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1 Introduction

Following Zhou (1996), Andersen and Bollerslev (1998), Barndorff-Nielsen and Shephard (2002)

and Andersen et al. (2003), the literature is ripe with theoretical and empirical evidence demon-

strating that the use of high-frequency data enhances the precision in measuring return volatility

and, consequently, can be employed to improve volatility forecasting. These findings are consis-

tent with the notion of arbitrage-free markets, implying that the return process must belong to

the class of semimartingales. In this setting, the quadratic return variation constitutes the nat-

ural measure of return volatility and, absent market frictions, it may be estimated consistently

through the realized volatility (RV) estimator as the intraday sampling frequency increases in-

definitely. This has inspired a large literature exploring the best approach for constructing

volatility measures from intraday return observations. The main contributions revolve around

two separate issues. One, there is a trade-off in efficiency, motivating the use of all price or

quote observations, versus biases induced by market microstructure noise (MMN) effects at the

highest frequencies, which arise from frictions inducing noise terms that are “large” relative

to the instantaneous innovations to the fundamental price. Two, both in terms of economic

interpretation and predictive prowess, it is useful to separate the quadratic variation into a con-

tinuous term, reflecting the integrated volatility (IV) associated with the diffusive (continuous)

volatility component, and the additional contribution stemming from a (cumulative squared)

jump component, generated by discontinuities in the asset price.

Subsequently, both the volatility measurement and forecasting literatures have explored pro-

cedures involving jump- and noise-robust estimators, either in isolation or in combination. The

MMN-robust estimators include deliberate sampling at somewhat sparse frequencies (Ander-

sen and Bollerslev (1998)), first-order autoregressive correction (Zhou (1996)), sparse subsam-

pling, averaging and bias-correcting (Aı̈t-Sahalia et al. (2011)), kernel-based methods (Barndorff-

Nielsen et al. (2008)), a pre-averaging approach (Jacod et al. (2009)), and the quasi-maximum

likelihood based procedures of Xiu (2010). Meanwhile, the jump extraction procedures include

the bipower and multipower estimators (Barndorff-Nielsen and Shephard (2004), Barndorff-

Nielsen et al. (2006)), threshold estimators (Mancini (2009), Andersen et al. (2012)) and combi-

nations thereof (Corsi et al. (2010)), swap variation based estimators (Jiang and Oomen (2008)),

as well as ones based on the empirical characteristic function (Jacod and Todorov (2014, 2018)).

One notable development in noise-robust volatility estimation is the realization that an i.i.d.

assumption on the MMN is too strict, as argued originally in Hansen and Lunde (2006). Recent

work by Jacod et al. (2017) confirms the point by providing inference tools for the statistical

properties of MMN and documenting significant (positive) autocorrelations of the noise term;

see also Li et al. (2016), Li et al. (2018), Jacod et al. (2019), Li and Linton (2019) and Da and
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Xiu (2019). The heterogeneous nature of the noise term is not surprising, as the microstructure

component reflects many distinct types of frictions, some of which likely display substantial

persistence and volatility. Even so, this MMN robust volatility literature is concerned strictly

with weak noise dependence. The associated infill asymptotic scheme implies that the correlation

structure is local and shrinks in terms of calendar time, as the number of intraday observations

diverges. As a result, local averaging of the price suffices to annihilate the impact of noise in the

volatility measurement despite the presence of (weak) noise dependence.

However, some recent studies stress the potential limitations of this standard Itô semimartin-

gale plus locally dependent noise framework. This is because of episodes of strong trends in the

high-frequency return series, ranging from several minutes to multiple hours. Although such

occurrences have been identified previously, notably in the form of the “gradual jumps” explored

by Barndorff-Nielsen et al. (2009), they were viewed as exceptions to be eliminated through suit-

ably designed prefiltering procedures. The issue was further highlighted by the May 2010 “flash

crash” in the S&P 500 e-mini futures market analyzed by Kirilenko et al. (2017), while the more

general phenomenon of “drift burst” was studied systematically in the volatility measurement

setting by Christensen et al. (2019). Finally, the presence of relatively frequent and randomly

occurring instances of persistent return serial correlation is identified in Andersen et al. (2020).

Empirically, such episodes induce a prolonged directional price movement, often in excess of half

an hour, which is hard to rationalize through the standard framework, as they are at odds with

the underlying Itô semimartingale assumption.

As an illustration of a pronounced low-frequency trend, Figure 1 depicts the S&P 500 futures

for Tuesday, September 1, 1998. The strong downward drift over 8:50-9:20, followed by an equally

pronounced rally over 9:20-9:35, is striking. This distinct V-shape trajectory is reminiscent of the

infamous “flash crash” pattern, debated in the literature on high-frequency trading and potential

market fragility, with Christensen et al. (2019) documenting numerous instances of such price

trajectories. In the present case, the volatile market conditions follow a large drop in equity prices

on the preceding day. A plausible explanation for this market behavior is a disagreement among

bulls and bears regarding the future course of the market, generating substantial uncertainty and

distinct periods of strong net selling or buying. Ultimately, the bulls carried the day, resulting

in a healthy daily gain that partially reversed the losses suffered on Monday.

In Figure 2, we plot the S&P 500 index futures price for March 22, 2005, and the subsequent

trading day. In the afternoon of March 22, the price experienced a rapid descent from a high

point of 1195 to a low of 1175, comprised of many small downward moves, but no apparent

jumps. This extreme, yet smooth, transition to a new price level over a short period of time

seems to involve a degree of short-term predictability that is at odds with the basic no-arbitrage
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condition. As demonstrated by the second panel, the price level fluctuates around this lower

level throughout the next day, March 23. The type of market move observed on March 22 is

labeled a “gradual jump” by Barndorff-Nielsen et al. (2009). The impetus was an increase in

the U.S. federal funds rate, accompanied by a mixed message about future monetary policy,

involving the term “a measured approach” to boosting rates, yet also expressing concern about

increasing inflation due to a pickup in pricing power. The statement is not fully transparent

regarding the future course of policy, so it is perhaps not surprising that it takes some time

for the market to reach a consensus about the new equilibrium level for the equity index. More

generally, periods of persistent noise are likely to arise during market environments characterized

by ambiguous information arrivals and unusual trading patterns. Such features may induce

heightened uncertainty and accelerated learning among agents, resulting in a prolonged price

discovery process.1 From this perspective, our results provide a high-frequency analogue to the

lower-frequency episodes of market predictability captured by Farmer et al. (2019).

Figure 1: S&P 500 index futures values on September 1, 1998.

Figure 2: E-mini S&P 500 index futures price on March 22 and 23, 2005.

1For extensive discussion of such heterogeneous and incomplete information rationales behind the observed return
persistence, see Andersen et al. (2020).

3



In both cases, the intraday returns display extreme persistence over non-trivial intervals,

possibly indicating a period of dynamic price discovery or temporary disequilibrium. One may

suspect that such strong drifts in the price constitute a violation of the basic Itô semimartingale

assumption behind all high-frequency volatility estimators—a presumption that we corroborate

through a formal statistical test below. Moreover, it is a type of deviation that differs funda-

mentally from the usual weakly-dependent MMN model. In the latter, noise is typically viewed

as uncorrelated with the efficient price, which implies that the unconditional return variation ex-

ceeds the return variation of the fundamental return process. The implication is that the realized

volatility (RV) measure will tend to decline, if the sampling frequency is lowered substantially.

In contrast, given strong price trends, the larger moves will dominate for longer intervals, as

high-frequency sampling splits the larger sustained drifts into smaller terms, reducing the cumu-

lative impact of the squared returns. On the other hand, since the price trends appear random

and temporary, there are also likely to be quite dramatic shifts in the RV measure for different

sampling frequencies. For example, price reversals associated with temporary offsetting trends,

e.g., a V-shaped flash crash type trajectory may be missed when the sampling interval lengthens.

A direct way to gauge the impact of irregularities in the price path is through the discrepancy

of RV measures obtained at distinct sampling intervals, using the “signature plot” in Andersen

et al. (2000). The idea is that RV measures, under the maintained Itô semimartingale condition,

should attain similar values across different frequencies. Table 1 provides the daily RV measures

for the two trading days above, obtained by sampling at the 1-, 5-, 10-, and 20-minute frequencies.

For September 1, 1998, the RV increases by almost 45%, as the frequency drops to the 10-minute

level. For March 22, 2005, the RV measures behave more erratically, as the direction is non-

monotonic, but generally increase as the sampling frequency declines.

Table 1: Daily RV (×104) measured at different frequencies

Asset Date RV1m RV5m RV10m RV20m

S&P 500 1998-09-01 7.14 9.75 10.33 9.72

S&P 500 2005-03-22 0.48 0.58 0.49 0.62

Realized Volatility estimates for the E-mini S&P 500 index futures across the regular trading hours on
September 1, 1998, and March 22, 2005.

Of course, these illustrations are merely suggestive. This paper demonstrates how pockets of

extremely persistent high-frequency returns may distort the measurement of integrated volatility

(IV), and then develops an alternative class of consistent IV estimators, designed to improve the

robustness towards this type of episodic Itô semimartingale violations. Finally, the practical

impact of the proposed noise persistence-robust estimation is assessed through an out-of-sample
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volatility forecasting experiment, where predictions based on our new class of robust estimators

are compared to forecasts generated from traditional return volatility estimators.

The features of principal interest are non-trivial periods of excessive diffusive return variation

induced by extreme persistence in the drift. Consequently, we initially develop an IV estimator

robust to this type of no-arbitrage deviation. Specifically, we propose a new family of volatility

measures based on differenced returns, denoted DV estimators. The idea of using first differences

of returns in constructing power variations has been employed before in Todorov (2013). The

analysis there is restricted to Itô semimartingales of pure-jump type (i.e., without a diffusion

term) observed without noise, and the role of differencing the returns in Todorov (2013) is to (i)

symmetrize the jumps and (ii) minimize the effect of the drift when jumps are of lower activity.

By contrast, the differencing of returns is useful in the current context only if the Itô semimartin-

gale is contaminated with a locally persistent component (drift or noise). Importantly, our DV

estimators continue to work, even if the observed price is the usual Itô semimartingale. The only

cost incurred by the use of return differencing for volatility measurement is a loss of information,

i.e., an efficiency loss, during the periods when the observed price process truly behaves like an

Itô semimartingale. We show, however, that this loss of efficiency can be minimized by averaging

over DV estimators based on differenced returns across several lags.

Our DV estimators ensure a negligible asymptotic bias for a diverse set of persistent return

patterns. In particular, we prove this to be the case for the Christensen et al. (2019) drift-burst

model and for other general persistent-noise models that we develop here. These results are

complemented by a comprehensive Monte Carlo study, exploring the finite-sample properties of

alternative estimators. We confirm that the DV measures attain less finite-sample bias compared

to existing volatility estimators under empirically-realistic persistent noise scenarios. We further

verify that the cost of deviating from the usual jump-robust RV type of estimators, inevitably,

is a (moderate) loss in efficiency under the null hypothesis of no noise contamination.

To foreshadow some of our findings, we provide IV estimates for the return series corre-

sponding to the dates in Figure 1 and the left panel of Figure 2, obtained from two jump-robust

estimators, the Threshold RV estimator, TV n, and a version of our DV estimator, DV n1−3.

These estimators are formally introduced in Sections 3.1 and 3.2. Table 2 reports the results,

obtained by sampling at the one-minute frequency. Due to the truncation of large squared re-

turns, designed to eliminate the jump contribution to the return variation, the TV estimate is

substantially lower than the RV reported in Table 1. More interestingly, the DV estimate is

substantially below the TV estimate—by 15% and 11% for the two dates—indicating a strong

effect of the correction for a persistent return autocorrelation implemented through the DV es-

timator. Indeed, the gap is highly statistically significant in both cases, as indicated by the
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t-statistic reported in the last column of Table 2. This statistic is asymptotically standard nor-

mally distributed under the usual Itô semimartingale assumption. As above, the design of the

test statistic follows from results derived in Sections 3.1 and 3.2. Thus, our formal analysis

provides strong evidence of a significant deviation from the Itô semimartingale hypothesis across

the two trading days, suggesting that standard IV estimators may be severely upward biased.

Table 2: Volatility estimates (×104) for Sep 1, 1998, and Mar 22, 2005

Asset Date TV(3) DV1−3(3
√

2) Tnstat

S&P 500 1998-09-01 5.448 4.645 5.536

S&P 500 2005-03-22 0.407 0.362 4.057

The underlying data are E-mini S&P 500 index futures. The values 3 and 3
√

2 in brackets refer to
the thresholds parameters CTV

ζ and CDV
ζ defined in Section 4.1. The t-statistic is given by Tnstat =√

n
(
TV nt (3)−DV n1−3,t(3

√
2)
)/

(RQnt /3)1/2, where RQnt is an estimate defined in equation (20).

Our empirical application focuses on out-of-sample prediction of future volatility. If our

procedure is effective in mitigating IV and RV measurement errors, it should provide better

inputs into the forecasting scheme and improve the quality of the resulting predictions. The

literature on volatility forecasting has been active over the past decade, following the work of

Andersen et al. (2003), documenting that a simple ARFIMA model for daily RV outperforms

standard parametric GARCH type models. Corsi (2009) proposes an even simpler approximate

long-memory Heterogeneous Autoregressive Realized Volatility (HAR-RV) model which, quite

robustly, generates good out-of-sample forecast performance. Due to its ease of implementation,

the HAR-RV model is commonly adopted and further modified in subsequent work, including

Andersen et al. (2007), Patton and Sheppard (2015), and Bollerslev et al. (2016). We follow this

approach and exploit HAR-type models based on our DV estimators, labelled “HAR-DV.” We

apply these new HAR-DV models on high-frequency data for the S&P 500 index futures and 30

individual constituents of the DJIA, and compare their performance to a set of commonly used

benchmark models. We find the HAR-DV model to perform very well when assessed through

popular criteria such as the MSE and QLIKE loss functions.2

The remainder of the paper is organized as follows. Section 2 describes the setting and Sec-

tion 3 introduces the persistent drift-robust DV estimator. Section 4 describes our Monte Carlo

study, illustrating the finite-sample performance. Section 5 contains the empirical application of

our HAR-DV model to forecasting realized variance. Section 6 concludes. All formal proofs are

relegated to Appendix A.1.

2A detailed discussion about the advantages of these loss functions for realized volatility forecasting is provided by
Patton (2011).
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2 Price Dynamics and the Observation Scheme

We denote the observed log-price process by Yt. It is defined on a filtered probability space

(Ω,F , (Ft)t≥0,P), and we assume it is given by,

Yt = Xt + Ht, (1)

where Xt is the underlying efficient price, modeled as an Itô semimartingale, and Ht is a com-

ponent that accommodates pockets of extreme persistence in returns which cannot be generated

by increments in X. This section describes our assumptions regarding the dynamics of the two

components for Yt in equation (1), and introduces the observation scheme.3

2.1 The efficient price process

The efficient log-price process X follows a one-dimensional Itô semimartingale,

Xt = X0 +

∫ t

0

bs ds +

∫ t

0

σs dWs + Jt , (2)

where the initial value X0 is F0-measurable, the drift coefficient bt takes value in R, W = (Wt)t≥0

is a standard Brownian motion, and Jt denotes a jump component of the following form,

Jt =

∫ t

0

∫
R
δ(s, x)µ(ds, dx), (3)

where δ : R+ × R 7→ R is a predictable mapping, and µ is a Poisson random measure on

R+ ×R with compensator ν(dt, dx) = dt⊗ F (dx). The dynamics of X in equation (2) are quite

general. It allows for stochastic drift, stochastic volatility, and jumps with stochastic intensity.

In line with most existing work, we restrict the jumps in X to be of finite variation, i.e., they

are absolutely summable. We impose the following assumption on the efficient price process:

Assumption 1. For the process X in equation (2), we have,

(a) The process bt is locally bounded.

(b) The process σt is càdlàg.

(c) There is a localizing sequence (Tn) of stopping times and for each n, a deterministic non-

negative function Γn on R satisfying
∫
R |Γn(x)|rF (dx) <∞, for some r ∈ [0, 1), and such

that |δ(s, x)| ∧ 1 ≤ Γn(x) for all (ω, s, x) with s ≤ Tn(ω).

Assumption 1 is adapted from Jacod and Protter (2012). It imposes fairly minimal structure

on the dynamics of the processes b and σ as well as the function δ(s, x). In particular, we allow

3The above setup and the analysis that follows can be extended by allowing for the observed price to contain, in
addition to H, also a standard weakly-dependent microstructure noise component. We do not consider this extension
here, as we focus on the locally persistent component, H. Moreover, in our applications, we sample at fairly coarse
frequencies, where the impact of the weakly-dependent type of noise is minimal.
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for general forms of dependence between the return innovations W and J and the evolution

of b, σ and δ(s, x), so that, in particular, the so-called leverage effect is accommodated. Most

stochastic volatility models used in applied work are covered by the above assumption, e.g., when

volatility is an Itô semimartingale itself, or it is a process driven by fractional Brownian motion.

2.2 The observation scheme

We consider equidistant sampling at ti = i∆n, for i = 0, 1, . . . , nT , where ∆n = 1/n is the length

of each increment within the fixed time interval [0, T ]. The high-frequency log-returns are,

∆n
i Y = Yi∆n

− Y(i−1)∆n
. (4)

For ease of notation, we normalize the trading day to unity and, in turn, the integer T refers

to the number of days, and n = 1/∆n (assumed to be an integer) represents the number of

observations per (trading) day. We employ a standard infill asymptotic scheme, where the gap

between observations, ∆n, shrinks towards 0, or, equivalently, n→∞. The equidistant sampling

assumption is readily generalized to non-equidistant cases by requiring max{i∈1,...,nT}(ti−ti−1)→

0. The time span of the data, T , is fixed throughout.

2.3 Models for Extreme Persistence in Observed Returns

We consider two alternative models capable of generating pockets of extreme persistence in high-

frequency returns, so that episodes akin to the flash crash and gradual jump patterns can be

produced at a reasonable frequency in line with observations from actual market data.

2.3.1 The Drift Burst Model

Christensen et al. (2019) provide an initial formalization of episodes characterized by an extreme

drift in the observed returns. Their “drift burst” model motivates our own representation in the

following section, so it serves as a natural benchmark, and we provide this representation in

Assumption 2. Section 2.3.2 generalizes this formulation to allow for a stochastic evolution of

persistent mean drift episodes, while strictly nesting the original drift burst specification.

Assumption 2. The bursting drift term in Christensen et al. (2019) is modeled as,

Ht =

∫ t

0

(
cl1{s∈(τl,τdb)}(τdb − s)

−α + cr1{s∈(τdb,τr)}(s− τdb)−α
)
ds, α ∈ (1/2, 1), (5)

for some constants cl, cr and τl ≤ τdb ≤ τr.

The process H in Assumption 2 is a finite variation semimartingale, not an Itô semimartin-

gale, due to the drift coefficient – the integrand in equation (5) – not being locally bounded, but
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exploding at the drift burst time τdb. On one hand, if cl and cr are of opposite signs, this speci-

fication can mimic the dynamics observed during flash crashes. On the other hand, if cr = 0, it

can produce patterns akin to the so-called gradual jumps.

A notable feature of the drift burst representation is that the size of the increment ∆n
i H is

deterministically linked to the distance of i∆n from the given drift burst time τdb, with small

|i∆n − τdb| values corresponding to a large value for |∆n
i H|. We further note that Christensen

et al. (2019) treat the H term as a component of the efficient price, implying that the observed

return persistence is due to a strong drift in the fundamental price rather than a temporary

increase in the degree of autocorrelation of the noise component.4

The deterministic specification of the drift burst dynamics is a useful simplification that

facilitates modeling, but it should probably not be taken literally to imply that the timing,

depth or length of such incidents are known by investors in advance, or even as they unfold.

2.3.2 The Persistent Noise Model

We now introduce an alternative specification of H that can generate episodic flash crashes and

gradual jumps along with a variety of other complex price patterns, characterized by spurts

of extreme serial correlation in the high-frequency returns. It may be viewed as a stochastic

extension of the drift burst model, that can be integrated directly with regular stochastic repre-

sentations of the asset price dynamics. An important conceptual distinction is that we treat H

as a (strongly dependent) noise process and not a component of the efficient price. However, this

distinction is immaterial for the inference procedure for volatility that we develop subsequently.

For notational convenience, the specification below describes only the first occurrence of a

“persistent noise” episode in a given sample. As time evolves, new episodes arise randomly.

Assumption 3 (persistent noise). The sequence of stopping times, 0 ≤ τ1 ≤ τ2 ≤ . . . ≤ τN ≤ T ,

with N finite almost surely, exists such that,

Ht =

∑
i:τi≤t

H
(i)
t

1{εt≥0}, (6)

with H
(i)
t given by,

H
(i)
t = f (i)(∆Xτi , ητi) g

(i) (t) , t ≥ τi, (7)

where ητi is an Fτi-adapted random variable, f (i) is a continuous and bounded function, and g(i)

4This does not necessarily imply arbitrage in the Christensen et al. (2019) representation, as they allow for a
corresponding local explosion in the volatility coefficient.
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is one of the following two functions,

g
(i)
gj (s) =

{
1−

(
s−τi
τ i−τi

)αg}
1{s∈[τi,τ i]}, for some Fτi-adapted random τ i > τi,

g
(i)
fc (s) = c

(i)
l

{
1−

(
τ̆i−s
τ̆i−τi

)αl}
1{s∈[τi,τ̆i]} + c

(i)
r

{
1−

(
s−τ̆i
τ i−τ̆i

)αr}
1{s∈[τ̆i,τ i]},

for some Fτi−adapted random variables c
(i)
l and τ̆i > τi and some Fτ̆i- and

Fτ̆i-adapted random variables c
(i)
r and τ i > τ̆i, and constants αg, αl, αr ∈

(
0, 1

2

)
,

(8)

and,
εt =

∑
s∈[τ,t]

∆εs ,

is a finite activity pure-jump process with negative jumps.

The observation-time noise process, H, in equation (6) starts out at zero, but is activated

and then terminated randomly depending on the realizations of the stopping times τ1, and τ1,

and the (non-positive) jump process εt. Hence, the initial phase is governed solely by the H
(1)
t

component (7), with an impact that persists across the full (random) interval [τ1, τ1], unless killed

off (randomly) by the εt process. Moreover, additional persistent noise terms are added during

the episode, if some of the subsequent stopping times, τ2 ≤ . . . ≤ τN , activate in the interim,

implying the drift may display abrupt shifts in size and direction. Prior to and following the

persistent noise episode, Yt = Xt, i.e., the observed price equals the efficient price.

We let the Fτi-adapted function g(i) ( · ) capture the evolution of the H term over the relevant

interval. Obviously, this temporary increase in the stochastic order of the mean drift can take a

variety of distinct forms. However, given the identification in the literature of gradual jump and

flash crash type patterns as common phenomena during turbulent market conditions featuring

strongly correlated price changes, we focus on such events. Hence, our basic noise component

takes the form of either a (random) flash crash or a gradual jump, but with possible premature

termination through a jump that brings the price back to the efficient level. We allow for the

possibility that the event triggering enhanced market uncertainty at time τ1, and initiating the

persistent noise episode, is associated with a jump in either the efficient price or the market

price, or both. This feature is controlled by the f (i) ( · ) function in equation (7).

In the gradual jump scenario, g(1) ≡ g
(1)
gj , the efficient price jumps, ∆Xτ1 6= 0, but market

participants are imperfectly informed about this shift in the economic fundamentals. That is,

even if the agents infer from incoming news or unusual trading activity, that something may

have shifted in the market environment, they are not able to ascertain with certainty whether

the efficient price has moved or not. The initial receipt of (incomplete) information may induce an

immediate price change, but it will typically not mirror the shift in the efficient price. Specifically,

letting f (1)(∆Xτ1 , ητ1) = −ητ1∆Xτ1 allows H to (partially) offset this jump. For example, if

ητ1 = 1, we have Hτ1 = f (1)(∆Xτ1 , ητ1) = −∆Xτ1 , implying ∆Yτ1 = 0, and there is no induced
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jump in the market price. In contrast, for ητ1 = η ∈ (0, 1), we will observe an initial jump, that

partially incorporates the efficient price jump.

In the flash crash scenario, g(1) ≡ g
(1)
fc , the efficient price is unchanged, ∆Xτ1 = 0, but

market participants are increasingly worried about a potential shift in fundamentals due to news

arrivals or unusual trading patterns. There is not, necessarily, a jump in the market price,

but the uncertainty triggers a dynamic with a strong price trend that may further unsettle the

agents. Nonetheless, at some point, perhaps due to basic information acquisition, revelations

about the source of the initial trading anomalies, or external news releases, the realization that

fundamentals may not have shifted starts gaining ground, and arbitrageurs begin to trade in the

opposite direction, leading the price back towards the efficient price. Our flash crash dynamic is

a stylized representation of the ensuing price path, with a turning point at a (random) time τ̆1.

Examples of price paths resembling a flash crash, a gradual jump, or a gradual jump with an

intermittent (small) flash crash, generated by our persistent noise model are provided in Figure 3.

Importantly, in all these scenarios, the agents are aware that the uncertainty may be resolved

at any point, leading to a jump, either back to the efficient price (no jump in fundamentals) or

to a new efficient price level (the fundamentals did shift abruptly). Thus, there is genuine risk

that complicates arbitrage strategies seeking to exploit the serial correlation in returns.

Conceptually, our model for H in Assumption 3 is an extension of Assumption 2. In par-

ticular, in both settings, the g function is Hölder continuous with a coefficient taking values in(
0, 1

2

)
, which ensures that the increments of H are large asymptotically. The major distinction

is that H is random and dependent on the underlying efficient price in Assumption 3, while H in

Assumption 2 is deterministic and not related to X. Moreover, the ε process generates an extra

source of randomness in the persistent noise model, so the duration of the episode is inherently

uncertain. Finally, the persistent noise model for a gradual jump, triggered by an efficient price

jump, not matched by an identical jump in the observed price, is consistent with the finding

that many gradual jumps appear in the aftermath of scheduled macroeconomic announcements,

likely reflecting a period of intense price discovery, as in the case depicted in Figure 2.

Relative to existing market microstructure noise models with (weakly) dependent noise, such

as Jacod et al. (2017) and Jacod et al. (2019), the main distinguishing feature of Assumption 3

is the extent of the strong local persistence and the direct linkage to the efficient price. In

particular, in prior models of noise, we have corr(Hi/n, Hj/n) → 0 as |i − j| → ∞, while, in

contrast, Assumption 3 implies this limiting correlation can equal unity.

Finally, a comment on the potential for arbitrage. As for the drift burst model, the persistent

noise model in Assumption 3 implies that H is a finite-variation semimartingale, but not an

Itô semimartingale. This implies that the existence of an equivalent martingale measure is

11



Figure 3: Simulated price paths of the persistent noise model (6) in Assumption 3 for a gradual
jump, flash crash, and gradual jump with an intermittent flash crash. Section 4.1 provides detailed
specifications of these cases. The efficient price, exp(X), is blue and the observed price, exp(Y ), black.

not guaranteed given our specification of H, so the observed price could allow for arbitrage

opportunities (Delbaen and Schachermayer (1994, 1995)). However, recent work by Strasser
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(2005), Guasoni (2006), Jarrow et al. (2009) and Bender (2012) extends the results of Delbaen

and Schachermayer (1994, 1995) by restricting the set of possible investment strategies either

through trading only in discrete time or via the introduction of transaction costs. In particular,

with arbitrarily small transaction costs, one can check that the so-called sticky price assumption

in Guasoni (2006) is satisfied, ensuring the absence of arbitrage.

3 Volatility Estimation with Extreme Return Persistence

We now turn to jump-robust volatility estimation. Our goal is to recover the integrated volatility,∫ t
t−1

σ2
s ds, from discrete observations of Y , when the observed prices possibly contain a persistent

noise component H. From the point of view of volatility estimation, all other components of

X and H will be viewed as nuisance parameters. This also means that, as far as volatility

estimation is concerned, the exact relation between X and H, e.g., whether H is treated as a

component of X or not is immaterial. We finally note that we will not attempt to recover the

jumps in X, when the observed price possibly contains H. This problem is more difficult and

the answer hinges crucially on the type of H contaminating the observed price.

3.1 The differenced-return volatility (DV) estimator

An efficient estimator of integrated volatility, when Y ≡ X, is the truncated volatility (TV) of

Mancini (2009). For some ζ > 0 and $ ∈
(
0, 1

2

)
, it is given by,

TV nt =

tn∑
i=(t−1)n+1

(∆n
i Y )

2
1{|∆n

i Y |<ζ∆$
n }, t = 1, ..., T, (9)

Under suitable integrability conditions for X, the Itô semimartingale dynamics imply that,

Et (Xt+∆n
−Xt) = Op (∆n) and Vart (Xt+∆n

−Xt) = Op (∆n) , for t fixed, as ∆n → 0. (10)

This result implies that the conditional mean for high-frequency returns of X is of smaller

asymptotic order than the conditional standard deviation. Hence, for volatility estimation from

high-frequency returns, we do not need to center the latter around their conditional mean.

Things change if the observed price Y contains H, as the latter renders the conditional mean

of higher asymptotic order. Although estimation of the mean over short stretches of data is

near impossible, we can minimize its impact on volatility estimation, as long as the conditional

mean return possesses a certain degree of smoothness in time, by first-order differencing of the

high-frequency returns. This is effectively analogous to the removal of fixed effects in panel data.

To obtain a volatility estimator from differenced returns, we can then make use of the prop-

erties of the Brownian motion and the càdlàg assumption for the volatility path to obtain,

2 Vart
(
Xc
t+∆n

− Xc
t

)
≈ Vart

(
Xc
t+2∆n

− 2Xc
t+∆n

+ Xc
t

)
, for ∆n → 0,
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where Xc denotes the continuous component of X. This motivates the following DV estimator

based on the first-differences of returns,

DV nt =
1

2

tn∑
i=(t−1)n+2

(
∆n
i Y −∆n

i−1Y
)2

1{|∆n
i Y−∆n

i−1Y |<ζ∆$
n }, t = 1, ..., T. (11)

In the following theorems, we provide joint convergence results for TV and DV under the

semimartingale model in Assumption 1, the drift burst model in Assumption 2, and the persistent

noise model in Assumption 3, respectively. We denote stable convergence in law by
L−s−−−→ and

we let MN refer to a mixed normal distribution, i.e., a normal distribution conditional on the

realization of its F-conditional variance, which is a random variable.

Theorem 1. Suppose the efficient price X evolves according to equation (2) and satisfies As-

sumption 1. During an ordinary period with H = 0 and for $ ∈
[

1
4−2r ,

1
2

)
, we have,

√
n

TV nt − IVt
DV nt − IVt

 L−s−−−→ MN

 0

0

 ,

2 2

2 3

 IQt

 , (12)

where IVt =
∫ t+1

t
σ2
s ds and IQt =

∫ t+1

t
σ4
s ds.

The result for TV is well known, see, e.g., Theorem 13.24 in Jacod and Protter (2012). We

have flexibility in choosing the TV threshold, which is crucial for its finite-sample performance,

when jumps are less active, i.e., for low values of r (r controls the rate of explosion of the Lévy

density near the origin). In particular, for finite activity jumps, r = 0, commonly invoked in

parametric models used for applied work, $ may take values in the entire interval
[

1
4 ,

1
2

)
.

Theorem 1 indicates that, under the Itô semimartingale assumption, the DV estimator is less

efficient than TV, with
√

3/2 representing the inflation in the standard error. The efficiency loss

is intuitive. Indeed, ignoring the truncation indicator, the main part of DV may be written,

1

2

tn∑
i=(t−1)n+2

(
∆n
i Y −∆n

i−1Y
)2 ≈

tn∑
i=(t−1)n+1

∆n
i Y

2 −
tn∑

i=(t−1)n+2

∆n
i Y∆n

i−1Y,

where the first term equals the main component of the TV estimator, and the second may be

viewed as a term trading off efficiency and robustness. Specifically, by sacrificing some efficiency

in IV estimation, this term assists in removing the estimation bias due to the possible (first-

order) autocorrelation in high-frequency returns. In the following two theorems, we explicitly

show to what extent, relative to TV, the DV estimator can reduce the estimation bias in volatility

estimation due to the presence of the H component in the observed price process.

Theorem 2. Suppose there is a drift-burst period of the form (5) with τdb = 0 for day t and

Assumption 2 holds with J ≡ 0. Then, for $ ∈ [1/4, 1/2) with α > 1−$, we have,

TV nt = IVt + Op

(
∆

2$−$+α−1
α

n

∨√
∆n

)
,

DV nt = IVt + Op

(
∆

2$−$+α−1
α+1

n

∨√
∆n

)
.

(13)
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For simplicity, Theorem 2 is stated only for the case when X does not contain jumps, as this

suffices to demonstrate the effect from a drift burst in the observed price.

The drift burst induces a bias term of order Op

(
∆

2$−$+α−1
α

n

)
in TV. The source of bias

is twofold. One is due to the truncation of price increments very close to the drift burst time

τdb. In this neighborhood, H contributes to large returns and, due to truncation, this precludes

estimation of volatility over this region. The second source of bias stems from the presence of H

in price increments not in the vicinity of τdb, which are unlikely to trigger truncation.

Theorem 2 implies that the DV estimator suffers much less estimation bias under the drift

burst model, simply because ∆n
i H − ∆n

i−1H is of lower asymptotic order than ∆n
i H near τdb.

Hence, less truncation is induced by H and, even when truncation is not triggered, the role of

H is smaller for the differenced increments.

The bias due to drift burst is asymptotically negligible and has no effect on the CLT for

TV, if α < 1−$
3/2−2$ . The associated condition for DV is weaker: α < 1/2+$

3/2−2$ . This implies

that, whenever $ < 1/2, there will be a sufficiently high value of α < 1 rendering the CLT for

TV in Theorem 1 invalid while, for this to happen for DV, we require $ < 1/3. Recall that for

Theorem 1 to apply, we need $ < 1/2. Thus, by picking $ > 1/3 and close to 1/2, DV is robust

to drift burst of any kind, while TV is not robust to drift bursts with parameter α ∈ [ 1−$
3/2−2$ , 1).

We next state the result for volatility estimation when H signifies persistent noise.

Theorem 3. Suppose there is a persistent noise period of the form (6) for day t and Assump-

tion 3 applies with r = 0 (finite activity jumps). Then, restricting attention to the set,

Ωn = {ω : ∃τ ∈ [t− 1, t] 6= 0} ,

where τ denotes the stopping time in Assumption 3, we have for $ ∈ (1/4, 1/2) with αl∨αr < $,

TV nt = IVt + Op

(
∆

2$−$−αl∧αr1−αl∧αr
n

∨√
∆n

)
,

DV nt = IVt + Op

(
∆

2$−$−αl∧αr2−αl∧αr
n

∨√
∆n

)
.

(14)

This result is analogous to the one in Theorem 2. Obviously, the asymptotic effect of the

noise term H depends on the lower of the two parameters αl and αr, governing the roughness

of the path of H (lower values imply rougher trajectories).

3.2 A general family of DV estimators

We now extend the DV estimator in equation (11) to a more general set of estimators by differ-

encing the returns at higher order lags. This generalized version is more efficient under the Itô

semimartingale assumption and achieves the identical asymptotic order of bias reduction under
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the drift-burst and persistent-noise models for H. Specifically, the DV estimator may be nested

in the following general class of estimators,

DV nm,t =
1

2

tn∑
i=(t−1)n+m+1

(
∆n
i Y −∆n

i−mY
)2

1{|∆n
i Y−∆n

i−mY |≤ζ∆$
n }, m = 1, 2, ... (15)

We introduce the following new volatility estimator by simply averaging DV1, DV2,..., DVm ,

DV n1−m,t =
1

m

(
DV nt +DV n2,t + · · ·+DV nm,t

)
. (16)

The DV1−m estimator can be viewed as an approximation of the TV estimator, extended with a

set of correction terms accounting for 1st to mth order autocorrelation. Theorems 4-6 constitute

the counterparts to Theorems 1-3 for the general DV1−m estimator.

Theorem 4. Under the identical conditions as in Theorem 1, we have,

√
n

 TV nt − IVt
DV n1−m,t − IVt

 L−s−−−→ MN

 0

0

 ,

2 2

2 2 + 1/m

 IQt

 . (17)

Theorem 5. Under the same conditions as in Theorem 2, we have

DV n1−m,t = IVt + Op

(
∆

2$−$+α−1
α+1

n

∨√
∆n

)
. (18)

Theorem 6. Under the same conditions as in Theorem 3, we have

DV n1−m,t = IVt + Op

(
∆

2$−$−αl∧αr2−αl∧αr
n

∨√
∆n

)
. (19)

Theorems 5 and 6 provide identical results to Theorems 2 and 3, implying that the DV1−m

estimator is as effective in reducing the bias in IV estimation as the DV estimator in terms of

asymptotic order. Theorem 4, on the other hand, shows that DV1−m suffers a much smaller

efficiency loss as a consequence of the “efficiency-robustness trade-off” with respect to TV. The

efficiency gains for DV1−m, compared to DV, may come across as a free lunch, yet it does have

a simple rationale: DV1−m exploits the fact that, during flash crash or gradual jump episodes

(equivalently, under the drift-burst or persistent-noise model for H), the mean distortion in the

observed returns is approximately identical across consecutive small increments.

Section 4 demonstrates through simulations that the DV estimators can be very effective in

reducing the bias for IV estimation stemming from various phenomena generating extreme local

persistence in the observed high-frequency returns.
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3.3 Feasible inference

For feasible implementation of the CLT results, we need consistent estimates of the condi-

tional asymptotic variances of the corresponding limiting variables which, in turn, all depend on∫ t
t−1

σ4
sds. We may form such estimators using the differenced increments in an analogy to the

DV estimators for the integrated volatility above. More specifically, we define,

RQnt =
1

12

1

∆n

tn∑
i=(t−1)n+2

(
∆n
i Y −∆n

i−1Y
)4

1{|∆n
i Y−∆n

i−1Y |≤ζ∆$
n } . (20)

We can further generalize this estimator by using the higher order differences ∆n
i Y −∆n

i−mY ,

for some integer m. The next theorem shows that RQnt is a consistent estimate of the integrated

quarticity, even in the presence of drift bursts or persistent noise.

Theorem 7. Under the same conditions as in Theorem 3 and, in addition, $ > 2
7 , we have,

RQnt
P→
∫ t

t−1

σ4
sds. (21)

To establish the consistency result for RQnt , we need to strengthen the requirement on the

truncation parameter $ slightly relative to Theorem 3. Since RQnt is an estimate for a higher

order high-frequency return moment, it is naturally harder to estimate in the presence of pockets

of extreme return persistence. Even so, in practice, one typically will choose $ close to 1/2 for

added robustness against jumps, so the sharper restriction on $ is not binding in practice.

3.4 Testing for presence of extreme return persistence

Our primary focus is inference for volatility that is robust to pockets of extreme return persis-

tence. Nonetheless, in this section, we develop an explicit test for the presence of such episodes

of elevated persistence over a given fixed time interval. We note, however, that the nature and

duration of these events are unknown and therefore might induce biases, that are inherently

difficult to detect. As such, we only expect our test to identify some of the more significant de-

viations from the standard semimartingale setting. One option is to construct our test from the

statistical significance of TV-DV, which equates to the autocovariance of the truncated returns.

Since there is an element of arbitrariness in picking the threshold level (we require thresholds

both for TV and DV) and, importantly, to gain statistical power, we instead base our test on

the raw return autocovariances, absent truncation. This means that the jump component will

affect the limiting distribution of the statistic. Formally, our statistic is defined by,

Tnt (k) =

∑n
i=(t−1)n+k+1 ∆n

i Y∆n
i−kY√

∆nÂvar(Tnt (k))

, k = 1, 2, ... , (22)
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where the estimate for the asymptotic variance is given by,

Âvar(Tnt (k)) = RQnt

+

 n∑
i=(t−1)n+2

(∆n
i Y −∆n

i−1Y )2
1{|∆n

i Y−∆n
i−1|>ζ∆$

n }(ĉ
n
i,− + ĉni,+)

 ∧ RQnt log(n),
(23)

and

ĉni,− =
1

∆nkn

1

2

kn∑
j=1

(
∆n
i−j−1Y −∆n

i−j−2Y
)2
1{|∆n

i−j−1Y−∆n
i−j−2Y |≤ζ∆$

n }, (24)

ĉni,+ =
1

∆nkn

1

2

kn∑
j=1

(
∆n
i+j+1Y −∆n

i+jY
)2
1{|∆n

i+j+1Y−∆n
i+jY |≤ζ∆$

n }, (25)

for some sequence kn →∞ with kn∆n → 0. The second term in Âvar(Tnt (k)) is an estimate of

the asymptotic variance of the summands in the return autocovariance that contain jumps. The

next theorem shows that under the null hypothesis of Y ≡ X, the test statistic has a standard

normal distribution.

Theorem 8. Under the conditions of Theorem 1, we have,

Tnt (k)
L−s−−−→ Zk, for k = 1, 2, ..., (26)

where {Zk}k=1,2,... is a sequence of independent standard normal random variables.

We note that the asymptotic behavior of autocovariances of Itô semimartingales, that do not

contain jumps, has been derived already in Kinnebrock and Podolskij (2008). The above theorem

considers the case with jumps. It is noteworthy that the F-conditional behavior of the return

autocovariance remains mixed-Gaussian in spite of the jumps in X. This is unlike many other

high-frequency statistics in which jumps appear in the limiting distribution, see, e.g., Jacod and

Protter (2012). The difference stems from the fact that the autocovariances involve products of

neighboring returns. This causes the uncertainty about the location of the jump in the discrete

sampling interval to be of higher asymptotic order.

From the proof of Theorems 2-3 as well as Theorem 7, we infer that a test based on whether

Tnt (k) lies above a critical value will have power against the presence of the term H in the

observed process Y , as long as αl ∧ αr < 1
2 . Critically, this implies that we should avoid the

use of truncation, when constructing the autocovariance in Tnt (k), because, when H is present,

many of the increments of X will exceed the threshold due to the trend induced by H. Thus,

their removal will lead to a loss of power.

The above result for Tnt (k) can be generalized slightly by using the pre-averaged increments

instead of the raw increments, i.e., we can form,

U j =

jl∑
i=(j−1)l+1

g

(
i− (j − 1)l

l

)
∆n
i Y, j = 1, ..., bn/lc, (27)
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for some integer l and g(s) = s∧(1−s). Then, we can replace {∆n
i Y }i=1,...,n with {U j}j=1,2,...,bn/lc

in constructing Tnt (k). We may correspondingly construct a properly rescaled threshold, i.e.,

replace it with
√∑l

i=1 g
2(i/l)× ζ∆$

n . Given these modifications, it is trivial to show that Theo-

rem 8 continues to apply, provided l is fixed. This is because the autocovariance of the terms U j

is a weighted average of the autocovariances at different lags of the raw increments ∆n
i Y , and

the latter are asymptotically independent. The reason for turning to the pre-averaged returns

is to guard against the presence of regular market microstructure noise in the observed prices,

which will generate a downward bias in Tnt (k).

Finally, another modification of Tnt (k) without an asymptotic effect is to winsorize the in-

crements, i.e., consider (∆n
i Y ∧ c) ∨ −c or (U j ∧ c) ∨ −c, for some fixed c > 0. Since c is fixed

(and not shrinking asymptotically), this will not impact the asymptotic properties of Tnt (k) in

Theorem 8. On the other hand, it will render the statistic less noisy on days with large jumps

in the asset price.

We finish this section with a comment on the use of the test statistic Tnt (k) for improved

volatility inference. While DV is robust to the presence of the noise term H in the observed price,

this robustness involves some loss of efficiency, as is evident from Theorem 4. This motivates us

to consider a hybrid estimator, that is a randomly weighted average of TV and DV, with weights

chosen to not sacrifice efficiency (in theory at least), when H is absent. More specifically, we

consider the following estimator,

HV nt = ωnt × TV nt + (1− ωnt )×DV n1−m,t, (28)

for some weight function of the data ωnt ∈ [0, 1]. Then, if we choose the weight function ωnt

suitably, we can make this hybrid estimator mimic the behavior of TV nt , when H is not present

in the observed price, and mimic DV n1−m,t when H is present. Recall that when there are pockets

of extreme return persistence, the bias in volatility estimation can be of a larger asymptotic order

than
√

∆n, and hence affect the CLT for TV nt .

We can use the test statistic Tnt (k) to construct an ωnt that delivers HV nt with the properties

detailed above. This is accomplished, if ωnt converges to 1, when H is not present in the observed

price, and it converges at an exponential rate to 0, if H is present. For this choice of ωnt , and

due to the stable convergence, we may ensure that HV nt has the same CLT as TV nt with Y ≡ X,

and the CLT for DV n1−m,t , when Y and X are not equivalent. That is, this hybrid estimator

will achieve asymptotic efficiency, when persistent noise is absent or its impact on volatility

estimation is asymptotically negligible, and it will enjoy the robustness features of DV n1−m,t ,

when the noise can induce a nontrivial bias in the volatility estimation.

Since the loss of efficiency from using the robust DV n1−m,t is relatively small, we opt for

simplicity and do not analyze this hybrid volatility estimation approach any further here.
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4 Monte Carlo Study

This section reports on a simulation study designed to explore the finite-sample properties of

the DV estimator corresponding to the new asymptotic results developed in Section 3. In the

Supplementary Appendix we also report simulation results for the performance of the test for

the presence of extreme return persistence derived in the previous section.

4.1 The simulation setting

For the efficient log-price X, we rely on the following model,

dXt = bt dt + σt dW1,t + dJX,t, (29)

dσ2
t = κ (γ − σ2

t ) dt + ξ σt dW2,t, (30)

where W1 and W2 are correlated standard Brownian motions with E (dW1,t, dW2,t) = ρ dt.

The jump term JX,t is a compound Poisson process with intensity pX and Gaussian jump size

governed by the distribution N(0, λ2
X).

In the experiments below, the log-price process X is simulated for n = 390 minutes per day

and T = 5, 000 days, corresponding to one-minute intraday sampling across the trading day for

about 20 years. The initial log-price X0 equals log(1200), the unit of time is one trading day,

and the drift term bt is set to zero. The volatility process σ2
t is initiated at its unconditional

mean value of γ on day one while, for other days, it is initiated at the ending value of the

previous day. The annualized parameter vector for the Heston model is fixed at (κ, γ, ξ, ρ) =

(5, 0.0225, 0.4,−
√

0.5), following Christensen et al. (2019). For the jump components, we let

pX = 1/5 corresponding to one jump per week on average with λX = 0.9%. These parameter

settings imply that the mean value of JV is about 20% of the mean for IV.

We simulate the persistent noise model (6) to generate a flash crash, a gradual jump, and a

gradual jump with an intermittent flash crash. Specifically,

(i) for the gradual jump case: we add a jump in X at τ = 0.5 of magnitude 2.5% for each

day. We let i ∈ {1}, τ1 = τ , and employ f (1)(∆Xτ , ητ ) = ητ ∆Xτ with ητ = −1 and

g(1) = g
(1)
gj . For parameter specifications, we set (τ1, τ1) = (0.50, 0.59) and explore αg ∈

{0.45, 0.35, 0.25} for three scenarios;

(ii) for the flash crash case: we let i ∈ {1} and employ f (1)(∆Xτ1 , ητ1) = ητ1 , g(1) = g
(1)
fc . We

set ητ1 = −2%, (τ1, τ̆1, τ1) = (0.41, 0.49, 0.57), c
(1)
l = c

(1)
r = 1, and explore αl = αr = αf ∈

{0.45, 0.35, 0.25} for three scenarios;

(iii) for the case of a gradual jump with an intermittent flash crash: we add a jump in X at

τ = 0.5 of magnitude 2.5% for each day. We let i ∈ {1, 2}. We assume f (1)(∆Xτ , ητ ) =
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−∆Xτ and g(1) = g
(1)
gj and set (τ1, τ1) = (0.50, 0.65) for the gradual jump pattern. For the

embedded (small) flash crash episode, we employ f (2)(∆Xτ2 , ητ2) = ητ2 and g(2) = g
(2)
fc ,

and set ητ2 = −0.75%, c
(2)
l = c

(2)
r = 1, (τ2, τ̆2, τ2) = (τfc, τfc + 0.04, τfc + 0.08) where

τfc follows an exponential distribution with rate parameter λ = 15. We again explore

αg = αl = αr = αgf ∈ {0.45, 0.35, 0.25} for three scenarios.

The illustrative paths presented previously in Figure 3 are simulated under the above three

modeling choices and parameter specifications.

We next provide details about the truncation level for the TV and DV estimators. We set

the threshold parameters in the following data-driven way,5

ζ = Cζ σ̂
med
t−1 and $ =

1

2
, (31)

where Cζ is a positive constant and σ̂medt−1 is the MedRV jump-robust volatility estimator of

Andersen et al. (2012), given by,

(σ̂medt )2 =
π

6− 4
√

3 + π

tn∑
i=t(n−1)+3

median( |∆n
i−2Y |, |∆n

i−1Y |, |∆n
i Y | )2. (32)

We experiment with two pairs of thresholds for Cζ : 4 for TV and 4
√

2 for DV versus 3 for TV

and 3
√

2 for DV. The extra factor of
√

2 in Cζ for the DV estimators is motivated by the fact

that the standard deviation of differenced (identical and independent) returns exceeds the one

for individual returns by a factor of
√

2.

Finally, as an additional benchmark, we also employ the realized volatility (RV) estimator

defined by,

RV nt =

tn∑
i=(t−1)n+1

(∆n
i Y )

2
. (33)

Overall, below we report the results for RV, TV, DV, and DV1−3 defined through equations

(33), (9), (11), and (16), respectively.

4.2 Simulation Results

The estimation performance is assessed through the root-mean-square error (RMSE),

RMSE =

√√√√ 1

T

T∑
t=1

(
ÎV t − IVt

)2

,

where ÎV t denotes a given estimate of the integrated volatility IVt for day t.

Table 3 presents the RMSEs for the selected estimators under the setting in Section 4.1. First,

we note that all jump-robust estimators dramatically reduce the bias in estimating IV, stemming

5Theoretically, we should have $ < 1
2
, but setting $ = 1

2
for a fixed sampling frequency obviously makes no

difference.

21



Table 3: Monte Carlo RMSE Results

Model RV TV DV DV1−3 TV DV DV1−3

(CTVζ , CDVζ ) = (4, 4
√

2) (CTVζ , CDVζ ) = (3, 3
√

2)

null, H = 0 65.71 7.29 8.99 7.80 7.79 9.19 8.13

PN-GJ, αg = 0.45 85.74 14.98 9.43 8.42 10.69 8.84 7.58

PN-GJ, αg = 0.35 104.05 13.12 9.15 8.02 9.39 8.92 7.61

PN-GJ, αg = 0.25 147.59 10.97 9.02 7.91 8.20 8.93 7.62

PN-FC, αf = 0.45 98.03 22.06 12.16 10.66 17.95 9.11 7.87

PN-FC, αf = 0.35 125.48 19.77 10.50 8.98 16.61 9.06 7.84

PN-FC, αf = 0.25 186.55 16.21 9.40 8.18 14.84 9.07 7.89

PN-GJFC, αgf = 0.45 83.33 16.97 11.87 11.07 11.64 9.04 7.81

PN-GJFC, αgf = 0.35 101.14 14.60 11.64 10.37 10.37 9.03 7.71

PN-GJFC, αgf = 0.25 146.29 11.86 11.17 9.59 9.15 8.96 7.64

RMSE (multiplied by 106) based on simulated 1-minute data for 5,000 days, for the null model, H = 0,
and three Persistent Noise alternatives from Section 4.1: a gradual jump (i) labelled “PN-GJ”, a flash
crash (ii) labelled “PN-FC”, a gradual jump with an intermittent flash crash (iii) labelled “PN-GJFC”.
The threshold values for the TV and DV estimators are indicated by the respective (CTVζ , CDVζ ) values.

from the jump term and, not surprisingly, improve hugely on the RMSE of RV, confirming that

the continuous variation can only be estimated with precision via jump-robust estimators.

Second, we compare the standard jump-robust threshold estimator TV to the correspond-

ing jump- and persistent drift-robust DV estimator. Under the null model with H = 0, the

RMSE of DV exceeds the one for TV by 23.3% and 18.0% under (CTVζ , CDVζ ) = (4, 4
√

2) and

(CTVζ , CDVζ ) = (3, 3
√

2), respectively, roughly matching the result in Theorem 1 of
√

3/2− 1 ≈

22.5%.6 In contrast, under the persistent noise model, the RMSEs of TV increase quite steeply,

while the performance of the DV estimator is less sensitive, resulting in a slower deterioration in

the RMSE measure. For instance, under the persistent noise model for the flash crash pattern

(PN-FC) in Table 3 with α = 0.35, the RMSE of DV(3
√

2) is 45.5% below that of TV(3).

Third, we inspect the performance of the DV1−3 estimator, designed to display robustness

towards nontrivial values of the first three return autocorrelations. Under the null model, H = 0,

the RMSE of DV1−3 exceeds the one of TV by 7.0% and 4.4% for the larger and smaller threshold

values, respectively. The asymptotic result in Theorem 4 predicts a gap of
√

(2 + 1/3)/2− 1 ≈

8.0%. Under the persistent drift alternatives, we find, in analogy to the results for DV above,

6This is further corroborated through additional simulation results, available upon request.
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that the DV1−3 estimator has a lower RMSE than TV, and the gap widens for more severe drift

distortions. For instance, under the persistent noise model for the flash crash scenario (PN-FC)

with α = 0.35, the RMSE of TV is 19.77 compared to 8.98 for DV1−3, and 16.61 versus 7.84, for

the large and small threshold choice, respectively. In general, we find DV1−3 to also dominate

DV across all relevant scenarios. Consequently, we rely primarily on the persistent drift-robust

DV1−3 estimator for the volatility forecast performance evaluation below.

Figure 4: IV estimation over the [0.4, 0.65] fraction of daily unit time interval with simulated 1-
minute data for 500 days under null (H = 0), the PN-GJ case (with αg = 0.35), the PN-FC case (with
αf = 0.35), and the PN-GJFC case (with αgf = 0.35) specified in Section 4.1. We plot the TV(4) in
blue, DV1−3(4

√
2) in red, and the true IV in black.

To further illustrate the relative performance of the TV and DV1−3 estimators during persistent-

noise episodes, we depict estimates across 500 days for large and small threshold choices, respec-

tively, in Figures 4 and 5. The TV (blue) and DV1−3 (red) estimates are plotted against the true

IV (black) value each day exclusively for the [0.4, 0.65] fraction of the daily unit time interval,

featuring the extreme drift persistence, to highlight the consequences of the Itô semimartingale

violation. It is evident that, in both cases, the TV estimates are significantly upward biased rela-

tive to the true IV, while the DV1−3 estimator displays notably less bias under all the persistent

noise scenarios investigated, including flash crash, gradual jump, and mixed gradual jump and

flash crash episodes. We further note that the more aggressive threshold choice – (CTVζ , CDVζ )

equal to (3, 3
√

2) versus (4, 4
√

2) – helps reduce the estimation bias for both estimators under

the persistent noise model, rendering them the preferred choice under the alternative hypotheses.

Additional insights on this point may be gauged from the empirical results in Section 5.4.
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Figure 5: IV estimation over the [0.4, 0.65] fraction of daily unit time interval with simulated 1-
minute data for 500 days under null (H = 0), the PN-GJ case (with αg = 0.35), the PN-FC case (with
αf = 0.35), and the PN-GJFC case (with αgf = 0.35) specified in Section 4.1. We plot TV(3) in blue,
DV1−3(3

√
2) in red, and the true IV in black.

5 Empirical Application

We first describe our high-frequency asset price data. We then characterize the type of events our

formal test identifies as containing “persistent noise” episodes. Finally, we explore how our DV

estimators deviate from, in particular, the related TV estimator, but also other realized return

variation measures. Volatility is inherently latent, so we address the latter question indirectly,

by exploring whether the DV estimator provides a competitive – perhaps even superior – input

for standard volatility forecasting procedure based on the popular HAR framework. We do, in

fact, find that noteworthy gains are obtained by adopting the DV-based forecasts.

5.1 Data

Our application focuses on the S&P 500 equity (SPX) index futures and the thirty constituents

of the Dow Jones Industrial Average (DJIA) index. Our S&P futures sample covers tick-by-

tick transactions from January 4, 1995, through July 31, 2018, for a total of 5,878 days.7 The

high-frequency transaction records for individual stocks are from the NYSE/TAQ database,

covering 3,870 days from January 2, 2003 to July 2, 2018. To avoid idiosyncratic overnight and

weekend effects, we only use data for the regular trading hours and eliminate days with reduced

trading hours. Finally, we use an alternative S&P 500 volatility measure, obtained from the

7We switch from the S&P 500 Futures to E-mini S&P 500 Futures from January 2004 on, since the liquidity of the
latter dominates that of the former over that period.
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www.tailindex.com website, which is based on the theoretical work of Todorov (2019). This

latter measure, labeled SV, provides nonparametric estimates of spot diffusive volatility, based

on option prices at market close, but ranges only from January 2008 until the end of July 2018.

To mitigate market microstructure effects, we sample only at one-minute or lower frequencies,

and we restrict our sample to transactions between 9:31:00 and 16:00:00 Eastern Time (ET) for

the S&P 500, and 9:41:00–16:00:00 ET for individual stocks.

5.2 Persistent Noise Episodes

Our test for excessive return drift is based on the Tnt (k) statistic, equations (22)-(23), with one-

minute pre-averaged and winsorized returns and k = 2. The pre-averaging exploits five-second

returns for non-overlapping one-minute intervals with (absolute) returns subsequently winsorized

at 0.1%. The sampling frequency and length of the pre-averaging window are chosen with the

aim of gaining power (thus sampling at the relatively high frequency of five seconds), while

simultaneously guarding against standard types of microstructure noise (thus pre-averaging the

raw returns to one minute). Finally, our choice of k = 2 aims at further guarding against regular

microstructure noise, as the latter may introduce first-order return autocorrelation.

Figure 6 displays smoothed daily values of the Tnt (2) statistics for the S&P 500 and quantiles

for the cross-section of DJIA stocks. The values are averaged over a week-long moving window

to facilitate clarity, although this renders a few daily peaks invisible.8 The figure does not convey

any clear association between the statistics for S&P 500 and individual stocks, apart from the

pronounced outliers during the financial crisis. Comparing the set of largest positive daily outliers

for the S&P and DJIA quantile statistics, covering well over 100 extreme observations, we find

only four common extreme realizations outside of the 2008-2009 period. These are associated

with the flash crash on May 6, 2010, the market turmoil following the downgrade of the U.S.

public debt, August 9-10, 2011, and February 15, 2018, which saw very strong returns, following

dramatic losses in the prior week, when the U.S. bond markets were rocked by worries over a

revival of inflation and prospects for a tightening in monetary policy.

In addition, for Figures 1 and 2, depicted in Section 1, we find that both of those dates

produce a highly significant Tnt (2) statistic for S&P 500, with values of, respectively, 2.81 and

3.35. However, the corresponding observation from the 75th% quantile for the DJIA stocks is

not an outlier for the latter date, while the former falls outside our DJIA sample period.9

The results demonstrate that indications of evolving frictions or uncertainty in the market, as

8Under the null of no semimartingale violations, individual daily series of the statistic should mimic white noise,
and quantiles should fluctuate randomly around fairly stable values. Despite deviations from this benchmark, the
realizations are sufficiently close to random noise, rendering the display for daily values very “noisy.”

9Note that the T-statistics in Table 2 refer to the significance of the gap between the TV and DV estimators, based
on the result in (3.2). In contrast, we now test for “persistent noise,” via the statistic defined in equations (22)-(23).
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Figure 6: Weekly moving averages of the Tnt (2)-statistic for SPX (upper panel) and the cross-sectional
25%- (orange), 50%- (green), and 75%- (red) quantiles of the Tn(2)-statistics for the DJIA stocks (lower
panel), from January 2, 2003 to July 2, 2018.

captured by our test for an elevated return drift, do not necessarily – or even typically – coincide

for the market index and underlying individual assets. To help shed light on this finding, we

now compare the S&P 500 index and DJIA stocks along a few critical dimensions. First, we

focus on the frequency of significant results for the Tnt (2)-statistic over our sample. At the 1%

critical level, we reject the absence of persistent noise on 2.45% of the trading days for S&P

500, while the corresponding rejection frequencies for individual stocks range from 1.72% for

Pfizer Inc to 4.20% for JP Morgan-Chase.10 That is, we observe a uniform, but relatively small

excess proportion of rejections relative to test size. This may, indeed, signify that the number

of incidents featuring an unusually strong drift is small, but it may also reflect a lack of power.

On the one hand, we would expect the index futures to experience less problematic events

than individual stocks, as the market is extremely liquid and viewed as quite efficient. On

the other hand, the index has lower volatility than individual stocks, rendering an unusual drift

easier to identify. These effects may partially cancel out, leaving the index with a similar average

number of significant events as the DJIA stocks. Nonetheless, we would still expect a volatile

market episode – whether it induces a significant excess drift episode or not – to also manifest

itself among individual stocks. This prediction is consistent with the S&P index only having a

limited number of extreme drift days during the financial crisis, while the individual stocks signal

a more consistent elevation across the entire period in Figure 6. Market jumps and turmoil may

be associated with lagged responses across the underlying assets, leading to periods of persistent

drift instead. Finally, of course, firm- or sector-specific news may induce disorderly trading

conditions for individual stocks, that are not discernible at the overall market level.

10The analogous rejection frequencies for the 2.5% and 5% levels are 4.45% and 6.72% for the S&P 500 futures and
ranges of 3.1%-7.1% and 5.5%-10.9%, respectively, for the 30 individual stocks.
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Another feature of interest is the degree of serial correlation for days involving significant

“persistent noise” episodes. Table 4 reports the first-order autocorrelation coefficient for the S&P

500 index and individual DJIA stocks, separately for the pre-crisis, financial crisis, and post-crisis

periods. The correlations are almost uniformly positive, indicative of positive dependence in the

strong drift episodes. Moreover, it is evident that it is, again almost uniformly, highest during

the financial crisis. Finally, there is a tendency for a lower degree of persistence post-crisis, which

is particularly striking for the market index.

Table 4: First-Order Autocorrelation for Daily Tnt (2) Statistic.

Stock Pre-Crisis Crisis-Period Post-Crisis Stock Pre-Crisis Crisis-Period Post-Crisis

SPX 0.1801 0.2154 0.0309

AXP 0.0888 0.1970 0.0803 BA 0.0901 0.1198 0.0528

BAC 0.0869 0.3524 0.0445 CAT 0.0250 0.3369 0.0766

CSCO 0.0267 0.1632 0.0364 CVX 0.0888 0.1970 0.0803

DD 0.0737 0.1692 0.0349 DIS 0.0056 0.1918 0.0901

GE 0.0485 0.2664 0.0708 GS 0.0859 0.3087 0.0255

HD 0.0913 0.1621 0.0329 IBM 0.0654 0.1363 0.0081

INTC 0.0772 0.1759 0.0798 JNJ 0.0470 -0.0089 0.0112

JPM 0.0471 0.2997 0.0236 KO 0.0114 0.1269 0.0326

MCD 0.0464 0.0686 0.0530 MMM 0.0527 0.1128 0.0373

MRK 0.1050 0.1984 0.0465 MSFT 0.0632 0.1352 0.0553

NKE 0.0288 0.1610 0.0738 PFE 0.1200 0.0737 0.0245

PG 0.0696 0.1590 0.0003 T 0.1085 0.1244 0.0387

TRV 0.1023 0.2594 0.0541 UNH 0.0846 0.1675 0.0522

UTX 0.0253 0.0860 0.0242 VZ 0.0223 0.1684 0.0249

WMT 0.0345 0.0880 0.0598 XOM 0.0707 0.1746 0.0363

The Tnt (2) statistic is computed from one-minute pre-averaged and winsorized returns, as described in
the main text. The sample period is from January 3, 1995 to July 31, 2018 for SPX and from January
2, 2003 to July 2, 2018 for DJIA. The crisis period covers January 02, 2008 to December 31, 2009.

In summary, persistent noise episodes for DJIA stocks are mildly correlated over time, display

substantial cross-sectional correlation, as indicated by the quantiles in Figure 6, and are weakly

related to corresponding events for the market index. However, they are evident during extreme

events, like the financial crisis, Treasury downgrade, and 2010 flash crash. Our tests do not

distinguish flash crashes from gradual jumps, but informal inspection indicates that flash crashes

are rare, so most events seem related to gradual jumps or prolonged periods of price discovery.
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5.3 Volatility Forecasting Setup and Models

We next focus on the explanatory prowess of the DV estimators relative to existing popular

forecast procedures within a standard setup. A commonly adopted approach is the HAR model of

Corsi (2009). It captures the impact of recent volatility innovations as well as long-memory style

features through a heterogeneous autoregressive specification, which has proven quite effective

in out-of-sample forecast comparisons. It takes the form,

Vt,t+h = β0 + βD RVt + βW RVt−5,t + βM RVt−22,t + εt,t+h , (34)

where RVt,t+h denotes the multi-period normalized realized return variation,

RVt,t+h = h−1 (RVt+1 + RVt+2 + · · · + RVt+h ) , h = 1, 2, . . . , (35)

while Vt,t+h is the ex-post realized value of the volatility proxy we seek to forecast over [t+1, t+h].

Often, Vt,t+h = RVt,t+h , but we explore alternative measures as well below. Mainly, we also

forecast future DV and the option-based SV. These two volatility measures, unlike RV, are

jump robust and should be less sensitive to the presence of persistent noise episodes. For DV,

this follows from our theoretical results above, while for SV it follows, if the persistent noise

contaminating the underlying asset price is not present in the option market at the end of the

trading day, when the option prices used to construct SV are recorded.

The choice of lagged RV regressors covering the previous trading day, week (5 days) and

month (22 days), is standard. Given these regressors, we explore forecasts for Vt,t+h over the

coming trading day (h = 1), week (h = 5), and month (h = 22) in our predictive analysis.

The basic HAR-RV model has subsequently been modified in numerous ways. In particular,

Andersen et al. (2007) split RV into continuous and jump components. They found only the

continuous component to provide significant predictive power, motivating the HAR-C variant,

Vt,t+h = β0 + βD Ct + βW Ct−5,t + βM Ct−22,t + εt,t+h , (36)

where the continuous return variation measures are normalized as above for RV, Ct,t+h =

h−1 [Ct+1 + Ct+2 + · · ·+ Ct+h] .

A common estimator for the continuous component C is the TV estimator, defined in equation

(9), which truncates for jumps using the threshold (31). Henceforth, we denote this model HAR-

TV(CTVζ ). Similarly, if our DV1−m estimator, as defined in equation (16), serves as the basis

for the predictor variables, then the associated model is labeled HAR-DV(CDVζ ).

Another commonly adopted candidate for estimating the continuous part of the quadratic

return variation is the Bipower Variation (BV) of Barndorff-Nielsen and Shephard (2006),

BVt =
π

2

(
n

n− 1

) tn∑
i=(t−1)n+1

|∆Yi||∆Yi+1| . (37)

28



Exploiting the corresponding BV estimators as regressor variables leads to the HAR-BV model,

Vt,t+h = β0 + βD BVt + βW BVt−5,t + βM BVt−22,t + εt,t+h . (38)

Finally, we consider the HAR modification of Bollerslev et al. (2016), designed to reduce

the impact of measurement errors—the gap between the latent integrated volatility, IV, and its

proxy, RV—by allowing model parameters to vary with estimates for the size of the measurement

error for RV. They achieve the best HARQ performance from the following specification,

Vt,t+h = β0 +
(
βD + βQ

√
RQt

)
RVt + βWRVt−5,t + βMRVt−22,t + εt,t+h , (39)

where the Realized Quarticity (RQ), defined as RQt = n
3

∑n
i=1 ∆Y 4

i , provides the requisite

estimate for the magnitude of the measurement error. For this HARQ model, we follow their

lead in also applying the “insanity filter” (IF), introduced by Swanson and White (1997), as the

model occasionally produces implausibly large or small forecasts. Specifically, the IF algorithm

replaces any forecast falling outside the range of values of the target variable observed during

the estimation period by the unconditional mean of the variable over that period.

In summary, our benchmark models include the HAR-RV, HAR-C, HAR-BV, and HARQ

models, specified in equations (34), (36), (38), and (39), respectively. The limited choice of

alternatives reflects our focus on the information content of the DV estimator relative to com-

monly adopted measures, rather than the development of a new model for optimal volatility

prediction. As such, we avoid extensive data exploration (and mining), yet still illustrate the

potential gains from our new volatility measure. We consider HARQ due to its recent popu-

larity, but relegate many of the associated results to the Supplementary Appendix, as HARQ

introduces a number of new features, that we purposely exclude from the analysis of the other

models. Nonetheless, the inclusion of HARQ demonstrates that our robust volatility proxy can

facilitate forecast procedures that compare favorably, on many dimensions, to even very recently

developed techniques.

5.4 Empirical Forecasting Results

The out-of-sample forecast performance is assessed through two widely used loss functions,

namely the mean square error (MSE),

MSE(Vt,t+h, V̂t,t+h) =
(
Vt,t+h − V̂t,t+h

)2

, (40)

and the quasi-likelihood (QLIKE) loss function,

QLIKE(Vt,t+h, V̂t,t+h) =
Vt,t+h

V̂t,t+h
− log

Vt,t+h

V̂t,t+h
− 1 , (41)
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where V̂t denotes the forecast of V for trading day t, and V̂t,t+h = h−1
(
V̂t+1 + · · ·+ V̂t+h

)
. The

MSE loss penalizes outliers heavily, whether due to large (unexpected) volatility innovations or

excessively large forecasts, while the QLIKE loss reflects the relative forecast error.11

To determine a suitable sampling frequency for the high-frequency returns, when construct-

ing realized variation measures—balancing the trade-off between estimation efficiency from an

increasing number of observations and the bias induced by microstructure noise—we initially

obtain the MSE of intraday realized variance forecasts for different frequencies based on jump-

robust returns, using the same truncation as for TV previously, i.e., the threshold is CTVζ = 3.12.

In particular, MSE results for the S&P 500 futures and DJIA stocks for 1-, 2-, 3-, and 5-minute

sampling are reported in Table 5. In both cases, the 3-minute returns provide the minimal MSE,

so we base the predictive analysis below on variation measures obtained from 3-minute sampling.

Table 5: Estimated MSE × 108 of RV Forecasts

Asset Frequency

1-min 2-min 3-min 5-min

S&P 500 3.42 3.34 3.31 3.67

DJIA (average) 23.8 23.6 22.8 24.3

The sample MSE for S&P 500 futures and DJIA stocks exploiting the procedure in Theorem 3 of Bandi
and Russell (2008). The realized measures are obtained from jump-robust returns exploiting the same

truncation threshold as TV in equation (31), 3 σ̂medt−1 ∆
1/2
n .

5.4.1 S&P 500 Index

We first consider volatility forecasts for the S&P 500 futures, for which we have the longest

sample and access to high-quality option-based spot variance measures over the recent years.

Estimation and forecasting are carried out recursively. For in-sample estimation, we rely on OLS

to generate both a rolling window forecast using the prior 1, 000 trading days and an increasing

window forecast using all prior observations, starting from an initial set of 1, 000 trading days.

We start with one-day-ahead intraday RV forecasts. Table 6 reports the MSE and QLIKE

values, using rolling (RW) or increasing windows (IW), for HAR models exploiting RV, BV,

TV, DV, or HARQ regressors. For TV and DV, we report results for the truncation levels 3

and 3
√

2, respectively,13 while we provide results for HARQ with and without implementation

11Patton (2011) demonstrates that the the MSE and QLIKE loss functions have desirable properties in this context.
12This follows the original approach of Bandi and Russell (2008).
13The supplementary Appendix provides evidence for alternative choices of thresholds. The qualitative results are

identical, but the alternative choices usually produce marginally worse outcomes.
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Table 6: Daily Out-Of-Sample RV Forecasts for S&P 500.

RW IW

Sample Procedure MSE×106 QLIKE MSE×106 QLIKE

Full Sample HAR-RV 0.6561 0.1557 0.5034 0.1555

HAR-BV 0.7041 0.1563 0.5666 0.1552

HAR-TV (3) 0.4904 0.1390 0.4361 0.1318

HAR-DV1−3 (3
√

2) 0.4702 0.1387 0.4266 0.1304

HARQ (IF) 0.4891 0.1404 0.4209 0.1338

HARQ (no IF) 0.4888 0.1573 0.4210 0.1578

Persistent Noise Days HAR-RV 20.4287 0.2153 16.5482 0.2139

HAR-BV 22.8546 0.2129 20.2140 0.2072

HAR-TV (3) 16.3814 0.1784 14.1436 0.1769

HAR-DV1−3 (3
√

2) 15.4031 0.1868 13.4505 0.1867

HARQ (IF) 13.1762 0.1852 12.7023 0.1992

HARQ (no IF) 13.1809 0.3352 12.7066 1.2313

Remaining Days HAR-RV 0.3333 0.1547 0.2414 0.1546

HAR-BV 0.3425 0.1554 0.2458 0.1543

HAR-TV (3) 0.2309 0.1383 0.2123 0.1311

HAR-DV1−3 (3
√

2) 0.2264 0.1379 0.2140 0.1295

HARQ (IF) 0.2819 0.1397 0.2204 0.1327

HARQ (no IF) 0.2816 0.1544 0.2204 0.1402

The forecast results for January 3, 1995 to July 31, 2018 (upper panel) are decomposed by Persistent-
Noise days, whenever Tnt (2) > 2.325 (middle panel), and remaining days, when Tnt (2) < 2.325 (bottom
panel). The jump-truncation thresholds, CTVζ and CDVζ , are provided in the parentheses for the TV
and DV statistics, while imposition of the insanity filter (or not) is indicated by IF for HARQ.

of the insanity filter (IF).14 The first striking result is the uniformly poor performance of the

HAR-RV and HAR-BV forecasts. For every metric and scenario, they fare much worse than the

corresponding TV- and DV-forecasts. Evidently, the robust truncation implemented through

the latter estimators are important to curtail the impact of outliers in the regressors, while BV

clearly fails in this regard. Second, the HARQ forecasts are competitive on the MSE criterion.

For the full sample results in the top panel, HARQ with associated IF generates the second-lowest

MSE for the RW-based forecasts and the overall lowest value for the IW-based forecasts. In

contrast, the overall ranking of HARQ according to the QLIKE criterion is less stellar, although

still competitive with the TV- and DV-forecasts. Third, the middle panel of Table 6 refers

14Recall, HARQ has a time-varying coefficient on the one-day lagged RV regressor to account for the corresponding
measurement error, and it invokes a filter, if the basic HARQ forecast otherwise is unusually large or small.
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to the performance only for trading days, when our test for the presence of persistent noise is

significant. These days represent highly turbulent conditions, as the MSEs of the forecasts are

orders of magnitude larger than those for the remaining (non-persistent noise) days, reported in

the bottom panel. We note that the overall good MSE performance of HARQ stems from these

fairly rare episodes, where it improves notably on the other models. This advantage is lessened

for the QLIKE criterion, where the TV- and DV-models generally perform better. Finally, we

also note the importance of the IF in this regard. The HARQ (no IF) generates huge outliers

for the QLIKE, implying an erratic behavior in the absence of the filter.

Of course, we do not know to whether the discrepancies in Table 6 are statistically significant.

However, it turns out that this setting is close to a best-case scenario for HARQ, as the HARQ

procedure is less effective for longer forecast horizons and alternative ex-post volatility proxies.

For illustration, we review some Diebold-Mariano test results for equal predictive performance

across our full S&P 500 sample, using RV-, DV-, and SV-proxies for ex-post diffusive volatility.15

The SV series is of particular interest, as it is constructed exclusively from option prices, and

thus is void of the specific form for noise structure present in the high-frequency asset prices.16

Table 7 reports p-values for the hypothesis that forecasts based on the DV-regressors perform

worse than those based on an alternative procedure. That is, large p-values favor the alternative

forecast procedure, while low p-values favor the DV-based forecasts. The first line of the table

corresponds to the evidence for RV forecasts in Table 6. Most of the entries in the first row are

below 50%, with none larger than 72.5%, so there are no indications of subpar DV performance.

The evidence in favor of DV is also limited, but stronger: compared to the QLIKE values

obtained from the TV- and HARQ-IW procedures, the test statistic indicates rejection at the

10% level (0.0477 and 0.0584, respectively). This is noteworthy, as it is consistent with the

stronger evidence emerging for the longer forecast horizons. Across the eight combinations of

RW/IW- and TV/HARQ-based forecasts, they all attain p-values below 10% for QLIKE.

Moreover, as we consider alternative ex-post volatility proxies, these results are not only

confirmed, but strengthened. Specifically, for HARQ, there is no indication of underperformance

for the daily DV-forecasts in the middle panel, but issues arise at the weekly and monthly horizons

where, across the eight RW/IW and MSE/QLIKE DV-forecast scenarios based on HARQ, we

observe p-values from below 5% to only 30%. Finally, for the SV forecasts in the bottom panel,

the evidence is uniformly, and strongly, in favor of DV relative to HARQ.

We conclude that HARQ is unlikely to improve on our DV-based forecasts in general, even if

15We follow Diebold (2015, Section 2.1) and adjust the DM statistic with Newey-West Heteroskedasticity and
Autocorrelation Corrected (HAC) standard errors.

16To render the series compatible with the other intraday volatility measures, it is scaled so that its average value
coincides with that of the ex-post TV measure.
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Table 7: Diebold-Mariano p-Values for DV-Based S&P 500 Volatility Forecasts

HAR-DV1−3 against TV HAR-DV1−3 against HARQ

RW IW RW IW

MSE QLIKE MSE QLIKE MSE QLIKE MSE QLIKE

Forecasting RV

daily 0.1976 0.3933 0.2083 0.0477 0.2559 0.2490 0.7239 0.0584

weekly 0.3644 0.0513 0.4803 0.0156 0.6040 0.0740 0.3443 0.0763

monthly 0.2195 0.0007 0.2034 0.0002 0.5553 0.0618 0.3844 0.0642

Forecasting DV1−3

daily 0.1597 0.0196 0.1694 0.0000 0.9004 0.1503 0.8916 0.7684

weekly 0.4436 0.0005 0.4801 0.0000 0.1331 0.0654 0.2139 0.0499

monthly 0.2136 0.0000 0.1806 0.0000 0.2909 0.0689 0.2442 0.0676

Forecasting SV

daily 0.0004 0.0000 0.0000 0.0000 0.0131 0.0001 0.0000 0.0000

weekly 0.0000 0.0000 0.0000 0.0000 0.0046 0.0004 0.0000 0.0000

monthly 0.0000 0.0008 0.0000 0.0000 0.0503 0.0000 0.0001 0.0000

Null hypothesis, H0: HAR-DV1−3 is less accurate than its competitor. The predictions cover January
3, 1995 to July 31, 2018 for RV and DV1−3, and January 2, 2008 to July 31, 2018 for SV. The threshold
values for the TV and DV equal (CTVζ , CDVζ ) = (3, 3

√
2).

it may point towards opportunities for improving short-term predictions. As noted, this is due

to the introduction of auxiliary features, that we cannot explore in earnest within the confines of

the current study. Hence, we defer most of the HARQ evidence to the Supplementary Appendix,

but note that the findings generally are qualitatively similar, even for the individual DJIA stocks.

Consequently, in the sequel we focus on forecasts based on DV- and corresponding RV-,

BV-, and TV-based procedures. RV and BV measures signify the dominant choices in the

extant literature, while our DV-approach represents an adaption of the TV-estimator to generate

robustness against a specific type of deviation from the semimartingale paradigm.

To provide a more comprehensive overview of our results, we conclude this section by illus-

trating the performance of our DV-based forecasts in a polar opposite case from Table 6. We now

focus on the two other ex-post volatility proxies, DV and SV, and the longer one-month forecast

horizon. Table 8 displays results for the full sample, the days with (significant) indications of a
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Table 8: Monthly Out-Of-Sample DV and SV Forecasts for S&P 500.

DV1−3 SV

RW IW RW IW

MSE×106 QLIKE MSE×106 QLIKE MSE×107 QLIKE MSE×107 QLIKE

Full Sample

HAR-RV 0.1320 0.1665 0.1010 0.1570 0.1033 0.1708 0.1953 0.3030

HAR-BV 0.1467 0.1661 0.1144 0.1562 0.1099 0.1742 0.2138 0.3177

HAR-TV 0.1045 0.1575 0.0966 0.1466 0.0917 0.1591 0.1745 0.2828

HAR-DV1−3 0.1018 0.1557 0.0949 0.1430 0.0884 0.1573 0.1610 0.2693

Persistent Noise Days

HAR-RV 2.3201 0.0978 1.1896 0.1170 0.0736 0.1203 0.1843 0.2566

HAR-BV 2.8773 0.0955 1.9189 0.1131 0.0779 0.1231 0.2080 0.2721

HAR-TV 1.3165 0.0917 0.8782 0.1171 0.0692 0.1124 0.1612 0.2359

HAR-DV1−3 1.2428 0.0901 0.8069 0.1140 0.0672 0.1114 0.1482 0.2236

Remaining Days

HAR-RV 0.0962 0.1676 0.0831 0.1577 0.1036 0.1714 0.1954 0.3036

HAR-BV 0.1019 0.1672 0.0848 0.1569 0.1103 0.1748 0.2139 0.3182

HAR-TV 0.0846 0.1586 0.0838 0.1470 0.0919 0.1596 0.1746 0.2834

HAR-DV1−3 0.0831 0.1568 0.0832 0.1435 0.0886 0.1579 0.1611 0.2698

The forecasting results for all days—from January 2, 2003 to July 2, 2018 for DV1−3 and from January
2, 2008 to July 31, 2018 for SV—(upper panel) are decomposed by Persistent-Noise days whenever
Tnt (2) > 2.325 (middle panel) and remaining days when Tnt (2) < 2.325 (bottom panel), where Tnt (k) is
defined in equation (26). The thresholds for the TV and DV estimators are (CTVζ , CDVζ ) = (3, 3

√
2).

We scale SV to have the same average value of TV.

persistent mean drift, and the remaining days.17 The uniformly superior forecast performance

of DV relative to TV is noteworthy. As before, we also find the RV- and BV-based forecasts

to be much worse than those relying on the TV- and DV-statistics. Finally, we note that the

MSE losses are lower for the SV proxies. This is natural, as the ex-post DV-measure provides

a noisy measure of the volatility realization, while the SV value refers directly to a concurrent

17The TV- and DV-values in the bottom rows of the top panel in Table 8 reflect the same underlying forecasts and
volatility proxies that generate the first four p-values in the bottom row of the middle and bottom panel in Table 7.
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(option-implied) estimate of the underlying volatility level.18 This suggests that SV provides a

less noisy benchmark for assessment of forecast performance. In light of this observation, the

extremely significant evidence in favor of DV- versus TV-forecasts, confirmed for this scenario

in Table 7, is particularly striking, with p-values almost identically equal to zero.

Conceptually, the difference between HAR-TV and HAR-DV1−3 models is that the former

provides robustness versus jumps, while the latter also controls for distortions induced by pockets

of extreme return persistence, such as gradual jumps and flash crash scenarios. Our findings

suggest that the DV-procedure is preferable, even for trading periods when the test for persistent

noise is insignificant. This is likely due to the presence of violations that our test has insufficient

power to identify. Our DV-procedure retains its robustness irrespectively, and this may more

than compensate for minor efficiency losses incurred during regular periods.

5.4.2 DJIA Stocks

The DJIA results are harder to convey in a concise manner. We report only a few representative

findings, while deferring most results to the Supplementary Appendix. Table 9 provides a first

overview. For readability, the loss functions are reported as ratios relative to the corresponding

value for HAR-RV. The table refers to weekly forecasts based on DV1−3. These results constitute

a middle ground between those for daily and monthly forecasts – the relative performance of

HAR-DV1−3 is slightly worse at the daily and slightly better at the monthly horizon.

We note that all values for TV- and DV-based forecasts indicate dramatic improvements rela-

tive to RV. Moreover, we again confirm that the BV-procedure performs poorly. As for the S&P

500 index, we also find the DV-forecasts to outperform TV for the full sample. The improve-

ment is seen to stem primarily from the relatively few trading days with significant indications

of persistent noise episodes, while the performance for the remaining days is comparable.

For a more detailed look, involving each individual stock, Table 10 reports p-values of Diebold-

Mariano tests for the relative performance of DV- versus TV-based forecasts for future DV re-

alizations.19 Informally, we summarize the findings by counting the number of p-values that fall

below versus above a given threshold for each criterion. For MSE obtained via RW (IW) esti-

mation, the count is 5-0 (5-1) for p-values below 10% versus above 90%, while the corresponding

numbers for the QLIKE are 17-0 (23-2). Thus, while the evidence is largely non-discriminatory

for the MSE criterion, the QLIKE results point towards significant outperformance for DV-based

18The large MSE discrepancies in Table 8 between forecasts of the DV and SV proxies also reflect the different
sample periods, as the SV forecasts are initiated only during the great financial crisis of 2008-2009. However, we
confirm that the difference remains substantial, even if we generate the forecasts over the identical time period.

19Because both forecasts are based on jump-robust measures and ex-post RV measures are inherently noisy, the
DV-forecasts constitute a natural benchmark. Nonetheless, we note that the findings for RV-forecast are qualitatively
similar, as can be confirmed from the results tabulated in the Supplementary Appendix. Of course, an analysis based
on SV would be preferable, but option-implied spot volatility measures are not available for the individual stocks.
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Table 9: Aggregate Weekly Out-Of-Sample DV Forecasts for Individual DJIA Stocks.

Average Median

RW IW RW IW

MSE QLIKE MSE QLIKE MSE QLIKE MSE QLIKE

Full Sample

HAR-RV 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

HAR-BV 1.0455 1.0152 1.0441 1.0316 1.0143 1.0170 1.0146 1.0227

HAR-TV 0.8169 0.8872 0.8270 0.8485 0.8310 0.9035 0.8552 0.8431

HAR-DV1−3 0.8167 0.8771 0.8265 0.8277 0.8044 0.8842 0.8243 0.8236

Persistent Noise Days

HAR-RV 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

HAR-BV 1.0783 1.0073 1.0868 1.0305 1.0237 1.0099 1.0225 1.0169

HAR-TV 0.8688 0.9151 0.8547 0.8603 0.8529 0.8988 0.8521 0.8544

HAR-DV1−3 0.8258 0.9085 0.8213 0.8455 0.8267 0.8967 0.8380 0.8563

Remaining Days

HAR-RV 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

HAR-BV 1.0181 1.0155 1.0164 1.0308 1.0123 1.0166 1.0151 1.0226

HAR-TV 0.8691 0.8862 0.8764 0.8494 0.9444 0.9018 0.9329 0.8488

HAR-DV1−3 0.8773 0.8760 0.8834 0.8284 0.9466 0.8814 0.9472 0.8286

The forecast results for the future DV1−3 measure across all days from January 2, 2003 to July 2, 2018
(upper panel) are decomposed by Persistent-Noise days, whenever Tnt (2) > 2.325 (middle panel), and
remaining days, when Tnt (2) < 2.325 (bottom panel). Tnt (k) is defined in equation (26). The threshold
values for the TV and DV estimators are (CTVζ , CDVζ ) = (3, 3

√
2).

forecasts. The results for the daily and monthly DV forecasts are similar. The corresponding

test for DV- versus HARQ-forecasts also generate the same conclusions, except for weak evidence

in favor of HARQ for daily forecasts assessed via MSE.20 Finally, the identical analysis for RV

forecasts also yields qualitatively similar results, with the DV forecasts being strongly favored

according to the QLIKE criterion in almost all cases. The main deviation relative to Table 10

20For example, in analogy to Table 10, the Diebold-Mariano tests regarding weekly DV predictions for DV- versus
HARQ-based forecasts generate the following number of p-values below 10% (in favor of DV) and above 90% (favoring
HARQ) for the RW (IW) procedure, MSE: 5-2 (6-1), QLIKE: 15-0 (18-1). The same comparison at the daily level,
where HARQ performs relatively better, yields MSE: 0-5 (0-3), QLIKE: 16-1 (14-4).
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is that TV performs on par with DV at the one-day horizon, and TV generally improves its

relative performance for RV forecasts according to the MSE criterion.

Table 10: Diebold-Mariano p-Values for Weekly DV1−3 Forecasts on DJIA Stocks.

RW IW RW IW

MSE QLIKE MSE QLIKE MSE QLIKE MSE QLIKE

AXP 0.2473 0.0005 0.2512 0.0000 KO 0.5719 0.5457 0.5727 0.0630

BA 0.6330 0.6282 0.6095 0.6866 MCD 0.2902 0.0190 0.3303 0.0003

BAC 0.7683 0.6314 0.7635 0.8642 MMM 0.5227 0.3173 0.5395 0.0019

CAT 0.8715 0.7161 0.8634 0.9195 MRK 0.8916 0.0712 0.9155 0.0151

CSCO 0.6236 0.0028 0.6345 0.0000 MSFT 0.3964 0.0650 0.4757 0.0345

CVX 0.2844 0.0054 0.2882 0.0028 NKE 0.1988 0.0333 0.2037 0.0234

DD 0.8262 0.6923 0.8282 0.3554 PFE 0.7101 0.5142 0.6909 0.7715

DIS 0.6143 0.1313 0.5032 0.1165 PG 0.6883 0.0556 0.6600 0.0140

GE 0.0762 0.2320 0.0804 0.0151 T 0.0936 0.0000 0.0887 0.0000

GS 0.1653 0.7950 0.1653 0.0000 TRV 0.8480 0.8050 0.8485 1.0000

HD 0.0944 0.0004 0.0953 0.0000 UNH 0.1312 0.0533 0.1331 0.0000

IBM 0.4019 0.0251 0.3555 0.0439 UTX 0.2361 0.0000 0.2199 0.0000

INTC 0.2168 0.4259 0.2144 0.0063 VZ 0.0769 0.0000 0.0790 0.0000

JNJ 0.7545 0.1497 0.7721 0.0217 WMT 0.1879 0.0000 0.1968 0.0000

JPM 0.0712 0.0000 0.0743 0.0000 XOM 0.1427 0.0000 0.1440 0.0000

H0: HAR-DV1−3 is less accurate than HAR-TV with threshold values (CTVζ , CDVζ ) = (3, 3
√

2). The
forecasts are for the future weekly DV1−3 measures. The forecast period is from January 2, 2003 to
July 2, 2018.

6 Conclusion

We propose a new family of jump-robust integrated volatility (IV) measures, labeled differenced-

return volatility (DV) estimators, based on averaged truncated return differentials across low

order lags. These DV estimators significantly reduce the bias in IV estimation caused by pockets

of extreme return persistence, induced by episodic gradual jump and flash crash incidents. We

capture such scenarios through either the drift burst model of Christensen et al. (2019) or a

related new persistent noise model, but our inference procedure is robust to a much larger set of
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(persistent noise) deviations from the standard framework. We show, both theoretically and via

simulation, that our DV estimators significantly reduce the IV estimation biases suffered by the

standard truncation volatility (TV) estimator, while they are subject to only minor efficiency

losses under the usual Itô semimartingale assumption. Capitalizing on this feature, we use DV

as the basis for predictive volatility regressions within a Heterogeneous Autoregressive (HAR)

type model. This empirical application suggests that the resulting HAR-DV model can provide

substantial improvements relative to commonly adopted forecast models in the literature under

both MSE and QLIKE losses for the S&P 500 index futures and Dow Jones Individual stocks.

A Appendix

A.1 Proofs

Proof of Theorem 1. The theorem is proved in a similar way to the proof of Theorem 13.2.4 in

Jacod and Protter (2012). First, as in the proof of that theorem, we can show that the difference

between TV and DV and their counterparts formed by the continuous part of the process X

and without truncation is asymptotically negligible. Second, exactly as Lemma 5.4.9 in Jacod

and Protter (2012), we can show that the difference between the latter statistics and

√
n

tn∑
i=(t−1)n+2

 σ2
(i−2)∆n

(∆n
iW )2

1
2σ

2
(i−2)∆n

(∆n
iW −∆n

i−1W )2

 , (42)

is asymptotically negligible. Hence, we are left with establishing the CLT for the above process.

The latter result can be shown as in the proof of Lemma 5.4.10 in Jacod and Protter (2012) and

an application of big block - small block idea (skipping one increment to break the time series

correlation in the summands).

Proof of Theorem 2. In the proof, we will assume that τdb = 0 and we will focus attention on

the asymptotic properties of TV n1 and DV n1 . The more general case τdb > 0 can be handled

similarly.

Convergence Result for TV

Direct calculation shows

∆n
i H = cr[i

1−α − (i− 1)1−α]∆1−α
n .

The function f(x) = x1−α − (x − 1)1−α is decreasing in the interval [1,∞) with f(1) = 1 and

limx→∞ f(x) = 0. Therefore, in the case α > 1 − $, we have that for ∆n sufficiently small,

f(x) = χ
cr

∆$+α−1
n has a unique solution denoted with Kn(χ) for arbitrary χ > 0 and such that
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Kn � ∆
1−$−α

α
n . With this result, we can make the following decomposition

TV n1 =

Kn(ζ/2)∑
i=1

(∆n
i Y )2

1{|∆n
i Y |≤ζ∆$

n } +

n∑
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(∆n
i Y )2

1{|∆n
i Y |≤ζ∆$

n }

:= An1 +An2 ,

(43)

and we note that for ∆n small enough, we have 1 < Kn(ζ/2) < n. We look at each of the three

terms separately. Starting with An1 , we have∣∣∣∣∣An1 −
∫ Kn(ζ/2)∆n

0

σ2
sds

∣∣∣∣∣ ≤ ζ2∆2$
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0

σ2
sds = Op
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2$+ 1−$−α
α

n

)
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We are left with An2 . First, by noting that |∆n
i Y | ≤ ζ∆$

n implies |∆n
i X| ≤ 3

2ζ∆$
n for i >

Kn(ζ/2), we have

n∑
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(∆n
i X)2

1{|∆n
i Y |≤ζ∆$

n } −
∫ 1

Kn(ζ/2)∆n

σ2
sds = Op(

√
∆n). (45)

Next, using Taylor expansion, we have
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Using this result and Burkholder-Davis-Gundy inequality, we have

n∑
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Altogether, we have

An2 −
∫ 1

Kn(ζ/2)∆n

σ2
sds = Op

(
∆
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α

n

∨√
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)
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The results for An1 and An2 imply the result about TV in the theorem.

Convergence Result for DV

Direct calculation shows

∆n
i H −∆n

i−1H = cr[i
1−α − 2(i− 1)1−α + (i− 2)1−α]∆1−α

n .

The function g(x) = x1−α − 2(x − 1)1−α + (x − 2)1−α is increasing in the interval [2,∞) with

g(2) = 21−α − 2 and limx→∞ g(x) = 0. Therefore, in the case α > 1 −$, we have that for ∆n

sufficiently small, g(x) = χ
cr

∆$+α−1
n has a unique solution denoted with Kn(χ) for arbitrary

39



χ > 0 and such that Kn � ∆
1−$−α

1+α
n . Now, we can mirror the steps followed in the proof of the

result for TV by making the appropriate modifications along the way. We start with making

the following decomposition

DV n1 =
1

2
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(∆n
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:= Bn1 +Bn2 ,

(49)

and as in the case for the proof of TV , we have for ∆n small enough that 1 < Kn(ζ/2) < n.

First, exactly as the result for An1 in the proof of the result for TV n1 , we have∣∣∣∣∣Bn1 −
∫ Kn(ζ/2)∆n

0

σ2
sds
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Next, using Taylor expansion (twice), we have
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Using this result and Burkholder-Davis-Gundy inequality, we have
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Altogether, we have
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The results for Bn1 and Bn2 imply the result about DV in the theorem.

Proof of Theorem 3. We will prove the result for TV n1 and DV n1 . We denote with Xc the

continuous part of X. Then, on an increment without jump in X, we have ∆n
i Y = ∆n

i X
c+∆n

i H.

Taking into account then the fact that jumps are of finite activity, i.e., r = 0, we have
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because of the restriction $ > 1
4 . We next note that for α ≥ 0, we have∫ t2

t1

(s− τ)α−1ds =
1

α
(t2 − τ)α − 1

α
(t1 − τ)α, 0 ≤ τ ≤ t1 < t2, (56)
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(τ − t1)α − 1

α
(τ − t2)α, 0 ≤ t1 < t2 ≤ τ. (57)

In addition, we note that ∆nKn(ζ) in the proof of Theorem 2 is op(1) (both for TV and DV ).

Therefore, with probability approaching one, the sets of increments for which ∆n
jH

(i) exceeds in

absolute value ζ∆$
n , for i = 1, . . . , N , are disjoint. From here, the proof can proceed following

similar steps as the proof of Theorem 2 to establish that
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Proof of Theorems 4-6. The proof follows similar steps as for those of Theorems 1-3.

Proof of Theorem 7. We will consider the interval [0, 1]. First, exactly as the proof of Theorem 3,

it suffices to consider only the case when X does not contain jumps in the interval [0, 1], there

is only one τ and it is equal to 0. Using the notation in the proof of the result about DV in

Theorem 2, we have

RQn1 =
1

12∆n

Kn(ζ/2)∑
i=2

(∆n
i Y −∆n

i−1Y )4
1{|∆n

i Y−∆n
i−1Y |≤ζ∆$

n }

+
1

12∆n

n∑
Kn(ζ/2)+1

(∆n
i Y −∆n

i−1Y )4
1{|∆n

i Y−∆n
i−1Y |≤ζ∆$

n }

:= Cn1 + Cn2 ,

(60)

and as in the case for the proof of Theorem 2, we have for ∆n small enough that 1 < Kn(ζ/2) < n.

For Cn1 , we have

Cn1 −
∫ Kn(ζ/2)∆n

0

σ4
sds = Op

(
∆

4$−1+ 1−$−α
α+1

n

)
, (61)
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which is op(1) because α < 1 and $ > 2
7 (using again the notation for α in the proof of

Theorem 2). For Cn2 , first exactly as in the proof of Theorem 2, we have

1

∆n

n∑
i=Kn(ζ/2)+1

(
∆n
i H −∆n

i−1H
)4

= Op

(
∆

4$−1+ 1−$−α
1+α

n

)
, (62)

which is again op(1) because α < 1 and $ > 2
7 . From here the asymptotic negligibility of

Cn1 −
∫ 1

Kn(ζ/2)∆n
σ4
sds follows by application of Holder’s inequality, Burkholder-Davis-Gundy

inequality and Theorem 3.4.1 of Jacod and Protter (2012).

Proof of Theorem 8. The CLT result to be proved is based on the following two results:

(1) We have

√
n

n∑
i=(t−1)n+2

∆n
i Y∆n

i−1Y
L−s−−−→

∫ t

t−1

σ2
sdW s +

∑
s∈[t−1,t]

∆Xs(σs−η
−
s + σsη

+
s ), (63)

where W and the sequence {η−s , η+
s )s≥0 are defined on an extension of the original probabil-

ity space, are independent of it and of each other, W is a Brownian motion and {η−s , η+
s )s≥0

is an i.i.d. sequence of standard normal random variables.

(2) We have

RQnt +

n∑
i=(t−1)n+2

(∆n
i Y −∆n

i Y )2
1{|∆n

i Y−∆n
i−1|>ζ∆$

n }(ĉ
n
i,− + ĉni,+)

P→
∫ t

t−1

σ4
sds+

∑
s∈[t−1,t]

(∆Xs)
2(cs− + cs).

(64)

Starting with the limit result (1), its proof follows essentially the scheme of proving the CLT

for realized quadratic variation in the presence of jumps given in Theorem 5.4.6 in Jacod and

Protter (2012). In particular, using a standartization localization procedure, it suffices to prove

the result when certain processes in the dynamics of X (volatility, drift term and jump size) are

bounded. Another simplification then can be further made by looking at the case when the jump

size is above a positive threshold. The latter means that jumps in X are of finite activity. In that

case, on a set of probability approaching one, every increment contains at most one jump and no

two consecutive increments contain two jumps. On that probability set, the autocovariance can

be split into two sums, one containing the increments without jumps and one with the jumps.

For the former sum, Theorem 1 provides the CLT result. For the part of the autocovariance that

contains the increments with jumps, we can apply Theorem 4.3.1 in Jacod and Protter (2012)

which shows that the sum of the two parts of the autocovariance converge jointly to the limit

given above.

The proof of (2) is done exactly the same way as the proof of Theorems 9.2.1 and 9.5.1 in

Jacod and Protter (2012)
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Christensen, K., Oomen, R. C., and Renò, R. (2019), “The drift burst hypothesis,” Working

Paper, University of Aarhus.

Corsi, F. (2009), “A simple approximate long-memory model of realized volatility,” Journal of

Financial Econometrics, 7, 174–196.
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