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Abstract

In this paper, we develop a simple diagnostic test for the random-effects distribution in mixed
models. The test is based on the gradient function, a graphical tool proposed by Verbeke and
Molenberghs1 to check the impact of assumptions about the random-effects distribution in mixed
models on inferences. Inference is conducted through the bootstrap. The proposed test is easy
to implement and applicable in a general class of mixed models. The operating characteristics of
the test are evaluated in a simulation study, and the method is further illustrated using two real
data analyses.
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1 Introduction

Repeated measures data are common in many areas of research, including medicine, economics, and
social sciences. A common modeling approach used for the analysis of such data is mixed models.
The approach is flexible and easy-to-use software implementations are widely available. Reviews of
mixed models can be found in the book by Verbeke and Molenberghs2 for linear mixed models and
the book by Molenberghs and Verbeke3 for generalized (non-)linear mixed models. An important
aspect of mixed models is the assumption that part of the variability observed in the data can be
modeled using so-called random effects, unit-specific parameters that are sampled from some pre-
specified distribution, known as random-effects distribution or mixing distribution. For likelihood
inferences, the marginal distribution of the response is obtained by integrating out the conditional
density over the random effects.

It is common to assume the random effects to follow a normal distribution. Various authors have
studied the impact of this assumption for marginal inferences. Neuhaus4 examined the performance
of the mixed-effects logistic models with misspecified mixing distribution and reported that the mag-
nitude of the asymptotic bias in the estimated regression coefficients is typically small. Verbeke and
Lesaffre5, showed that, for linear mixed models, misspecification of the mixing distribution does not
affect the consistency of the maximum likelihood estimators. Recently, McCulloch and Neuhaus6

reported a large degree of robustness of maximum likelihood methods for fitting a generalized linear
mixed model when misspecifying the distribution of the random effects. On the other hand, Heagerty
and Zeger7 observed that regression parameters in random-effects models have bias, which is more
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sensitive to the random-effects assumption than their counterpart in the corresponding marginal
models. Heagerty and Kurland8 showed that substantial asymptotic relative bias occurs from incor-
rect assumptions about the random-effects distribution, using a random-intercept model and when
assuming normal whereas the true distribution is gamma, for the random effects. Various exam-
ples in which misspecification of the random-effects distribution reduces efficiency were noted by
Agresti, Caffo, and Ohman-Strickland9. Moreover, Litière, Alonso, and Molenberghs10 showed, for
generalized linear mixed models, that the maximum likelihood estimators are inconsistent when the
random-effects distribution is misspecified and the problem is more severe as the number of random
effects in the model increases.

Checking distributional assumptions about the random effects is far from straightforward, and several
proposals have been made in the statistical literature. Agresti, Caffo, and Ohman-Strickland9 sug-
gested comparing results from parametric and non-parametric approaches. Substantial differences
suggest results from the parametric model should be interpreted with extreme caution. Alternatively,
several efforts have been made in relaxing the parametric assumption about random-effects distribu-
tion. Tsonaka, Verbeke, and Lesaffre11 used semi-parametric maximum likelihood estimation for the
distribution of random shared parameters in dropout models. Subsequently, Ghidey, Lesaffre, and
Verbeke12 reviewed four methods of smoothly estimating the random-effects distribution in linear
mixed models.

As also reviewed in Verbeke and Molenberghs1, tests for misspecification in mixed models have been
available so far. Ritz13 developed goodness-of-fit tests based on comparison between distributions of
the predicted random effects, the standardized estimated best linear unbiased predictors (EBLUPs),
and of its expected values. Similarly, Pan and Lin14 developed methods by comparing the residuals
and the predicted values of the response variable under the assumed model. Another diagnostic
test was developed by Tchetgen and Coull15 by comparing the marginal maximum likelihood and
conditional maximum likelihood estimators of a subset of the fixed effects in the model. Huang16

proposed a diagnostic method by comparing inferences based on the original and on derived outcomes.
Additionally, Alonso, Litière, and Molenberghs17,18 developed diagnostic tools by comparing model-
based and robust inferences. Apart from some advantages of the aforementioned methods, there are
limitations, for example, they are restricted to specific forms of mixed models, such as generalized
linear mixed models for binary data and linear mixed models for continuous data. Besides, they
require considerable implementation efforts (e.g., Monte Carlo simulation), or test overall goodness-
of-fit rather than focusing on misspecification of the random-effects distribution.

Verbeke and Molenberghs1 recently proposed to use the gradient function as a simple exploratory
graphical tool to check goodness-of-fit of the random-effects distribution in mixed models. Their
technique does not require any calculations in addition to the computations needed to fit the model,
and can be applied in various families of mixed models, including linear and generalized linear mixed
models. And in case of any evidence for misspecification, their method indicates how the parametric
model can be improved to better describe the observed data. An additional advantage of their
method is that it indicates how a parametric model can be improved in case of misspecification. On
the other hand, the tool is informal, and should not be interpreted as a formal testing procedure for
the random-effects distributional assumptions in mixed models. In this paper, the gradient function
will serve as basis for the construction of a formal test.

In Section 2, we present two motivating case studies where a goodness-of-fit test for the random
effects would be extremely helpful in formulating an appropriate mixed model. A brief overview of
mixed models is given in Section 3. Section 4 describes the gradient function and how Verbeke and
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Figure 1: Toenail Data. Evolution of the percentage of severe toenail infections and the average
unaffected naillength for both treatment groups separately.

Molenberghs1 advocates to use it as a diagnostic tool. In Section 5, a formal testing procedure will
be developed based on the gradient function. In Section 6, the proposed test will be evaluated and
illustrated using simulations. We analyze the two real data examples using our method in Section 7
and compare our results with the diagnostic tests proposed by Alonso, Litière, and Molenberghs17,18.
Finally, a general discussion will be presented in Section 8.

2 Case Studies

2.1 Toenail Dermatophyte Onychomyosis

This data set results from a randomized, doubled-blind, parallel group, multicenter study for the com-
parison of two oral treatments (coded as A and B) for toenail dermatophyte onychomycosis (TDO).
TDO is a common toenail infection, difficult to treat, affecting more than 2% of the population19.
The aim of the present study was to compare the efficacy and safety of 12 weeks of continuous ther-
apy with one of two treatments (A and B). In total, 2 x 189 patients were randomized, distributed
over 36 centers. Subjects were followed during 12 weeks (3 months) of treatment and followed
further, up to a total of 48 weeks (12 months). Measurements were taken at baseline, every month
during treatment, and every 3 months afterwards, resulting in a maximum of 7 measurements per
subject. At the first occasion, the treating physician indicates one of the affected toenails as the
target nail, the nail that is followed over time. We will restrict our analysis to only those patients
for which the target nail was one of the two big nails. This reduces our sample under consideration
to 146 and 148 subjects, in group A and group B, respectively. The outcomes considered here are
the binary infection severity (0: not severe, 1: severe), and the continuous unaffected naillength (ex-
pressed in mm). Interest is in studying the evolution over time and differences in evolution between
both treatments. More details about the study can be found in the work by De Backer et al.20,
and the extensive analyses using linear and generalized linear mixed models have been reported by
Verbeke and Molenberghs2 and Molenberghs and Verbeke3. A graphical representation of the data
considered here is given in Figure 1.
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Figure 2: Epilepsy Data. Frequency plot and individual profiles.

2.2 Epileptic Seizures

The epileptic seizure data are obtained from a randomized, double-blind, parallel group multi-center
study for the comparison of placebo with a new anti-epileptic drug (AED), in combination with
one or two other AED’s. The study is described in full detail in the work by Faught et al.21.
The randomization of epilepsy patents took place after a 12-week baseline period that served as a
stabilization period for the use of AED’s, and during which the number of seizures were counted.
After that period, 45 patients were assigned to the placebo group, 44 to the active (new) treatment
group. Patients were measured weekly, and followed (double-blind) during 16 weeks, after which
they were entered into a long-term open-extension study. The outcome of interest is the number
of epileptic seizures experienced during the last week, i.e., since the last time the outcome was
measured. Of interest is to compared the evolution over time between the two treatment groups. A
frequency plot as well as the individual profiles are shown in Figure 2.

3 The general mixed model

Let Yij be the jth measurement for subject i, i = 1, . . . , N , j = 1, . . . , ni, and let Yi represent the
vector of ni repeated measurements for subject i. Throughout this paper, the elements in Yi can
be of any type (continuous, binary, count, etc.). When repeated measures are analyzed using mixed
models, it is assumed that the association between the observations Yij of subject i is modeled by a
q-dimensional vector bi of random effects, shared by all measurements of the subject. Let fi(yi|bi)
denote the density function of yi, conditional on bi, possibly depending on a vector of unknown
parameters θ. Likelihood-based inference for θ is usually based on the marginal distribution

fi(yi|G) =

∫
fi(yi|b)dG(b) (1)

of Yi, obtained from integrating out the random effects bi over a pre-specified distribution G, often
called the mixing distribution. Assuming subjects to be independent of each other, the corresponding
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log-likelihood function equals

`(G) =

N∑
i=1

ln[fi(yi|G)]. (2)

The mixing distribution G is often assumed to belong to a specific parametric family, characterized
by a vector ψ of unknown parameters, and likelihood-based inference for θ and ψ jointly follows from
(2). Linear and generalized linear mixed models with normal mixing distribution are discussed in full
detail by Verbeke and Molenberghs2 and Molenberghs and Verbeke3, respectively. It immediately
follows from (2) that the choice of G potentially affects inference for the parameters of interest.
Verbeke and Molenberghs1 have proposed the gradient function to graphically check whether the
log-likelihood can be increased substantially by replacing the assumed mixing distribution by another
one, indicating that the model has been misspecified.

4 The gradient function

Without loss of generality, it will be assumed from now on that the mixing distribution is continuous.
Also, in order to simplify notation, we will assume q = 1. Let Ĝ denote the fitted mixing distribution
obtained from maximizing (2). Note that, if G is assumed to belong to some parametric family,
estimation of G is equivalent to estimating the unknown parameter vector ψ which characterizes G.
Verbeke and Molenberghs1 suggested the gradient function as

∆(Ĝ, b) =
1

N

N∑
i=1

fi(yi|b)
fi(yi|Ĝ)

,

and showed that in case the likelihood cannot be maximized further by replacing the fitted random-
effects distribution by any other mixing distribution H, the gradient as a function of b does not
exceed 1 and reaches 1 in all support points of the fitted random-effects distribution Ĝ. Under
normality for the random effects, this implies that the gradient function equals one on the entire
real line. Therefore, severe deviations from one can be used as evidence against the assumed mixing
distribution. Moreover, it can be shown that ∆(Ĝ, b) does not need to be studied over the entire real
line1, but that attention can be restricted to any closed interval I that contains all values b for which
fi(yi|b) is maximized, i = 1, . . . , N . Hence, once a mixed model has been fitted, goodness-of-fit
of the random-effects distribution can easily be assessed by quantifying the deviation of the implied
gradient function ∆(Ĝ, b) from one. In the next section, this will serve as basis for the construction
of a formal testing procedure.

5 The testing procedure

As explained above, severe deviations of ∆(Ĝ, b) from one, within the interval I provide evidence
against the assumed mixing distribution. We therefore propose the following formal testing procedure.
Let {bk, k = 1, . . . ,K} be a sufficiently fine grid in I, and define the test statistic

T =
1

K

K∑
k=1

∣∣∣∆̂(Ĝ, bk)− 1
∣∣∣ . (3)
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Table 1: Parameterization and selected parameter values for the models used in the simulation study

Model Distribution Parameterization Parameter values

Linear Yij |bi ∼ Normal(µij , σ
2
e) µij = β0 + β1tij + bi β0 = 0, β1 = 0.05, σe = 1

Logistic Yij |bi ∼ Bernoulli(πij) ln
(

πij
1−πij

)
= β0 + β1tij + bi β0 = 0, β1 = 0.05

Count Yij |bi ∼ Poisson(λij) ln(λij) = β0 + β1tij + bi β0 = 0, β1 = 0.05

Note that our notation ∆̂ explicitly acknowledges the fact that the unknown parameters θ in fi(yi|bi)
have been replaced by their estimators θ̂. Obviously, T quantifies the deviation of ∆(Ĝ, b) from one,
within the interval I. The null-distribution of T , needed to formally test whether the assumed mixing
distribution G is appropriate, can be obtained using parametric bootstrap. The following steps are
then required in order to perform the bootstrap test:

1. Based on the observed data, fit the mixed model under consideration, with a particular assump-
tion for the mixing distribution G, i.e., maximize `(G) with respect to the vector ω′ = (θ′,ψ′)
of unknown parameters which completely characterizes the marginal density fi(yi|G).

2. Construct the gradient function and compute the resulting observed value Ta for the test
statistic T .

3. For s = 1, . . . , S, repeat the following steps:

(a) Sample a new vector ωs of parameter values from a multivariate normal distribution with
mean ω̂ and covariance matrix equal to the inverse Fisher information matrix for the
fitted model.

(b) Sample random effects bi
s, i = 1, . . . , N , from G in which ψ has been replaced by ψs.

(c) Sample new observations Yi
s , i = 1, . . . , N , from fi(yi|bis) in which θ has been replaced

by θs. Note that the data set should have the same structure as the original data set
(covariates, number of measurements, etc.)

(d) Fit the mixed model under consideration based on the sampled data Yi
s, i = 1, . . . , N .

(e) Construct the gradient function and compute the resulting observed value T s for the test
statistic T

4. Calculate the p-value as the proportion of values T s exceeding Ta.

Note that, in our bootstrap procedure, the interval I changes with each bootstrap sample because
the construction of interval I depends on the observations. In fact, the interval is determined from
knowing the minimum and maximum of the unique modes of all fi(yi|b) as functions of b. The
unique modes are calculated through maximizing each fi(yi|b) (model fitting by subject/cluster)
with parameter estimates from maximizing f(y|b) set as offsets except the one related to b. Note
also that, in case of binary data, subjects with all observations equal to zero or to one lead to modes
equal to minus or plus infinity, respectively. In order to be able to study the gradient function on a
closed finite interval, those subjects are excluded from the calculation of the interval I, as suggested
by Verbeke and Molenberghs1.
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Table 2: Random-intercepts distributions used in the simulation study.

Model Distribution

Normal bi ∼ N(0, 22)

Symmetric mixture of normals bi ∼ 1
2N(−1.9, 0.62452) + 1

2N(1.9, 0.62452)

Asymmetric mixture of normals bi ∼ 3
10N(−3, 0.37792) + 7

10N(97 , 0.37792)

Shifted log-normal distribution bi ∼ 2[expN(3, 1)− 33.1154]/43.40881

Table 3: Simulated Type I error rates to test normality of random intercepts in three different mixed
models and for three sample sizes.

Model N = 50 N = 100 N = 200

Linear 0.041 0.042 0.045

Logistic 0.011 0.032 0.060

Count 0.036 0.048 0.047

6 Simulation

We conducted a small-scale simulation study to evaluate the operating characteristics of the proposed
bootstrap test. The models considered are the linear mixed model for continuous data, the logistic
mixed model for binary data, and the Poisson mixed model for count data. All models were random-
intercepts models. The formal parameterization of the various models, as well as the parameter
values used in the simulations, are shown in Table 1. The four distributions considered for the
random intercepts bi are presented in Table 2, and the densities are shown in Figure 3, and they have
been selected such that they all have mean 0 and variance 4.

For each combination of model and random-effects distribution, 500 data sets were simulated for
N = 50, N = 100, and N = 200 clusters, respectively, with 10 repeated measurements per cluster.
Each time the gradient test for normality of the random effects was performed, as discussed in
Section 5. The number of bootstrap runs B was set equal to 200, and the test statistic (3) was
based on K grid points that is obtained from the range I divided by a small value h, i.e. h = 0.1.

The scenarios where the true random-effects distribution is normal is used to evaluate the Type I
error rate, estimated as the proportion of times, out of the 500 simulated data sets, that the test
leads to a rejection of the normality assumption at the 5% level of significance. The results for all
three mixed models considered, and for the three sample sizes, are summarized in Table 3. The
simulated Type I error rates are relatively close and get closer to 5% as the sample sizes increase.
The same phenomenon is observed for all types of outcomes.

The scenarios where the true random-effects distribution is not normal is used to evaluate the power
of the test, estimated as the proportion of times, out of the 500 simulated data sets, that the test
leads to a rejection of the normality assumption at the 5% level of significance. The results for all
the models considered, for all three alternatives, and for the three sample sizes, are summarized in
Table 4. The simulated power of the proposed test is reasonably large and increases with the sample
size, as expected. Moreover, the power to detect skewness (asymmetric mixture and log-normal) is
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Figure 3: True random-intercepts distributions, used in the simulation study.

higher than to detect multi-modality (symmetric mixture).

7 Applications

In this section, we apply our methodology to test normality of random effects in mixed models for
the analysis of the two real data sets introduced in Section 2.

7.1 Toenail Dermatophyte Onychomyosis

We first analyze the binary outcome, i.e., infection severity. Let Yij be the binary outcome indicating
the severity of the toenail infection for patient i at measurement j. The model used by Verbeke and
Molenberghs1 is given by

Yij |bi ∼ Bernoulli(πij),

logit(πij) = β0 + bi + β1treati + β2tij + β3treatitij , (4)

where treati is the treatment indicator for patient i, tij is the time-point (in months) at which the
jth measurement is taken for the ith patient, and bi is a random subject-specific intercept. Verbeke
and Molenberghs1 provided evidence that the random-effects distribution is multi-modal and hence
not normal. We will check if this is confirmed by the testing procedure developed here.
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Table 4: Simulated power values to detect deviations from normality for random intercepts in three
different mixed models, for three different alternative distributions, and for three sample sizes.

Model Random-intercepts distribution N = 50 N = 100 N = 200

Linear Symmetric Mixture 0.021 0.096 0217

Asymmetric Mixture 0.494 0.546 0.669

Log-normal 0.824 0.996 1.000

Logistic Symmetric Mixture 0.083 0.484 0.801

Asymmetric Mixture 0.765 0.992 1.000

Log-normal 0.365 0.784 0.993

Count Symmetric Mixture 0.024 0.061 0.213

Asymmetric Mixture 0.736 0.964 0.990

Log-normal 0.768 0.995 1.000

Maximum likelihood estimates and associate standard errors, assuming normality for the random
effects, are presented in Table 5, and the implied gradient function for this model is shown in panel
(a) of Figure 4. The gradient suggests non-normality of the random-intercepts distribution, which
has been confirmed by our testing procedure. The test-statistic, based on K = 69 grid points
equals Ta = 0.1962, which is significant with p = 0.001, based on B = 200 bootstrap samples.
For comparison, other diagnostic tests proposed by Alonso, Litière, and Molenberghs17,18 provide
similar results, the determinant test with a test statistic of 4425.83 produces p < 0.001, and the
determinant-trace test with a test statistic of 4100.39 gives p < 0.001. We need to point out here
that our proposed test has additional advantage of providing the nature of misspecification through
the gradient function plot to improve the model fit thence to better describe the observed data.

Verbeke and Molenberghs1 suggested that a mixture of normals for the random effects might lead
to a much better model in terms of log-likelihood. Mixtures not only can handle skewness, they can
also account for multi-modality in the random-effects distribution2,9,22. Verbeke and Molenberghs1

suggested to replace the normality assumption for the random effects by

bi ∼ π1N(µ1, σ
2
b ) + π2N(µ2, σ

2
b ) + π3N(µ3, σ

2
b ),

with π1 + π2 + π3 = 1, and with the additional restriction of π1µ1 + π2µ2 + π3µ3 = 0 in order for
the random effects to have mean zero. Parameter estimates and associated standard errors under
this extended model are also included in Table 5. The corresponding gradient function is shown in
panel (b) of Figure 4. It no longer provides evidence for misspecification of the random-intercepts
distribution, and this is confirmed by our testing procedure (Ta = 0.0975, p = 0.345, based on
K = 66 grid points and B = 200 bootstrap samples).

For the continuous outcome, let Yij be the unaffected naillength (in mm), for patient i at measure-
ment j. The linear mixed model considered is

Yij |bi ∼ Normal(µij , σ
2
e)

µij = β0 + bi + β1treati + β2tij + β3treatitij , (5)

with treati and tij as before. Table 5 shows parameter estimates and associated standard errors
assuming bi ∼ N(0, σ2). The implied gradient function is shown in Figure 5 and does not reveal
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Table 5: Toenail Data: Estimates and associated standard errors for the generalized linear and linear
mixed models fitted to the binary and continuous outcome, respectively.

Generalized linear Linear

Normal bi Mixture bi Normal bi

Effect Parameter Estimate(s.e.) Estimate(s.e.) Estimate(s.e.)

Intercept β0 -1.6306(0.4345) -1.5160(0.4854) 2.5165(0.2465)

Treat β1 -0.1146(0.5852) 0.4479(0.4306) 0.2488(0.3463)

Time β2 -0.4041(0.0459) -0.3992(0.0466) 0.5608(0.0226)

Treat×Time β3 -0.1613(0.0718) -0.1562(0.0758) 0.0474(0.0314)

s.d. bi σb 4.0133(0.3763) 0.8561(0.1889) 2.5467(0.1233)

s.d. error σe 2.6343(0.0471)

Prob-1 π1 0.5770(0.0422)

Prob-2 π2 0.3779(0.0426)

Prob-3 π3 0.0451(0.0129)

Mean-1 µ1 -2.5617(0.4831)

Mean-2 µ2 2.7744(0.3146)

Mean-3 µ3 9.5282(1.2788)

-2 log-likelihood 1247.8 1219.5 9414.8

(a) Normal RE (b) Mixture Normals RE

Figure 4: Toenail data: Gradient function and 95% pointwise confidence bands for the generalized
linear mixed model (4) for two different random-intercepts distributions. The region I is indicated
by two vertical lines.

any evidence against normality for the random effects. Our formal test confirms this (Ta = 0.3387,
p = 0.155, based on K = 148 grid points and B = 200 bootstrap samples). But, both the
determinant test and the determinant-trace test of Alonso, Litière, and Molenberghs17,18 reject the
normality assumption of the random effects with the same p-value of p < 0.001. As pointed out by
these authors, a significant result with their tests will not necessarily imply that there is a problem with
the random-effects distribution. We conjecture that, for this model, another type of misspecification
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Figure 5: Toenail data: Gradient function and 95% pointwise confidence bands for linear mixed
model (5) model with normal random intercepts. The region I is indicated by two vertical lines.

Table 6: Epilepsy data: Estimates and associated standard errors for parameters in Poisson mixed
model (6) assuming normal random intercepts.

Effect Parameter Estimate (s.e)

Intercept Placebo β00 0.8182(0.1677)

Slope Placebo β10 -0.0143(0.0044)

Intercept Treatment β01 0.6475(0.1701)

Slope Treatment β11 -0.0120(0.0043)

Variance bi σ2b 1.1564(0.1843)

-2 log-likelihood 6271.9

such as a missing covariate or random part has a large effect on their tests to detect misspecification
in the random-effects distribution. This phenomenon was explicitly demonstrated in the Discussion
of their paper. To investigate this further as well as the sufficiency of the model (5), we added
random slopes for the time effect tij , and after fitting the model with both random intercepts and
random slopes we observed that the random slopes are significant. Therefore, the random structure
of model (5) may not be appropriate when considering only random intercepts.

7.2 Epileptic Seizures

Let Yij be the number of epileptic seizures patient i experienced during week j. Furthermore, let
tij denote the time-point at which Yij has been measured. The following Poisson mixed model is
considered:

Yij |bi ∼ Poisson(λij)

ln(λij) =

{
β00 + β10tij + bi if placebo,

β01 + β11tij + bi if active treatment.
(6)

Table 6 shows parameter estimates and associated standard errors assuming the random intercepts
bi to be normally distributed with mean zero and variance σ2b . The corresponding gradient function
presented in Figure 6 does not suggest any misspecification in the random-intercepts distribution.
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Figure 6: Epilepsy data: Gradient function and 95% pointwise confidence bands for Poisson mixed
model (6) assuming normal random intercepts. The region I is indicated by two vertical lines.

This has been confirmed by our test (Ta = 0.3824, p = 0.615, based on K = 63 grid points and
B = 200 bootstrap samples), while both the determinant test and the determinant-trace test of
Alonso, Litière, and Molenberghs17,18 reject the normality assumption of the random effects with
the same p-value of p < 0.001. As discussed in the previous data analysis, a possible reason for this
result might be another type of misspecification such as a missing covariate or random part has a
large effect on their tests to detect misspecification in the random-effects distribution. We added
random slopes for the time effect tij in model (6) as also suggested by Molenberghs and Verbeke3,
and after fitting the model with both random intercepts and random slopes we observed that the
random slopes are significant, indicating misspecification in the structure of random part of model
(6). Moreover, Molenberghs, Verbeke, Demétrio, and Vieira23 discussed that an overdispersion
model should be considered for the epilepsy data.

8 Concluding Remarks

In this paper, a formal test procedure for checking the appropriateness of random-effects assumptions
in mixed models has been developed based on the graphical tool proposed by Verbeke and Molen-
berghs1. A bootstrap method is used to assess the null-distribution of the proposed test statistic. A
small-scale simulation study with some promising results has been performed to study the operating
characteristics of the new test in a number of scenarios. The proposed test has several advantages.
First, computations are relatively straightforward once the mixed model under consideration has been
fitted. Calculation of the test-statistic only requires evaluation of the gradient function in a dense
grid. Second, the test can be used to assess the random-effects distribution in a very wide class of
mixed models, including linear mixed models, generalized linear mixed models, and non-linear mixed
models. The SAS code used for one of the test implementation in Section 7 is available on the
website www.ibiostat.be/software. Third, while most emphasis has been on detecting non-normality
of random effects, the procedure can be used to check appropriateness of any mixing distribution,
as has been illustrated in Section 7.1. Fourth, while all examples have been in the context of mixed
models with a single random effect, the procedure can be generalized to multivariate random effects
in a straightforward way.

Finally, we emphasize that in our bootstrap procedure the interval I changes with each bootstrap
sample because it is constructed using the observations. In a small simulation study, not reported
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here, we found that the size of the test would be highly inflated, if the intervals I were fixed in
bootstrap samples.
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