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1 Introduction

In recent years there has been an increased interest in integrable deformations of sigma
models. In particular, in the so called η-deformation, which was originally formulated
for principle chiral model in [1] and generalized to G/H symmetric space sigma models
in [2]. In this paper we initiate the detailed investigation of the η-deformed G/H symmetric
space sigma model and their Toda QFT duals when G andH are supergroups. Our primary
focus will be on superspheres OSP(N |2m)/OSP(N−1|2m), generalizing the corresponding
construction for spheres SO(N)/SO(N − 1) [3, 4].
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It is known from previous work that the regime of interest for the dual description
is imaginary η. Writing η = iκ, the Euclidean action of the η-deformed G/H symmetric
space sigma model takes the form [2]

Aclass = κ

4π

∫
d2ξTr

[
g−1∂gP 1

1− iκRgP
g−1∂̄g

]
, (1.1)

where g ∈ G and we take G to be semi-simple (or basic in the case of supergroups). The
trace Tr is the invariant bilinear form, which in the case of supergroups should be replaced
by the supertrace STr, and P is the projector onto the “coset space”. The linear operator R
is a particular skew-symmetric solution of modified classical Yang-Baxter (YB) equation of
Drinfel’d-Jimbo type and Rg = AdgRAd−1

g . For any such R the theory (1.1) is classically
integrable and admits a Lax pair representation [2]. The undeformed model is recovered
by setting ν = κR−2 and taking κ→ 0.

The model (1.1) is renormalisable at one loop with only κ running [5–8]. Together
with the form of the action (1.1), this suggests identifying the sigma model coupling ν with
the Planck constant ~. For a certain class of backgrounds, such as SO(N)/SO(N − 1), it
is believed that the deformation (1.1) defines fully renormalizable QFT

A~ = 1
4π

∫
d2ξ (Gµν +Bµν) ∂Xµ∂̄Xν , (1.2)

where the metric Gµν and the Kalb-Ramond field Bµν depend on both the deformation
parameter κ and the Planck constant ~, and admit the semiclassical expansion

Gµν = 1
~
G(0)
µν (κ) +G(1)

µν (κ) +O(~) , Bµν = 1
~
B(0)
µν (κ) +B(1)

µν (κ) +O(~) , (1.3)

where G(0)
µν (κ) and B(0)

µν (κ) follow from the classical action (1.1). That the model (1.2) is
renormalizable with only one running coupling κ = κ(t) is a conjecture,1 and is thought
to be closely related to the quantum integrability of the model [9]. The one-loop renor-
malizability is a relatively simple task and can be shown in general. Some checks of the
conjecture going beyond the one-loop order were performed in [10–12] for the simplest
models (see also [13, 14]. Nevertheless, it is likely that the expansion (1.3) exists, meaning
that there is a particular renormalization scheme in which κ, being the only coupling, flows
according to some all-loop beta function

d

dt
κ = β(κ, ~) = ~β1(κ) + ~2β2(κ) + . . . . (1.4)

Assuming that the theory (1.2) displays asymptotic freedom implies that the equation (1.4)
has a UV fixed point κ = κUV where the metric Gµν becomes flat and the Kalb-Ramond
field Bµν vanishes.

The semiclassical expansion (1.3) corresponds to small ~ expansion while keeping κ-
fixed, i.e. t ∼ ~−1. Physically it is also interesting to consider the small ~ expansion with
t fixed, i.e. κ = ~κ0 with κ0 fixed. It is then easy to see from (1.1), (1.3) and (1.4) that at
leading order in ~→ 0 the model reduces to the undeformed one

A0 = κ0
4π

∫
d2ξTr

[
g−1∂gP g−1∂̄g

]
, (1.5)

1Here t = log Λ∗
Λ where Λ is the running scale. The UV limit corresponds to t→ −∞.
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where the coupling κ0 runs with its the all-loop beta-function β0(κ0) obtained from β(κ, ~)

β(~κ0, ~) = ~β0(κ0) +O(~2) . (1.6)

Note that in the undeformed model (1.5) there is only one parameter κ0 that plays the role
of both the running coupling constant and the inverse Planck constant.

In the case of SO(N)/SO(N − 1), the Lorentzian version of (1.5), i.e. the O(N) sigma
model, corresponds to a massive integrable QFT. This QFT is governed by the celebrated
rational S-matrix of Zamolodchikov and Zamolodchikov [15], which solves the Yang-Baxter
(YB) equation. It is well known that rational solutions of the YB equation admit one-
parametric and two-parametric deformations known as trigonometric and elliptic. In our
case it is natural to assume that the deformed model (1.2) should correspond to a certain
trigonometric solution of the YB equation

S~(θ) = S(θ) +O(~) ~→ 0 , (1.7)

where S(θ) corresponds to the rational S-matrix. Solutions with the desired symmetry, i.e.
with the matrix structure fixed by quantum group symmetry Uq(ŝo(N)), were constructed
by Bazhanov and Jimbo [16, 17]. Although, one still has to find an overall unitarizing
factor to construct the physical S-matrix. For the O(N) model such a factor was recently
conjectured in [3].

Importantly, the presence of two parameters in the deformed model (1.2), rather than
one, allows us to consider the expansion with ~ fixed and κ approaching the UV fixed
point κ → κUV. According to the general philosophy of RG group flow, the action (1.2)
should describe an RG trajectory corresponding a free Gaussian CFT perturbed by certain
relevant operators Or with ∆ = ∆̄ < 1

A~ = 1
8π

∫
d2ξ

[
∂X ·∂̄X+

∑
r

λrO(r)+. . .
]
, where O(r) =O(r)

µν (X)∂Xµ∂̄Xν . (1.8)

The coupling constants λr develop positive scaling dimensions ∆ = ∆̄ and hence in the
UV limit become small

λr(t) = λ(0)
r e2(1−∆)t , t→ −∞ . (1.9)

Typically ∆ > 1
2 and hence the action (1.8) requires renormalization, which can modify

the existing couplings (1.9) and generate new ones as well.
Classically the field O(r) is exactly marginal, i.e. ∆ = ∆̄ = 1. In order to have a

quantum anomalous dimension it should involve exponents. A natural guess would be that
O(r) is a graviton operator

O(r) = O(r)
µν e

(βr·X)∂Xµ∂̄Xν , (1.10)

for some constant O(r)
µν , and hence ∆ = ∆̄ = 1 − (βr · βr). In the integrable case, this

operator is further constrained to commute with an infinite tower of integrals of motion

[O(r), Ik] = [O(r), Īk] = 0 . (1.11)
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We conjecture that this requirement can be satisfied by taking2

Or =
∣∣(αr · ∂X)

∣∣2e(βr·X) , (1.12)

for some vectors αr.
Each interaction term of the form (1.12) defines a screening charge

Sr =
∮
dz (αr · ∂X)e(βr·X) , (1.13)

where, here, X = X(z) denotes the holomorphic part of the total field X(z, z̄). This is
known as the Wakimoto screening charge [18] (see section 2 for more details). For any choice
of two linearly independent vectors αr and βr the Wakimoto screening charge Sr defines
the W -algebra of the coset CFT ŝu(2)k/û(1) with k = −2− 2(βr ·βr)−1. By definition the
holomorphic currents Wk(z) of this algebra commute with the screening charge (1.13)

[Sr,Wk(z)] = 0 . (1.14)

It is well known that the same algebra can be also defined as a commutant of a pair of
fermionic screening charges

S± =
∮
dz e(α±r ·X) , (1.15)

where

(α±r ·α±r ) = −1 , βr = 2
(α+

r +α−r )2 (α+
r +α−r ) , αr = ξ1α

+
r + ξ2α

−
r , (1.16)

for some ξ1 and ξ2 whose values are not determined. Indeed, since the integrand in (1.13) is
defined modulo total derivatives, there are different choices of operators (1.12) for a given
system of fermionic screening charges (1.15).

The integrable system spanned by the integrals of motion Ik belongs to the intersection
of all the W -algebras that can be defined as the commutant of either the Wakimoto (1.13)
or fermionic (1.15) screening charges. Taking them all to be of Wakimoto type leads to the
theory (1.8). Alternatively, taking them all to be fermionic screening charges corresponds
to a Toda QFT

A(D)
~ = 1

8π

∫
d2ξ

[
∂X · ∂̄X +

∑
r

∑
±
e(α±r ·X) + . . .

]
. (1.17)

This theory also requires counterterms; however, its UV structure is much more straight-
forward than that of (1.8). In particular, only finitely many counterterms are needed. The
resulting action defines a renormalizable QFT and, in Minkowski space, can be used to
compute the perturbative S-matrix.

2We have chosen O(r) in (1.12) such that C-symmetry is preserved, but P - and T -symmetry may be
broken, since αr typically involves complex coefficients. Alternatively, one could choose

Or = (αr · ∂X)(αr · ∂̄X)e(βr·X)

which preserves P - and T -symmetry, but breaks C-symmetry.
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Both theories (1.8) and (1.17) are associated to the same system of integrals of motion
in the vicinity of the Gaussian point. Under the assumption that this integrable system is
protected against perturbation theory, it is plausible that both actions correspond to the
same QFT in different regimes. It is clear that βr should scale as βr ∼

√
~ and hence (1.16)

implies that
α+
r +α−r ∼

1√
~
. (1.18)

Therefore, the Toda QFT (1.17) is expected to describe the strongly quantum regime of
the sigma model (1.8) and vice versa. We conjecture that this is a general phenomenon:
any quantum integrable η-deformed sigma model admits a dual Toda theory description.
Our check of this conjecture consists of the following steps:

1. Identify a system of fermionic/Wakimoto screening charges that commute with an
infinite system of integrals of motion Ik.

2. Check that the UV expansion of the η-deformed sigma model (1.8) is controlled by
the Wakimoto screening charges.3

3. Compute the perturbative S-matrix for the lightest fundamental particles of the
theory (1.17) and check that it coincides with the expansion of the trigonometric de-
formation of the rational S-matrix that corresponds to the undeformed sigma model.

These checks have been carried out for the deformed O(N) sigma model in [3, 4].
Our aim in this paper is to generalize these results to sigma models on the supermanifold
OSP(N |2m)/OSP(N − 1|2m). The undeformed OSP(N |2m) model can be viewed as the
fermionization of the O(N + 2m) sigma model

A = 1
4π

∫
d2ξ

N+2m∑
k=1

(∂aϕk)2 ,
N+2m∑
k=1

ϕ2
k = R2 . (1.19)

We pick any m pairs of fields, say {(ϕN+1, ϕN+2), . . . , (ϕN+2m−1, ϕN+2m)} and formally
replace

ϕN+2k−1 + iϕN+2k → ψk , ϕN+2k−1 − iϕN+2k → ψ̄k , (1.20)

where the new fields are ψk and ψ̄k are fermionic scalars. The resulting model is

A = 1
4π

∫
d2ξ

 N∑
k=1

(∂aϕk)2 +
m∑
j=1

∂aψj∂aψ̄j

 , N∑
k=1

ϕ2
k +

m∑
j=1

ψjψ̄j = R2 . (1.21)

Since the path integral over the fermionic fields is the reciprocal of that over 2m of N
bosonic fields [20], the one-loop RG flow equation for the radius R is

dR2

dt
= −(N − 2m− 2) . (1.22)

3In general, an all-loop sigma model action is not known. One can only compare the leading ~ → 0
asymptotic. However, for the O(3) case, the proposed all-loop action in [10] matches exactly with the
Wakimoto screening charges [19].
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For real R the model flows to strong coupling for N > 2m+ 2, becomes conformal for N =
2m+ 2 and zero-charged for N < 2m+ 2. We will focus on the regime N > 2m+ 2, where
the model can be described by a scattering theory of N bosonic and m charged fermionic
massive particles transforming in the fundamental representation of OSP(N |2m). The
corresponding S-matrix has been conjectured by Saleur and Wehefritz-Kaufmann in [21],
generalizing the O(N) S-matrix [15].

Trigonometric solutions of the YB equation with OSP(N |2m) symmetry have been
found by Bazhanov and Shadrikov [22] (see also [23, 24]). The key difference compared to
the O(N) case, is that there are inequivalent solutions corresponding to different choices of
simple roots. The same phenomenon also appears in the η-deformed model (1.1): inequiv-
alent choices of simple roots lead to different operators R and hence different deformations
(see [25–27] for the discussions of same issue in the context of the AdS superstring). A
similar freedom shows up at the level of screening charges as well, of which there are in-
equivalent systems that correspond to equivalent integrable systems. While the precise
dictionary between these choices remains to be understood, in this paper we describe the
relationship for a certain class of η-deformations/system of screenings/S-matrices, confirm-
ing our conjecture with explicit calculations for small values of N and m.

This paper is organized as follows. In section 2 we introduce and discuss different
systems of screening charges corresponding to the OSP(N |2m) theory for N > 2m+2. We
define the admissible systems of screening charges that underpin the duality. In section 3
we describe the weak-coupling Toda QFT (b → 0) and the strong-coupling sigma model
(b → ∞) associated to a given admissible system of screening charges. In section 4 we
investigate η-deformations of OSP sigma models corresponding to inequivalent choices of
simple roots and in section 5 we review trigonometric OSP(N |2m) solutions to the YB
equation and define the corresponding S-matrices. We conclude in section 6 by pulling
together these three pieces of knowledge and formulating our main result, explaining how
a certain class of η-deformations/system of screenings/S-matrices are related by duality.
In the appendices we collect supplementary formulae.

2 Screening charges

The large class of W -algebras that commute with exponential screening operators has
been studied in [28, 29]. We start by recalling the formulation of this problem. Let
ϕ(z) = (ϕ1(z), . . . , ϕN (z)) be an N -component holomorphic bosonic field normalized as

ϕi(z)ϕj(z′) = −δij log(z − z′) + . . . at z → z′ , (2.1)

and ~α = (α1, . . . ,αN ) be a set of linearly independent vectors. We define the associated
W~α-algebra to be the set of currents Ws(z) with integer spins s, which are differential
polynomials of ∂ϕ(z) of degree s, such that∮

Cz
dξ e(αr·ϕ(ξ))Ws(z) = 0 for all r = 1, . . . , N , (2.2)

where Cz is the contour encircling the point z. This condition is highly restrictive and for
generic set of vectors ~α the algebra W~α is relatively small. It can be shown that typically
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the only non-trivial current has spin 2 and is given by4

W2(z) = −1
2(∂ϕ(z) · ∂ϕ(z)) + (ρ · ∂2ϕ(z)) , ρ =

N∑
r=1

(
1 + (αr ·αr)

2

)
α̂r , (2.3)

where ~̂α is the dual set of vectors satisfying (αr ·α̂s) = δr,s. The modes of the current (2.3)
satisfy the Virasoro algebra with the central charge

c = N + 12(ρ · ρ) . (2.4)

The existence of independent W -currents of higher spins, i.e. not algebraically expressible
through W2, is possible only if special conditions on the set ~α hold.

All W -algebras with a non-trivial current of spin 3 have been classified in [28, 29].
They are known to correspond to the following representations of the affine Yangian of
gl(1) (usually denoted as Y

(
ĝl(1)

)
) [30]

Fk1 ⊗ · · · ⊗ FkN+1 , (2.5)

where Fk with k = 1, 2, 3 are three inequivalent Fock modules of Y
(
ĝl(1)

)
. To each pair of

neighboring factors in (2.5) one associates the screening charge

Fki ⊗Fki+1 −→
∮
dz eκki+1kiϕi+1−κkiki+1ϕi , (2.6)

where the 3× 3 matrix κ = κij depends on a free parameter b and is given by

κ =

 b b 1
b

iβ iβ − ib
β

iβ
b −

i
β

iβ
b

 with β =
√

1 + b2 . (2.7)

Changing the order of the factors in (2.5) leads to isomorphic W -algebras intertwined by
the R-matrix of Y

(
ĝl(1)

)
. However, the choice of ordering in (2.5) is important when

constructing a QFT from the associated screening charges.
In (2.6) two types of roots can appear. These are characterized by whether their norm

is a function of b or fixed such that (αr ·αr) = −1. If the two representations in (2.6) are
of the same type then the norm (αr · αr) is unfixed and we call the corresponding vector
a bosonic root

– bosonic root: (αr ·αr) = unfixed .

On the other hand, when the two representations are different we have (αr · αr) = −1,
which we refer to as a fermionic root

– fermionic root: (αr ·αr) = −1 .

4Here and below we assume Wick ordering.
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As one permutes the factors in (2.5) some of the bosonic roots become fermionic and vice
versa. However, the information contained in the roots does not get lost: when going from
one realization to the other some screening charges may become of Wakimoto type (or
dressed) or vice versa. We will not describe the full story here, but just list three basic
properties that will be useful for us:

Bosonic root duality. The bosonic roots always appear in pairs

α and α∨ = 2α
(α ·α) . (2.8)

One can use either of these two roots to define the conformal algebra.

Dressed/Wakimoto bosonic screening. Suppose that we have two fermionic roots α1
and α2, such that (α1 ·α2) is arbitrary. This corresponds to the case of three alternating
representations, e.g. F1 ⊗F2 ⊗F1. Then the same conformal algebra can be defined using
the dressed bosonic screening

SB =
∮
dz (α1 · ∂ϕ)e(β12·ϕ) where β12 = 2(α1 +α2)

(α1 +α2)2 . (2.9)

We will draw this situation as follows

α1 α2

(2.10)

Dressed/Wakimoto fermionic screening. Suppose that we have two fermionic roots
α1 and α2, such that (α1 · α2) = −1. This corresponds to the case of three different
representations following each other, e.g. F1 ⊗F2 ⊗F3. Then the same conformal algebra
can be defined using the dressed fermionic screening

SF =
∮
dz (α1 · ∂ϕ)e(β12·ϕ) where β12 = να1 − (1 + ν)α2 . (2.11)

We will draw this situation as follows

α1 α2

(2.12)

The arbitrary parameter ν in (2.11) reflects the fact that the Gram matrix of α1 and α2
is degenerate. It cannot be fixed if only these two roots are present; however, it is fixed if
α1 and α2 are embedded in larger diagram.

In this paper we will consider W -algebras corresponding to the OSP(N |2m) sigma
model. They do not belong to the class of algebras described above since, as follows from
symmetry considerations, they have no spin 3 current, but a non-vanishing spin 4 current.
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In [3, 4, 29] a class of such W -algebras corresponding to the deformed O(N) sigma model
was conjectured. These are similar to the W -algebras considered above, depending on a
continuous parameter b. Since the cases of odd and even N are slightly different, we focus
on N = 2n + 1 for simplicity. For the O(N) sigma model we start from the CFT that
corresponds to the following “balalaika” diagram

−b2

−b2

1+2b2

1+b2 1+b2−b2

α1

α2

α3 α4 α5 α2n−1 α2n
(2.13)

It is convenient to parameterize the vectors αr as

α1 = bE1 + iβe1 , α2 = bE1 − iβe1 ,

α2k−1 = −bEk−1 + iβek , α2k = bEk − iβek , k = 2, . . . , n ,
(2.14)

where (Ei, ei), i = 1, . . . , n, form an orthonormal basis of R2n. According to (2.4) the CFT
has central charge

c = 2n+ n(4n2 − 1)
b2

− 2n(n− 1)(2n− 1)
1 + b2

. (2.15)

In the limit b→∞, c→ 2n, while the central charge diverges as b→ 0.
The diagram (2.13) with the root α1 removed corresponds to the alternating represen-

tation of the Yangian Y
(
ĝl(1)

)
F2 ⊗F1 ⊗ · · · ⊗ F2 ⊗F1︸ ︷︷ ︸

2n

. (2.16)

Therefore, the screening charge corresponding to α1 can be understood as an integrable
conformal perturbation. One can show that the corresponding W -algebra will have a non-
vanishing current of spin 4. The root α1 plays the role of a “boundary condition” for the
spin chain built on (2.16). All such boundary conditions for Y

(
ĝl(1)

)
have been recently

classified in [31].
From symmetry considerations, it is clear that one can also perturb by the screening

charge corresponding to the root

α2n+1 = −bEn − iβen , (2.17)

thus obtaining a similar W -algebra with b→ iβ. Perturbing by both roots

−b2

−b2

1+2b2

1+b2 −b2 −b21+b2

1+b2

1+b2

−1−2b2

α1

α2

α3 α4 α5 α2n−2 α2n−1

α2n+1

α2n

(2.18)
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breaks the conformal symmetry, but still preserves an infinite tower of integrals of motion
(see [4] for explicit expressions).

The prescription to go from O(N) to OSP(N |2m) at the level of screening charges
in (2.13) is to drop the root α1 and add m Yangian representations F3 to (2.16). One way
to do this is

F2 ⊗F1 ⊗ · · · ⊗ F2 ⊗F1︸ ︷︷ ︸
2n

−→ F2 ⊗F1 ⊗ · · · ⊗ F2 ⊗F1︸ ︷︷ ︸
2n

⊗F3 ⊗ · · · ⊗ F3︸ ︷︷ ︸
m

. (2.19)

Then, in agreement with [31], one can show that α1 still defines a conformal integrable
perturbation. The central charge of the corresponding CFT is given by (2.15) with n →
n−m.

The ordering in (2.19) does not lead to a QFT with a well-defined weak-coupling
description. By trial and error, we have found that “good” QFTs are obtained by the using
the transformation J, which we call injection, that acts as

F1 ⊗F2
J−→ F1 ⊗F3 ⊗F2 . (2.20)

The injection transformation can be applied to both conformal diagram and its affine
counterpart, meaning that the affine perturbation remains the same. It acts on any root
α2k+1, k = 1, . . . , n − 1, in (2.18) producing two fermionic roots from one. On a general
fermionic root α it acts as

α = −bE + iβe
Jα−→ {β1,β2} =

{
−1
b
E + iβ

b
ε,
ib

β
ε− i

β
e

}
, (2.21)

where ε is a new basis vector. The two new roots β1 and β2 have scalar product −1 and
hence there is an associated dressed fermionic screening with charge α. If fermionic root
α is connected to the roots α±, where

α− = bE − iβe− , α+ = bE+ − iβe , (2.22)

then each pair (α−,β1) and (β1,α+) also has scalar product −1 and hence each has a
corresponding dressed fermionic screening. Diagrammatically, this can be shown as

−b2 1+b2α− α α+

Jα−→
α− β1 β2 α+

β β− α β+

(2.23)

with

β− = − 1
1 + b2

(
α− + b2β1

)
= i

β
e− −

ib

β
ε,

β+ = 1
b2

(
α+ − (1 + b2)β2

)
= 1
b
E+ −

iβ

b
ε.

(2.24)

In (2.23) we have also shown the dressed root β = E+−E
b which will play an important role

in what follows.
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It will also be important to understand how the injection J acts on the weak-coupling
(b→ 0) and the strong-coupling (b→∞) screening charges

weak coupling: e−bΦ+iβϕ J−→ e−bΦ+iβϕ
(1
b
∂Φ− iβ

b
∂φ

)
strong coupling: e

Φ+−Φ
b (b∂Φ+ − iβ∂ϕ) J−→

{
e−

Φ
b

+ iβ
b
φ, e

Φ+
b
− iβ
b
φ (b∂Φ+ − iβ∂ϕ)

}
(2.25)

To conclude this section, let us note that, as the action of the injection J has been
defined (2.20), for N = 2n + 1 one can inject at most n − 1 representations of the type
F3, i.e. one is restricted to OSP(N |2m) with m < n. Thus the corresponding QFT always
stays in asymptotically free regime.

3 QFTs from screenings

In the previous section we constructed the system of screening charges for the OSP(N |2m)
model withN = 2n+1 andm < n, i.e. in the asymptotically free region. To do so we defined
the injection transformation J, which when applied m times to the O(N) diagram (2.18)
gives a new diagram from which the screening charges can be read off. In order to illustrate
this procedure, let us consider various examples. There is one diagram for the OSP(5|2)
theory, which is obtained by the injection of the root α3 in the O(5) diagram

β12 β45

α1

α2

α4

α5

β1 β2

β+
− β+

+

β−+β−−

α3
(3.1)

where αr, r = 1, . . . , 5, are given by (2.14) and

β1 = −1
b
E1 + iβ

b
ε , β2 = ib

β
ε− i

β
e2 , β12 = 1

b
E1 , β45 = i

β
e2 ,

β±− = ± i
β
e1 −

ib

β
ε , β±+ = ±1

b
E2 −

iβ

b
ε .

(3.2)

For OSP(7|2) there are two diagrams. The first corresponds to the injection of α3

β12

α1

α2

β1 β2

β+
−

β−−

α3 β+

α4

β45

α5

α7

α6

β56

β57

β67

(3.3)
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with

β1 = −1
b
E1 + iβ

b
ε , β2 = ib

β
ε− i

β
e2 , β12 = 1

b
E1 , β67 = i

β
e3 ,

β±− = ± i
β
e1 −

ib

β
ε , β+ = 1

b
E2 −

iβ

b
ε ,

β57 = −1
b

(E2 +E3) , β45 = i

β
(e2 − e3) , β56 = 1

b
(E3 −E2) ,

(3.4)

and the second to the injection of α5

β12

α1

α2

α3 α4

β23

β13

β34 β−

β1

α5

β2

α7

α6

β+
+

β−+

β67

(3.5)

with

β1 = −1
b
E2 + iβ

b
ε , β2 = ib

β
ε− i

β
e3 , β12 = 1

b
E1 , β67 = i

β
e3 ,

β− = i

β
e2 −

ib

β
ε , β±+ = ±1

b
E3 −

iβ

b
ε ,

β23 = i

β
(e1 − e2) , β13 = − i

β
(e1 + e2) , β34 = 1

b
(E2 −E1) .

(3.6)

Thus far we have limited ourselves to considering chiral fields. In order to build a
QFT one needs to glue both chiralities in a consistent way. Since the roots αr can be
complex there are at least two options for the set of roots ᾱr defining the anti-holomorphic
screenings

ᾱr = αr or ᾱr = α∗r . (3.7)

In general, the resulting perturbed model does not define a self-consistent CFT and requires
counterterms. We will see that in the weak-coupling regime b → 0 only finitely many
counterterms are needed, whereas in the strong-coupling regime b → ∞, i.e. the sigma
model regime, infinitely many are required.

3.1 Weak coupling: Toda QFT

In the weak-coupling regime we take ᾱr = αr, i.e. the first option in (3.7). For N > 2m+2
we choose an allowed diagram, such as (3.1), (3.3) or (3.5), and perturb the free theory by
the fields corresponding to roots αr. These can be either exponentials or dressed exponen-
tials, depending on the particular choice of diagram. Then using the boson-fermion [32, 33]
or boson-boson correspondence (see appendix A) we rewrite all the bosonic fields with
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imaginary exponents or that come from dressed screenings as{ 1
8π (∂µϕ)2, eiβϕ, e−iβϕ

}
→
{
iψ̄γµ∂µψ + πb2

2(1 + b2)(ψ̄γµψ)2, ψ̄γ+ψ, ψ̄γ−ψ

}
,{ 1

8π (∂µΦ)2, ebΦ, e−bΦ
(
∂Φ− iβ∂φ

)(
∂̄Φ− iβ∂̄φ

)}
→
{
iψ̄γµ∂µψ−

πb2

2(1 + b2)(ψ̄γµψ)2, ψ̄γ+ψ, ψ̄γ−ψ

}
,

(3.8)

where ψ and ψ are fermionic and bosonic Dirac spinors respectively and

γ± = 1± γ5
2 . (3.9)

In addition to the interaction terms coming from the screening charges, countert-
erms regularizing the UV behaviour also need to be added. This amounts to contracting
fermionic or bosonic loops

Λ1(ψ̄γ+ψ)A+ Λ2(ψ̄γ−ψ)B −→ λψΛ1Λ2AB ,

Λ1ψ̄γ+ψA+ Λ2ψ̄γ−ψB −→ λψΛ1Λ2AB ,
(3.10)

for any two local fields A and B. The precise form of the numerical factors λψ and λψ
in (3.10) depends on the regularization scheme and it is hard to determine them from
first principles. We will leave these coefficients arbitrary and fix them using alternative
arguments. Note that the counterterm AB could also lead to divergent integrals and hence
a second generation of counterterms may be required. Remarkably, one finds that for
asymptotically free theories this process terminates and only finitely many counterterms
are needed. Let us illustrate this on the examples of OSP(5|2) and OSP(7|2).

For the OSP(5|2) case the Lagrangian with all possible counterterms takes the form

LOSP(5|2) = 1
8π (∂µΦ)2 + iψ̄1γ

µ∂µψ1 + iψ̄2γ
µ∂µψ2 + iψ̄γµ∂µψ

+ πb2

2(1 + b2)
(
(ψ̄1γ

µψ1)2 + (ψ̄2γ
µψ2)2 − (ψ̄γµψ)2

)
+ Λ1(ψ̄1ψ1)(ψ̄γ+ψ) + Λ2(ψ̄γ−ψ)(ψ̄2γ+ψ2) + Λ3(ψ̄2γ−ψ2)

(
ebΦ + e−bΦ

)
+ λ1Λ2

1(ψ̄γ+ψ)2 + λ2Λ1Λ2(ψ̄1ψ1)(ψ̄2γ+ψ2) + λ3Λ2Λ3(ψ̄γ−ψ)
(
ebΦ + e−bΦ

)
+ λ4Λ2

1Λ2(ψ̄γ+ψ)(ψ̄2γ+ψ2) + λ5Λ1Λ2Λ3(ψ̄1ψ1)
(
ebΦ + e−bΦ

)
+ λ6Λ2

1Λ2Λ3(ψ̄γ+ψ)
(
ebΦ + e−bΦ

)
+ λ7Λ2

1Λ2
2Λ3(ψ̄2γ+ψ2)

(
ebΦ + e−bΦ

)
+ λ8Λ2

1Λ2
2Λ2

3
(
ebΦ + e−bΦ

)2
. (3.11)

Using the freedom to rescale

(ψ̄γ±ψ)→ ρ±1
1 (ψ̄γ±ψ) , (ψ̄2γ±ψ2)→ ρ±1

2 (ψ̄2γ±ψ2) , (3.12)

and properly choosing the scheme-dependent parameters λk, we expect that the La-
grangian (3.11) should describe the weak-coupling expansion of a certain trigonometric
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S-matrix, which will be defined in section 5. Our conjecture is

LOSP(5|2) = 1
8π (∂µΦ)2 + i

2∑
k=1

ψ̄kγ
µ∂µψk + iψ̄γµ∂µψ

+ πb2

2(1 + b2)

( 2∑
k=1

(ψ̄kγµψk)2 − (ψ̄γµψ)2
)

+
(
4πb2 + . . .

) ((
ψ̄1ψ1

)(
ψ̄γ+ψ

)
+ 1

2
(
ψ̄γ+ψ

)2 +
(
ψ̄1ψ1 + ψ̄ψ

)
ψ̄2γ+ψ2

)
−M cosh bΦ

(
ψ̄1ψ1 + ψ̄2ψ2 + ψ̄ψ

)
+ M2

8πb2 sinh2(bΦ) .

(3.13)

The logic leading to (3.13) is the following. The structure of the “four-spinor” terms in the
second line of (3.13) is fixed by the boson-fermion/boson-boson correspondence (3.8). The
Toda term and Yukawa-like terms in the last line of (3.13) are fixed such that the fields
(ψ1,ψ, ψ2,Φ, ψ∗2,ψ∗, ψ∗1) have the same mass in the limit b → 0 and form an OSP(5|2)
multiplet. The “four-spinor” terms in the third line of (3.13) are more subtle. We have
fixed their leading b → 0 behaviour by requiring that the tree-level S-matrix satisfies the
classical YB equation. However, we have not found a convincing argument to fix these
coefficients from first principles and we cannot exclude the possibility that they can get
modified by loop corrections.

Applying a similar logic to the OSP(7|2) case gives two Lagrangians corresponding to
the diagrams (3.3)

L(1)
OSP(7|2) = 1

8π

2∑
k=1

(∂µΦk)2 + i
3∑

k=1
ψ̄kγ

µ∂µψk + iψ̄γµ∂µψ

+ πb2

2(1 + b2)

( 3∑
k=1

(ψ̄kγµψk)2 − (ψ̄γµψ)2
)

+
(
4πb2 + . . .

)((
ψ̄1ψ1

)(
ψ̄γ+ψ

)
+ 1

2
(
ψ̄γ+ψ

)2 +
(
ψ̄1ψ1 + ψ̄ψ

)
ψ̄2γ+ψ2

)
−M

(
ebΦ1

(
ψ̄1ψ1 + ψ̄2ψ2 + ψ̄ψ

)
+ e−bΦ1ψ̄3γ+ψ3 + cosh bΦ2

(
ψ̄3γ−ψ3

))
+ M2

8πb2
(
e2bΦ1 + 2e−bΦ1 cosh bΦ2

)
, (3.14)

and (3.5)

L(2)
OSP(7|2) = 1

8π

2∑
k=1

(∂µΦk)2 + i
3∑

k=1
ψ̄kγ

µ∂µψk + iψ̄γµ∂µψ

+ πb2

2(1 + b2)

( 3∑
k=1

(ψ̄kγµψk)2 − (ψ̄γµψ)2
)

+
(
4πb2 + . . .

) ((
ψ̄γ+ψ

)(
ψ̄2γ−ψ2

)
+
(
ψ̄γ−ψ

)(
ψ̄3γ+ψ3

)
+
(
ψ̄2γ−ψ2

)(
ψ̄3γ+ψ3

))
−M

(
ebΦ1ψ̄1ψ1 + e−bΦ1

(
ψ̄γ+ψ+ ψ̄2γ+ψ2 + ψ̄3γ+ψ3

)
+ cosh bΦ2

(
ψ̄γ−ψ+ ψ̄2γ−ψ2 + ψ̄3γ−ψ3

))
+ M2

8πb2
(
e2bΦ1 + 2e−bΦ1 cosh bΦ2

)
, (3.15)

– 14 –



J
H
E
P
1
2
(
2
0
2
0
)
0
4
0

where all the Dirac spinors and one of the scalars, namely Φ2, which is the lightest of Φ1
and Φ2, have the same mass. Let us also note that setting the fermions to zero we find the
affine B∨(2) Toda QFT.

In order to write down the Lagrangians (3.13), (3.14) and (3.15) we were guided by
the following logic, which we describe for general N = 2n+ 1 and m with N > m+ 2. The
conjectured Lagrangian should take the following general form

LOSP(2n+1|2m) = 1
8π

n−m∑
k=1

(∂µΦk)2 + i
n∑
k=1

ψ̄kγ
µ∂µψk + i

m∑
k=1

ψ̄kγ
µ∂µψk

+ πb2

2(1 + b2)

(
n∑
k=1

(ψ̄kγµψk)2 −
m∑
k=1

(ψ̄kγµψk)2
)

+ “four-spinor” terms

+ “Yukawa-like” massive terms + “Toda-like” massive terms . (3.16)

While the “four-spinor” and “Yukawa-like” terms depend on the choice of diagram, the
“Toda-like” term is universal and corresponds to the affine B∨(n−m) Toda QFT

“Toda-like” massive terms

= M2

8πb2

(
e2bΦ1 + 2

n−m−1∑
k=2

eb(Φk−Φk−1) + 2e−bΦn−m−1 cosh Φn−m

)
.

(3.17)

For the “Yukawa-like” terms we make the following conjecture based on the explicit exam-
ples that we have studied

“Yukawa-like” massive terms

= −M
(
ebΦ1

(
J

(1)
+ + J

(1)
−
)

+
n−m−1∑
k=2

(
e−bΦk−1J

(k)
+ + ebΦkJ

(k)
−
)

+ e−bΦn−m−1J
(n−m)
+ + cosh bΦn−mJ

(n−m)
−

)
,

(3.18)

where

J
(k)
± = ψ̄γ±ψ +

k∑
j=1

(
ψ̄jγ±ψj + ψ̄jγ±ψj

)
. (3.19)

The form of the terms (3.17) and (3.18) immediately implies that all the Dirac spinors and
the scalar Φn−m have the same mass in the b → 0 limit. Moreover, one can check that
the sum of squared mass of the fermionic particles is equal to that of the bosonic particles
(including the heavy particles) ∑

f

m2
f =

∑
b

m2
b , (3.20)

which may signal for the UV finiteness of the theory [34].
The structure of the “four-spinor” terms in (3.16) appears to be more complicated and,

in general, is unknown. We have found these terms explicitly in various cases, although
we have only determined the corresponding coupling constants at leading order in b by
requiring that the tree-level S-matrix satisfies the classical YB equation. This is in contrast
to the O(N) case [3, 4] for which the “four-spinor” terms are absent and the dual Toda
action is expected to be exact in b.
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3.2 Strong coupling: sigma model

In the strong-coupling regime we perturb the theory by the screening charges that are light
in the limit b→∞. This perturbation is of sigma-model type and requires infinitely many
counterterms. Note that, compared to the O(N) case, there are screening charges that
contain imaginary exponents e±

iβ
b
φ. We fermionize these exponents according to the rule

{ 1
8π (∂µφ)2, e±

iβ
b
φ
}
→
{
iϑ̄γµ∂µϑ+ π

2(1 + b2)(ϑ̄γµϑ)2, ϑ̄γ±ϑ

}
. (3.21)

The resulting theory takes the form of a bosonic sigma model coupled to first order fermions,
i.e. their kinetic term is first order in derivatives. However, the fermions in the sigma model
on a supermanifold are second order. To recover the latter from the former we integrate
over half of the fermionic degrees of freedom in the first-order Lagrangian. The starting
point for this procedure always has the following form

L1st-order = iϑ̄γµ∂µϑ+ π

2(1 + b2)(ϑ̄γµϑ)2 + ϑ̄γ+ϑA+ + ϑ̄γ−ϑA− + b2

4πA+A− , (3.22)

where A± are local fields independent of ϑ and the final term corresponds to the usual
contact term. Now setting (we use the conventions γ1 = σ1, γ2 = σ2, ∂ = ∂1 − i∂2)

ϑ =
(
iχ

θ∗

)
, ϑ̄ =

(
−iχ∗ −θ

)
, (3.23)

the Lagrangian (3.22) takes the form

L1st-order = χ∗∂θ∗ + χ∂̄θ + 2π
1 + b2

χχ∗θθ∗ + χχ∗A+ + θθ∗A− + b2

4πA+A− , (3.24)

up to total derivatives. At this point we can either integrate over χ and χ∗ or θ and θ∗.
Integrating out χ and χ∗ and dropping the determinant contribution, we find

Leff = 2∂θ∗∂̄θ
(
A−1

+ −
2π

1 + b2
A−2

+ θθ∗
)

+ θθ∗A− + b2

4πA+A− . (3.25)

Rescaling θ → b
4
√
π
θ, the leading term as b→∞ is

Leff = b2

8π

(
∂θ∗∂̄θ

(
A−1

+ −
1
8A
−2
+ θθ∗

)
+ 1

2θθ
∗A− + 2A+A−

)
+O(1) . (3.26)

We disregard the O(1) terms, which can be understood as quantum corrections, since they
are of the same order as the dropped determinant and, in general, are beyond our control.

Let us now consider the OSP(5|2) case (3.1), (3.2) in more detail. We take the screen-
ings corresponding to the roots β12, β1 and β+

± as our perturbing fields. The resulting
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Lagrangian has the form

LdualOSP(5|2) = 1
8π

2∑
k=1

((
∂µΦk

)2 +
(
∂µϕk

)2)+ iϑ̄γµ∂µϑ+ π

2(1 + b2)(ϑ̄γµϑ)2

+ Λe
Φ1
b
∣∣∂Φ1 + iβ

b
∂ϕ1

∣∣2 + e−
Φ1
b
(
ϑ̄γ+ϑ

)
− 4πΛ

(
ϑ̄γ+ϑ

)
+ Λb−2

(
e

Φ2
b
∣∣∂Φ2 + iβ

b
∂ϕ2

∣∣2 + e−
Φ2
b
∣∣∂Φ2 −

iβ

b
∂ϕ2

∣∣2) (ϑ̄γ−ϑ)
+ Λ

4π

(
e

Φ2−Φ1
b
∣∣∂Φ2 + iβ

b
∂ϕ2

∣∣2 + e−
Φ2+Φ1

b
∣∣∂Φ2 −

iβ

b
∂ϕ2

∣∣2)+O(Λ2) ,

(3.27)

where the O(Λ2) terms are UV counterterms, of which infinitely many are typically re-
quired [4]. Working to O(Λ) we take

A+ = e−
Φ1
b − 4πΛ , A− = Λ

(
e

Φ2
b
∣∣∂Φ2 + iβ

b
∂ϕ2

∣∣2 + e−
Φ2
b
∣∣∂Φ2 −

iβ

b
∂ϕ2

∣∣2) , (3.28)

in (3.22) and integrate over half of the fermionic degrees of freedom following the general
prescription outlined above. Defining

Φ1 + iϕ1 = bX1 = b(x1 + iy1) ,Φ2 + iϕ2 = bX2 = b(x2 + iy2) , (3.29)

the leading asymptotic of the effective Lagrangian obtained from (3.27)

LOSP(5|2) = b2LeffOSP(5|2) +O(1) , (3.30)

finally takes the form

LeffOSP(5|2) = 1
8π

(
∂X1∂̄X

∗
1 +∂X2∂̄X

∗
2 +
(
ex1− 1

8e
2x1θθ∗

)
∂θ∂̄θ∗

)
+2Λ

(
ex1∂X1∂̄X

∗
1 +ex2

(
e−x1 + 1

4θθ
∗
)
∂X2∂̄X

∗
2

+e−x2

(
e−x1 + 1

4θθ
∗
)
∂X∗2 ∂̄X2+ex1

(
ex1− 1

4e
2x1θθ∗

)
∂θ∂̄θ∗

)
+O(Λ2) .

(3.31)

We will see in section 4 that (3.31) coincides with the leading UV asymptotic of the η-
deformed OSP(5|2) sigma model for a certain choice of R solving the classical YB equation.
We have also checked that similarly calculating the effective actions for the two possible
OSP(7|2) diagrams (3.3) and (3.5) we again find agreement with the UV expansion of the
η-deformed OSP(7|2) sigma model for different choices of R. In section 6 we will give a
general conjecture.

4 Deformed OSP(N |2m) sigma model

In this section we review the η-deformed G/H symmetric space sigma model and study
the various deformations of the OSP(N |2m) sigma model that follow from different Dynkin
diagrams. For various examples we investigate the one-loop renormalizability of the de-
formed model and show that the leading UV asymptotic of one of the three deformations
of the OSP(5|2) sigma model coincides with (3.31) as claimed in section 3.
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4.1 YB deformation of OSP(N |2m) sigma model

The OSP(N |2m) sigma model can be written as a symmetric space sigma model on the
supercoset

OSP(N |2m)
OSP(N − 1|2m) . (4.1)

The Lorentzian action for the supergroup-valued field g ∈ OSP(N |2m) is

S0 = −R
2

2

∫
d2ξ STr[J+PJ−] , (4.2)

where J± = g−1∂±g takes values in the Grassmann envelope of the Lie superalgebra
osp(N |2m;R) and STr is the invariant bilinear form. As we are considering the symmetric
space (4.1) we have the Z2 grading

g ≡ osp(N |2m;R) = g(0) ⊕ g(1) , g(0) = osp(N − 1|2m;R) , (4.3)

with P projecting onto the grade 1 subspace, referred to as the “coset space” in the Intro-
duction.

In order to fix conventions we introduce the (N+2m)×(N+2m) supermatrix realization
of the complexified superalgebra. For this we define the (N + 2m)× (N + 2m) matrix

G =
(

antidiag(1, . . . , 1)N×N 0N×2m
02m×N antidiag(−1, 1, . . . ,−1, 1)2m×2m

)
, (4.4)

where antidiag represents a matrix whose non-zero entries lie on the antidiagonal (the first
argument denotes the entry in the top right corner of the matrix). The Grassmann envelope
of the Lie superalgebra osp(N |2m;C) is given by those supermatrices M ∈ Mat(N |2m; Λ)
satisfying

M stG+GM = 0 . (4.5)

The explicit expressions for the supertranspose and supertrace are(
a b

c d

)st

=
(
at ct

−bt dt

)
, STr

(
a b

c d

)
= Tr a− Tr d . (4.6)

Introducing the involutive antilinear antiautomorphism

M? = ΣM †Σ−1 ,

(
a b

c d

)?
=
(
a† −ic†

−ib† d†

)
,

Σ = diag(1, . . . , 1︸ ︷︷ ︸
N

, 1, . . . , 1︸ ︷︷ ︸
m

,−1, . . . ,−1︸ ︷︷ ︸
m

) ,
(4.7)

we consider the real form osp(N |2m;R) whose Grassmann envelope is given by those
supermatrices that additionally satisfy

M? = −M . (4.8)

For this real form the bosonic subalgebra is so(N)⊕ sp(2m,R).
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To define the projection operator P we introduce the rotation matrix Λ such that

ΛGΛt = G̃ =


diag(1, . . . , 1︸ ︷︷ ︸

bN+1
2 c

,−1, . . . ,−1︸ ︷︷ ︸
bN2 c

) 0N×2m

02m×N antidiag(−1, 1, . . . ,−1, 1)

 . (4.9)

To be explicit we take

Λ =
(

Λa 0N×2m
02m×N diag(1, . . . , 1)

)
, (4.10)

where

Λa = 1√
2
(

diag(1, . . . , 1) + antidiag(1, . . . , 1︸ ︷︷ ︸
N
2

,−1, . . . ,−1︸ ︷︷ ︸
N
2

)
)
, N even ,

Λa = 1√
2
(

diag(1, . . . , 1︸ ︷︷ ︸
N−1

2

,
√

2, 1, . . . , 1︸ ︷︷ ︸
N−1

2

)
)

+ antidiag(1, . . . , 1︸ ︷︷ ︸
N−1

2

, 0,−1, . . . ,−1︸ ︷︷ ︸
N−1

2

)
)
, N odd .

(4.11)

In this basis the grade 0 subalgebra, osp(N − 1|2m;R), is taken to be the bottom right
(N − 1 + 2m)× (N − 1 + 2m) block, and hence the rotated projection operator P̃ simply
sets entries in this block to zero. Undoing the rotation we have

P = Ad−1
Λ P̃ AdΛ . (4.12)

The Lorentzian action of the YB deformed model is [2, 35]

Sη =
∫
d2ξ Lη = − η

2ν

∫
d2ξ STr

[
J+P

1
1− ηRgP

J−

]
, (4.13)

where η is the deformation parameter and ν is the sigma model coupling. Setting ν = ηR−2

and taking η → 0 we recover the undeformed model (4.2). The operator Rg is defined in
terms of the linear operator R : g→ g through

Rg = Ad−1
g RAdg , (4.14)

where R is an antisymmetric solution of the (non-split) modified classical YB equation

[RX,RY ]−R([X,RY ] + [RX,Y ]) = [X,Y ] ,
STr[X(RY )] = − STr[(RX)Y ] ,

X, Y ∈ g . (4.15)

Denoting the Cartan generators of g as hi and the positive and negative roots as em and
fm respectively, the Drinfel’d-Jimbo r-matrix [36–38] in operator form can be written as

RX = i
∑
m

(
STr[Xfm]em − STr[emX]fm

)
, STr[emfn] = δmn . (4.16)
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We take the Cartan generators to span the diagonal matrices of the matrix realization
introduced above, while the positive and negative roots span those matrices whose non-
vanishing entries lie in the light and dark grey regions respectively of the following diagram

0
0 ...

0
0

0 ...
0

0 ...
0

N m m

N

m

m

(4.17)

As usual, the positive and negative roots are not themselves elements of the real form
g = osp(N |2m,R), but appropriate linear combinations can be constructed that do satisfy
the reality condition (4.8). Furthermore, it is straightforward to check that the operator R
defined in equation (4.16) preserves this real form as required. The choice of root system
in equation (4.17) corresponds to the following Dynkin diagrams

N = 1

m− 1

,

N = 2

m− 1

,

N = 2n+ 1 > 1

m− 1 n− 1

,

N = 2n+ 2 > 2

m− 1 n− 1

.

(4.18)

Inequivalent choices of roots, e.g. corresponding to different Dynkin diagrams, can lead to
different operators R and hence different deformations [25–27].

In terms of coordinates on the target superspace, the Lagrangians Lη in (4.13) can be
written in the following form

Lη =
(
GMN(z) +BMN(z)

)
∂+z

N∂−z
M , zM = (xµ, ψα) , (4.19)

where xµ and ψα are the bosonic and fermionic coordinates respectively. The metric
GMN and Kalb-Ramond field BMN parametrize the parity-even and parity-odd part of the
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Lagrangian and hence have the following symmetry properties

GMN = (−1)MNGNM , BMN = −(−1)MNBNM , (4.20)

where in the sign factors M,N, . . . = 0 for bosonic coordinates and M,N, . . . = 1 for
fermionic.

Form = 1 the deformed sigma model is parametrized by N−1 bosons and a symplectic
fermion, ψa, a = 1, 2. When N is even we denote the bosons as ri, φi, φN

2
, i = 1, . . . , N2 −1,

while when N is odd we have ri, φi, i = 1, . . . N2 −
1
2 .

For even N we conjecture that the non-vanishing components of the metric are given by

Griri =
η
(∏i−1

j=1 r
2
j

)
(1+η2(∏i−1

j=1 r
4
j

)
r2
i +(1−η2(∏i−1

j=1 r
4
j

)
r2
i )ψ ·ψ)

ν(1+η2(∏i−1
j=1 r

4
j

)
r2
i )2(1−r2

i )
,

Gφiφi =
η
(∏i−1

j=1 r
2
j

)
(1+η2(∏i−1

j=1 r
4
j

)
r2
i +(1−η2(∏i−1

j=1 r
4
j

)
r2
i )ψ ·ψ)(1−r2

i )
ν(1+η2(∏i−1

j=1 r
4
j

)
r2
i )2 ,

GφN
2
φN

2
=
η
(∏N

2 −1
j=1 r2

j

)
(1+ψ ·ψ)

ν
, Gψ1ψ2 =−Gψ2ψ1 =

η(1+η2+ 1
2(1−η2)ψ ·ψ)

ν(1+η2)2 ,

(4.21)

while for the Kalb-Ramond field we have

Briφi = −Bφiri = −
η2(∏i−1

j=1 r
4
j

)
ri(1 + η2(∏i−1

j=1 r
4
j

)
r2
i + 2ψ · ψ)

ν(1 + η2(∏i−1
j=1 r

4
j

)
r2
i )2 ,

Bψ1ψ1 = Bψ2ψ2 = η2(1 + η2 + ψ · ψ)
ν(1 + η2)2 ,

(4.22)

where ψ · ψ = 2ψ1ψ2. The isometries of this background are N
2 U(1) shift symmetries and

SO(2) rotations of the symplectic fermion.

φi → φi + ci , ψa → (δab cos c̃+ εab sin c̃)ψb . (4.23)

These symmetries correspond to the Cartan subgroup of OSP(N |2) associated with the
root system introduced above. Indeed, the rank of OSP(N |2) for even N is N

2 + 1.
For odd N our conjecture for the metric and Kalb-Ramond field is simply given by

that for even N in one dimension higher with φN
2
set to zero. In this case the isometries

of the background are N
2 −

1
2 shift symmetries of φi and SO(2) rotations of the symplectic

fermion. With the rank of OSP(N |2) equalling N
2 + 1

2 for odd N these symmetries again
correspond to the Cartan subgroup associated with the root system introduced above.

Setting ψa to zero in (4.21) and (4.22) provides us also with a conjecture for the metric
and Kalb-Ramond field of the deformed O(N) sigma model, i.e. m = 0. For m = 1 we have
verified that the metrics and Kalb-Ramond fields explicitly match (4.21) and (4.22) up to
N = 8, while for m = 0 we have checked up to N = 32. Let us also observe that setting
ν = ηR−2 and taking η → 0 the Kalb-Ramond field vanishes, while the metric (4.21)
becomes

Gφiφi =R2
(∏i−1

j=1 r
2
j

)
(1+ψ ·ψ)(1−r2

i ) , Griri =
R2(∏i−1

j=1 r
2
j

)
(1+ψ ·ψ)

1−r2
i

,

GφN
2
φN

2
=R2

(∏N
2 −1
j=1 r2

j

)
(1+ψ ·ψ) , Gψ1ψ2 =−Gψ2ψ1 =R2(1+ 1

2ψ ·ψ) ,
(4.24)
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which, as expected, is the metric of the OSP(N |2m) sigma model

ds2 =GMNdz
NdzM =R2

(
N∑
I=1

dyIdyI−
m∑
I=1

dψI ·dψI

)
,

N∑
I=1

yIyI−
m∑
I=1

ψI ·ψI = 1 , (4.25)

for m = 1. This can be seen explicitly for even N by setting

y2i−1 + iy2i = (1 + 1
2ψ · ψ)

(∏i−1
j=1 rj

)√
1− r2

i e
iφi ,

y2N−1 + iy2N = (1 + 1
2ψ · ψ)

(∏N
2 −1
j=1 rj

)
e
iφN

2 ,
(4.26)

to solve the constraint. As before, for odd N a similar analysis holds and is simply given
by the analysis for even N in one dimension higher with φN

2
set to zero. Furthermore, the

m = 0 case is again recovered by setting ψa to zero.

4.2 Ricci flow

On general grounds [5–7] the YB deformation of the OSP(N |2m) sigma model is expected
to be renormalizable at one loop. To confirm this, we need to know the Ricci tensor for
supermanifolds with torsion. We follow the conventions of [39], in particular a comma
denotes differentiation from the right. The inverse metric is defined through

(−1)MGMNG
NP = δPM , (4.27)

where we recall that M,N, . . . run over all coordinates, bosonic and fermionic. The
Christoffel symbols and the torsion are given by

Γ̄MNP = 1
2(−1)QGMQ

(
GQN,P + (−1)NPGQP ,N + (−1)Q(N+P)GNP ,Q

)
,

HM
NP = (−1)QGMQ

(
BQN,P + (−1)Q(N+P)BNP ,Q + (−1)P(Q+N)BPQ,N

)
,

(4.28)

such that the torsionful connection and its Riemann curvature are

ΓMNP = Γ̄MNP −
1
2H

M
NP ,

RM
NPQ = −ΓMNP ,Q + (−1)PQΓMNQ,P

+ (−1)P(N+R)ΓMRPΓRNQ − (−1)Q(N+P+R)ΓMRQΓRNP .

(4.29)

The Ricci tensor is then given by

RMN = (−1)P(M+1)RP
MPN . (4.30)

The condition for one-loop renormalizability is

RMN + d

dt
EMN + (LZE)MN + (dY )MN = 0 , EMN = GMN +BMN . (4.31)

Here t is the RG flow time, which is proportional to log ΛUV. The second term therefore
accounts for the renormalization of the parameters of the model. The third term is the Lie
derivative of the tensor EMN with respect to an arbitrary vector Z

(LZE)MN = (−1)(M+N+1)PZPEMN,P + (−1)(M+1)PZP
,MEPN + EMPZ

P
,N . (4.32)
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Pulling back to the worldsheet, divergences of this type can be removed via wavefunction
renormalization. The final term is the exterior derivative of an arbitrary one-form Y

(dY )MN = −YM,N + (−1)MNYN,M , (4.33)

and becomes a total derivative upon pulling back to the worldsheet.
Substituting the metric and Kalb-Ramond field of the deformed OSP(N |2m) sigma

model for m = 1 with N = 1, . . . , 6 into the Ricci flow equation (4.31) we indeed find that
it is one-loop renormalizable, with the parameters ν and η satisfying

dν

dt
= 0 , dη

dt
= −ν(N − 2m− 2)(1 + η2) , (4.34)

which is also the expected result for general N and m. In particular, it agrees with the
known result for m = 0 [4, 7], i.e. the deformed O(N) sigma model, and furthermore,
taking the undeformed limit, ν = ηR−2 with η → 0, we find the familiar RG flow equation
for the radius of the OSP(N |2m) sigma model

dR2

dt
= −(N − 2m− 2) . (4.35)

The expressions for the non-vanishing components of the vector Z and one-form Y are
given in appendix D.

Solving the RG flow equations (4.34) for real η we find cyclic solutions. This motivates
us to consider the analytically-continued regime

ν → iν , η → iκ , (4.36)

in which we have ancient solutions and a UV fixed point, i.e. κ = 1. In this regime the
solution to (4.34) is

ν = constant , κ = − tanh
(
ν(N − 2m− 2)t

)
. (4.37)

In the following subsection we will consider the expansion around this UV fixed point.

4.3 UV limit of deformed sigma models

Let us now turn to the example of OSP(5|2). The deformed sigma model is parametrized
by four bosons, φ1, φ2, r1 and r2, and a symplectic fermion, ψa, where a = 1, 2. The
Lagrangian is given by5

L(0)
OSP(5|2) = κ(1−κ2r2

1 +(1+κ2r2
1)ψ ·ψ)

ν(1−κ2r2
1)2

[
∂+r1∂−r1

1−r2
1

+(1−r2
1)∂+φ1∂−φ1

+iκr1(1+ψ ·ψ)(∂+r1∂−φ1−∂+φ1∂−r1)
]

+κr2
1(1−κ2r4

1r
2
2 +(1+κ2r4

1r
2
2)ψ ·ψ)

ν(1−κ2r4
1r

2
2)2

[
∂+r2∂−r2

1−r2
2

+(1−r2
2)∂+φ2∂−φ2

+iκr2
1r2(1+ψ ·ψ)(∂+r2∂−φ2−∂+φ2∂−r2)

]
−
κ(1−κ2+ 1

2(1+κ2)ψ ·ψ)
ν(1−κ2)2

[
∂+ψ ·∂−ψ−iκ(1+ 1

2ψ ·ψ)∂+ψ∧∂−ψ
]
, (4.38)

5Here L̃ is normalised such that S = 1
4π

∫
d2ξ L̃, while for L in section 3 we have S =

∫
d2ξ L.
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where we have implemented the analytic continuation (4.36) and introduced the following
contractions of the symplectic fermion

χ · χ′ = εabχ
aχ′b , χ ∧ χ′ = δabχ

aχ′b . (4.39)

We are interested in the expansion around the UV fixed point, i.e. κ = 1. The specific
limit we consider [4] is given by first setting

r1 = exp(−εe−2x1) , r2 = tanh x2 , ψa = εθa , κ = 1− ε2

2 , (4.40)

and subsequently expanding around ε = 0. Introducing the complex fields

X1 = x1 − iφ1 , X2 = x2 − iφ2 , Θ = θ1 − iθ2 , (4.41)

we find the following expansion

L(0)
OSP(5|2) = 1

ν

(
∂+X1∂−X

∗
1 + ∂+X2∂−X

∗
2 + i(1− iΘΘ∗)∂+Θ∂−Θ∗

)
− ε

ν

(1
2e

2x1(1 + 2iΘΘ∗)∂+X1∂−X
∗
1

+ e−2x1+2x2∂+X2∂−X
∗
2 + e−2x1−2x2∂+X

∗
2∂−X2

)
+O(ε2) ,

(4.42)

up to total derivatives. This does not match the effective Lagrangian (3.31) found from
the screening charge construction in section 3, and it appears that it is not possible to
recover (3.31) starting from (4.38).

To resolve this mismatch we recall that in the case of supergroups the η-deformation
is not unique. So far we have been working with the operator R associated to the root
system of the distinguished Dynkin diagram

. (4.43)

However, OSP(5|2) has two other Dynkin diagrams:

, , (4.44)

and each of these has a corresponding solution R of the modified classical YB equation.
For these operators R, after implementing the analytic continuation (4.36), the deformed
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Lagrangians are given by6

L(1)
OSP(5|2) = κ

ν(1−κ2r2
1)

[
∂+r1∂−r1

1−r2
1

+(1−r2
1)∂+φ1∂−φ1+iκr1(∂+r1∂−φ1−∂+φ1∂−r1)

]
+κr2

1(1−κ2r4
1r

2
2 +(1+κ2r4

1r
2
2)ψ ·ψ)

ν(1−κ2r4
1r

2
2)2

[
∂+r2∂−r2

1−r2
2

+(1−r2
2)∂+φ2∂−φ2

+iκr2
1r2(1+ψ ·ψ)(∂+r2∂−φ2−∂+φ2∂−r2)

]
−
κr2

1(1−κ2r4
1 + 1

2(1+κ2r4
1)ψ ·ψ)

ν(1−κ2r4
1)2

[
∂+ψ ·∂−ψ−iκr2

1(1+ 1
2ψ ·ψ)∂+ψ∧∂−ψ

]
,

(4.45)

and

L(2)
OSP(5|2) = κ

ν(1−κ2r2
1)

[
∂+r1∂−r1

1−r2
1

+(1−r2
1)∂+φ1∂−φ1+iκr1(∂+r1∂−φ1−∂+φ1∂−r1)

]
+ κr2

1
ν(1−κ2r4

1r
2
2)

[
∂+r2∂−r2

1−r2
2

+(1−r2
2)∂+φ2∂−φ2+iκr2

1r2(∂+r2∂−φ2−∂+φ2∂−r2)
]

−
κr2

1r
2
2(1−κ2r4

1r
4
2 + 1

2(1+κ2r4
1r

4
2)ψ ·ψ)

ν(1−κ2r4
1r

4
2)2

[
∂+ψ ·∂−ψ

−iκr2
1r

2
2(1+ 1

2ψ ·ψ)∂+ψ∧∂−ψ
]
. (4.46)

where the labels (1) and (2) refer to the first and second diagrams in (4.43) respectively.
These sigma models are again renormalizable at one-loop with the parameters ν and κ

running in the same way as before (4.37). The expansions around the UV fixed point
of (4.45) and (4.46) are

r1 = exp(−εe−2x1) , r2 = tanh x2 , ψa = 2ε
1
2 θ , κ = 1− ε2

2 ,

L(1)
OSP(5|2) = 1

ν

(
∂+X1∂−X

∗
1 + ∂+X2∂−X

∗
2 + ie2x1(1− ie2x1ΘΘ∗)∂+Θ∂−Θ∗

)
− ε

ν

(
e2x1∂+X1∂−X

∗
1 + e−2x1+2x2(1 + 2ie2x1ΘΘ∗)∂+X2∂−X

∗
2

+ e−2x1−2x2(1 + 2ie2x1ΘΘ∗)∂+X
∗
2∂−X2

+ i

4e
4x1(1− 2ie2x1ΘΘ∗)∂+Θ∂−Θ∗

)
+O(ε2) ,

(4.47)

6The explicit forms of the operators R can be found by interchanging a subset of the positive and
negative roots in (4.16) according to

eµ → fµ , fµ → (−1)[µ]eµ , {µ} ⊂ {m} ,

where [µ] = 0 for a bosonic root and 1 for a fermionic root. For the first Dynkin diagram in (4.43) we take
{µ} = {10} while for the second we take {µ} = {9, 10} where

e9 = E4,7 + E6,2 , f9 = −E2,6 + E7,4 ,

e10 = E5,7 + E6,1 , f10 = −E1,6 + E7,5 ,

with (Ei,j)kl = δikδjl denoting the unit matrix.
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and

r1 = exp(−εe−2x2) , r2 = exp(−ε
1
2 e−2x2) , ψa = 2ε

1
4 θ , κ = 1− ε2

2 ,

L(2)
OSP(5|2) = 1

ν

(
∂+X1∂−X

∗
1 + ∂+X2∂−X

∗
2
)

+ ie2x2(1− ie2x2ΘΘ∗)∂+Θ∂−Θ∗
)

− ε
1
2

ν

(
2e−2x1+2x2∂+X2∂−X

∗
2 + ie−2x1+4x2(1− 2ie2x2ΘΘ∗)∂+Θ∂−Θ∗

)
+O(ε) ,

(4.48)

again up to total derivatives and with

X1 = x1 − iφ1 , X2 = x2 − iφ2 , Θ = θ1 − iθ2 . (4.49)

Up to the normalizations of the fields, L(1)
OSP(5|2) indeed matches the effective La-

grangian (3.31) as claimed. Therefore, we conjecture that it is the deformed sigma
model (4.45) that is dual to the Toda QFT (3.13), which is constructed from the screening
charges associated to the diagram (3.1). It is not clear if it is possible to construct similar
duals for the other two deformations (4.38) and (4.46).

4.4 OSP(N |2m) from O(N + 2m)

To conclude this section, let us comment on an interesting observation. The three La-
grangians (4.38), (4.45) and (4.46) can all be found from the deformed O(7) sigma model
using a trick that is reminiscent of the analytic continuations relating the three inequivalent
deformations of the O(2, 4) sigma model to the O(6) sigma model [26]. Starting from the
Lagrangian of the deformed O(7) sigma model written in the form

LO(7) = κ

ν(1−κ2r2
1)

[
∂+r1∂−r1

1−r2
1

+(1−r2
1)∂+φ1∂−φ1+iκr1(∂+r1∂−φ1−∂+φ1∂−r1)

]
+ κr2

1
ν(1−κ2r4

1r
2
2)

[
∂+r2∂−r2

1−r2
2

+(1−r2
2)∂+φ2∂−φ2+iκr2

1r2(∂+r2∂−φ2−∂+φ2∂−r2)
]

+ κr2
1r

2
2

ν(1−κ2r4
1r

4
2r

2
3)

[
∂+r3∂−r3

1−r2
3

+(1−r2
3)∂+φ3∂−φ3+iκr2

1r
2
2r3(∂+r3∂−φ3−∂+φ3∂−r3)

]
,

(4.50)

we pick one of the three two-spheres parametrized by (ri, φi) and change to stereographic
coordinates

z√
2

=
√

1− ri
1 + ri

eiφi . (4.51)

We then formally replace

zz̄ → −1
2ψ · ψ ,

∂+z∂−z̄ + ∂+z̄∂−z → −∂+ψ · ∂−ψ , ∂+z∂−z̄ − ∂+z̄∂−z → i∂+ψ ∧ ∂−ψ . (4.52)

Implementing this trick with each of the three two-spheres in LO(7) gives the three La-
grangians (4.38), (4.45) and (4.46) that follow from the three inequivalent Dynkin diagrams
of OSP(5|2).
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It is therefore natural to conjecture that starting from the metric and Kalb-Ramond
field of the deformed O(N + 2m) sigma model (i = 1, . . . , N2 + m − 1 for even N and
i = 1, . . . , N2 +m− 1

2 for odd N)

Griri =
η
(∏i−1

j=1 r
2
j

)
ν(1 + η2(∏i−1

j=1 r
4
j

)
r2
i )(1− r2

i )
, Gφiφi =

η
(∏i−1

j=1 r
2
j

)
(1− r2

i )
ν(1 + η2(∏i−1

j=1 r
4
j

)
r2
i )
,

Briφi = −Bφiri = −
η2(∏i−1

j=1 r
4
j

)
ri

ν(1 + η2(∏i−1
j=1 r

4
j

)
r2
i )
,

(4.53)

and, for even N ,

GφN
2 +mφN2 +m

=
η

(∏N
2 +m−1
j=1 r2

j

)
ν

, (4.54)

we can find a Lagrangian for the deformed O(N |2m) model by choosing m of the two-
spheres (ri, φi) and implementing the trick outlined above, i.e. for the chosen two-spheres
we change to stereographic coordinates and formally make the replacement (4.52). We then
expect that different choices of two-spheres will give deformations of OSP(N |2m) based on
operators R built from root systems associated to different Dynkin diagrams. For odd N
there are N

2 +m− 1
2 two-spheres, and hence

(N
2 +m− 1

2
m

)
ways to choose m two-spheres. This

matches the number of Dynkin diagrams for OSP(N |2m) with N odd. For even N there
are N

2 +m−1 two-spheres, and hence
(N

2 +m−1
m

)
ways to choose of m two-spheres. However,

the number of Dynkin diagrams for OSP(N |2m) with N even is
(N

2 +m
m

)
. Therefore, either

some deformations cannot be found via this trick, or they are equivalent, e.g. related by
field redefinitions, to those that can be found. The simplest case with N even is OSP(2|2),
which has two Dynkin diagrams,

, . (4.55)

In this case the two corresponding Lagrangians indeed turn out to be related by a field
redefinition up to a total derivative.

5 Orthosymplectic trigonometric S-matrix

In the Introduction we outlined the three steps for checking the duality between the de-
formed sigma model and the Toda QFT. The third of these is the comparison between
the perturbative S-matrix of the Toda QFT and the trigonometric deformation of the ra-
tional S-matrix corresponding to the undeformed sigma model. This requires knowledge
of solutions to the YB equation with Uq(ôsp(N |2m)) symmetry. In this section we will
consider such a solution based on the Uq(ôsp(N |2m)) R-matrix first found in [22]. Subse-
quently, such quantum R-matrices were investigated in a variety of works [23, 24, 40–47].
Having fixed the overall scalar factor using braiding unitarity and crossing symmetry, we
compare the expansion of the exact S-matrix with the perturbative S-matrix of the Toda
QFT (3.13) for the OSP(5|2) case and explore the rational limit [21].
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5.1 R-matrix with Uq(ôsp(N = 2n+ 1|2m)) symmetry

In this subsection we recast the non-graded version of the Uq(ôsp(N |2m)) R-matrix in a
form that will be used later for the comparison that follows. R-matrices based on superal-
gebras are known to satisfy the graded YB equation

Rk1k2
i1i2

(θ1)Rj1k3
k1i3

(θ1 + θ2)Rj2j3k2k3
(θ2)(−1)pi1pi2+pk1pi3+pk2pk3

= Rk2k3
i2i3

(θ2)Rk1j3
i1k3

(θ1 + θ2)Rj1j2k1k2
(θ1)(−1)pi2pi3+pi1pk3+pk1pk2 ,

(5.1)

where the indices il, jl and kl run from 1 to N+2m and pi is the grading of the component
labelled by index i, i.e. it is 0 for even components and 1 for odd components. In our case
we have N even and 2m odd components.

Using the graded permutation operator

P j1j2i1i2
= (−1)pi1pi2 δj2i1 δ

j1
i2
, (5.2)

we can introduce the non-graded Ř-matrix

Řk1k2
i1i2

(θ) = P j1j2i1i2
Rk1k2
j1j2

(θ) , (5.3)

which satisfies the standard YB equation

Řk2k1
i1i2

(θ1)Řk3j1
k1i3

(θ1 + θ2)Řj3j2k2k3
(θ2) = Řk3k2

i2i3
(θ2)Řj3k1

i1k3
(θ1 + θ2)Řj2j1k1k2

(θ1) . (5.4)

A solution of (5.4) with Uq(ôsp(N |2m)) symmetry in the fundamental representation
was found for general N and m in [22]. Here we will use the explicit expressions for this
solution given in [23, 24]. It will also be convenient to use a parametrization similar to
that used in [3] for the O(N) case. The details of this reparametrization are given in
appendix B. Restricting to the case of odd N = 2n + 1, the spectrum consists of n even
and m odd charged particles, and one neutral particle, which is even. We enumerate the
particles as

(A1, . . . , An+m, An+m+1, An+m+2, . . . , AN+2m) , (5.5)
Āi = Aı̄ = AN+2m+1−i , An+m+1 = Ān+m+1 , (5.6)

where we have introduced ı̄ = N + 2m + 1 − i such that ı̄ labels the conjugate of the
particle labelled by i. The Ř-matrix for this multiplet of particles then has the form
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(k = N − 2m− 2 = 2n− 2m− 1)

Řiiii(θ) = sinhkλ(θ−iπ)sinhkλ
(

(−1)piθ− 2iπ
k

)
, i 6= ı̄ ,

Řiı̄ı̄i(θ) = sinhkλθ sinhkλ
(

(−1)pi(θ−iπ)+ 2iπ
k

)
, i 6= ı̄ ,

Řiiii(θ) = sinhkλ(θ−iπ)sinhkλθ−sin2πλsinkπλ, i= ı̄ ,

Řijji(θ) = sinhkλ(θ−iπ)sinhkλθ , i 6= j , i 6= ̄ ,

Řijij(θ) =−ie−(si−sj+k)λθ sinhkλ(θ−iπ)sin2πλ, i> j , i 6= ̄ ,

Řijij(θ) =−ie−(si−sj−k)λθ sinhkλ(θ−iπ)sin2πλ, i< j , i 6= ̄ ,

Řj̄ı̄i (θ) = ie−(si−sj+k)λ(iπ−θ) εi
εj

sinhkλθ sin2πλ, i> j ,

Řj̄ı̄i (θ) = ie−(si−sj−k)λ(iπ−θ) εi
εj

sinhkλθ sin2πλ, i< j ,

Řiı̄iı̄(θ) = i
(
e−(sı̄−si+k)λ(iπ−θ)(−1)pi sinhkλθ−e(sı̄−si+k)λθ sinhkλ(θ−iπ)

)
sin2πλ, i< ı̄ ,

Řiı̄iı̄(θ) = i
(
e−(sı̄−si−k)λ(iπ−θ)(−1)pi sinhkλθ−e(sı̄−si−k)λθ sinhkλ(θ−iπ)

)
sin2πλ, i> ı̄ , (5.7)

where θ = ϑ1 − ϑ2 is the difference of rapidities and

εi =


(−1)−

pi
2 i < ı̄ ,

1 i = ı̄ ,

(−1)
pi
2 i > ı̄ .

(5.8)

If we have
sı̄ = −si , (5.9)

then the Ř-matrix (5.7) is PT -invariant

Řj1j2i1i2
(θ) = Ři1i2j1j2

(θ) . (5.10)

Furthermore, if

s1 = k + 2p1 ,

si+1 − si = −2 + 2(pi+1 + pi) , i < ı̄ , (5.11)

then the Ř-matrix is also invariant under crossing symmetry7

Řj1j2i1i2
(θ) = (C−1)k1

i1
Ři2k2
k1j1

(iπ − θ)(C)j2k2
(5.12)

with the non-vanishing elements of the charge conjugation matrix elements given by

C ı̄i = εi , (5.13)

where εi was defined in (5.8).

7For the non-zero Ř-matrix elements the usual sign factors in the crossing symmetry relation turn out
to be trivial.
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5.2 OSP(N = 2n+ 1|2m) q-deformed S-matrix: Toda QFT

In the previous subsection we presented the PT -invariant and crossing symmetric solu-
tion (5.7) of the YB equation (5.4). In order to compare with the perturbative S-matrix
of the Toda QFT (3.13), we take the scalar factor to be same as in the O(N) case [3] with
the familiar replacement N → N − 2m = k + 2.

We consider the following S-matrix

Sj1j2i1i2
(θ) = F (θ)

Řj1j2i1i2
(θ)

sinh kλ(θ − iπ) sinh kλ
(
θ − 2iπ

k

) , (5.14)

where Řj1j2i1i2
(θ) is given by (5.7) and the scalar factor F (θ) is

F (θ) = − exp

i +∞∫
−∞

dω
cosh πω(k−2)

2k sinh πω
k

(
1

2λ − 1
)

sinωθ
ω cosh πω

2 sinh πω
2kλ

 . (5.15)

The scalar factor (5.15) satisfies

F (θ)F (−θ) = 1 , (5.16)

F (iπ − θ) = F (θ)
sinh kλθ sinh kλ

(
θ − iπ(k−2)

k

)
sinh kλ(θ − iπ) sinh kλ

(
θ − 2iπ

k

) , (5.17)

ensuring that the S-matrix satisfies braiding unitarity

Sj1j2i1i2
(θ)Sk1k2

j1j2
(−θ) = δk1

i1
δk2
k1

(5.18)

and is crossing symmetric (5.14) assuming that (5.11) holds. If (5.9) also holds then the
S-matrix is also PT -invariant (5.10). As a consistency check, if we take m = 0 then the
S-matrix (5.14) coincides with the O(N) q-deformed S-matrix as presented in [4] for odd
N = 2n+ 1 as expected.

Let us now consider the limit λ → 1
2 . By the usual relation between λ and b we have

λ = 1
2 +O(b2). Therefore, this limit corresponds to b→ 0, i.e. the perturbative limit of the

Toda QFT. It turns out that for OSP(5|2) the Lagrangian description of this model (3.13)
corresponds to the grading choice pi = (0, 1, 0, 0, 0, 1, 0)i, while for OSP(7|2), (3.14) cor-
responds to pi = (0, 1, 0, 0, 0, 0, 0, 1, 0)i and (3.15) to pi = (0, 0, 1, 0, 0, 0, 1, 0, 0)i. The
computation of the perturbative S-matrix of these models is potentially complicated by
the bosonic spinor ψ and understanding how to properly continue to Lorentzian signature.
The approach we use is described in appendix C and involves first integrating over half the
degrees of freedom in ψ. While this allows us to compute the tree-level S-matrix, we drop a
determinant contribution that will be relevant at higher orders. We have calculated the full
tree-level S-matrix for the OSP(5|2) case as well as the functional dependence of the matrix
elements not involving ψ on the rapidity difference θ for both OSP(7|2) Lagrangians. In
all cases we find agreement with the corresponding matrix elements of (5.14).

– 30 –



J
H
E
P
1
2
(
2
0
2
0
)
0
4
0

The precise statement for the OSP(5|2) case with grading pi = (0, 1, 0, 0, 0, 1, 0)i is as
follows. We first apply the gauge transformation8 determined by the matrix

M(ϑ) =



1 0 0 0 0 0 0
0 e−

ϑ
2 0 0 0 0 0

0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 −e

ϑ
2 0

0 0 0 0 0 0 1


, (5.19)

and the twist transformation9 that changes the sign of the mutual braiding of ψ1 and ψ2,
i.e. the sign of the components S31

13 , S13
31 , S51

15 , S15
51 , S73

37 , S37
73 , S75

57 and S57
75 . The resulting

matrix

Str
j1j2
i1i2

(ϑ1 − ϑ2) = (M(ϑ2)−1)k1
i1

(M(ϑ1)−1)k2
i2
Stw1

l1l2
k1k2

(ϑ1 − ϑ2)M j1
l1

(ϑ1)M j2
l2

(ϑ2) , (5.20)

where tw1 denotes the twist transformation, reproduces the tree level S-matrix of (3.13)
when expanded to O(λ− 1/2) ∼ O(b2).

5.3 OSP(N = 2n+ 1|2m) q-deformed S-matrix: rational limit

In the limit λ → 0, or b → ∞, we expect to recover the undeformed OSP(N |2m) sigma
model. The rational S-matrices of these sigma models were first calculated in [21] and
subsequently studied in [49, 50]. Therefore, we now check whether the S-matrix (5.14),
which indeed becomes rational as λ→ 0, matches these results in this limit.

To write the S-matrix of [21] in a convenient form we recall the definition of the
orthosymplectic metric tensor

Jij = (1− pi)δij + piδī sign(i− ı̄) . (5.21)

Explicitly for OSP(5|2) and the grading choice pi = (0, 1, 0, 0, 0, 1, 0)i we have

J =



1 0 0 0 0 0 0
0 0 0 0 0 −1 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1


. (5.22)

Defining
Ej1j2i1i2

= Ji1i2J
j1j2 , (5.23)

8See Lemma 10 in subsection 12.2.5 of [48] for the definition of the gauge transformation.
9See Lemma 11 and Lemma 12 in subsection 12.2.5 of [48] for the definition of the twist transformation.
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where J j1j2 = (J−1)j1j2 is the matrix inverse of the orthosymplectic metric tensor, the
S-matrix [21] of the OSP(N |2m) sigma model is

Srat
j2j1
i1i2

(θ) = σ1(θ)Ej2j1i1i2
+ σ2(θ)P j2j1i1i2

+ σ3(θ)Ij2j1i1i2
. (5.24)

The coefficients of the tensor structures satisfy

σ1(θ) = − 2iπ
k(iπ − θ)σ2(θ) , σ3(θ) = −2iπ

kθ
σ2(θ) , (5.25)

with σ2(θ) the same as in the O(N) case, again with the replacement N → N −2m = k+2

σ2(θ) =
Γ
(
1− θ

2iπ

)
Γ
(

θ
2iπ

) Γ
(

1
2 + θ

2iπ

)
Γ
(

1
2 −

θ
2iπ

) Γ
(

1
k + θ

2iπ

)
Γ
(
1 + 1

k −
θ

2iπ

) Γ
(

1
2 + 1

k −
θ

2iπ

)
Γ
(

1
2 + 1

k + θ
2iπ

) . (5.26)

To establish the relation with the S-matrix (5.14) we start with the scalar factor,
noting that

F (θ)|λ=0 =
θ − 2iπ

k

θ
σ2(θ) . (5.27)

Now if we apply the gauge transformation determined by the matrix

V l
j = 1√

2

(
δjl(−i)1−Θ(̄−j) + δjl̄(1− pj)i

1−Θ(l̄−l)
)
, (5.28)

where Θ(x) is the Heaviside step function, and apply the twist transformation that changes
the sign of the mutual braiding of the odd particles, denoted tw2, to the S-matrix (5.14),
then at leading order in the limit λ→ 0, we indeed find the rational S-matrix (5.24)

Srat
j1j2
i1i2

(θ) =
(
(V −1)k1

i1
(V −1)k2

i2
Stw2

l1l2
k1k2

(θ)V j1
l1
V j2
l2

)∣∣∣
λ=0

. (5.29)

For the OSp(5|2) case the gauge transformation matrix takes the form

V = 1√
2



1 0 0 0 0 0 i

0 1 0 0 0 0 0
0 0 1 0 i 0 0
0 0 0 1 0 0 0
0 0 1 0 −i 0 0
0 0 0 0 0 −i 0
1 0 0 0 0 0 −i


, (5.30)

which illustrates that each pair of even and odd particles is rotated by the matrices(
1 i

1 −i

)
,

(
1 0
0 −i

)
, (5.31)

respectively.
Therefore, the proposed S-matrix (5.14) agrees with the known rational S-matrices

corresponding to the asymptotically free (k > 0) undeformed OSP(N |2m) sigma model
considered in [21].
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6 Concluding remarks

In this paper we investigated η-deformations of integrable sigma models and their dual
Toda-like description. In particular, we formulated and checked the conjecture of duality for
sigma models on supermanifolds. One of the key new features in the case of supermanifolds
is the existence of inequivalent η-deformations corresponding to different choices of simple
roots. This freedom manifests itself in all aspects of the duality and is the source of a
number of complications. This meant that we were restricted to formulating the duality
for only a certain class of η-deformations. Let us now summarise this construction.

In section 2 we found the system of screening charges corresponding to the asymp-
totically free OSP(2n + 1|2m) sigma model (n − m > 0). To do this we introduced the
injection transformation J, which was applied to any m odd roots α2k−1 with k = 2, . . . , n
in the affine O(2n+1) diagram (2.18). Accordingly, we have

(n−1
m

)
different ways to choose

the roots α2k−1 and we claim that different choices lead to inequivalent field theories. Any
such choice corresponds to a sequence of the form

1 < k1 < k2 < · · · < km ≤ n . (6.1)

The number of choices
(n−1
m

)
is less than the number of Dynkin diagrams for OSP(2n +

1|2m), which is
(n+m
m

)
, and thus many choices remain unidentified. It remains an open

problem to determine if there exists a dual Toda QFT for these unidentified cases and if
so, what form it takes.

In section 3 we described how to construct the weak-coupling Toda QFT (b→ 0) and
the strong-coupling sigma model (b→∞) from a given system of screening charges. In the
weak-coupling theory we used boson-fermion/boson-boson correspondence to rewrite the
action in terms of suitable microscopic degrees of freedom and determined the counterterms
required to improve the UV behaviour. With these terms taken into account we can
reproduce the tree-level S-matrix that agrees with the expansion of the exact S-matrix
constructed in section 5. Furthermore, in the strong-coupling sigma model we demonstrated
that, after integrating over half of the fermionic degrees of freedom, the Lagrangian matches
the UV expansion of a certain η-deformed sigma model.

In section 4 we studied the η-deformed OSP(N |2m) sigma model. In particular, we
found that for inequivalent choices of Dynkin diagram we obtain different field theories. The
different deformed backgrounds can be found using a “fermionization” trick, described in
detail in subsection 4.4. In essence, for odd N = 2n+1, we parametrize the O(2n+2m+1)
sigma model in terms of n + m nested two-spheres. We then choose m of these two-
spheres and replace the bosonic coordinates by fermionic ones according to a given set of
rules. There are

(n+m
m

)
ways of doing this, which matches the number of Dynkin diagrams.

However, we found dual descriptions only for a subset of these. The nesting of two-spheres
in the O(2n+ 2m+ 1) model gives a natural ordering. In order to find a deformed sigma
model whose dual description we know, we do not fermionize the first and last two-spheres
or any two neighbouring two-spheres. This setup can be represented by a sequence of n+m
circles, which we fill in if the corresponding two-sphere has been “fermionized.” A typical
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configuration will bes

z1 ψ1 zk1
ψ2 zk2

zn .
(6.2)

Note this sequence is of exactly the same form as (6.1).
In section 5 we investigated the trigonometric OSP(N |2m) S-matrix (N = 2n + 1),

obtained from Bazhanov and Shadrikov’s solution to the YB equation [22] by a certain
basis transformation and multiplication by an overall factor. Again, the key difference
with the case of classical Lie groups is that there are different S-matrices corresponding to
inequivalent Dynkin diagrams. The particle content consists of one neutral bosonic particle
Φ and n+m charged particles (pk, p∗k), where n are fermionic and m are bosonic. Together
they form an OSP(2n+ 1|2m) multiplet

(p1, . . . , pn+m,Φ, p∗n+m, . . . , p
∗
1) , (6.3)

and for different choices of gradings, i.e. different choices of statistics for the particles
pk, we have different S-matrices. However, we have only been able to find a perturbative
interpretation of the S-matrix for special choices of gradings, which is in a sense the opposite
of (6.2). Namely, p1 and pn+m should be fermionic (denoted by ψ) and any bosonic particle
pk (denoted by ψ) should be surrounded by two fermionic particles

(ψ1, . . . ,ψ1, ψk1 , . . . ,ψ2, ψk2 , . . . , ψn,Φ, ψ∗n, . . . , ψ∗k2 ,ψ
∗
2, . . . , ψ

∗
k1 ,ψ

∗
1, . . . , ψ

∗
1) . (6.4)

This sequence is again exactly the same as in (6.1) and (6.2).
We have focused on the case of odd N in the asymptotically free regime; however,

the case of even N is similar. Starting from the system of screening charges for the O(2n)
theory [3, 4] we can obtain an OSP(2n|2m) system by applying the injection transformation
J to any root α2k−1 with k = 2, . . . , n−1. Using this procedure we cannot cross the line of
asymptotically free theories since at most n − 2 roots α2k−1 can be injected, yielding the
OSP(2n|2n − 4) theory, which is asymptotically free. By counting the number of degrees
of freedom, we cannot exclude that a dual description of the conformal OSP(2n|2n − 2)
sigma models exists. We leave this question for future investigation.
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A Bosonization of the Thirring model

In this appendix, mostly following [51], we derive the boson-fermion/boson-boson cor-
respondence using the path integral approach. The boson-fermion correspondence, i.e.
the equivalence between the massive Thirring and sine-Gordon models, is well known
since Coleman and Mandelstam [32, 33]; however, the boson-boson correspondence is less
well known.

Consider the Euclidean massive Thirring model given by the Lagrangian (γ1 = σ1,
γ2 = σ2, ∂ = ∂1 − i∂2)

LT = iB̄γµ∂µB −mB̄B −
πλ2

2
(
B̄γµB

)2
, B =

(
iχ

η̄

)
, B̄ =

(
−iχ̄ ∓η

)
, (A.1)

where we take − for Fermi and + for Bose statistics. In components this Lagrangian (after
integrating by parts) has the form

LT = χ∂̄η + χ̄∂η̄ −m (χ̄χ+ η̄η)− 2πλ2χηχ̄η̄ . (A.2)

We apply the Hubbard-Stratonovich transformation

exp
(

2πλ2
∫
χηχ̄η̄ d2x

)
=
∫
DADĀ exp

[
−
∫ (AĀ

2π − λ(Āχη +Aχ̄η̄)
)
d2x

]
, (A.3)

to decouple the quartic interaction. It is convenient to represent

A = ∂X̄ , Ā = ∂̄X , (A.4)

such that, up to a constant factor, we have

∫
DADĀ exp

[
−
∫ (

AĀ

2π − λ(Āχη +Aχ̄η̄)
)
d2x

]

∼
∫
DXDX̄ exp

[
−
∫ ( 1

8π∂aX∂aX̄ − λ(∂̄Xχη + ∂X̄χ̄η̄)
)
d2x

]
. (A.5)

Thus the effective Lagrangian has the form

Leff = 1
8π∂aX∂aX̄ + χ

(
∂̄ − λ∂̄X

)
η + χ̄

(
∂ − λ∂X̄

)
η̄ −m (χ̄χ+ η̄η) . (A.6)

We now perform the gauge transformation

χ = e−λXχ0 , χ̄ = e−λX̄ χ̄0 , η = eλXη0 , η̄ = eλX̄ η̄0 , (A.7)

which brings the action to the form

Leff = 1
8π∂aX∂aX̄+χ0∂̄η0+χ̄0∂η̄0−m

(
e−λ(X+X̄)χ̄0χ0+eλ(X+X̄)η̄0η0

)
+Laxial , (A.8)

where Laxial is a contribution coming from the axial anomaly

Laxial = ±λ
2

2π |∂aX|
2 , (A.9)
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with + corresponding to Fermi and − to Bose statistics. Setting X = x+ iy we see that y
decouples and effectively we have

Leff = 1
8π (∂ay)2+ 1

8π (∂ax)2+χ0∂̄η0+χ̄0∂η̄0−m
(
e−2λxχ̄0χ0+e2λxη̄0η0

)
+Laxial . (A.10)

Finally substituting
x = ω√

1± 4λ2
, (A.11)

we obtain

Leff = 1±4λ2

8π (∂ay)2+ 1
8π (∂aω)2+χ0∂̄η0+χ̄0∂η̄0−m

(
e−γωχ̄0χ0+eγωη̄0η0

)
, (A.12)

where
γ = 2λ√

1± 4λ2
. (A.13)

The theory with the Lagrangian (A.2) is equivalent to the theory with the effective La-
grangian (A.12). In particular, the perturbative expansion in m should be the same. We
note that in (A.12) χ0 and η0 are not self-interacting and hence in perturbation theory can
replace [52]

χ̄0χ0 = e−iv η̄0η0 = eiv for fermions ,
χ̄0χ0 = e−u−iv η̄0η0 = eu+iv(i∂v) (i∂̄v) for bosons ,

(A.14)

where u and v are bosonic fields with canonical normalization

Lu = 1
8π (∂au)2 , Lu = 1

8π (∂av)2 . (A.15)

This implies that the bosonization of the fields χχ̄ and ηη̄ has the following rules

χ̄χ = e−γω−iv η̄η = eγω+iv for fermions ,
χ̄χ = e−γω−u−iv η̄η = eγω+u+iv(i∂v) (i∂̄v) for bosons .

(A.16)

In our parametrization we have

λ2 = ∓ b2

4(1 + b2) , (A.17)

where − corresponds to Fermi and + to Bose statistics. We note that the bosonization
formula (A.16) depends only on one linear combination of the bosonic fields γω + iv in
the fermionic case and on two linear combinations iv and γω + u+ iv in the bosonic case.
Using simple redefinition of the basis one can rewrite (A.16) as

χ̄χ = eiβϕ η̄η = e−iβϕ for fermions ,

χ̄χ = ebϕ η̄η = e−bϕ
(1
b
∂ϕ− iβ

b
∂φ

)(1
b
∂̄ϕ− iβ

b
∂̄φ

)
for bosons ,

(A.18)

where β =
√

1 + b2 and

ϕ = −γω + iv

iβ
for fermions ,

ϕ = −γω + u+ iv

b
,

1
b
ϕ− iβ

b
φ = iv for bosons .

(A.19)
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B The Uq(ôsp(N = 2n+ 1|2m)) Ř-matrix

The solution to the YB equation (5.4) is given in [23] where it is written as an Ř-matrix
acting in the (N |2m) graded spaces a and b

Řab(µ) =
N+2m∑
α=1
α=α′

aα(µ)ê(a)
αα ⊗ ê(b)

αα + b(µ)
N+2m∑
α,β=1

α 6=β,α 6=β′

ê
(a)
αβ ⊗ ê

(b)
βα + c̄(µ)

N+2m∑
α,β=1

α<β,α 6=β′

ê(a)
αα ⊗ ê

(b)
ββ+

+ c(µ)
N+2m∑
α,β=1

α>β,α 6=β′

ê(a)
αα ⊗ ê

(b)
ββ +

N+2m∑
α,β=1

dαβ(µ)ê(a)
α′β ⊗ ê

(b)
αβ′ , (B.1)

where α′ = N + 2m+ 1− α. The matrix ê(a)
αβ acts in the space a and has 1 at the position

(α, β) and 0 otherwise, and the coefficients aα(µ), b(µ), c̄(µ), c(µ) and dαβ(µ) (Boltzmann
weights) depend on N , m and the deformation parameter q.

In this appendix we focus on odd N = 2n + 1, where n is a non-negative integer. In
terms of k = N −2m−2, the expressions for the Boltzmann weights from [23] are given by

aα(θ) = 4e2kλ
(
θ+ (k+2)iπ

2k

)
sinh kλ(θ − iπ) sinh kλ

(
(−1)pαθ − 2iπ

k

)
, (B.2)

b(θ) = 4e2kλ
(
θ+ (k+2)iπ

2k

)
sinh kλ(θ − iπ) sinh kλθ , (B.3)

c(θ) = −4iekλ
(
θ+ (k+2)iπ

k

)
sinh kλ(θ − iπ) sin 2πλ , (B.4)

c̄(θ) = −4iekλ
(
3θ+ (k+2)iπ

k

)
sinh kλ(θ − iπ) sin 2πλ , (B.5)

where pα is the parity of the particle labelled by α (0 for even and 1 for odd). The remaining
Boltzmann weights can be reparametrized as
dαβ(θ)

=



4e2kλ
(
θ+ (k+2)iπ

2k

)
(sinhkλ(θ−iπ)sinhkλθ−sin2πλsinkπλ) α=β=β′ ,

4e2kλ
(
θ+ (k+2)iπ

2k

)
sinhkλθ sinhkλ

(
(−1)pα(θ−iπ)+ 2iπ

k

)
α=β 6=β′ ,

4iekλ
(
θ+ (k+2)iπ

k

)
eiπλ(k+2(tα−tβ)) εα

εβ
sinhkλθ sin2πλ α<β , α 6=β′ ,

4iekλ
(
θ+ (k+2)iπ

k

)
sin2πλ

(
(−1)pαeiπλ(k+2(tα−tα′ )) sinhkλθ−sinhkλ(θ−iπ)

)
α<β=α′ ,

4iekλ
(

3θ+ (k+2)iπ
k

)
eiπλ(−k+2(tα−tβ)) εα

εβ
sinhkλθ sin2πλ α>β , α 6=β′ ,

4iekλ
(

3θ+ (k+2)iπ
k

)
sin2πλ

(
(−1)pαeiπλ(−k+2(tα−tα′ )) sinhkλθ−sinhkλ(θ−iπ)

)
α>β=α′ .

(B.6)

where, as argued in [24], (B.1) solves (5.4) provided the parameters εα and tα satisfy

εα = (−1)qpαεα′ α < α′ , (B.7)

tα = tα′ − 2

pα + N

2 +m− α− 2
n+m+1∑
β=α

pβ

 α < α′ . (B.8)
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A possible choice of parameters εα and tα solving (B.8) is

εα = e−iπpα α < α′ , (B.9)

tα = α+ 1
2 − pα + 2

n+m+1∑
β=α

pβ α < α′ , (B.10)

with the remaining parameters determined by (B.8).
Dividing (B.1) by e2kλ(θ+ (k+2)iπ

2k ) and applying the θ-dependent gauge transformation
defined by the diagonal matrix (we now use i and ı̄ = N + 2m+ 1− i instead of α and α′)

Kj
i (ϑ) = esikλϑδji , 1 ≤ i, j ≤ N + 2m, (B.11)

subject to sı̄ = −si and si = 0 for i = ı̄, which ensures that the result only depends on the
difference of rapidities θ = ϑ1 − ϑ2, we find the following non-zero matrix elements

Řiiii(θ) = sinhkλ(θ−iπ)sinhkλ
(

(−1)piθ− 2iπ
k

)
i 6= ı̄ ,

Řiı̄ı̄i(θ) = sinhkλθ sinhkλ
(

(−1)pi(θ−iπ)+ 2iπ
k

)
i 6= ı̄ ,

Řiiii(θ) = sinhkλ(θ−iπ)sinhkλθ−sin2πλsinkπλ i= ı̄ ,

Řijji(θ) = sinhkλ(θ−iπ)sinhkλθ i 6= j , i 6= ̄ ,

Řijij(θ) =−ie−(si−sj+k)λθ sinhkλ(θ−iπ)sin2πλ i> j , i 6= ̄ ,

Řijij(θ) =−ie−(si−sj−k)λθ sinhkλ(θ−iπ)sin2πλ i< j , i 6= ̄ ,

Řj̄ı̄i (θ) = ie(si−sj+k)λθeiπλ(−k+2(ti−tj)) εi
εj

sinhkλθ sin2πλ i> j , i 6= ̄ ,

Řj̄ı̄i (θ) = ie(si−sj−k)λθeiπλ(k+2(ti−tj)) εi
εj

sinhkλθ sin2πλ i< j , i 6= ̄ ,

Řiı̄iı̄(θ) = ie(sı̄−si+k)λθ((−1)pieiπλ(−k+2(tı̄−ti)) sinhkλθ−sinhkλ(θ−iπ)
)

sin2πλ i< ı̄ ,

Řiı̄iı̄(θ) = ie(sı̄−si−k)λθ((−1)pieiπλ(k+2(tı̄−ti)) sinhkλθ−sinhkλ(θ−iπ)
)

sin2πλ i> ı̄ . (B.12)

Demanding PT invariance

Řj1j2i1i2
(θ) = Ři1i2j1j2

(θ) , (B.13)

implies that
e(si+sı̄−sj−s̄)λθe2iπλ(ti−tj+tı̄−t̄) εiεı̄

εjε̄
= 1 . (B.14)

If we assume that εi and ti, i = 1, . . . , 2n+ 2m+ 1 are determined by (B.8) and (B.10) and
that sı̄ = −si, then PT -symmetry does not impose any additional constraints.

For crossing symmetry we require that

Řj1j2i1i2
(θ) = (C−1)k1

i1
Ři2k2
k1j1

(iπ − θ)(C)j2k2
, (B.15)

where the non-zero elements of the charge conjugation matrix C are given by

C ı̄i =


e−iπpi i < ı̄

1 i = ı̄

eiπpi i > ı̄

, (B.16)
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which leads to the following condition

e−iπλ(si−sj) = e2iπλ(ti−tj) εi
εj

(C−1)ı̄iC
̄
j . (B.17)

Therefore, using that sn+m+1 = 0, (C−1)ı̄i = (C ı̄i)−1 together with (B.16), we find that
crossing symmetry implies

e−iπλsi = e2iπλ(ti−n−m−1) εi
C ı̄i

= e2iπλ(ti−n−m−1) , (B.18)

which has the solution

si = 2n+ 2m+ 2− 2ti + 2li
λ
, li ∈ Z , i < ı̄ . (B.19)

Substituting the ti from (B.10), we obtain

si = 2n+ 2m+ 1− 2i+ 2pi − 4
r−1

2 +m∑
j=i

pj + 4li
λ
, li ∈ Z , i < ı̄ . (B.20)

Since we are interested in the Ř-matrix that becomes rational in the λ → 0 limit, we can
fix li = 0 leading to

si = 2n+ 2m+ 1− 2i+ 2pi − 4
N−1

2 +m∑
j=i

pj , i < ı̄ . (B.21)

Equivalently, we may reformulate this as

s1 = N − 2m− 2 + 2p1 , (B.22)
si+1 − si = −2 + 2(pi+1 + pi) i < ı̄ , (B.23)

sı̄ = −si i < ı̄ , (B.24)
si = 0 i = ı̄ . (B.25)

Therefore, the Ř-matrix (B.12) with si, εi and ti given by (B.22), (B.10) and (B.8)
satisfies the YB equation (5.4) and is PT -invariant (B.13) and crossing-symmetric (B.15)
with the charge conjugation matrix (B.16). Furthermore, as a consequence of setting li = 0,
the λ→ 0 limit yields a rational Ř-matrix. In section 5 we use the Ř-matrix (B.12) in this
form with ti in (B.19) given by

ti = n+m+ 1− si
2 . (B.26)

C Tree-level OSP(5|2) S-matrix for 2 → 2 scattering

In this appendix we outline the computation of the tree-level S-matrix for 2→ 2 scattering
in the OSP(5|2) Toda QFT. Our starting point is the Euclidean Lagrangian (3.13). It is not
immediately clear how we should treat the bosonic spinor ψ in the perturbative scattering
theory. Here we present a prescription for this, in part guided by physical considerations
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and the requirement of integrability; however, it remains to understand this from first
principles. We first set

ψ =
(
−iγ
β∗

)
, ψ̄ =

(
iγ∗ β

)
. (C.1)

Recalling our conventions, γ1 = σ1, γ2 = σ2, ∂ = ∂1 − i∂2, (3.13) can then be written as

L = 1
2∂Φ∂̄Φ + iψ̄1γ

µ∂µψ1 + iψ̄2γ
µ∂µψ2 + β∂̄γ + β∗∂γ∗

+
(
b̂2 + . . .

) (1
8(ψ̄1γ

µψ1)2 + 1
8(ψ̄2γ

µψ2)2 − 1
2ββ

∗γγ∗
)

+
(
b̂2 + . . .

) (
ψ̄1ψ1γγ

∗ + 1
2(γγ∗)2 + ψ̄1ψ1ψ̄2γ+ψ2 + (ββ∗ + γγ∗)ψ̄2γ+ψ2

)
−Mψ̄1ψ1 cosh b̂Φ−Mψ̄2ψ2 cosh b̂Φ−M(ββ∗ + γγ∗) cosh b̂Φ + M2

2b̂2
sinh2 b̂Φ ,

(C.2)

where we have rescaled Φ → 2
√
πΦ and set b̂ = 2

√
πb. Note that in the limit b̂ → 0, the

Lagrangian for the bosonic spinor is the familiar (massive) βγ-system.
We now perform a four steps: first we replace γγ∗ → −γγ∗ in the final two lines

of (C.2);10 second, we integrate over the field β and set γ =
√
MΥ; third, we continue to

Lorentzian signature;11 and finally we expand to O(b̂2) to give

L = 1
2∂−Φ∂+Φ− M2

2 Φ2 + ψ̄1(iγµM∂µ −M)ψ1 + ψ̄2(iγµM∂µ −M)ψ2 + ∂−Υ∗∂+Υ−M2Υ∗Υ

− b̂2

6 M
2Φ4 − b̂2

2 Mψ̄1ψ1Φ2 − b̂2

2 Mψ̄2ψ2Φ2 − b̂2

2 (∂−Υ∗∂+Υ +M2Υ∗Υ)Φ2

+ b̂2

8 (ψ̄1γ
µ
Mψ1)2 + b̂2

8 (ψ̄2γ
µ
Mψ2)2 − b̂2ψ̄1ψ1ψ̄2γM+ψ2

− b̂2Mψ̄1ψ1Υ∗Υ− b̂2M−1ψ̄2γM+ψ2(∂−Υ∗∂+Υ +M2Υ∗Υ)

− b̂2

2 Υ∗Υ(∂−Υ∗∂+Υ +M2Υ∗Υ) +O(b̂4) . (C.3)

From this Lagrangian it is straightforward to compute the tree-level S-matrix for 2 → 2
scattering. Our conventions in Lorentzian signature are

∂± = ∂0 ± ∂1 , {γµM , γνM} = 2ηµνI , γ0
M =

(
0 −i
i 0

)
, γ1

M =
(

0 i

i 0

)
.

γM5 = γ0
Mγ

1
M =

(
1 0
0 −1

)
, γM+ = 1

2(1 + γM5) =
(

1 0
0 0

)
, γM− = 1

2(1− γM5) =
(

0 0
0 1

)
.

(C.4)

10This can be understood as replacing the scalar ψ̄ψ by the pseudoscalar −ψ̄γ5ψ (ψ̄γ±ψ→ ∓ψ̄γ±ψ) in
the final two lines of (3.13), and leads to the complex scalar Υ having a physical mass M in agreement with
the spin-statistics theorem.

11Our continuation to Lorentzian signature is given by ξ2 = iξ0, ∂2 = −i∂0, L → −L, M → −M and
γµ → γµM . Therefore, ∂ = ∂1 − i∂2 = ∂1 − ∂0 ≡ −∂− and ∂̄ = ∂1 + i∂2 = ∂1 + ∂0 ≡ ∂+. In addition, we use
(+,−) signature in Lorentzian space and hence AµBµ → −AµBµ.
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The mass-shell condition for all the fields in the free Lagrangian is

(∂+∂− +M2)F = 0 ⇒ p+p− = M2 , (C.5)

and we introduce the usual relativistic rapidity

p± = Me±ϑ , (C.6)

such that the on-shell fermion wave-functions are given by

u(p) =
√
M

(
e−

ϑ
2

ie
ϑ
2

)
, ū(p) =

√
M
(
e
ϑ
2 −ie−

ϑ
2

)
,

v(p) =
√
M

(
ie−

ϑ
2

e
ϑ
2

)
, v̄(p) =

√
M
(
ie

ϑ
2 −e−

ϑ
2

)
,

(C.7)

for an incoming particle, outgoing particle, outgoing antiparticle and incoming antiparticle
respectively. The resulting tree-level S-matrix precisely matches the expansion of the exact
S-matrix constructed in section 5 and hence we do not give the explicit expression here.
Furthermore, it follows that the tree-level S-matrix is PT -invariant, crossing symmetric
and satisfies braiding unitarity.

We conclude this appendix by noting that when we integrated over β we dropped a
determinant contribution that will play a role at higher orders. In order to avoid this
issue one could attempt to compute the perturbative S-matrix starting directly from the
Lagrangian (3.13) for the bosonic spinor ψ. This should be possible although it remains
to be understood how to properly continue this action to Lorentzian signature.

D The diffeomorphism vector and one-form

For the deformed OSP(N |2) sigma model, N = 1, . . . , 6 (the metric and Kalb-Ramond
field of which are given in equations (4.21) and (4.22) respectively), the non-vanishing
components of the vector Z and one-form Y that solve the Ricci flow equation (4.31) with
the parameters ν and η flowing as in (4.34) are

N = 6 : Zr1 = νηr1(1−r2
1)
[
1+ 2(1−r2

1r
2
2)

1+η2r4
1r

2
2

+
(

1+ 2(1−r2
1r

2
2)(1−η2r4

1r
2
2)

(1+η2r4
1r

2
2)2

)
ψ ·ψ

]
,

Zr2 = νηr2
1r2(1−r2

2)(1+ψ ·ψ) , Zψ
a =−νη

(
1+ 2(1−r2

1)
1+η2r2

1
+ 2(1−r4

1r
2
2)

1+η2r4
1r

2
2

)
ψa ,

Y φ1 = η(1−r2
1)
[
1+ 1

1+η2r2
1

+ 2
1+η2r4

1r
2
2

+
(

1+ 1−η2r2
1

(1+η2r2
1)2 + 2(1−η2r4

1r
2
2)

(1+η2r4
1r

2
2)2

)
ψ ·ψ

]
,

Y φ2 = ηr2
1(1−r2

2)
[
1+ 1

1+η2r4
1r

2
2

+
(

1+ 1−η2r4
1r

2
2

(1+η2r4
1r

2
2)2

)
ψ ·ψ

]
,

Y ψa =− η

1+η2

(
η2+ 2(1+η2)

1+η2r2
1

+ 2(1+η2)
1+η2r4

1r
2
2

)
ψa , (D.1)
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N = 5 : Zr1 = 2νηr1(1−r2
1)(1−r2

1r
2
2)

1+η2r2
1r

4
2

(
1+ 1−η2r4

1r
2
2

1+η2r4
1r

2
2
ψ ·ψ

)
,

Zψ
a =−2νη

(
2(1−r2

1)
1+η2r2

1
+ 1−r4

1r
2
2

1+η2r4
1r

2
2

)
ψa ,

Y φ1 = η(1−r2
1)
[

1
1+η2r2

1
+ 2

1+η2r4
1r

2
2

+
(

1−η2r2
1

(1+η2r2
1)2 + 2(1−η2r4

1r
2
2)

(1+η2r4
1r

2
2)2

)
ψ ·ψ

]
,

Y φ2 = ηr2
1(1−r2

2)
1+η2r4

1r
2
2

(
1+ 1−η2r4

1r
2
2

1+η2r4
1r

2
2
ψ ·ψ

)
,

Y ψa = η

1+η2

(
1− 2(1+η2)

1+η2r2
1
− 2(1+η2)

1+η2r4
1r

2
2

)
ψa , (D.2)

N = 4 : Zr1 = νηr1(1−r2
1)(1+ψ ·ψ) , Zψ

a =−νη
(

1+ 2(1−r2
1)

1+η2r2
1

)
ψa ,

Y φ1 = η(1−r2
1)
[
1+ 1

1+η2r2
1

+
(

1+ 1−η2r2
1

(1+η2r2
1)2

)
ψ ·ψ

]
,

Y ψa =− η

1+η2

(
η2+ 2(1+η2)

1+η2r2
1

)
ψa ,

(D.3)

N = 3 : Zψ
a =−2νη(1−r2

1)
1+η2r2

1
ψa ,

Y φ1 = η(1−r2
1)

1+η2r2
1

(
1+ 1−η2r2

1
1+η2r2

1
ψ ·ψ

)
, Y ψa = η

1+η2

(
1− 2(1+η2)

1+η2r2
1

)
ψa ,

(D.4)

N = 2 : Zψ
a =−νηψa , Y ψa =− η3

1+η2ψ
a , (D.5)

N = 1 : Y ψa = η

1+η2ψ
a . (D.6)

For the two alternative deformations of the OSP(5|2) sigma model, (4.45) and (4.46),
the non-vanishing components of the vector Z and the one-form Y that solve the Ricci flow
equation (4.31) with the parameters ν and η flowing as in (4.34), i.e. before implementing
the analytic continuation in equation (4.36), are
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for case (1) and
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for case (2).
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