		0.2		94.7	16.00	54.00
		Warni	ng! Po	or agn	em	ent - A	= 0.2%(A'c= 60.0%	6)										
R_Date JC.14.02.D.125.5-126	1072	969	95.4	1025	34	1021	1176	1163	95.4	1170	3	1170		8.3		94.6	13.00	48.33
		Warni	ng! Po	or agn	em	ent - A	= 8.3%(A'c= 60.0%	6)										
EQ3							1190	1169	95.4	1179	5	1179				98.9		
R_Date JC.14.02.D.130-130.5	1278	1181	95.4	1229	29	1233	1196	1181	95.4	1188	3	1189		115		79.8	15.00	13.67
R_Date MR.14.05.C.246-247	1281	1182	95.4	1232	31	1240	1196	1181	95.4	1189	3	1189		110.3		77.9	15.00	14.33
R_Date MD.17.13.D.250-251	1302	1190	95.4	1278	20	1283	1196	1181	95.4	1189	3	1189		5.8		79.3	15.00	29.67
		Warni	ng! Po	or agr	eem	ent - A	= 5.8%(A'c= 60.0%	6)										
R_Date MD.14.05.A.276-277	1401	1326	95.4	1363	18	1363	1393	1347	95.4	1370	11	1370		112.6		94.9	46.00	0.64
R_Date JC.14.02.C.168.5-169.5	1695	1557	95.4	1618	41	1609	1605	1554	95.4	1576	16	1571		89.1		69.3	51.00	2.63
R_Date MD.14.05.B1.306.5-307.5	1707	1604	95.4	1 6 54	30	1658	1617	1566	95.4	1588	17	1581		21.3		67.5	51.00	3.88
		Warni	ng! Po	or agr	eem	ent - A	= 21.3%(A'c= 60.09	%)										
EQ4							1619	1568	95.4	1590	18	1583				65.7		
R_Date MR.14.02.A.297.5-298	1690	1544	95.4	1594	33	1588	1622	1570	95.4	1593	18	1586		108.1		63.8	52.00	0.06
R_Date JC.14.02.C.170-171.5	1693	1561	95.4	1 6 16	39	1606	1622	1571	95.4	1593	18	1586		119.4		63.7	51.00	1.28
R_Date MD.14.04.B.379.5-380.5	1709	1614	95.4	1659	28	1658	1622	1571	95.4	1593	18	1587		13.5		63.8	51.00	3.67
		Warni	ng! Po	or agr	eem	ent - A	= 13.5%(A'c= 60.09	%)										
R_Date MD.14.05.B1.308-309	1695	1565	95.4	1632	40	1622	1626	1575	95.4	1598	18	1592		93.1		61.5	51.00	1.89
Boundary base of section				==			1626	1575	95.4	1598	18	1592				61.5		
P_Sequence Northern Humboldt																Mear	n= 56.24	12.14
																StDe	/= 36.50	17.13

100 Table DR23. This table summarizes the raw OxCal P-sequence output using k = 4.

	UNMODELLED (BP)						MODELLED (BP)						Aoverall=	0.4			Confidence	
	from	to	%	μ	σ	m	from	to	%	μ	σ	m	Acomb	Α	LP	C C	Interval (yr)	
Boundary surface	-63	-64	95.4	-63	0	-63	-63	-64	95.4	-63	0	-63		100		100		Т
1700 CE							251	250	95.4	250	0	250				100		T
R Date MD.14.06.168.5-169.5	926	798	95.4	860	39	850	919	806	95.4	856	42	830		80.1		1.2	113.00	
EQ2				=:			924	817	95.4	862	42	834				0.9		
R_Date MR.14.02.B.225-226	955	802	95.4	902	40	921	928	829	95.4	868	41	837		75.7		0.6	99.00	
R_Date MD.14.06.C.169.5-170.5	952	803	95.3	913	31	923	928	829	95.4	868	41	837		47.5		0.6	99.00	
		Warn	ing! Po	or agr	eem	ent -	A= 47.5%(A'c= 60	.0%)										
R_Date MR.14.05.B.188.5-189.5	959	910	95.4	926	19	927	928	828	95.4	868	41	837		28.2		0.6	100.00	
		Warn	ing! Po	or agr	eem	ent -	A= 28.2%(A'c= 60	.0%)										
R_Date MD.14.03.C.212.5-213.5	965	928	95.4	947	11	947	928	828	95.4	868	41	837		0.6		0.6	100.00	
		Warn	ing! Po	or ag	eem	ent -	A= 0.6%(A'c= 60.0)%)										
R_Date MR.14.02.A.273-273.5	1058	961	95.4	1008	30	1004	1178	1165	95.4	1170	4	1171		0.2		86	13.00	
		Warn	ing! Po	or agr	eem	ent -	A= 0.2%(A'c= 60.0)%)										
R_Date JC.14.02.D.125.5-126	1072	969	95.4	1025	34	1021	1179	1165	95.4	1170	4	1171		7.1		84.5	14.00	
		Warn	ing! Po	or agr	eem	ent -	A= 7.1%(A'c= 60.0)%)										
EQ3							1190	1168	95.4	1180	6	1179				95.5		
R_Date JC.14.02.D.130-130.5	1278	1181	95.4	1229	29	1233	1198	1180	95.4	1189	8	1187		112.1		88.8	18.00	
R_Date MR.14.05.C.246-247	1281	1182	95.4	1232	31	1240	1197	1180	95.4	1189	8	1188		99.7		88.7	17.00	
R_Date MD.17.13.D.250-251	1302	1190	95.4	1278	20	1283	1197	1180	95.4	1189	8	1188		4.6		87.7	17.00	
		Warn	ing! Po	or agr	eem	ent -	A= 4.6%(A'c= 60.0)%)										
R_Date MD.14.05.A.276-277	1401	1326	95.4	1363	18	1363	1392	1347	95.4	1369	11	1369		114.5		93.4	45.00	
R_Date JC.14.02.C.168.5-169.5	1695	1557	95.4	1618	41	1609	1602	1553	95.4	1573	15	1568		82.1		97.7	49.00	
R_Date MD.14.05.B1.306.5-307.5	1707	1604	95.4	1 <mark>65</mark> 4	30	1658	1616	1565	95.4	1584	16	1578		19.2		97.4	51.00	
		Warn	ing! Po	or agr	eem	ent -	A= 19.2%(A'c= 60	.0%)										
EQ4							1617	1567	95.4	1587	17	1581				97.2		
R_Date MR.14.02.A.297.5-298	1690	1544	95.4	1594	33	1588	1621	1570	95.4	1590	17	1582		111.8		96.8	51.00	
R_Date JC.14.02.C.170-171.5	1693	1561	95.4	1616	39	1606	1621	1570	95.4	1590	17	1583		119.9		96.7	51.00	
R_Date MD.14.04.B.379.5-380.5	1709	1614	95.4	1659	28	1658	1621	1570	95.4	1590	17	1583		11.1		96.7	51.00	
		Warn	ing! Po	or agr	eem	ent -	A= 11.1%(A'c= 60	.0%)										
R_Date MD.14.05.B1.308-309	1695	1565	95.4	1632	40	1622	1625	1574	95.4	1595	17	1588		88		96.9	51.00	
Boundary base of section				==			1625	1574	95.4	1595	17	1588				96.9		
P_Sequence Northern Humboldt																Mean=	55.24	
																StDev=	32 31	

Table DR24. This table summarizes the raw OxCal P-sequence output using k = 5.

													Amodel=	0.6				
	UNMODELLED (BP)						MODELLED (BP)						Aoverall=	0.1			Confidence	Normalized Age
	from	to	%	μ	σ	m	from	to	%	μ	σ	m	Acomb	Α	LΡ	с	Interval (yr)	Deviation ¹
2014										-							~~~~	
Boundary surface	-63	-64	95.4	-63	0	-63	-63	-64	95.4	-63	0	-63		100		100		
1700 CE							251	250	95.4	250	0	250				100		
R_Date MD.14.06.168.5-169.5	926	798	95.4	860	39	850	912	805	95.4	830	25	825		59.5			107.00	1.20
		Warn	ing! Po	or agr	eem	ient - A	A= 59.5%(A'c= 60.	0%)										
EQ2 🛓				=:			917	815	95.4	836	24	830						
R_Date MR.14.02.B.225-226	955	802	95.4	902	40	921	922	826	95.4	842	24	835		42.6			96.00	2.50
		Warn	ing! Po	or agr	eem	ient - A	A= 42.6%(A'c= 60.	0%)										
R_Date MD.14.06.C.169.5-170.5	952	803	95.3	913	31	923	922	826	95.4	842	24	835		18.3			96.00	2.96
		Warn	ing! Po	or agr	eem	ient - A	A= 18.3%(A'c= 60.	0%)										
R_Date MR.14.05.B.188.5-189.5	959	910	95.4	926	19	927	922	826	95.4	842	24	835		6.7			96.00	3.50
		Warn	ing! Po	or agr	eem	ient - A	A= 6.7%(A'c= 60.0	%)										
R_Date MD.14.03.C.212.5-213.5	965	928	95.4	947	11	947	922	828	95.4	842	24	835					94.00	4.38
		Warn	ing! Po	or agr	eem	ient - A	A= 0.0%(A'c= 60.0	%)										
R_Date MR.14.02.A.273-273.5	1058	961	95.4	1008	30	1004	1178	1165	95.4	1170	7	1171		0.3		60.1	13.00	23.14
		Warn	ing! Po	or agr	eem	ent - A	A= 0.3%(A'c= 60.0	%)										
R_Date JC.14.02.D.125.5-126	1072	969	95.4	1025	34	1021	1179	1165	95.4	1170	7	1171		7		59.2	14.00	20.71
		Warn	ing! Po	or agr	eem	ient - A	A= 7.0%(A'c= 60.0	%)										
EQ3							1189	1171	95.4	1179	5	1179				96.2		
R_Date JC.14.02.D.130-130.5	1278	1181	95.4	1229	29	1233	1195	1181	95.4	1187	3	1187		110.6		90.8	14.00	14.00
R_Date MR.14.05.C.246-247	1281	1182	95.4	1232	31	1240	1195	1181	95.4	1187	3	1187		95.5		89.6	14.00	15.00
R_Date MD.17.13.D.250-251	1302	1190	95.4	1278	20	1283	1195	1181	95.4	1187	3	1187		4.1		89.6	14.00	30.33
		Warn	ing! Po	or agr	eem	ent - A	A= 4.1%(A'c= 60.0	%)										
R_Date MD.14.05.A.276-277	1401	1326	95.4	1363	18	1363	1387	1348	95.4	1367	10	1367		120.4		98.4	39.00	0.40
R_Date JC.14.02.C.168.5-169.5	1695	1557	95.4	1618	41	1609	1596	1552	95.4	1568	11	1565		71.8		96.1	44.00	4.55
R_Date MD.14.05.B1.306.5-307.5	1707	1604	95.4	1654	30	1658	1609	1564	95.4	1579	12	1576		15.3		96.2	45.00	6.25
		Warn	ing! Po	or agr	eem	ient - A	A= 15.3%(A'c= 60.	0%)										
EQ4				==	-		1613	1566	95.4	1581	12	1578				96		
R_Date MR.14.02.A.297.5-298	1690	1544	95.4	1594	33	1588	1615	1569	95.4	1584	12	1580		118.3		95.6	46.00	0.83
R_Date JC.14.02.C.170-171.5	1693	1561	95.4	1616	39	1606	1615	1569	95.4	1584	12	1580		121.1		95.6	46.00	2.67
R Date MD.14.04.B.379.5-380.5	1709	1614	95.4	1659	28	1658	1615	1569	95.4	1584	12	1580		6.8		95.6	46.00	6.25
		Warn	ing! Po	or agr	eem	ient - A	A= 6.8%(A'c= 60.0	%)										
R Date MD.14.05.B1.308-309	1695	1565	95.4	1632	40	1622	1620	, 1573	95.4	1589	12	1586		80.9		95.1	47.00	3.58
Boundary base of section							1620	1573	95.4	1589	12	1586				95.1		
P Sequence Northern Humboldt																Mean=	51.24	8.37
				=:	-											StDev=	33.82	8.95

108 Table DR25. This table summarizes the raw OxCal P-sequence output using k = 6.

Table DR26. This table summarizes the raw OxCal P-sequence output using k = 8.

													Amodel=	0					Normalized
	UNMODELLED (BP)						MODELLED (BP)						Aoverall=	0				Confidence	Age
	from	to	%	μ	σ	m	from	to	%	μ	σ	m	A _{comb}	A I	. P	P C		Interval (yr)	Deviation ¹
2014																			
Boundary surface	-63	-64	95.4	-63	0	-63	-63	-64	95.4	-63	8 0	-63		100		100			
1700 CE							251	250	95.4	250	0 0	250				100			
R_Date MD.14.06.168.5-169.5	926	798	95.4	860	39	850	833	809	95.4	821	6	822		48.9		99.9		24.00	6.50
		Warn	ing! Po	oor agi	reer	nent -	A= 48.9%(A'c= 60	.0%)											
EQ2				=:			836	818	95.4	827	4	828				99.9			
R_Date MR.14.02.B.225-226	955	802	95.4	902	40	921	840	827	95.4	834	1 2	834		34		99.8		13.00	34.00
		Warn	ing! Po	oor ag	<mark>e</mark> er	nent -	A= 34.0%(A'c= 60	.0%)											
R_Date MD.14.06.C.169.5-170.5	952	803	95.3	913	31	923	840	827	95.4	834	1 2	834		12		99.9		13.00	39.50
		Warn	ing! Po	oor ag	eer	nent -	A= 12.0%(A'c= 60	.0%)											
R_Date MR.14.05.B.188.5-189.5	959	910	95.4	926	19	927	840	828	95.4	834	1 2	834		3.1		99.9		12.00	46.00
		Warn	ing! Po	oor agi	reer	nent -	A= 3.1%(A'c= 60.0)%)											
R_Date MD.14.03.C.212.5-213.5	965	928	95.4	947	11	947 J	840	828	95.4	834	1 2	834				99.9		12.00	56.50
		Warn	ing! Po	oor ag	eer	nent -	A= 0.0%(A'c= 60.0)%)											
R_Date MR.14.02.A.273-273.5	1058	961	95.4	1008	30	0 1004	1178	1166	95.4	1171	. 5	1171		0.1		96.4		12.00	32.60
		Warn	ing! Po	oor agi	er	nent -	A= 0.1%(A'c= 60.0	0%)							_				
R_Date JC.14.02.D.125.5-126	1072	969	95.4	1025	34	1021	1179	1166	95.4	1171	5	1171		5.9	_	95.9		13.00	29.20
		Warn	ing! Po	oor agi	reer	nent -	A= 5.9%(A'c= 60.0	0%)							_				
EQ3							1188	1171	. 95.4	1179	9 4	1179	1			99.7			
R_Date JC.14.02.D.130-130.5	1278	1181	95.4	1229	29	9 1233	1195	1180	95.4	1186	5 3	1186		108.4	_	97.9		15.00	14.33
R_Date MR.14.05.C.246-247	1281	1182	95.4	1232	31	1240	1194	1181	. 95.4	1186	5 3	1186		88.5	_	97.8		13.00	15.33
R_Date MD.17.13.D.250-251	1302	1190	95.4	1278	20	1283	1194	1181	. 95.4	1186	5 3	1186		3.4	_	98		13.00	30.67
		Warn	ing! Po	oor agi	reer	nent -	A= 3.4%(A'c= 60.0)%)			_				_				
R_Date MD.14.05.A.276-277	1401	1326	95.4	1363	18	3 1363	1382	1349	95.4	1365	5 8	1365		125.1	_	99.8		33.00	0.25
R_Date JC.14.02.C.168.5-169.5	1695	1557	95.4	1518	41	1609	1578	1551	95.4	1563	3 7	1563		58	_	99.3		27.00	7.86
		Warn	ing! Po	oor agi	reer	nent -	A= 58.0%(A'c= 60.	.0%)			_				_				
R_Date MD.14.05.B1.306.5-307.5	1707	1604	95.4	1654	30	1658	1588	1562	95.4	1574	17	1574		13.5	_	99.1		26.00	11.43
		Warn	ing! Po	oor ag	eer	nent -	A= 13.5%(A'c= 60.	.0%)			_				_				
EQ4				=	-		1594	1565	95.4	1577	7	1576			_	98.8			
R_Date MR.14.02.A.297.5-298	1690	1544	95.4	1594	33	3 1588	1593	1567	95.4	1579	7	1579		121.8	_	99		26.00	2.14
R_Date JC.14.02.C.170-171.5	1693	1561	95.4	1616	39	9 1606	1593	1567	95.4	1579	7	1579		123	_	99		26.00	5.29
R_Date MD.14.04.B.379.5-380.5	1709	1614	95.4	1659	28	3 1658	1593	1567	95.4	1579	7	1579		4.7	_	99.1		26.00	11.43
		Warn	ing! Po	oor ag	eer	nent -	A= 4.7%(A'c= 60.0)%)			_				_				
R_Date MD.14.05.B1.308-309	1695	1565	95.4	1632	40	1622	1599	1572	95.4	1585	5 7	1584		75.6	_	99.2		27.00	6.71
Boundary base of section					_		1599	1572	95.4	1585	5 7	1584			_	99.2			
P_Sequence Northern Humboldt				=	-						_				_		Mean=	19.47	20.57
																	StDev=	7.43	16.90

Table DR27. This table summarizes the raw OxCal P-sequence output using k = 10.

													Amodel=	0					Normalized
	UNMODELLED (BP)						MODELLED (BP)						Aoverall=	0				Confidence	Age
	from	to	%	μ	σ	m	from	to	%	μ	σ	m	Acomb	Α	L	РC		Interval (yr)	Deviation ¹
2014																			
Boundary surface	-63	-64	95.4	-63	3 0) -63	-63	-64	95.4	-63	0	-63		100		100			
1700 CE							251	250	95.4	250	0	250				100			
R_Date MD.14.06.168.5-169.5	926	798	95.4	860	39	850	830	809	95.4	820	5	821		44.1		99.7		21.00	8.00
		Warn	ing! Po	oor ag	reer	nent - J	A= 44.1%(A'c= 60	.0%)											
EQ2				=:			835	817	95.4	827	4	827				99.5			
R_Date MR.14.02.B.225-226	955	802	95.4	902	40	921	839	827	95.4	833	3	833		31.6		98.2		12.00	23.00
		Warn	ing! Po	oor ag	reer	nent - J	A= 31.6%(A'c= 60	.0%)											
R_Date MD.14.06.C.169.5-170.5	952	803	95.3	913	31	923	839	827	95.4	833	3	833		11		98.6		12.00	26.67
		Warn	ing! Po	oor ag	reer	nent - J	A= 11.0%(A'c= 60	.0%)											
R_Date MR.14.05.B.188.5-189.5	959	910	95.4	926	5 19	927	839	828	95.4	833	3	833		2.8		98.3		11.00	31.00
		Warn	ing! Po	oor ag	reer	nent - J	A= 2.8%(A'c= 60.0)%)											
R_Date MD.14.03.C.212.5-213.5	965	928	95.4	947	/ 11	947	839	828	95.4	833	3	834				98.1		11.00	38.00
		Warn	ing! Po	oor ag	reer	nent - J	A= 0.0%(A'c= 60.0)%)											
R_Date MR.14.02.A.273-273.5	1058	961	95.4	1008	3 30	1004	1178	1166	95.4	1171	7	1172		0.1		61.2		12.00	23.29
		Warn	ing! Po	oor ag	reer	nent - J	A= 0.1%(A'c= 60.0)%)											
R_Date JC.14.02.D.125.5-126	1072	969	95.4	1025	34	1021	1179	1166	95.4	1171	7	1172		5.1		59.2		13.00	20.86
		Warn	ing! Po	oor ag	reer	nent - J	A= 5.1%(A'c= 60.0)%)											
EQ3							1188	1171	95.4	1179	5	1180				97.8			
R_Date JC.14.02.D.130-130.5	1278	1181	95.4	1229	29	1233	1195	1179	95.4	1187	5	1186		107		27.5		16.00	8.40
R_Date MR.14.05.C.246-247	1281	1182	95.4	1232	31	1240	1195	1178	95.4	1187	5	1186		86.3		27.5		17.00	9.00
R_Date MD.17.13.D.250-251	1302	1190	95.4	1278	3 20	1283	1195	1178	95.4	1187	5	1186		3.2		26.9		17.00	18.20
		Warn	ing! Po	oor ag	reer	nent - J	A= 3.2%(A'c= 60.0)%)											
R_Date MD.14.05.A.276-277	1401	1326	95.4	1363	18	3 1363	1380	1350	95.4	1365	8	1365		126.5		98.7		30.00	0.25
R_Date JC.14.02.C.168.5-169.5	1695	1557	95.4	1618	3 41	1609	1575	1551	95.4	1562	6	1562		51.2		98.8		24.00	9.33
		Warn	ing! Po	oor ag	reer	nent - J	A= 51.2%(A'c= 60	.0%)											
R_Date MD.14.05.B1.306.5-307.5	1707	1604	95.4	1654	1 30	1658	1584	1563	95.4	1573	5	1573		12.7		97.8		21.00	16.20
		Warn	ing! Po	oor ag	reer	nent - J	A= 12.7%(A'c= 60	.0%)											
EQ4				=			1589	1565	95.4	1576	6	1575				98.4			
R_Date MR.14.02.A.297.5-298	1690	1544	95.4	1594	1 33	3 1588	1589	1568	95.4	1578	6	1578		121.8		96.9		21.00	2.67
R_Date JC.14.02.C.170-171.5	1693	1561	95.4	1616	5 39	1606	1589	1568	95.4	1578	6	1578		124.1		97		21.00	6.33
R_Date MD.14.04.B.379.5-380.5	1709	1614	95.4	1659	28	3 1658	1590	1567	95.4	1578	6	1578		4.7		97		23.00	13.50
		Warn	ing! Po	oor ag	reer	nent - J	A= 4.7%(A'c= 60.0)%)											
R_Date MD.14.05.B1.308-309	1695	1565	95.4	1632	2 40	1622	1595	1572	95.4	1583	6	1583		76.3		98		23.00	8.17
Boundary base of section							1595	1572	95.4	1583	6	1583				98			
P_Sequence Northern Humboldt				=:													Mean=	17.94	15.46
				=:	-												StDev=	5.61	10.46

Depth	Hs	Bp	Ti	Jm	Mf	Rn	Мр	Ab	Tt	SUM
108.5	18	49	49	63	27	5		2		213
109.5	10	43	51	57	26	3		1		191
110.5	12	25	49	113	10	1				210
111.5	9	61	57	53	30	1				211
112.5	11	35	38	119	25	8				236
113.5	8	36	35	101	25	6		3		214
115.5	54	114	18	22	11					219
116.5	87	125	20	32	5		5		2	276
117.5	31	119	55	14	3					222
118.5	72	55	47	11	20					205
119.5		57	82	70	4				2	215

118 Table DR28. This table summarizes fossil foraminifera counts across contact A.

119 Hs - *Haplophragmoides* spp.

120 BP – Balticammina *pseudomacrescens*

121 Ti – Trochammina inflata

122 Jm – Jadammina *macrescens*

123 Mf – Miliammina *fusca*

124 Rn – *Reophax* spp.

125 Mp – Miliammina *petila*

126 Ab - Amobaculites spp.

127 Tt – Trochamminita *irregularis*

	Depth	Hs	Bp	Ti	Jm	Mf	Rn	Мр	Ab	Tt	SUM				
	159.5	12	45	28	23	2					111				
	160.5	10	49	29	37	4					129				
	161.5	16	70	36	58					1	182				
	162.5	12	49	16	23	1					115				
	159.5	12	45	28	23	2					111				
	160.5	10	49	29	37	4					129				
130	Hs - Haploph	hragmoides	spp.												
131	BP – Balticammina pseudomacrescens														
132	Ti – Trochan	nmina <i>infla</i>	ta												
133	Jm – Jadamn	nina <i>macres</i>	scens												
134	Mf – Miliam	mina <i>fusca</i>													
135	Rn – Reopha	x spp.													
136	Mp – Miliam	imina <i>petila</i>	1												
137	Ab – Amoba	culites spp.													
138	Tt – Trochan	nminita <i>irre</i>	egularis												
139															
140															

Table DR29. This table summarizes fossil foraminifera counts across contact B.

Depth	Hs	Bp	Ti	Jm	Mf	Rn	Мр	Ab	Tt	SUM
165.5	12	13	60	78	45	2				210
166.5	25	19	59	50	56	1				210
168.5	13	21	57	57	65	1		1		215
169.5	6	2	11	14	16					49
171.5	15	85	49	28	31					208
173.5	11	75	75	45	5					211
174.5	37	24	72	63	13					209
175.5	14	81	59	51	6		1			212

Table DR30. This table summarizes fossil foraminifera counts across contact C. 142

143

Hs - *Haplophragmoides* spp. BP – Balticammina *pseudomacrescens* 144

Ti – Trochammina inflata 145

Jm – Jadammina *macrescens* 146

Mf – Miliammina fusca 147

Rn – Reophax spp. 148

Mp – Miliammina petila 149

Ab – *Amobaculites* spp. 150

Tt – Trochamminita *irregularis* 151

	Depth	Hs	Bp	Ti	Jm	Mf	Rn	Мр	Ab	Tt	SUM
	242.5	8	36	32	79	25	15	0	9		204
	245.5	9	24	33	73	33	13	0	12		197
	246.5	14	38	44	62	32	16	1	15		222
	249.5	38	105	20	56					3	222
	251.5	4	12	33	54					2	105
	253.5	7	7	149	46						209
155	Hs - Haploph	hragmoides	spp.								
156	BP – Baltica	nmina <i>psei</i>	ıdomacresce	ns							
157	Ti – Trochan	nmina <i>infla</i>	ta								
158	Jm – Jadamn	nina <i>macres</i>	scens								
159	Mf – Miliam	mina <i>fusca</i>									
160	Rn – Reopha	x spp.									
161	Mp – Miliam	mina <i>petild</i>	<i>i</i>								
162	Ab – Amobac	culites spp.									
163	Tt – Trocham	nminita <i>irre</i>	egularis								
164											
165											

Table DR31. This table summarizes fossil foraminifera counts across contact D.

Depth	Hs	Bp	Ti	Jm	Mf	Rn	Мр	Ab	Tt	SUM
302.5	1		61	6	131	10		6		215
304.5	1	1	65	7	119	12		2		207
306.5	1	0	50	1	130	15		3		200
309.5	5	1	57	6	84	7				160
311.5	1	1	23	2	29	2		2		60

166 Table DR32. This table summarizes fossil foraminifera counts across contact E.

167 Hs - *Haplophragmoides* spp.

168 BP – Balticammina pseudomacrescens

- 169 Ti Trochammina *inflata*
- 170 Jm Jadammina *macrescens*
- 171 Mf Miliammina *fusca*
- 172 $\operatorname{Rn}-\operatorname{Reophax}$ spp.
- 173 Mp Miliammina *petila*
- 174 $A\bar{b}$ *Amobaculites* spp.
- 175 Tt Trochamminita *irregularis*
- 176
- 177

Figure DR1. The plots on this page show clear inflections in the various criteria where the Poisson value is k=0.1. Model results for all twenty six runs using the appropriate k value can be found Table DR1-27.

Figure DR2. Composite simplified lithostratigraphy and age constraints used in the development of northern Humboldt Bay age-depth models. Calibrated radiocarbon likelihood distributions and posterior age model are shown in light grey and dark grey (95% confidence interval). The age probability distributions (95% confidence) are the results from OxCal 'Sequence' model are shown in orange. Results of Bayesian age model implemented with OxCal version 4.3.2 (Bronk Ramsey 2017) that used the IntCal13 atmospheric calibration curve (Reimer et al., 2013). Tie-lines connect radiocarbon age PDF's to the appropriate depths on the composite simplified lithostratigraphic column.

Plot(P-Sequence) P_Sequence("Northern Humboldt", 0.1) Boundary("base of section"); R_Date("MD.14.05.B1.308-309", 1720, 15) { z=312.5; ^kDate("MD.14.04.B.379.5-380.5", 1750, 15) z=311.5; R_Date("JC.14.02.C.170-171.5", 1710, 15) z=311.5; ^k Date("MR.14.02.A.297.5-298", 1690, 20) z=311.5; Date("EQ4") z=311; R_Date("MD.14.05.B1.306.5-307.5", 1740, 15) z=310.5; }; R Date("JC.14.02.C.168.5-169.5", 1710, 20) z=308.5; ;; R Date("MD.14.05.A.276-277", 1480, 15) z=276; }; R Date("MD.17.13.D.250-251", 1340, 20) z=246.5; }; R_Date("MR.14.05.C.246-247", 1290, 15) { z=246.5; ^k Date("JC.14.02.D.130-130.5", 1280, 20) z=246.5; Date("EQ3") z=246; ^k Date("JC.14.02.D.125.5-126", 1130, 20) { z=245.5; R_Date("MR.14.02.A.273-273.5", 1100, 20) z=245.5; ^k Date("MD.14.03.C.212.5-213.5", 1040, 15) z=173.5; ^k, Date("MR.14.05.B.188.5-189.5", 1000, 15) z=173.5; R Date("MD.14.06.C.169.5-170.5", 990, 15) { z=173.5; }; R Date("MR.14.02.B.225-226", 990, 20) z=173.5; Date ("EQ2") { z=173; R_Date("MD.14.06.168.5-169.5", 955, 15) z=172.5; Date("1700 CE", 1700.1) { z=127; Boundary ("surface", 2014) { z=0; }; }; };

Figure DR6. The OxCal P-sequence model code (using k=0.1).

473

```
474
         Plot(Sequence)
475
476
          Sequence("Northern Humboldt Bay")
477
478
           Boundary("base");
479
           Phase("contact 4 max")
480
481
           R Date("JC.14.02.C.170-171.5", 1710, 15);
482
           R_Date("MD.14.05.B1.308-309", 1720, 15);
483
           R_Date("MD.14.04.B.379.5-380.5", 1750, 15);
484
           R_Date("MR.14.02.A.297.5-298", 1690, 20);
485
           };
486
           Date("contact 4");
487
           Phase("contact 4 min")
488
           R_Date("JC.14.02.C.168.5-169.5", 1710, 20);
489
490
           R_Date("MD.14.05.B1.306.5-307.5", 1740, 15);
491
           };
492
           Phase("contact 3 max")
493
494
           R_Date("JC.14.02.D.130-130.5", 1280, 20);
495
           R_Date("MD.14.05.A.276-277", 1480, 15);
496
           R_Date("MR.14.05.C.246-247", 1290, 15);
497
           R_Date("MR.17.13.d.250-251", 1340, 20);
498
           };
499
           Date("contact 3");
500
           Phase("contact 3 min")
501
502
           R_Date("JC.14.02.D.125.5-126", 1130, 20);
503
           };
504
           Phase("contact 2 max")
505
506
           R_Date("MD.14.06.C.169.5-170.5", 990, 15);
507
           R Date("MD.14.03.C.212.5-213.5", 1040, 15);
508
           R_Date("MR.14.05.B.188.5-189.5", 1000, 15);
509
           R Date("MR.14.02.B.225-226", 990, 20);
510
           };
511
           Date("contact 2");
512
           Phase("contact 2 min")
513
514
           R_Date("MD.14.06.168.5-169.5", 955, 15);
515
           };
516
           Phase("contact 1 max")
517
518
           Date("1700 CE", 1700.1);
519
           };
520
           Date("contact 1");
521
          Boundary("settlement", 1850);
522
          };
523
         };
524
525
```

526 Figure DR7. The OxCal 'Sequence' model code.