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Resolution of the paradox 
of the diamagnetic effect 
on the Kibble coil
Shisong Li1*, Stephan Schlamminger2*, Rafael Marangoni2, Qing Wang1, Darine Haddad2, 
Frank Seifert2, Leon Chao2, David Newell2 & Wei Zhao3

Employing very simple electro-mechanical principles known from classical physics, the Kibble 
balance establishes a very precise and absolute link between quantum electrical standards and 
macroscopic mass or force measurements. The success of the Kibble balance, in both determining 
fundamental constants (h, N

A
 , e) and realizing a quasi-quantum mass in the 2019 newly revised 

International System of Units, relies on the perfection of Maxwell’s equations and the symmetry they 
describe between Lorentz’s force and Faraday’s induction, a principle and a symmetry stunningly 
demonstrated in the weighing and velocity modes of Kibble balances to within 1× 10

−8 , with nothing 
but imperfect wires and magnets. However, recent advances in the understanding of the current 
effect in Kibble balances reveal a troubling paradox. A diamagnetic effect, a force that does not 
cancel between mass-on and mass-off measurement, is challenging balance maker’s assumptions of 
symmetry at levels that are almost two orders of magnitude larger than the reported uncertainties. 
The diamagnetic effect, if it exists, shows up in weighing mode without a readily apparent reciprocal 
effect in the velocity mode, begging questions about systematic errors at the very foundation of 
the new measurement system. The hypothetical force is caused by the coil current changing the 
magnetic field, producing an unaccounted force that is systematically modulated with the weighing 
current. Here we show that this diamagnetic force exists, but the additional force does not change 
the equivalence between weighing and velocity measurements. We reveal the unexpected way that 
symmetry is preserved and show that for typical materials and geometries the total relative effect on 
the measurement is ≈ 1× 10

−9.

Most human activities, especially science, industry, and trade rely on measurements. The importance of measure-
ment to global society is such that the International System of Units (SI) was created as early as 1875 so that all 
measurements might be traceable to a single compact set of common standards. For a long historical period the 
SI standards were formulated by artifacts (man-made or using a property of nature), specific objects preserved 
in a single location, with limited access. Undeniably inaccessible, the value that such an artifact standard realizes 
may also vary over  time1, introducing dark uncertainties for precision science and high-accuracy  engineering2. 
Consequently, alternatives to artifact standards have been sought since the beginning of the  SI3. The first success 
was measurement by counting events of microscopic particles (e.g., atom, electron, photon, etc), first used in 
time measurements based on atomic clocks, which opened the door for the quantum measurement of  things4–7. 
On May 20, 2019, a new International System of Units, in which all seven base units are defined by physical 
constants of nature, was formally  adopted8,9 and our daily measurement activities have entered into a quantum 
era. With this quantum revolution of the SI, our measurement system relies now on fundamental constants 
which are woven into the structure of our universe and are here for all times and for all people, and are no longer 
tied to physical objects with limited stability and availability. The new SI provides a highly accurate or ultra-
sensitive measurement foundation to support explorations that were not possible in the  past10,11. The change 
is most profound for mass quantities, where the quest for an atomic or quantum based standard of mass vexed 
researchers for decades.

To realize the unit of mass at the kilogram level from atomic or quantum standards, two complement-
ing technologies were eventually found, the X-ray crystal density (XRCD)  method12 and the Kibble  balance13.
The XRCD method relies on the mass of the electron, which is given by the Rydberg constant and defined 
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fundamental constants. Using mass spectroscopy and scaling that takes advantage of a nearly perfect single 
crystal silicon sphere, the electron’s mass can be scaled thirty orders of magnitude to the kilogram level with a 
relative uncertainty of 1× 10−814. The realization of the kilogram via the Kibble balance relies on the perfect 
symmetry of Maxwell’s equations and can reach a similar  uncertainty15,16, thanks to some Nobel prize winning 
quantum  physics17,18.

In the 1980s, the discovery of the quantum Hall effect by Prof. von  Klitzing19 provided a catalyzing piece in the 
quest of a quantum mass standard. It was almost immediately recognized that the quantized resistance  standard20 
that resulted from von Klitzing’s work could be combined with the Josephson effect that had been theoretically 
postulated in  196221 and experimentally verified a year  later22 allowing the measurement of electrical power 
solely based on quantum effects. Once electrical power could be measured via quantum standards, a machine 
that precisely compares electrical to mechanical power would allow the quantum realization of mechanical power 
given by force times velocity. Velocity is easily measured as a unitless fraction of speed of light and the force 
could be, for example, the weight of a mass standard in the gravitational field of the Earth. All that is needed is 
a precise tool that can compare mechanical to electrical power.

Luckily, such a tool, a comparator, existed. It was proposed in 1976 by Dr. Bryan  Kibble23, a metrologist at 
the National Physical Laboratory in the United Kingdom. Kibble’s invention was initially named a watt balance, 
emphasizing that it compares mechanical to electrical power, since the watt is the unit of power, both electri-
cal and mechanical. Kibble passed away in 2016, and the watt balance was renamed Kibble balance to honor 
his contributions to metrology. The core of Kibble’s idea lies in a symmetry of electromagnetism, described by 
Maxwell’s  equations24. In a nutshell, it can be described as follows: The energy of a current-carrying loop (a coil 
with one turn) in a magnetic field is given by the product of current, I and the magnetic flux, φ threading the 
coil. The Lorentz force in the vertical direction Fz on the coil is the negative derivative of the energy of this loop 
with respect to its vertical position, z.

In this text, we use the abbreviation ∂zA := ∂A
∂z  for the partial derivative of a quantity A with respect to z. The cur-

rent is easy to measure, but not the derivative of the flux through the loop. Here is where the symmetry of nature 
comes to the rescue: Moving the coil in the magnetic field produces an induced electro-motive force between 
both ends of the coil. By Faraday’s law of induction, the induced voltage, U is proportional to the product of the 
derivative of the flux times the vertical velocity, vz , of the wire loop.

Both equations can be combined to obtain the watt equation that shows the equivalency of mechanical to electri-
cal power, and conveniently the hard to measure flux derivative vanishes.

By using the weight of a mass Fz = mg  for the force and the quantum measurement of the electrical power 
UI = Cf 2h , where f is the frequency that is used to drive the programmable Josephson junction voltage array 
and C is a known constant that depends, for example, on how many Josephson junctions are used, the mass can 
be written as

Figure 1a shows a typical Kibble balance. Two large components are apparent: the magnet and the wheel. The 
wheel is a particular choice for a part that can be used as a moving and weighing mechanism. The wheel allows 
the comparison of electromagnetic force and mass weight while also providing the coil’s motion needed for the 
velocity mode. Up to the 2000s, several different types of magnet systems were  used25–29. Over time, the field 
matured, and the magnet systems’ design converged to what is known as the air-gap type, yoke-based magnetic 
 circuits30–37. Figure 1b shows a typical construction of such a permanent magnet system. The permanent mag-
netic circuit’s significant advantage is that it can supply a strong (several tenths of a tesla), uniform, and robust 
magnetic field without an active energy source.

While the description using the derivative of the flux is accurate and was used initially by Kibble, these days, 
the researchers use a different description of the same numerical quantity, the so-called geometric factor, or flux 
integral. The geometric factor is obtained by integrating the horizontal component of the magnetic flux density 
B that is perpendicular to the wire with a length l that forms the coil. It is abbreviated as Bl, and by virtue of 
Green’s theorem it is the same as ∂zφ . For the rest of the article, we consider the possible causes and consequences 
of inevitable imperfections in the symmetry, so that there are two different geometric factors, one for weighing 
mode, (Bl)w , and one for velocity mode, (Bl)v . A succinct equation for the relationship of both geometric factors 
was suggested by  Robinson38. The widely accepted equation is

where I is the current circulating in the coil during weighing mode. Observe that the current dependence of 
(Bl)w is canceled to first order through a common reversal trick in the design of the weighing mode: Two meas-
urements must be made, one without and one with mass on the mass pan of the balance. The balance, however, 
can be biased with a tare weight, mt ≈ m/2 , such that the currents in the coil have the same absolute value but 
opposite signs. The forces on the balance for the two states are

(1)Fz = −∂zφI .

(2)U = −∂zφvz .

(3)Fzvz = UI .

(4)m =
Cf 2h

gvz
.

(5)(Bl)w = (Bl)v(1+ αI + βI2),
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The tare weight is adjusted such that the currents are symmetric, Ion = −Ioff  , and it is sufficient to work with 
the variable I := Ioff  . By subtracting the mass-off equation from the mass-on equation in (6), the mass can be 
obtained as

where as mentioned before (Bl)v is obtained from the velocity mode. By using symmetric currents, all terms 
containing α vanish. The only remaining systematic term, 2βI3 is very small, 2βI3/(2I) ≈ 10−939,40. Although 
the term is small, it is measurable by using different mass values on the Kibble balance, e.g., m/2, m, 2m. This 
process is possible in the new SI, because multiple and sub-multiples of masses can be generated without having 
to resort to Kibble balances using a classical scheme to subdivide  masses15,16. In summary, the Kibble principle 
is preserved when symmetric currents are applied during weighing mode, because the dominant term of the 
dependence of the magnetic field on the weighing current drops out. The next to leading order effect is small 
and can be compensated for using ancillary measurements. For the remainder of this manuscript, we assume 
β = 0 without altering the main conclusion, but simplifying the equations.

(6)
{

mass-on : Ion(Bl)v(1+ αIon + βI2on)+mg = mtg
mass-off : Ioff(Bl)v(1+ αIoff + βI2off) = mtg .

(7)m =
(Bl)v

g

(

2I + 2βI3
)

,

Figure 1.  The magnet system in a Kibble balance and the coil-current effect. (a) presents the major elements 
in the fourth generation Kibble balance experiment at NIST. The left subplot of (b) is the sectional view of 
a typical permanent magnet system with symmetry, where the color map denotes the B field distribution. 
The right subplot presents an equivalent electrical circuit of the air-gap type magnet system, where Rm is the 
magnetic reluctance of the permanent magnet, Ra the magnetic reluctance of the air gap, E1 , E2 respectively 
the magnetomotive force of upper and lower magnets. (c) shows a typical measurement of the coil inductance 
(frequency extrapolated to DC) as a function of coil vertical position z. With a up-down symmetrical magnet, 
it can be written as L = L0 − kz2 . (d) shows the relative magnetic field change due to the coil current in such 
magnet systems. The plot shows the magnetic field with a plus current Ioff , which produces 4.9 N magnetic 
force. The red curve is an average magnetic field for the coil, and this field slope has been verified at BIPM as 
B(I)
B(0) − 1 = Iα(z) , where α is a linear function of z. Note that the field distribution with Ion is an image of Ioff  
symmetrical to B(0).
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We next take up a question that has vexed the Kibble balance community for years. What if extraneous 
magnetic forces act on the weakly magnetic materials of the coil? Put another way, what if the coil is a magnet? 
We use the term weakly magnetic materials for materials that exhibit diamagnetic or paramagnetic behaviour, 
in other words material whose magnetization, M = χH depends linearly on the applied external field H. The 
proportionality factor is given by the volume susceptibility χ and is negative for diamagnetic and positive for 
paramagnetic materials. It is impossible to build a coil without using weakly magnetic materials. The magnet 
wire used to wind the coil is made from copper which is diamagnetic with χ ≈ −10−5 . The diamagnetic force 
has been impressively demonstrated by levitating a diamagnetic object, e.g.  graphite41,  organics42,  water43, living 
 cell44, even a  frog45, in a magnetic field. The force on a very small element with volume V of weakly magnetic 
material in the air gap of a permanent magnet is given by

There is a constant static force acting on the coil, but it is common to the mass-on and mass-off measurement, 
similar to the coil’s weight, and it will drop out in the difference of the mass-on and mass-off measurement. To be 
clear, the diamagnetic force on the coil is well-known but is thought to drop out in the reversal of the current in 
force mode. The systematic described below is named the diamagnetic effect in force mode. It is the diamagnetic 
force that does not cancel between the two measurements in force mode.

Nevertheless, a systematic bias,the diamagnetic effect, cannot be ruled out, because B is not a constant, rather 
it is a function of current in the coil according to Eq. (5). Consequently, Fχ must be a function of current also. 
The difference between mass on and off would be

so that the quadratic nonlinearity no longer cancels and we are forced to consider α . Up until 2017, α was assumed 
to be constant, independent of the coil position, and dispensed with. A notable article published that year associ-
ated α with the reluctance  effect46. The reluctance effect can be explained by considering the magnetic energy 
stored in the magnetic field surrounding the coil due to the constant current during weighing, E = 1/2 LI2 where 
L is the self inductance of the coil in its surroundings. Once again, a force arises as a result and in the direction 
of any gradient of the magnetic energy. The vertical component of this force can be written as Fz = −1/2 I2∂zL . 
The force points toward the maximum of the inductance, usually at the middle of the symmetry plane of the 
coil magnet system. This principle is well known from solenoid actuators, where an iron slug is retracted into a 
solenoid when it is energized with current. Here, the slug (the magnet and yoke material) is fixed, while the coil is 
free to move in the z direction. The inductance L(z) depends mostly on the symmetry of the shape and magnetic 
properties of the yoke and not on the permanent magnet material. For an ideal yoke L = L0 − kz2 is a quadratic 
function of z with z = 0 in the symmetry plane of the yoke, see Fig. 1c. Interestingly, the reluctance force can 
be interpreted as a force produced by an additional magnetic field, so instead Fz = −1/2 I2∂zL = (Bl)addI , and 
hence (Bl)add = −1/2 I∂zL . As described in Fig. 1d, experiments at the BIPM prove that this additional magnet 
field does, in fact,  exist46,47. Hence, the parameter α introduced in Eq. (5) can be written as α = −kz/(Bl)v.

The partial derivative in Eq. (9) can be rewritten as ∂zB2vα = α∂z(B
2
v)+ B2v∂zα . The magnet systems for the 

Kibble balances are often designed such that ∂zBv = 0 rendering the first term insignificant. The second term 
evaluates to −B2vk/(Bl)v , and the relative size of the effect can be obtained from Eq. (9) as

Here, we are formulating the effect on the wire while considering multiple turns, so the volume of the wire, V 
has been replaced by the product of the wire cross sectional area Ac , the length l and the number of turns N. The 
derivation will also work for non-current carrying elements, like the coil former or structures mounted on the 
coil, but the equations are more insightful for the wire. The relative effect consists of three factors and typical 
values are χ/µ0 = −8 m H−1 , Ac/(Nl) = 200mm2/(1057 · 834m) = 2.27×−10 m , and k = 550H/m2 . Multi-
plying the three factors together yields a relative force of 1× 10−6 . An amount that is more than 100 times larger 
than the combined relative uncertainty reported by the best experiment in the world.

Here we reach an impasse. The paradox. On the one hand, the above summary of current reasoning, modeling 
and experimentation supports the conclusion that the diamagnetic effect in force mode does exist. On the other 
hand, measurements of the Planck constant using two completely different methodologies (XRCD and Kibble 
balance) agree to within 1× 10−8 , supporting the conclusion that it doesn’t. Where is the truth?

A possibility that must be considered is that there is a common bias, or intellectual phase-lock among the 
experiments. After all, the highest precision Kibble balances share similar design parameters, and the community 
was driven by a common goal to seek a consensus value. Perhaps the relative size of the effect does not vary much 
from balance to balance. Being common mode to all, it would not be observed. But values of the Planck constant 
were compared among all Kibble balance and XRCD methodologies. To support such a bias among the balances 
requires intellectual phase lock across the competing methods and multiple laboratories on a global scale. This 
seems highly unlikely in a metrology community fiercely committed to objectivity.

Another possibility that must be considered is that the diamagnetic effect in force mode doesn’t exist. The 
deniers of this effect likened the force produced by it to the fictional force that Baron Munchausen used to pull 
himself out of a mire by his own hair—clearly in violation of Newton’s third law. They argue, that the current 
in the coil cannot exert an additional and current dependent force on itself. This force, however, is between 

(8)Fχ =
χV

µ0
B∂zB.

(9)�Fχ =
2χV

µ0
I∂z

(

B2vα
)

(10)
�Fχ

mg
= −

χ

µ0

Ac

Nl
k.
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the magnet system, altered by the current, and the coil, similar to the reluctance force that undoubtedly exists 
(A detailed analysis can be found in the Supplementary Information). Given the state of knowledge, it seems 
logical to suggest an experiment be performed to measure the effect directly. Unfortunately, this is exceedingly 
difficult. According to Eq. (10) the effect depends only on variables that are, for the most part, impossible to 
modify for a given Kibble balance. These are instruments designed to maintain absolutely constant physical, 
magnetic, and electrical geometries save for one coordinate. Changing the mass, and hence the current in the 
coil, will not change the relative contribution of the diamagnetic force. The only variable sometimes available is 
the coil geometry Ac/(Nl) , but even that is not simple. Several Kibble balances have multiple coils wound on a 
single former, and the Kibble experiment can be performed with different coils or different coil combinations. 
Unfortunately, the relative contribution of the diamagnetic effect does not change as long as all coils are immersed 
in magnetic flux produced by the same magnetic system, regardless if they are active (used in the experiment) or 
not. In summary, it is conceivable that a relative bias as large as 1× 10−6 exists in all Kibble balance experiments.

In this article, we will solve the paradox of the diamagnetic effect in force mode. The surprising result is that 
the diamagnetic effect exists, but we find a symmetric effect in the velocity mode. By combining the measure-
ments taken in velocity mode with those made in weighing mode, the bias introduced by the diamagnetic effect 
is canceled. These counteracting biases explain the paradox, restore confidence in the foundation of the new SI 
mass, and have never been described in the literature. The result is simple and satisfying: the symmetry of the 
Kibble balance experiment once again self corrects, and the diamagnetic effect vanishes in the combined result. 
This new finding will relax the requirements on the materials that the coil and components attached to it are made 
from. Weakly magnetic materials can be used in these cases. Still, one has to be careful not to use ferromagnetic 
materials, because materials with a nonlinear response to the external field are not covered by this symmetry.

Results
Analytical result of the diamagnetic effect in velocity measurement. In the previous section, we 
have argued that the diamagnetic effect exists and that it produces a large relative bias in the weighing mode of 
Kibble balances. The bias is so large that Kibble balances would not be able to make precise measurements. Here 
we show that the bias in the weighing mode is cancelled by an identical bias in the velocity mode and the Kibble 
principle holds.

We start by rewriting the self inductance of the coil L(z) with N turns according to the derivation in the 
“Methods” section. In a cylindrical air-gap with a mean radius ra , a radial width of wa , and a height 2ha , the 
inductance is given by

where Aa = 2waha denotes the cross-sectional area of the air gap. By employing a cross sectional area for the 
coil, the relative size of the diamagnetic effect can be written compactly as

Next, we investigate what happens when a diamagnetic material is introduced to the air gap. The left plots 
in Fig. 2 show the magnetic flux density as a function of vertical position. Before the material is introduced, the 
flux density is constant throughout the gap (red line). A constant flux density for the air gap is assumed to keep 
the explanation simple, but is not necessary for the theory to work. Adding the coil, here with χ < 0 , changes 
the flux profile. A perfectly nonmagnetic coil would have no effect, but the vertical section occupied by the coil 
now restricts the flux, due to the increased magnetic reluctance of the diamagnetic material in that part of the 
gap. The total flux produced by the permanent magnet redistributes itself, and, as a result, the flux density in 
the empty space increases in direct proportion to the reduction of flux through the space occupied by the coil.

For χ < 0 , compared to the situation without the coil, B0 , the value of the flux density is lower at the coil 
( Bc ) and higher in the rest of the gap ( Bχ ). In the physical system, there are nonlinear effects near the edges, 
shown by the green curves in Fig. 2. Again, these are not important for the simplified explanation of the effect 
and can be ignored.

The magnetic flux threading through the coil can be obtained as the integral from the bottom of the air gap 
to the middle of the coil, indicated by the blue shaded region for the coil in three different vertical positions in 
Fig. 2a through c.

As mentioned above, the induced voltage in velocity mode is proportional to the derivative of the magnetic 
flux through the coil with respect to time. The flux for the baseline position of the coil z0 is shown in (a), while 
the flux for the positions z1 and z2 are shown in (b) and (c). The difference in flux with respect to the coil at base-
line for these positions is depicted in (d) and (e), respectively. We assume that the coil moves through the gap 
along a fixed trajectory with the same constant velocity in the z direction for the case when coil susceptibility is 
zero, and then again when it is χ . The relative difference of the flux density change between these scenarios, and, 
hence, the induced voltage is given by

The flux density Bχ can be calculated assuming that the total magnetic flux through the air gap remains the 
same. At r = rc , the flux integration vertically through the whole air gap can be written as

(11)L(z) = L0 − πµ0N
2 ra

wa

z2

ha
=⇒ k = −

1

2

∂2L

∂z2
= 2πµ0N

2 ra

Aa
,

(12)
�Fχ

mg
= −

χ

µ0

Ac

Nl

2πraµ0N
2

Aa
= −χ

Ac

Aa

ra

rc
.

(13)
�Uχ

U
=

Bχ

B0
− 1.
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where the negative sign indicates that Bχ > B0 and Bc < B0 when diamagnetic material is introduced. For para-
magnetic material, Bχ < B0 and Bc > B0.

The ratio of the change from B0 of Bχ and Bc to B0 is identical to the ratio of the height of the occupied gap 
to the height of the empty air-gap, since 2ha and 2hc denote the height of the air gap and the coil, respectively.

In an actual magnet system, the magnetic height of the air gap 2ha differs from the geometrical height of the 
air gap 2hgeo as one would measure with a ruler. Due to fringe fields, ha > hgeo . We assume the magnetic height 
of the air gap is known.

For the typical large permeabilities of the yoke materials, the metal on each side of the air gap is a magnetic 
equipotential surface. Hence, the magneto motive force over the air gap given by 

∫ ro
ri

H(r)dr with ri and ro denot-
ing the inner and outer radius of the air gap, does not change when the coil is introduced and is independent of 
the vertical position z where the integration is performed. The magnetic field H is the magnetic flux divided by 
the permeability, H = B/(µ0(1+ χ)) and is a function of radius and height H(r, z) = H(z)rc/r , where we have 
used the fact that the field drops off as 1/r and H(z) is the field at the mean coil radius rc.

Two paths of integration through the coil at z = zc and in the empty air gap ( z = zχ ) are shown in Fig. 2f. 
Integration along these paths yield

(14)2haB0 = 2hcBc + (2ha − 2hc)Bχ =⇒

(

Bχ − B0
)

(Bc − B0)
= −

2hc

2ha − 2hc
,

Figure 2.  A qualitative illustration of the magnetic field distribution at different coil positions. (a)–(c) show the 
B(rc , z) curves at three different vertical position z0 , z1 and z2 . The red curves are the magnetic profile when the 
coil susceptibility is zero. The blue curves are the first order approximation of B field curve with a diamagnetic 
coil, χ < 0 . The green curves are profiles of the diamagnetic coil with higher order approaching. (d) and 
(e) present the B field difference under two configurations: (z1 − z0) > 2hc and (z2 − z0) < 2hc (coil region 
overlap). (f) show two paths horizontally across the air gap, respectively at zχ and zc . (g) and (h) present the B 
field and the H field distributions along two paths.
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where rl = rc − wc/2 and rr = rc + wc/2 denote the inner(left) and outer(right) edge of the coil. The quantities 
B(r) and H(r) as a function of r for both integration paths are shown in Fig. 2g,h, respectively. Integrating the 
terms, approximating the resulting logarithms in a Taylor series of first order and combining the result with 
Eq. (14) gives

With Eq. (13) the relative change that the magnetic material has in the velocity mode can be stated as

As before, Ac = 2hcrc and Aa = 2hara denote the cross-sectional areas of the coil and the air gap, respectively.
Equation (17) shows the relative change of the induced voltage in the velocity mode is identical to the relative 

change in force mode, see Eq. (12). The robustness of Kibble’s reciprocity to deviations from the ideal experi-
mental setup without magnetic materials, are caused by a strong symmetry in the underlying physics. Without 
that robustness the Kibble balance would not be the success that it has been in metrology. The relative differences 
of the measured force and in voltage from the corresponding ideal theoretical values in the absence of weakly 
magnetic materials are given by

Since ra ≈ rc , the relative effect is proportional to the magnetic susceptibility and the cross-sectional filling 
ratio of the air gap. The latter denotes how much of the cross-sectional area of the air gap is taken up by the coil. 
With typical values, χ = −10−5 and Ac/Aa = 0.1 , the relative difference between the real and ideal numbers is 
1× 10−6 . In conclusion, the diamagnetic force with a relative magnitude of 1× 10−6 about 100 times larger than 
the reported relative uncertainties exists. But the results of the Kibble balance experiments are not affected by it, 
because the same relative bias will be introduced in the velocity mode. In the combination of the measurement 
results from force and velocity mode, the effect cancels perfectly.

The derivation above has been made using ideal geometries to show the powerful and simple idea. But, the 
theory holds for more complex and realistic field situations, as is discussed in the “Methods” section.

Numerical verification. Numerical verification of a relative force change that is as small as 10−6 is impos-
sible. Since engineering tasks are rarely concerned with effects that small in size, commercial finite element 
programs are not optimized for the precise prediction of these small effects. At this order of magnitude their 
results cannot be trusted. To overcome their limitations and to be able to use commercial finite element analysis 
(FEA) software, we invented a new technique that we name differential FEA (dFEA). While more information 
on dFEA can be found in the supplemental information, the following paragraphs explain the general idea. All 
effects discussed here are proportional to the magnetic susceptibility χ and it can be used as a parameter to verify 
the result. Setting χ to a large value amplifies the relative change in force and voltage. With χ ≈ 1× 10−2 , rela-
tive effects of 1× 103 are achieved. Although the theory is only weakly dependent on geometry and independent 
of the size of the magnetic field, typical values are used. A magnetic flux density of B0 = 0.54 T was chosen, and 
it requires +/− 11.6 A in a single turn to produce half the weight of a kg standard in positive/negative vertical 
direction. Ansoft a commercial FEA software was used to calculate the force produced on a coil consisting of a 
single turn. For all calculations shown below an adaptive mesh strategy and a nonlinear solver were used. The 
calculations were performed with five different values for the magnetic susceptibility of the coil wire ranging 
from − 0.01 to 0.01. The precise result of the calculation depends on how the geometry is meshed by the FEA 
software. To avoid any bias in this investigation, the mesh is only calculated once and fixed for all subsequent 
calculations. For each χ value, the force on the coil without current is calculated. Then the forces for positive and 
negative currents are calculated. From both the null result is subtracted. This differential approach suppresses 
systematic errors in the calculation due to meshing and rounding of the small effects.

The calculated force differences with positive (mass-off ) and negative (mass-on) currents are 
shown in Fig. 3a,b, respectively. In each subplot, the force is given as a function of coil position z with 
−10mm ≤ z ≤ 10mm for the five χ values. The clearly visible slope in each subplot is caused by the reluctance 
force, in agreement with the theoretical model discussed in Ref.48. The slope is the same for both current direc-
tions and independent of χ . Hence, in the force difference, shown in Fig. 3c, the slope vanishes and the difference 
is nearly independent to z, exactly as described in Ref.48. Neglecting the slopes, the observed values of F(Ioff ) 
and F(Ion) at a given point, for example z = 0 , change with χ . The change of the force difference relative to the 
weight of a 1 kg mass at z = 0 is shown in Fig. 3d.
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The size of the force (difference) depends on χ . Diamagnetic materials ( χ < 0 ) yield larger absolute values 
for the forces for both current directions. Unlike the slopes, this effect does not cancel by subtracting mass-on 
from the mass-off measurement. The effect is clearly visible in Fig. 3c where the force differences are plotted.

A linear dependence of the force differences on χ is observed, see the dashed line in Fig. 3d. The slope of the 
line can be obtained by a numerical regression to the calculation results, and by using the regression coefficients 
the effect can be scaled down to small χ values whose results would otherwise be in the rounding error of the 
numerical analysis. For χ = −1× 10−5 a relative change of 9.50× 10−7 is obtained, in very good agreement to 
the theoretically obtained result of 1× 10−6 . The numerical results confirm the theoretical analysis, as well as 
the existence of the diamagnetic force.

The same FEA calculation can be used to estimate the effect in the velocity mode. Here, we calculate the 
magnetic flux density in the air gap for a coil that does not carry any current for the five susceptibilities discussed 
above. As in the text above, two symbols are used to describe the flux density in the air gap in the presence of 
magnetic material. At regions that the coil occupies we use Bc and all other regions Bχ.

Figure 3e,f show the magnetic flux densities Bc and Bχ as a function of z, with the coil at three different posi-
tions zc , zc = −6mm in green, zc = 0mm in black, and zc = 6mm in red. For a given χ , one of the two quantities 
Bc and Bχ is larger and the other smaller than B0 , which can be seen in the two middle panels with χ = 0 . The 
curves of Bχ show a transient step at the border close to Bc . This is an artifact of the FEA calculation which can-
not reproduce the perfect step function in B that would be present at the boundary in the real world, see Fig. 2b. 
We believe that the transient has no influence on the conclusion, especially since its integral evaluates to zero. 
For any χ  = 0 , Bχ − B0 is about a seventh of B0 − Bc , and, hence, according to Eq. (14), the effective gap height 
is about eight times the coil height, such that hc/(ha − hc) = 1/7.

Figure 3.  Results of the magnetization effect in weighing and velocity measurements. (a)–(c) Results of 
magnetic force as a function of coil position − 10 mm ≤ z ≤ 10 mm for five different magnetic susceptibilities. 
The current in the coil was equivalent to one turn with Ioff = − Ion=11.6 A. (d) The relative change in force 
difference as a function of χ . Note that mg is defined at force difference at χ = 0 . (e) The Bc distribution at 
z = ±6 mm and z = 0 mm with different χ values. No current is assigned in the calculation. (f) shows the Bχ 
field distribution. (g) presents the relative magnetic field change of Bc and (h) shows the change of Bχ.
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To consolidate this assertion, a summary of the relative difference of Bc and Bχ with respect B0 are shown in 
Fig. 3g,h. Both figures are plotted for zc = 0 . The former shows Bc(0) the latter Bχ near the end of the gap, both 
are relative to B0 at the same locations. Similar to the results in the force mode, the results are linear with respect 
to the chosen magnetic susceptibility and a regression to the calculation results is performed. From the regression 
coefficients, Bχ/B0 − 1 can be calculated for small χ , a result that would be unobtainable directly from finite ele-
ment analysis. For χ = −1× 10−5 , Bχ/B0 − 1 is 9.51× 10−7 . For comparison, the relative effect in force mode 
for the same χ was 9.50× 10−7 . The calculated relative effects in force mode and velocity mode agree remarkably 
well (the difference of 1× 10−9 is negligible compared to the numerical uncertainty of the FEA calculation).

The summary of this section is given in the last row of Fig. 3. The left graph shows the relative bias that is 
incurred in force mode as a function of the magnetic susceptibility of a weakly magnetic coil. The right graph 
shows the relative bias incurred in velocity mode as a function of the same χ . The results are identical, the relative 
biases depend linearly on χ . For the model discussed here the slope of the line is approximately −1/10 , which 
corresponds to the fraction of the cross sectional area of the air gap that is filled by the coil. So, a Kibble bal-
ance with this geometry and a weakly magnetic coil would produce values for both modes that differ by −χ/10 
compared to the same balance that has a completely nonmagnetic coil. However, when the results from the 
force and velocity mode are combined according to Eq. (3), the relative biases cancel each other and the mass 
measured by the Kibble balance with a weakly magnetic coil is identical to the mass measured by a Kibble with 
a non-magnetic coil.

Discussion
The work that led to this article accomplished four tasks. 

1. We have shown that the diamagnetic effect in force mode exists and its relative magnitude can be as large as 
1× 10−6.

2. We have discovered a corresponding effect in velocity mode that completely cancels out the effect of the 
diamagnetic force in the Kibble balance experiment. Such an effect has never been described before in the 
literature.

3. We have developed a new technique to calculate very small magnetic effects caused by weakly magnetic 
materials using finite element analysis.

4. By using the newly developed technique we could verify the existence of (1) and (2) and show that they have 
the same relative size within the numerical uncertainty.

Below we summarize the most important points for these accomplishments.
The force described by the diamagnetic effect exists and it is large ( ≈ 1× 10−6 ) compared to the relative 

uncertainties that Kibble balances report ( ≈ 1× 10−8 ). A Kibble balance requires a coil immersed in a magnetic 
field. Often the magnet wire is made from copper that is weakly diamagnetic with χ = −1× 10−5 . Without 
current a diamagnetic force on the coil wire exists, but it is a constant force comparable to the weight of the coil 
and will not impact the result. What is understood as the diamagnetic effect is caused by the current in the coil 
during the weighing measurement. This current generates an additional magnetic field which interacts with 
the magnet system in what is known as back-action. Due to the back-action, the diamagnetic force is no longer 
constant, but proportional to the current in the coil, and, hence, it no longer cancels and provides a systematic 
bias in the weighing measurement of the Kibble balance experiment. The relative size of this effect can be writ-
ten very compact, see Eq. (12). If the coil and the air gap have the same radius the effect is proportional to the 
magnetic susceptibility and the ratio of the cross-sectional areas of the coil and the air gap.

Unbeknownst to the scientist and engineers working with Kibble balances, there is also an effect in velocity 
that arises when a weakly magnetic material is added into the gap. Introducing such a material in the gap changes 
the magnetic flux density and hence the result that is obtained in the velocity mode. Adding, for example, a 
diamagnetic coil in the gap reduces the magnetic flux density where the coil is and increases the magnetic flux 
density in the remainder of the gap. This is a consequence of the changed reluctance of part of the gap. Where 
the coil is the magnetic reluctance is larger leading to a smaller amount of flux. However, since the flux through 
the total air gap remains approximately constant, the flux at the remainder of the gap increases. The increased 
flux causes a larger induced voltage when the coil is moved through the gap compared to the situation where the 
coil is non-magnetic. As shown in Eq. (17), the relative change in voltage evaluates to the same expression as for 
the diamagnetic force. Hence the bias introduced in the weighing mode is cancelled by an equal bias in velocity 
mode. Thus, the paradox of the diamagnetic force on the Kibble coil is resolved.

To prove the existence of the effect of weakly magnetic materials in force and velocity mode we have devel-
oped a new technique that we call differential finite element analysis (dFEA). Calculating small forces or field 
changes caused by the introduction of materials whose susceptibility is of order 1× 10−5 is impossible. The 
numerical uncertainties are much larger than the relative effects one desires to calculate. In differential FEA, the 
susceptibility of the material to be investigated is a parameter and the model is calculated with several different 
large susceptibilities. Values of χ ≤ 1× 10−2 were used up to a thousand times larger than the susceptibility of 
the coil in the physical experiment. For differential FEA to work, it is important to keep the same mesh for all 
calculations. From each calculation result, a null-result that was obtained by setting χ equal to zero is subtracted. 
In the end, the quantity of interest is plotted as a function of the used χ and a smooth function is fitted to the 
result. The fitted parameters of the function can be used to calculate the effect for small χ that the physical system 
has. For the cases discussed here, both effects scaled linearly with χ making the scaling simple.

We used differential FEA to calculate the effect that the introduction of a weakly magnetic material has on 
measurements in force and velocity mode. We find the calculated result in agreement with a simplified analytical 
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model that we have developed in the preceding sections. The relative sizes of the effect are of order 1× 10−6 
and would render Kibble balances useless. The effect has the same magnitude and sign in both modes and will 
cancel in the combined result. We believe that this is an additional, to date not recognized symmetry of the Kib-
ble balance that allows it to work in the presence of linear magnetic materials. The result of the differential FEA 
shows that the biases in force and velocity agree within a difference of 1× 10−3 , limiting the upper bound for 
the relative bias of the combined measurement to 1× 10−9.

The paradox of the diamagnetic force in Kibble balances has been solved. The ongoing discussions in the 
Kibble balance community are brought to a satisfying end. The reciprocity of Kibble’s equation works perfectly 
in the presence of linear magnetic materials.

Methods
Self-inductance L(z) of a coil in a symmetrical yoke. Let wa , 2hgeo , and ra be the geometrically meas-
ured width, height, and mean radius of the air gap. Neglecting the fringe fields at the end, the air gap has a 
magnetic reluctance of Rideal = wa/(4πµ0rahgeo) . The relative correction necessary to account for the fringe 
fields scales with gap’s aspect ratio wa/(2hgeo)

49. The reluctances of the leakage paths at both ends of the gap are 
parallel to Ra , lowering the total reluctance of the system. Writing the reduction factor as 1/γ with γ > 1 , yields 
Ra = wa/(4πµ0rahgeoγ ) , which can be interpreted as the reluctance of an ideal air gap of the same dimension, 
but a magnetic height, 2ha , that differs from the geometric one according to ha = γ hgeo . In our idealized gap, 
the magnetic flux is purely horizontal. Neglecting the vertical flux, makes the analysis simpler without altering 
the conclusion.

Now, let’s investigate the flux that is produced by a coil at position zc with N turns carrying a current I. The flux 
φ0 , generated by the magneto motive force of the coil, has to traverse the air gap above and below the coil. Hence,

where Ru/l denote the magnetic reluctance of the partial gap that is above/below the coil. Using the definition of 
the self-inductance L = Nφ0/I and expanding the fractions to second order in zc yields

which appears in the text as Eq. (11). Experimentally, the inductance of the coil can be measured as a function 
of zc . By fitting L = L0 − kz2c  to the data, the magnetic height of the air gap can be determined from k as

For the magnet employed by the BIPM Kibble balance, k ≈ 550H m−1 , see Ref.46. Using the reported techni-
cal data of that magnet system, wa=13 mm, N = 1057 and ra = 125 mm, a magnetic height of 2ha = 155 mm is 
obtained. A comparison to the measured, geometric height, 2hgeo = 82 mm shows that γ = 1.89.

The magnetic height can also be deduced from a finite element analysis (FEA), employing for example 
Eq. (14). The value for 2ha obtained by the measurement of L(z) agrees with the one obtained by FEA within a 
few percent. The difference is due to the fact that magnet’s top cover was missing in the experiment.

General equation of a moving cylindrical segment with finite χ. Here, we investigate the effect 
cause by any weakly magnetic part that is co-moving with the coil. Such parts are abundant in any Kibble balance 
experiments and include the coil former, the supporting frame, optical elements, and fasteners. Without loss 
of generality, we investigate a cylindrical part with a rectangular cross section identified by the subscript i  , its 
height, width, mean radial location, and magnetic susceptibility are denoted by 2hi , wi , ri , and χi . The symmetry 
axis of the part coincides with the symmetry axis of the magnet.

Starting with Eq. (9), the diamagnetic force in weighing mode on the segment is

where Vi = 2πri(2hiwi) is the volume of the cylindrical segment and Bv,i the magnetic flux density at the segment 
position without current in the coil. The flux produced by the permanent magnet and the coil are both horizontal, 
and, hence, the flux density is proportional to 1/r. Consequently, at the mean radial position of segment i, the 
flux is Bv,i = (rc/ri)Bv , yielding

Using the expression for the diamagnetic effect on the coil (12) together with (23), produces a compact expres-
sion for the relative diamagnetic force produced by the segment. It is
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where Ai = 2hiwi the sectional area of segment i, and Aa the cross sectional area of the air gap defined above.
Most importantly and similarly to Eq. (12), the relative diamagnetic force on segment i is independent of 

the coil current and the magnetic field Bv , and is determined only by the material property ( χi ) and geometrical 
ratios ( Ai/Aa and ra/ri).

Next, the influence of the weakly magnetic segment i on the measured value of Bl in velocity phase is investi-
gated. Assuming a magnet system with perfect up-down symmetry, as shown in Fig. 1a, we define the following 
three surfaces at r = rc : A ( r ≤ rc , z = ha ) and B ( r ≤ rc , z = −ha ) present the horizontal surfaces respectively 
at the upper and lower gap ends. C ( r ≤ rc , z = zc ) is the coil surface. In perfect symmetry, the magnetic flux φA 
penetrating surface A , equals the flux φB through surface B . An asymmetry can be taken account by introduc-
ing a flux difference �φ0 such that

By using an electrical circuit model following Ohm’s law of magnetism as shown in Fig. 1a, φA and φB are 
determined as

A magnetic segment co-moving with the coil, does not contribute to the air gap reluctance Ra , and, hence, Ra 
does not depend on the vertical position of the segment. Since φA , φB are constant for a given magnet system, 
the flux difference �φ0 must also be independent of the coil position zc.

That flux that goes through surface A will then either go through the coil or through the part of the air gap 
that is above the coil φU , φA = φC + φU . Similarly, all the flux penetrating B flows through the part of the 
air gap that is below the air gap or through the coil, φB = −φC + φL . The negative sign before the coil flux 
indicated the direction of the flux relative to the normal vector of the coil. It is reverse for the flux φB.

The fluxes φU and φL can be written as a product of the surface area and the magnetic field at the radius ri 
under the assumption that the field is mostly independent of z. Hence,

the flux through the coil can now be obtained as

To evaluate the induced voltage only the component that depends on z is relevant and we obtain

Taking again advantage of the 1/r dependence of the magnetic flux density, B0,i = rc/riB0 . For χ = 0 , the voltage-
velocity ratio is the 2πrcNB0 = B0l in agreement with the conventional theory of the Kibble balance.

For χi  = 0 , the magnetic field distribution along the vertical direction at ri is given by discrete two values 
with sharp steps between them. In the coil region (from zi − hi to zi + hi ), the magnetic flux density is Bc,i and 
the magnetic flux density of the rest air gap is Bχ ,i . In this case φU and φL are written as

where ηi defines the height fraction of the segment that is above the coil zc . For example, when segment i is fully 
above the coil, ηi = 1 . If segment i is coincident with the coil (like the coil itself), then ηi = 0.5 . Note since the 
segment is co-moving with the coil, ηi does not change with zc . Through Eq. (30) and known magnetic flux rela-
tions, the magnetic flux through the coil is solved as

Dismissing all factors that are independent of zc , the induced voltages simplifies to

Comparing Eqs. (29) to (32), the relative change in the induced voltage cause by segment i is

This result is the equivalent expression as given in Eq. (13). The result of Bχ/B0 − 1 remains valid and the relative 
change in the induced voltage is
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The relative effects in force and velocity mode caused by the introduction of a cylindrical segment i with finite 
susceptibility are identical, compare Eqs. (24) to (34).

The relative changes of the induced voltage and the extraneous force produced by a single segment i depend 
on the ratios Ai/Aa and ri/ra . Hence, the scaling can be checked by comparing the relative effects produced by 
two different segments i and j with the same magnetic susceptibility. The ratio of the relative effects must scale 
like (Ai/ri)/(Aj/rj) . The calculation was performed for both segments for both modes, velocity mode and force 
mode. Again, differential finite element analysis as described in the main text was used to interpolate the effects 
to χj = χi = −1× 10−5 by using calculations that used susceptibilities ranging from − 0.01 to 0.01.

As segment i, we use the coil which has been already shown in the main text and, for convenience, we reiter-
ate the numbers here. The coils has a cross-sectional area of Ai = 200mm2 and a mean radius of ri = 125mm . 
It produces a relative effect of 9.50× 10−7.

For the segment j we chose an area of Aj = 50mm2 . It is located at rj = 122.5mm . To also check if the cal-
culation works for objects that are offset from the vertical coordinates of the coil, we placed segment j 17.5mm 
above the coil. The relative effect for segment j is the same for force and velocity mode and it is 2.43× 10−7.

The ratio of the two relative effects is 3.92 and the ratio of the corresponding geometrical factors 
(Airj)/(Ajri) = 3.92 . The agreement between the geometrical ratios and the calculated effect validate Eqs. (24) 
and (34).
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