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Abstract

Prediction models for continuous bounded outcomes are often developed by fitting
ordinary least square regression. However, predicted values from such method may lie
outside the range of the outcome as it is bounded within a fixed range, with non-linear
expectation due to the ceiling and floor effects of the bounds. Thus, regular regression
models such as normal linear or nonlinear models, are inadequate for prediction purposes
for bounded response variable and the use of distributions that can model different shapes
are essential. Beta regression, apart from modeling different shapes and constraining pre-
dictions to an admissible range, has been shown to be superior to alternative methods
for data fitting but not for prediction purposes. We take data structures into account and
compared various penalized beta regression method on predictive accuracy for bounded
outcome variables using optimism corrected measures. Contrary to results obtained under
many regression contexts, the classical maximum likelihood method produced good pre-
dictive accuracy in terms of R2 and RMSE. The ridge penalized beta regression performed
better in terms of g-index, which is a measure of performance of the methods in external
data sets. We restricted attention to prespecified models throughout and as such variable
selection methods are not evaluated.

Key Words: Beta regression; Bounded outcome; Ridge regression; Prediction model; Shrinkage
methods; Internal validation.

1 Introduction

Continuous bounded outcome data that take values in a finite range are common in studies
of quality of life (QoL). Outcomes typically display heteroscedasticity, where the variance is
smaller near the extremes, and asymmetry. This is because the distribution of the outcome
is often unimodal, U� shaped, and J� shaped. These outcomes are seldom analysed using
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models that correctly constrain inference and predictions to lie within the feasible range of
values (Bottai et al., 2010). The standard practice is to transform the outcome values and
then carry out a standard linear regression analysis. A common transformation is to use the
logit transform (also called logit normal model) that removes the boundary of the outcome
and make the distribution symmetric about zero; ỹ = log(y/1 � y), where y is the outcome.
Whilst this approach might correct the asymmetry in the data, regression models involving data
from the unit interval, such as rates and proportions, are typically heteroscedastic (Cribari-Neto
and Zeileis, 2010); the transformation will not stabilize the conditional variance (Kieschnick
and McCullough, 2003) and the regression parameters are no longer expressed in terms of the
mean of the original outcome y. An alternative to transformation is to use quantile regression.
This method has the advantage that no assumption regarding the outcome distribution is made
and it constrains inference within the bounded range (Bottai et al., 2010). However, it is less
appealing because of less elegant interpretation than parametric models.

The use of skew-normal and censored skew-normal models have been considered for mod-
elling bounded outcomes (Hutton and Stanghellini, 2011). Although bounded outcomes might
exhibit inherent skewness, often the skewness are spurious and due to the ceiling and floor
effects at the bounds. One strategy is to use models with support restricted to a fixed inter-
val. An example of such model was considered in Flecher et al. (2010), where a truncated
skew-normal model was used to analyse daily relative humidity data. The major shortcoming
of using these models for predictions in bounded outcomes is that data are not observed on the
restricted interval because they are not defined outside the intervals but not because they are
censored or truncated. Consequently, it is more realistic to use models that have finite range
and are naturally skewed for inference and predictions in bounded outcomes.

Beta distribution assumes values on the standard unit interval, and it is flexible sufficiently
to model unimodal and bimodal data that are symmetric or skewed. It has been proposed and
judged suitable for modelling bounded outcomes (Kieschnick and McCullough, 2003; Ferrari
and Cribari-Neto, 2004). The model uses a parametrization of the beta distribution in terms
of its mean and a precision parameter. In this case, the regression parameters are interpretable
in terms of the original variable of interest. If the variable takes on values in (a, b) (with
a < b known), then the response can be transformed to the (0,1) interval by (y � a)/(b � a),
where b and a are the maximum and minimum possible scores. The classical and extended
beta regression models have been distinguished (Cribari-Neto and Zeileis, 2010), whereby the
former are similar to generalized linear models, and the precision is a constant and possibly a
nuisance parameter, while the latter requires a dispersion parameter that depends on a set of
predictors through a link function.

The aim of this article is to compare the classical beta regression model and its penalized
version for prediction purposes in the presence of challenging data structures. These structures
include multicollinearity among predictors, binary predictors with few events, noise variables
and small sample sizes, which are frequently encountered in practice. We evaluated bootstrap
shrinkage factor method, ridge regression, and bias correction and reduction methods on pre-
dictive accuracy of the models. Four predictive accuracy measures- R2, RMSE, mean absolute
error and Gini index- which are corrected for possible overfitting was used to assess model
performance.

We restrict attention to prespecified models and as such penalized methods with variable
selection are not evaluated. In section 2, we describe the real data used in the study. Shrinkage
and penalized beta regression methods are discussed in section 3. The methods are compared
using simulation and the data example in section 4 and conclusions are given in section 5.
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2 Data description and results

The data set is from a multi-center randomized controlled trial of treatments for Whiplash
Associated Disorder, the Managing Injuries of the Neck Trial (MINT), in which two treat-
ment regimes were compared: physiotherapy versus reinforcement of advice for patients with
continuing symptoms three weeks after their initial visit to the Emergency Department (ED)
(Lamb et al., 2007). As with many patient-reported outcome or quality of life studies, data
were collected using questionnaires at regular intervals, 4, 8 and 12 months, after patients’ ED
attendance (see Figure 1 in Appendix A).

The primary outcome of interest is return to normal function after the whiplash injury, and
is measured using the Neck Disability Index (NDI). The NDI is a self-completed questionnaire
which assess pain-related activity restrictions in 10 areas including personal care, lifting, sleep-
ing, driving, concentration, reading and work, leading to a score between 0 and 50. Due to its
reliability and validity, the NDI questionnaire is a standard instrument for measuring self-rated
disability resulting from neck injuries.

Data are available from 599 patients, aged 18 to 78 years, contributing 1934 measurements
over the study period, with 372 (62%) patients having complete observations (i.e. scores at
all measurement occasions). For simplicity, we focus our analysis on the 372 patients with
complete data. Scores at month 8 are used for model development whilst scores at month 12
are used for temporal validation.

3 Methods of estimation

3.1 Beta-regression and Maximum likelihood estimator (MLE)

Beta regression provides a framework for modelling continuous variables constrained in the
standard unit interval (Ferrari and Cribari-Neto, 2004). The probability density function (PDF)
of a beta distributed random variable y with shape parameters p and q > 0 is given by

f(y; p, q) =
�(p+ q)

�(p)�(q)
yp�1

(1� y)q�1, y 2 (0, 1), (1)

where �(.) is the gamma function. The mean and variance y are respectively,

E(y) =
p

p+ q
and V ar(y) =

pq

(p+ q)2(p+ q + 1)

.

A reparametrized version of (1) that is convenient for modelling purposes is given as

f(y;µ,�) =
�(�)

�(µ�)�((1� µ)�)
yµ��1

(1� y)(1�µ)��1, y 2 (0, 1), (2)

where µ = p/(p+ q) and � = p+ q (equivalently p = µ� & q = (1�µ)�). This parametriza-
tion implies y ⇠ B(µ,�), and thus E(y) = µ and Var(y) = µ(1 � µ)/(1 + �). The mean is
therefore µ and � is the precision parameter since it controls the variance of the distribution.
As stated earlier, the classical beta regression model is similar to the generalized linear model
with mean parameter µ expressed as a function of covariates, and � treated as nuisance param-
eter. A strictly monotone and twice differentiable link function that maps the unit interval to
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the real line is used to ensure that the fitted values are within the admissible range. All the link
functions used in the generalized linear model can be used for this purpose. Our focus will be
on the classical beta regression with logit link.

The maximum likelihood estimator is based on the log-likelihood function corresponding

to the PDF in equation (2), and is given by
nX

i=1

l
i

(µ
i

,�), where

l
i

(µ
i

,�) = log�(�)� log�(µ
i

�)� log�((1� µ
i

)�) + (µ
i

�� 1) log y
i

+{(1� µ
i

)�� 1} log(1� y
i

),
(3)

with µ 2 (0, 1) and � > 0, since p, q > 0. The mean is linked to the linear predictor by
g(µ

i

) = �0X
i

, where X
i

are the predictors, � is the vector of regression coefficients and g is
the logit link.

Figure 1 shows the PDFs of beta distribution with varying mean and dispersion parameters.
Both figures show the flexibility of the model to assume different shapes when different values
of the parameters are combined. Figure 1(b) further justifies � as a dispersion parameter since
the spread in the response decreases as � increases.
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Figure 1: Probability density functions for beta distribution : (a) with varying µ = 0.10, 0.25, 0.50, 0.75
and fixed � = 5; (b) with varying � = 5, 25, 50, 75 and fixed µ = 0.5.

3.2 Bootstrap shrinkage factor

It has been shown that overfitting in prediction models can be reduced by applying a heuristic
shrinkage factor (Moons et al., 2004). In this setting, regression coefficients obtained by maxi-
mum likelihood can be shrunk by multiplying their values by a linear shrinkage factor. This can
be obtained using the nonparametric bootstrap method. The method can be described for the
beta regression model as follows; a bootstrap sample is drawn from the original data set and the
model is fitted using maximum likelihood. The linear predictor values are then fitted as a single
predictor in a beta regression model in the original data set using maximum likelihood. This is
repeated multiple times and the slopes of the regression models are obtained. The slopes are
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then averaged to produce a shrinkage factor. The method is referred to as a uniform or linear
shrinkage method because the regression coefficients are simultaneously adjusted by a single
shrinkage factor. This method will be evaluated in the data example only.

3.3 Ridge regression

Uniform shrinkage methods are shrinkage methods after estimation. Alternative approaches
using penalized likelihood, like the ridge regression, apply nonuniform shrinkage factors to the
maximum likelihood estimates. Suppose l(�) is the reparametrized version of (3) in terms of
�, then the ridge regression is the constrained likelihood problem where l(�) is maximized
subject to

P
p

j=1 �
2
j

 t; t � 0, t is a scalar chosen by the investigator. Equivalently, the ridge
penalized likelihood function can be written as

l(�rd

) = l(�)� �

pX

j=1

�2
j

, (4)

where � � 0 has a one-to-one correspondence with t, and it is referred to as the regularization
parameter and �rd are the parameter estimates from the ridge regression. The larger the value of
�, the further the parameter estimates are shrunk towards zero. In particular, the standard beta
model is recovered when � = 0 in (4). The ridge estimator is a convex optimization problem
and it is sometimes referred to as an L2-type regularization procedure.

3.4 Bias correction and reduction

The method of ridge regression introduces bias in the maximum likelihood estimator in order to
gain lower variance. Other methods have been proposed in the literature that correct or reduce
bias in finite samples. The extent to which these correctional approaches improve prediction is
uncertain. Suppose µ is the true parameter and µ̂ is its estimates, the bias of the estimator of µ
is defined as

B(µ) = E
µ

(µ̂� µ),

where E
µ

is expectation taken over µ. We distinguish two methods for eliminating this bias.

3.4.1 Bias Correction

Simulation based approaches (Jackknife and Bootstrap) have been discussed in the literature
for bias correction (Kosmidis, 2014). We focus on the method based on the asymptotic bias
correction of the MLE, µ̂, which can be expressed as

B(µ) =
b1(µ)

n
+

b2(µ)

n2
+ . . . .

Methods that correct higher order bias b1(µ)/n+ b2(µ)/n
2 have been discussed elsewhere (see

Cordeiro and Barroso (2007)). We focus on the method that removes the first-order bias term
for beta regression, given by
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µ̃ = µ̂� b1(µ̂)

n
and E

µ

(µ̃� µ) = O(n�2
). (5)

A closed form expression for (5) is given in Cordeiro and Klein (1994). Details of the ex-
pression for b1(µ)/n for beta regression models can be found in Grun et al. (2012). The main
drawback of this method (and other bias correction methods, such as jacknife and bootstrap) is
that it depends on the finiteness of µ̂ and also inherits all the instability in its estimator.

3.4.2 Firth’s modified likelihood

Firth (1993) introduced a penalized maximum likelihood estimation method for the reduction
of bias in MLEs. The method has been adapted for solving monotone likelihood problems in
other regression contexts (Heinze and Schempe, 2001; Heinze and Schemper, 2002). The beta
regression likelihood function can be penalized using this approach, and is given as

l(�?

) = l(�) +
1

2

log |I(�)|. (6)

The penalty function |I(�)|1/2 is known as Jeffreys invariant prior. The superiority of Firth
method over other post hoc bias correction of MLEs is that the estimates of the penalized like-
lihood almost always exist. As ridge estimator is guaranteed to reduce variance, it is possible
for bias correction or reduction methods to inflate the estimator’s variance. A comparative
study of bias correction and reduction methods in logistic regression has been considered in
Maiti and Pradham (2007), but not with a view towards prediction.

3.5 Software for beta regression

Many statistical packages have routine for fitting the classical beta regression. Betareg package
in R (Cribari-Neto and Zeileis, 2010) and in Stata used MLE. Non-linear routines in SAS such
as PROC NLIN or NLMIXED can also be used. Bayesian approach for beta regression has been
implemented in the Bayesianbetareg in R. We used betareg in R for the classical maximum
likelihood estimates, bias corrected and bias reduced beta regression. For ridge regression,
we used the function ri() in GAMLSS package in R, which automatically estimates shrinkage
parameter (and therefore the effective degrees of freedom) using a local maximum likelihood
procedure (Rigby and Stasinopoulos, 2013).

4 Simulation and data analysis

4.1 Simulation studies

To evaluate the performance of ridge penalized beta regression for prediction in bounded out-
comes, we compared it with bias reduction, bias correction and classical beta regression meth-
ods. We simulated 7 variables- two binary predictors and 5 continuous predictors. To begin
with, we fixed the regression parameters at 0.5, correlation between variable at zero and preva-
lence of binary predictors at 0.5. The following scenarios were investigated.
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1. Impact of sample size: We simulated 25, 50, 100, 200, and 500 observations. This
corresponds to 3.6, 7.1, 14.2, 28.6 and 71.4 subjects per variable (SPV) with 7 variables
respectively.

2. Impact of noise variables: Noise variables are variables whose true regression coefficients
are zero. These variables are common in prespecified models. We added 2 binary and 3
continuous predictors not related to the outcome variable to scenario 1. This significantly
reduced the SPV of the models across the sample sizes.

3. Impact of low prevalence binary predictors: This implies binary predictors with rare
events e.g. the use of binary variable denoting presence/absence of penile cancer, known
to be rare, for the prediction of cardiovascular diseases in men. We varied the prevalence
of the simulated binary predictors between 0.03 and 0.5 for the sample size of 500.

4. Impact of correlation: We varied the correlation between two of the continuous predic-
tors. The correlations considered include 0, 0.1, 0.3, 0.5, 0.7 and a perfect correlation
where one of the variable is a linear combination of the other.

Simulation studies comparing predictive performance of statistical method usually consider
apparent performance as a means of method evaluation. We take a different approach and report
optimism corrected measures instead. This is due in part to potential overfitting of the models
especially in small samples. Cross-validation and bootstrap methods are common approaches
for optimism quantification. We focus on the use of bootstrap approach, which is based on the
algorithm described below.

• Simulate a data set based on the appropriate data structure and fit beta model or its pe-
nalized version to the data. Apparent predictive performance based on the measure of
interest, say R2

app

is computed on this model

• From the simulated data set, take say, M bootstrap sample, where m = 1 . . .M and fit
beta model or its penalized version and compute R

2(m)
boot

• For each of the M models from the bootstrap samples, compute R2 back in the original
data, say R

2(m)
orig

• Optimism in model fit for each of the bootstrap sample is Optm = R
2(m)
boot

� R
2(m)
orig

. The
average optimism is

Opt =

P
M

m=1 Opt(m)

M

• Optimism adjusted measures for the original model is R2
adj

= R2
app

�Opt.

The predictive accuracy measures considered include pseudo R2, RMSE, Gini’s mean in-
dex (g-index) and mean absolute deviation. Briefly, R2 indicates the proportion of information
in the data that is explained by the model while RMSE measures how far, on average, the
residuals (observed scores - fitted scores) are from zero. The g-index is a robust and highly
efficient measure of variability in the predicted scores. It is the mean absolute difference be-
tween any two distinct elements of the vector containing the predicted scores from the fitted
models. The lower the g-index, the lower the variability of the predicted scores, and the better
the performance of the method in an external validation data set.
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Figure 2 shows the impact of sample size on the predictive accuracy measures when clas-
sical maximum likelihood (ML), bias corrected ML (BC), bias reduced ML (BR) and ridge
penalized beta regression are compared. As expected the performance of the models improved
as sample size increases. ML, BC and BR are indistinguishable on R2, RMSE and mean ab-
solute deviation as predictive accuracy measures. However, the BC and BR methods showed
slight improvement over ML up to sample size of 200 as the predicted scores are less variable
(g-index). This signifies potential improved predictions in external validation data sets. The
ridge penalized method uniformly outperformed other methods across the sample sizes using
this measure.
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Figure 2: Optimism corrected measures showing impact of sample size ({25, 50, 100, 200,
500} on predictive accuracy

The results of predictive accuracy measures when 5 noise variables are added to the model
is shown in Figure 3. The conclusions are similar to what we observed in Figure 2 except
that the performance of methods in Figure 2 are much better. This result is intuitive and has
been evaluated in similar studies with binary and time-to-event data. The implication of this
is that the so called subjects per variable, SPV (equivalently events per variable for binary and
time-to-event data) reduced dramatically and thus have significant effects on the fit and model
predictive accuracy.

The assessment of the impact of prevalence on predictive accuracy of the methods show that
the performance of ML, BC and BR methods are similar (see Figure 2 in Appendix B). These
methods outperformed the ridge method in terms of R2, RMSE and mean absolute deviation.
The ridge regression performs better in terms of lower variability in the predicted scores (g-
index). The R2 suggests that prevalence of 0.3 is optimal and that there is no added merit of
using binary predictors with prevalence of 0.5.

The results of the impact of correlation show that predictive accuracy improves as correla-
tion increases. The performance of ML, BC and BR methods are again similar. As expected,
the ridge regression is the only method that yields finite parameter estimates in the presence
of perfect correlation. The results also indicate that the higher the correlation between the
predictors the lower the prediction accuracy in an external validation sample (see Figure 3 in
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Figure 3: Optimism corrected measures showing impact of 5 noise variables added to the 7
main variables on predictive accuracy

Appendix B).

The results of the comparison of apparent and optimism corrected measures indicate that
the apparent ML is slightly higher than the apparent ridge regression values for sample size
smaller than 100 observations. The comparison of apparent and optimism corrected absolute
mean deviations for the ridge regression showed that the former exaggerated the prediction er-
rors across the sample sizes, whereas its adjusted values are in agreement with the ML corrected
values (see Figure 4 in Appendix B).

4.2 Data analysis

We used the methods described in section 3 to develop a prediction model for the NDI data
set. The model was developed using NDI scores at the third measurement occasion (Month
8). We evaluated its predictive performance using the data at the last measurement occasion
(Month 12) - the so-called temporal validation. Instead of the RMSE evaluated in the model
development data we used root mean square prediction error, RMSPR as its external validation

equivalent. It is given as
q

1
n

⇤

P
(Y

i

� ˆY
i

)

2, where n? is the sample size at month 12, ˆY is the
predicted values using regression coefficients from the model developed and Y

i

is the observed
response at month 12. Similarly, R2 was replaced by R2

p

as its external validation equivalent,

and it is given as 1 �
n

⇤X

i=1

(Y
i

� ˆY
i

)

2

,
n

⇤X

i=1

(Y
i

� ¯Y )

2, where ¯Y is the arithmetic mean of the

dependent variable in the data set used for model development.

The data set contains 4 predictors that are related to the outcome. These predictors have
been used previously in other context (see Ogundimu and Hutton (2015)). Initial analysis
showed that there is no difference in the performance of the methods in terms of predictive
accuracy. In particular, the uniform shrinkage value is 1.0001. This is not different from the
ML method. We therefore added 10 noise variables to the model to evaluate their impact. This
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reduced the uniform shrinkage value to 0.9701 (see Table 1 in Appendix A for the internal
validation results).

Table 1 shows the performance of the methods in predicting NDI scores at month 12.
The ridge regression shows a slightly better predictive performance than the ML, BC and BR
methods.

Table 1: Model performance in predicting NDI scores at Month 12
R2

p

RMSPR g-index Mean absolute deviation
Bootstrap shrinkage 0.4900 0.1441 0.1437 0.1197
Maximum likelihood 0.4899 0.1423 0.1464 0.1175
Bias correction 0.4898 0.1425 0.1460 0.1177
Bias reduction 0.4898 0.1425 0.1460 0.1176
Ridge penalized 0.4910 0.1181 0.1304 0.0932

5 Concluding Remarks

Continuous bounded outcome data are frequently encountered in mental health, social sciences
and political science research and there is increasing interest on how to use such data for predic-
tion purposes. This paper evaluated the predictive performance of penalized beta regression for
continuous bounded outcome. Unlike the maximum likelihood estimator (MLE) of the logistic
model, the MLE for beta model had less difficulties with model convergence in the presence
of challenging data structures, such as binary predictors with rare events and multicollinearity.
We have shown, through a simulation study, that the predictive performance of the maximum
likelihood (ML) method is not worse than the bias correction (BC) and Bias reduction (BR)
methods. Theoretically, the BC and BR methods are not optimized for predictions. So, the
notion that the BC and BR methods will yield better predictions due to lower bias than the ML
method is not true. There is no guarantee that the methods will not result in inflated variance.
However, the ridge penalized beta regression showed better predictive accuracy in external val-
idation sample, and it is recommend for predictions over the ML, BC and BR methods. The
justification for this is the bias-variance trade off of the ridge regression, which has been ob-
served in other regression context such as the logistic regression and Cox model.

Although we focus here on prespecified models, various method for improved predictions
in other regression contexts can be easily adapted to beta regression model. It would be inter-
esting to explore, for example, the predictive performance of elastic net penalty which incor-
porates both the LASSO (least absolute shrinkage and selection operator) for variable selection
and the ridge penalty to optimize predictions for beta regression models.
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Appendix A
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Figure 1: Scatter plots, histograms and correlations for the NDI scores at Baseline, Month 4, 8
and 12

The correlation tends to decrease with increasing time separation between the measurement
times. The histograms shows that skewness is evident in the data and it becomes increasing
noticeable as time progresses. The skewness could be due to selective dropout over time or
the boundedness of the response variable. Hence, the use of a class of model that can model
various shapes.

1

Page 13 of 16

URL: http://mc.manuscriptcentral.com/cjas

Journal of Applied Statistics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

Table 1: Optimism corrected model performance in predicting NDI scores at Month 8
R2 RMSE g-index Mean absolute deviation

Bootstrap shrinkage 0.5530 0.1109 0.1327 0.0862
Maximum likelihood 0.5494 0.1112 0.1339 0.0860
Bias correction 0.5494 0.1112 0.1337 0.0860
Bias reduction 0.5494 0.1112 0.1337 0.0860
Ridge penalized 0.5494 0.1114 0.1301 0.0835

Table 1 shows the performance of the optimism adjusted measures using the 5 methods
considered. Unlike in the case where all the variables are associated with the outcome, the
uniform shrinkage value in this case is 0.9701. This shows that some form of regularization is
essential to improve predictive accuracy. The uniform shrinkage method outperforms ML, BC,
BR and ridge methods on R2, and RMSE. The performance of ML BC and BR are essentially
the same as we observed in the simulation study. The ridge method showed through the g-
index and mean absolute deviation that it can perform better than its competitors in external
validation samples.
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Figure 2: Optimism corrected measures showing impact of prevalence on predictive accuracy
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Figure 3: Optimism corrected measures showing impact of correlation on predictive perfor-
mance
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Figure 4: Apparent vs optimism adjusted measures for maximum likelihood and Ridge penal-
ized beta regression
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