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On the extended two-parameter generalized skew-normal
distribution

Emmanuel O. Ogundimua,∗, Jane L. Huttonb

aCentre for Statistics in Medicine, University of Oxford, UK.
bDepartment of Statistics, University of Warwick, UK.

Abstract

We propose a three-parameter skew-normal distribution, obtained by using hidden truncation on

a skew-normal random variable. The hidden truncation framework permits direct interpretation

of the model parameters. A link is established between the model and the closed skew-normal

distribution.

Keywords: Hidden truncation; Sample selection; Extended skew-normal distribution

1. Introduction

Hidden truncation models have a long history before Azzalini (1985) popularized and studied

the skew-normal (SN) distribution. Birnbaum (1950) studied the distribution and its extensions

in the context of educational testing where he showed that the SN distribution can result from

linear truncation of multivariate normal random variable. Weinstein (1964), using a convolution

of normal and truncated normal random variables derived a distribution similar to SN, expressed

implicitly. Roberts (1966) considered the distribution resulting from selecting the maximum or

minimum value from suitably standardized measurements taken on a pair of twins. The resulting

distribution is also similar to the SN distribution. In the Bayesian context, O’Hagan & Leonard

(1976) suggested the use of an extended version of SN distribution as a possible prior for a normal

mean. The above early studies showed that simple and common nonlinear operations such as

truncation, conditioning and censoring carried out on normal random variables lead to versions of

SN random variables.
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A standard skew-normal distribution has a probability density function (PDF) of the form

f(z;λ) = 2φ(z)Φ(λz), z ∈ R, (1)

where λ ∈ R is the skewness parameter because it regulates the shape of the density function. An

extension of model (1) can be described as follows: Suppose (X, Y ) are standard bivariate normal

random variables with correlation ρ, and that the values ofX are selected only if Y > c, a constant.

Then, the PDF of X | Y > c is

f(x;λ0, λ1) = φ(x)Φ(λ0 + λ1x)

/
Φ

(
λ0

/√
1 + λ21

)
, x ∈ R, λ0, λ1 ∈ R, (2)

where λ0 = −c/
√

1− ρ2 and λ1 = ρ/
√

1− ρ2. Model (2) is called an extended skew-normal

(ESN) distribution since it extends model (1) by an additional shift (skewness) parameter λ0. This

extension has been examined by Azzalini (1985) and Arnold et al. (1993) while the multivariate

case has been considered by Arnold & Beaver (2000a). A link between this model and the con-

tinuous component of sample selection density was established in Copas & Li (1997) and further

studied in a multilevel sample selection framework in Ogundimu & Hutton (2014).

The hidden truncation model based on the ESN distribution is formulated from the normal

distribution. The normal assumption is used for convenience, but is unrealistic in many real appli-

cations. The development of more general hidden truncation models with the normal distribution

as a particular case is therefore necessary. Arnold & Beaver (2002) proposed the general method

for constructing hidden truncation models. As noted by Arnold (2009), these models are difficult

to deal with analytically unless the joint density, (X, Y ) is a member of some tractable family of

multivariate distribution. There are also challenges related to making inference from these models.

We propose a three-parameter skew-normal distribution which arises from hidden truncation

on a skew-normal random variable. A skew-normal random variable is chosen because, as noted

by Mudholkar & Hutson (2000), of the most common deviations from normality, skewness and

heavier tails, the effects of non-normality due to skewness are generally more serious. For example,

assuming symmetry when there is asymmetry leads to biased point estimates of location. We show

that the resulting distribution extends the ESN distribution with an additional skewness parameter.

Equivalently, the distribution extends the two parameter generalized skew-normal (GSN(λ1, λ2))

distribution developed by Jamalizadeh et. al. (2008) by an additional shift parameter, λ0. This
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formulation also allows us to interpret the parameters in the model in a straightforward manner. In

addition, we show the merits of using the proposed model for modelling observational data arising

from sample selection.

The rest of the paper is organised as follows. In section 2, we review the basics of hidden

truncation models and describe the model for a skew-normal random variable. In section 3, a

hidden truncation model arising from skew-normal random variable is introduced and its properties

are studied. The model is applied to a data set in Section 4. A link is established between the model

and sample selection models in section 5 and conclusions given in section 6.

2. Basis of truncation models

Consider a two dimensional absolutely continuous random vector (X, Y ). The conditional

distribution of X given Y ∈ C, where C is a Borel set in R, has its PDF given by

f(X|Y ∈ C) =
f(x)P (Y ∈ C|X = x)

P (Y ∈ C)
, (3)

using Bayes’ rule for the decomposition of the density f(X|Y ∈ C), (see Arellano-Valle et al.,

2006). Selection distributions depend on the subset C. The usual selection subset is a half-line,

defined by

C(β) = {y ∈ R| y > β},

where β is the truncation point. The hidden truncation equivalent of (3) consists of upper and lower

truncation subset defined by

C(α, β) = {y ∈ R|α > y > β}. (4)

The use of subset (4) is the basis of the model considered in Arnold et al. (1993).

For this paper we focus on the selection subset C(0) which leads to an extension of the ESN

model (2). Note that C(β) and C(0) differ only by location change, since no symmetry around 0

is assumed. In this case, (3) can be written as

f(x|Y > 0) =
f(x)P (Y > 0|X = x)

P (Y > 0)
, (5)

which corresponds to equation (5.1) of Arellano-Valle et al. (2006). Equation (5) can be described

as a weighted version of the original density function of X . A special case of (5) can be derived
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using the proposition below, which only requires the assumption of independence between X and

Y .

Proposition 1. Suppose X and Y are two independent random variables, with arbitrary and

possibly different distribution. The variable X is observed only if Y satisfies the constraints

λ0 + λ1X > Y . Assume X has density function ψ1 with associated distribution function Ψ1

and Y has density ψ2 with distribution function Ψ2. The conditional density of X|λ0 + λ1X > Y

is

f(x|λ0 + λ1X > Y ) =
ψ1(x)Ψ2(λ0 + λ1x)

P (λ0 + λ1X > Y )
. (6)

Equation (6) is the basis of the ESN density given by (2), in which X and Y are independent

normal random variables with X selected when the associated Y exceeds a threshold, which is not

necessarily its mean. This density reduces to the density of the random variable X when λ1 = 0,

regardless of the value of λ0.

The computation of the denominator, P (λ0 +λ1X > Y ) in (6) may not be available in analytic

form unless X and Y are stable random variables such that a tractable expression can be derived

for λ0 + λ1X − Y . The case for a Cauchy random variable was discussed in Arnold & Beaver

(2000b).

Suppose we apply (6) to independent random variables X ∼ SN(0, 1, λx) and Y ∼ N(0, 1),

where SN and N represent skew-normal and normal distributions respectively, so that the first

factor in the numerator of (6) is 2φ(x)Φ(λ1x) and the second factor is Φ(λ0 + λ2x). Computation

of the denominator of (6), p = P (λ0 > Z) where Z = Y −λ2X , amounts to finding the cumulative

distribution function (CDF) of Z. What we need is a simple extention of Property I of Azzalini

(1985) which gives the distribution of (Y +X)
/√

2, while here we have the multiplicative factor

−λ2; equivalently, we can appeal to Proposition 2.3 of (Azzalini, 2014b, p26) which provides this

simple extension. We obtain that Z ∼ SN(0, 1 + λ22,−λ1) and consequently p = 2k(λ0, λ1, λ2)
−1,

where k−1 = 1
2
FSN

(
λ0√
1+λ22

; −λ1λ2√
1+λ21+λ

2
2

)
and FSN is the standard CDF of the Azzalini’s skew-

normal distribution (Azzalini, 1985).

This model implies that a skew-normal random variable X is observed only when a concomi-

tant normal random variable Y is greater than zero. The next section provides detailed description

of the model.
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3. Extended two parameter generalized skew-normal distribution

3.1. Definitions and Simple properties

Definition 1. A random variable Zλ0,λ1,λ2 is said to have an extended two-parameter generalized

skew-normal (EGSN) distribution, if its PDF is

f(z;λ0, λ1, λ2) = k(λ0, λ1, λ2)φ(z)Φ(λ1z)Φ(λ0 + λ2z), z ∈ R, (7)

where λ0, λ1, λ2 ∈ R, λ1 & λ2 are the skewness parameters and λ0 is the shift parameter. Since (7)

is a PDF, we must have

k(λ0, λ1, λ2)
−1 =

∫ ∞
−∞

φ(z)Φ(λ1z)Φ(λ0 + λ2z) dz = E[Φ(λ1X)Φ(λ0 + λ2X)],

where X ∼ N(0, 1). Direct integration yields

k(λ0, λ1, λ2)
−1 = Φ2

(
0,

λ0√
1 + λ22

;
λ1λ2√

1 + λ21
√

1 + λ22

)
=

1

2
FSN

( λ0√
1 + λ22

;
−λ1λ2√

1 + λ21 + λ22

)
,

where Φ2 is a standard bivariate normal CDF and FSN is as defined in section 2. The evaluation

of FSN can be obtained from the ‘psn’ function in Azzalini’s skew-normal package in R (Azzalini,

2014a).

Thus, the extended two-parameter generalized skew-normal density in (7) becomes

f(z;λ0, λ1, λ2) =
2

FSN

(
λ0√
1+λ22

; −λ1λ2√
1+λ21+λ

2
2

)φ(z)Φ(λ1z)Φ(λ0 + λ2z), z ∈ R, (8)

and we write Zλ0,λ1,λ2 ∼ EGSN(λ0, λ1, λ2).

Proposition 2. For the special case λ0 = 0, (8) becomes

2

FSN

(
0; −λ1λ2√

1+λ21+λ
2
2

)φ(z)Φ(λ1z)Φ(λ2z), z ∈ R,

which is equivalent to the two parameter generalized skew-normal distribution (GSN(λ1, λ2))

given in Jamalizadeh et. al. (2008).

To see this, we note that

2π

cos−1
(

−λ1λ2√
1+λ21

√
1+λ22

) =
1

Φ2

(
0, 0; λ1λ2√

1+λ21

√
1+λ22

) =
2

FSN

(
0; −λ1λ2√

1+λ21+λ
2
2

) .
Some properties of the model in (8) are stated below:
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1. EGSN(0, λ1, λ2) = GSN(λ1, λ2)

2. EGSN(λ0, 0, λ) = ESN(λ0, λ)

3. EGSN(0, 0, λ) = EGSN(0, λ, 0) = SN(λ)

4. EGSN(0, 0, 0) = N(0,1)

5. EGSN(λ0, λ1, λ2) can be derived from the convolution of an independent skew-normal ran-

dom variable and a truncated normal random variable

6. If Z ∼ EGSN(λ0, λ1, λ2), then −Z ∼ EGSN(λ0,−λ1,−λ2).

The parameters in the EGSN model can be easily interpreted: λ1 is the population skewness

inherent in the X variable, λ2 is the skewness due to hidden truncation induced by the random

variable Y > 0 and λ0 is the shift parameter, which in some sense also regulates kurtosis (Arellano-

Valle & Genton, 2010).
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Figure 1: (a) Plots of PDFs of EGSN; (b) Plots of PDFS to illustrate Kurtosis of EGSN.

Figure 1 shows densities of EGSN. This figure further illustrates some of the simple properties

of the distribution. A comparison of the density EGSN(0,0,0) and EGSN(0,1,-1) shows that the

latter is also symmetric but with different kurtosis.

Proposition 3. The extended two-parameter generalized skew-normal density function is log con-

cave.
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Proof. To prove that log f(z;λ0, λ1, λ2) is a concave function of z, it suffices to show that the

second derivative of log f(z;λ0, λ1, λ2) is negative for all z ∈ R. Now,

d2 log f(z;λ0, λ1, λ2)

dz2
=−

[
1 + λ21Λ(λ1z)

(
λ1z + Λ(λ1z)

)
+λ22Λ(λ0 + λ2z)

(
(λ0 + λ2z) + Λ(λ0 + λ2z)

)]
,

where Λ(.) = φ(.)/Φ(.). Since Λ(.) is a positive function, we only need to show that λ1z + Λ(λ1z)

and (λ0 + λ2z) + Λ(λ0 + λ2z) are positive for all z ∈ R.

Case 1: If λ1z ≥ 0, then λ1z + Λ(λ1z) is clearly positive.

Case 2: If λ1z < 0, let t = −λ1z. Then, φ(λ1z) = φ(−λ1z) = φ(t) and Φ(λ1z) = 1−Φ(−λ1z) =

1 − Φ(t). Thus, Λ(λ1z) + λ1z = φ(t)
/

(1 − Φ(t)) − t = r(t) − t, where r(t) is the failure rate

of the standard normal distribution. It is known that r(t) > t, so the requirement is proved.

The second part of the requirement, (λ0 + λ2z) + Λ(λ0 + λ2z) > 0, follows from the fact that

t+ Λ(t) > 0 ∀ t ∈ R.

Proposition 4. The extended two-parameter generalized skew-normal density function is unimodal.

Proof. The proof follows from proposition 3 and the fact that a nondegenerate distribution F is

strongly unimodal if and only if it has a log concave density f (Marshall & Olkin, 2007, p99,

proposition B.2.)

3.2. Link between EGSN and CSN distribution

The EGSN distribution, like the GSN, can be linked with the CSN distribution. Briefly, the

CSN distribution is defined as follows.

Definition 2. Consider p ≥ 1, q ≥ 1, µ ∈ Rp, ν ∈ Rq, D an arbitrary q × p matrix, Σ and ∆

positive definite matrices of dimensions p × p and q × q, respectively. Then the PDF of the CSN

distribution is given by:

fp,q(y) = Cφp(y;µ,Σ)Φq(D(y − µ);ν,∆), y ∈ Rp, (9)

with:

C−1 = Φq(0;ν,∆ +DΣD′),
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where φp(.;η,Ψ), Φp(.;η,Ψ) are the PDF and CDF of a p-dimensional normal distribution with

mean η ∈ Rp and p× p covariance matrix Ψ. We write y ∼ CSNp,q(µ,Σ, D,ν,∆), if y ∈ Rp is

distributed as CSN distribution with parameters q,µ, D,Σ,ν,∆.

The EGSN model inherits properties of the CSN distribution via reparametrisation as equation

(9). Thus, (8) can be re-written as

φ(z)Φ2

(
λ1z, λ2z; (0,−λ0), 1

)
Φ2

(
0, λ0

/√
1 + λ22;λ1λ2

/√
1 + λ21

√
1 + λ22

) ,
which is a CSN density with parameters µ = 0, Σ = 1, D = (λ1, λ2)

′, ν = (0,−λ0)′ and ∆ = I2.

The corresponding CDF is given by

k(λ0, λ1, λ2)Φ3



z

0

0

 ;


0

0

−λ0

 ,


1 −λ1 −λ2
−λ1 1 + λ21 λ1λ2

−λ2 λ1λ2 1 + λ22


 .

Additional properties of the distribution can be derived using this link. For instance, the sum of

Zλ0,λ1,λ2 ∼ EGSN(λ0, λ1, λ2) and X ∼ N(0, 1), is

1√
2

(
Zλ0,λ1,λ2 +X

)
∼ CSN1,2

[
0, 1, (λ1

/√
2, λ2

/√
2)′, (0,−λ0)′,

1 + λ21/2 λ1λ2/2

λ1λ2/2 1 + λ22/2

],
which is an EGSN(λ0, λ1/

√
2, λ2/

√
2) distribution.

The argument leading to density (8) has an implicit method for random number generation: the

values of X such that λ0 + λ2X > Y are sampled from its distribution.

3.3. Moments and Maximum Likelihood estimator of the EGSN model

Proposition 5. IfM(t;λ0, λ1, λ2) is the moment generating function ofZλ0,λ1,λ2 ∼EGSN(λ0, λ1, λ2),

then

M(t;λ0, λ1, λ2) = k(λ0, λ1, λ2)e
t2/2Φ2

(
λ1t√
1 + λ21

,
λ0 + λ2t√

1 + λ22
;

λ1λ2√
1 + λ21

√
1 + λ22

)
, (10)

where k(λ0, λ1, λ2) is as given in (8).
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Proof. The proof is immediate from the moment generating function of the CSN distribution.

The moments of Zλ0,λ1,λ2 can be obtained from (10). The mean is given as

E(Zλ0,λ1,λ2) =k(λ0, λ1, λ2)

{
1√
2π

λ1√
1 + λ21

Φ

(
λ0
√

1 + λ21√
1 + λ21 + λ22

)

+
λ2√

1 + λ22
φ

(
λ0√

1 + λ22

)
Φ

(
−λ0λ1λ2√

1 + λ22
√

1 + λ21 + λ22

)}
.

(11)

To fit the model to data, one can introduce the affine transformation Y = µ + σZλ0,λ1,λ2 ∼

EGSN(µ, σ2, λ0, λ1, λ2). The density becomes

f(y;µ, σ2, λ0, λ1, λ2) =

2
σ
φ
(
y−µ
σ

)
Φ
(
λ1(y−µ)

σ

)
Φ
(
λ0 + λ2

(
y−µ
σ

))
FSN

(
λ0√
1+λ22

; −λ1λ2√
1+λ21+λ

2
2

) . (12)

The log-likelihood function in this case is

l(Ξ) =n ln 2− n

2
ln 2π − n

2
lnσ2 −

n∑
i=1

(yi − µ)2

σ2
+

n∑
i=1

ln Φ

(
λ1(yi − µ)

σ

)
+

n∑
i=1

ln
[
Φ
(
λ0 + λ2

(yi − µ
σ

))]
− n ln

[
FSN

( λ0√
1 + λ22

;
−λ1λ2√

1 + λ21 + λ22

)]
,

where Ξ = (µ, σ, λ0, λ1, λ2).

The parameters in the EGSN model can be interpreted. If we write (11) as E(Y ) = µ +

σE(Zλ0,λ1,λ2), then µ is the theoretical mean in the original skew population that is not subjected

to hidden truncation. This representation can be used for the evaluation of model fit. In addition,

since the EGSN model is an extension of the ESN model, it suffers from parameter identifiability

draw-backs as well. For instance, if λ1 = λ2 = 0, the distribution becomes the normal distribution

regardless of the value of λ0. The added advantage of the model is that the skewness parameters

are distinct and in many practical applications, λ1 and λ2 will not be exactly zero simultaneously.

4. Illustrative Example

We consider a data set on married women’s labour force participation (Wooldridge, 2002), with

female wages as the outcome of interest. The outcome of interest is missing for 325 (43%) of the

753 women in the sample. As the data generating mechanism is from a sample selection setting, it
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is natural to model the observed part of the data using the EGSN and ESN models. Due to severe

skewness, logarithm of wage is used as the response and we consider dependence on education

status (1=graduate, 0= not) and city (1=city, 0=rural), i.e. x = (1, educ, city). Our focus will be

on complete case analysis with 428 women.

Table 1: MLEs for the Wage offer data using EGSN model and its sub-models

Normal S-Normal GSN ESN EGSN

(Intercept) -0.200 0.399 0.174 15.976 36.121

educ 0.107 0.108 0.109 0.111 0.111

city 0.066 0.096 0.095 0.092 0.086

σ 0.677 0.934 5.606 2.865 12.639

λ̂0 - - - -34.671 -78.528

λ̂1 - - 5.547 - 2.818

λ̂2 - -1.853 -11.821 -6.138 -27.306

log(L(θ)) -440.808 -425.763 -421.844 -415.052 -413.069

Table 1 shows the results of fitting the EGSN and its sub-models to the wage offer data. Even

with the logarithm transformation of the response, the effect of skewness is still pronounced (like-

lihood ratio statistic of Normal model vs. S-Normal model is 30.09, P<0.0001). To avoid the near

identifiability problem highlighted in Arnold et al. (1993) for the ESN model, we estimated the

parameters of the EGSN and ESN models using profile log-likelihood constructed as a function of

λ0. The ESN model fits better than the GSN for the same number of parameters. This indicates

that the data was, perhaps, generated by selection above a threshold (expressed through λ0) rather

than by the double skewing of the GSN(λ1, λ2). This result is not surprising given that hidden

truncation and sample selection models are related. Although both λ1 and λ2 control skewness in

the EGSN and GSN models, their roles are not the same. The former is the inherent skewness in

the original data while the latter is due to hidden truncation. Hence, the skewness due to hidden

truncation in SN (Azzalini, 1985 model) and the ESN models is captured by λ2.
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5. EGSN model and Sample selection density

The data used in Table 1 arises from sample selection setting, hence the consistent results ob-

tained from the ESN and EGSN models. Model (12) can be reparametrised as the continuous

component of a sample selection density having skew-normal distribution features with the substi-

tution µ = β′x, λ0 = γ′x/
√

1− ρ2 ∈ R and λ = ρ/
√

1− ρ2 ∈ R as

f(y) =

2
σ
φ
(
y−β′x
σ

)
Φ
(
λ1(y−β′x)

σ

)
Φ
(
γ′x+ρ

(
y−β′x
σ

)
√

1−ρ2

)
FSN

(
γ′x; 0, 1, −λ1ρ√

1+λ21−λ21ρ2

) , (13)

where the outcome and the selection models are respectively Y = β′x + σε1 and S = γ′x + ε2,

and ε1
ε2

 ∼ SN2


0

0

 ,

1 ρ

ρ 1

 ,

λ1
0

 .

SN2 and x represents the bivariate skew-normal distribution and the covariates in the data, ρ is

the correlation between Y and S, and λ1 is the inherent skewness in the outcome from the popu-

lation. The link that we have established can easily be used to study the properties of the sample

selection model given in (13) as we have done in section 3. For example, equation (11) can be

used to derive the conditional expectation of the observed data when the data is skew by using the

reparametrisation above. This conditional expectation extends Heckman (1979) two-step method

by an additional parameter, λ1.

6. Concluding Remarks

We have introduced and studied an extended version of the two-parameter generalized skew-

normal distribution (EGSN) of Jamalizadeh et. al. (2008). The distribution was derived using

hidden truncation on a skew-normal random variable. A link between the model and sample se-

lection models provides additional flexibility in modelling observed data arising from selection,

which cannot be captured in the original GSN distribution.

The proposed model can also be considered as an extension of the extended skew-normal (ESN)

distribution with an additional skewness parameter. Unlike the ESN model, the EGSN model can
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capture skewness inherent in the original population from which the observed data is derived. In

addition, the parameters in the model have distinct interpretation; the location parameter estimates

the theoretical mean for the covariates in the original population. Although the skewness parame-

ters are distinct, we have not yet investigated their possible joint role in regulating skewness in the

model.
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