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Abstract

In this paper, we derive a parabolic partial differential equation for the expected exit time
of non-autonomous time-periodic non-degenerate stochastic differential equations. This estab-
lishes a Feynman-Kac duality between expected exit time of time-periodic stochastic differential
equations and time-periodic solutions of parabolic partial differential equations. Casting the
time-periodic solution of the parabolic partial differential equation as a fixed point problem and
a convex optimisation problem, we give sufficient conditions in which the partial differential
equation is well-posed in a weak and classical sense. With no known closed formulae for the
expected exit time, we show our method can be readily implemented by standard numerical
schemes. With relatively weak conditions (e.g. locally Lipschitz coefficients), the method in
this paper is applicable to wide range of physical systems including weakly dissipative systems.
Particular applications towards stochastic resonance will be discussed.

Keywords: expected exit time; first passage time; time-inhomogeneous Markov processes;
Feynman-Kac duality; stochastic resonance; locally Lipschitz; time-periodic parabolic partial
differential equations.

1 Introduction

In many disciplines of sciences, (expected) exit time of stochastic processes from domains is an
important quantity to model the (expected) time for certain events to occur. For example, time
for chemical reactions to occur [Kra40, Gar09, Zwa01], biological neurons to fire [RS79, Sat78],
companies to default [BC76, BR04], ions crossing cell membranes in molecular biology [Bre04] are
all broad applications of exit times. For autonomous stochastic differential equations (SDEs), the
expected exit time from a domain has been well-studied in existing literature. In particular, it is well-
known that the expected exit time satisfies a second-order linear elliptic partial differential equation
(PDE) [Has12, Gar09, Zwa01, Pav14, Ris96]. However, in existing literature, it appears that the
expected exit time PDE is absent for non-autonomous SDEs and in particular time-periodic SDEs.
Our novel contribution is the rigorous derivation of a second-order linear parabolic PDE obeyed
by the expected exit time of time-periodic SDEs as its time-periodic solution. This establishes
a Feynman-Kac duality for time-periodic SDEs for the expected duration. We expect that our
approach and this duality go beyond this current paper to derive similar parabolic PDEs for other
quantities associated to time-periodic SDEs. Conversely, we expect this duality provides stochastic

1



insight into existing time-periodic solutions of parabolic PDEs. In this paper, we also discuss briefly
the ill-posedness of the PDE for the general non-autonomous SDE case and thereby explaining its
absence in literature.

With typical and relatively weak SDE conditions e.g. non-degenerate diffusion and existence
of continuous Markov transition density, the PDE can be rigorously derived. In the interest of
many physical systems, we show that the results readily apply to weakly dissipative SDEs. The
conditions required to solve the PDE are weaker than that to derive the PDE from the SDE. This
is expected because from a PDE perspective, weak solutions of PDE on bounded domains can
often be attained requiring coefficients to only be Lp or Hölder; and classical solutions may be
obtained via Sobolev embedding. On the other hand, as a priori, it is not known if the process
would exit the bounded domain in finite time or indeed have finite expectation. By considering
the SDE and its Markov transition probability on the entire unbounded domain, we show that if
the exit time has finite second moment then the PDE derivation can be rigorously justified. We
show that irreducibility and the strong Feller property of the Markov transition probability are the
key ingredients to conclude the exit time has finite second moment. While it is well-known that
the strong Feller property holds provided the coefficients are globally Hölder and bounded with
uniformly elliptic diffusion [Fri64, SV06], these conditions are too restrictive for the applications
from a SDE perspective. The celebrated Hörmander’s condition is a weak condition to deduce the
strong Feller property for autonomous SDE [Hör85, Mal78, Hai11]. In the recent paper [HLT17],
the authors extended Hörmander’s condition to sufficiently imply the strong Feller property holds
for non-autonomous SDEs. The smoothness SDE conditions of this paper is to invoke the result of
[HLT17] while flexible enough for applications.

We provide two complementary approaches to prove that the parabolic PDE has a unique
solution in a weak and classical sense. In the proofs, we keep as much generality as convenient to
show the main ingredients for the well-posedness of the PDE and for straightforward application
to similar problems. In one approach, we show that the time-periodic solution can be casted as a
fixed point of the parabolic PDE evolution operator after a period. We prove that if the associated
bilinear form is coercive, then the time-periodic solution exists and is unique by Banach Fixed Point
Theorem. As coercivity can be difficult to verify in practice, we also take a calculus of variation
approach. Specifically, we cast the problem as a convex optimisation problem by defining a natural
cost functional and show that a unique minimiser exists and satisfies the PDE.

We emphasise that while our core results are theoretical in nature, the Banach fixed point
and convex optimisation approach can be readily implemented by standard numerical schemes.
Acquiring the tools to numerically compute the expected exit time is vital because explicit or even
approximate closed form formulas for the expected time are rarely known, even in the autonomous
case. The known cases include (autonomous) one-dimensional gradient SDEs with additive noise,
where the expected exit time can be expressed as a double integral [Gar09] and has an approximate
closed form solution given by Kramers’ time, when the noise is small [Kra40]. Kramers’ time has
since been extended to higher dimensional gradient SDEs [Ber11]. However, to our knowledge,
there are currently no-known exact formulae for the time-periodic case. Therefore, particularly for
applications, there is an imperative to solving the PDE numerically.

This paper together with the periodic measure concept provides a novel mathematical ap-
proach to stochastic resonance, a phenomena that we now briefly describe. In a series of papers
[BPSV81, BPSV82, BPSV83, Nic82], the paradigm of stochastic resonance was introduced to ex-
plain Earth’s cyclical ice ages. In particular, the authors proposed a double-well potential SDE
with periodic forcing to model the scientific observation that Earth’s ice age transitions from “cold”
and “warm” climate occurs abruptly and almost regularly every 105 years. The wells model the
two metastable states, where the process typically stays at for large amount of time. The peri-
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odic forcing corresponds to the annual mean variation in insolation due to changes in ellipticity
of the earth’s orbit, while noise stimulates the global effect of relatively short-term fluctuations
in the atmospheric and oceanic circulations on the long-term temperature behaviour. In the ab-
sence of noise (with or without periodic forcing), these models do not produce transition between
the two metastable states. Similarly, in the absence of periodic forcing, while the noise induces
transitions between the stable states, the transitions are not periodic. It is the delicate interplay
between periodicity and noise that explains the transitions between the metastable states to be
periodic. Since the seminal papers, stochastic resonance has found applications in many physical
systems including optics, electronics, neuronal systems, quantum systems amongst other applica-
tions [GHJM98, JH07, ZMJ90, Jun93, HIP05, Lon93].

The concept of periodic measures and ergodicity introduced in [FZ16] provides a rigorous frame-
work and new insight for understanding such physical phenomena. Indeed, in [FZZ19], broad classes
of SDEs were shown to possess a unique geometric periodic measure and specifically shown to ap-
ply double-well potential SDEs. The uniqueness of geometric periodic measure implies transition
between the wells occurs [FZZ19]. While there is no standard definition [JH07, HI05], stochastic
resonance is said to occur if the expected transition time between the metastable states is (roughly)
half the period [CLRS17]. Indeed, the transition time between the wells is a special case of exit time.
Applying the theory developed in this paper, we show that computationally solving the PDE and
stochastic simulation for the expected transition time agrees. We then fine tune the noise intensity
until the system exhibit stochastic resonance. Our PDE results also show the transition between
cold and ward climates is indeed very abrupt when regime change happens.

Existing stochastic resonance literature often utilise Kramers’ time, note however that Kramers’
time applies only to autonomous gradient SDE case and in the small noise limit. For example
in [MW89, CGM05] reduced the dynamics to "effective dynamics" two-state time-homogeneous
Markov process and invoked a time-perturbed Kramers’ time. More generally, utilising large devi-
ation and specifically Wentzell–Freidlin theory [FW98], stochastic resonance and related estimates
can be attained in the small noise limit. For example, [MS01] attained estimates for escape rates, a
closely related quantity to expected transition time. Similarly, in [IP01] and [HI05, HIP05, HIPP14],
the authors obtained estimates for the noise intensity for stochastic resonance by reducing to two-
state Markov process and time-independent bounds respectively. In this paper, we retain the time-
dependence of the coefficients and furthermore, small and large noise are permissible. In fact, the
noise can even be state-dependent and exact exit time duration is obtained.

2 Expected Exit Time and Duration

2.1 Introduction

Consider a stochastic process (Xt)t≥s on Rd with continuous sample-paths and an open non-empty
(possibly unbounded) domain D ⊂ Rd with boundary ∂D. Without loss of generality, we assume
throughout this paper that D is connected. Indeed if D is disconnected, one can solve separately
on each connected subset. We define the first exit time from the domain D (or first passage time
or first hitting time to the boundary) by

ηD(s, x) := inf
t≥s
{Xt /∈ D|Xs = x} = inf

t≥s
{Xt ∈ ∂D|Xs = x}, (2.1)

where x ∈ D and the equality holds by sample-path continuity. We let ηD(s, x) =∞ ifXt never exits
D. While the absolute time in (2.1) is important, it is mathematically convenient and practically
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useful to study instead the exit duration

τD(s, x) := ηD(s, x)− s (2.2)

directly. AsD is generally fixed, where unambiguous, we omit the subscriptD i.e. η(s, x) = ηD(s, x)
and τ(s, x) = τD(s, x). By Début theorem, η(s, x) is both a hitting time and a stopping time. In
general, τ(s, x) is not. Thus some proofs and computations will be first done for η(s, x), then related
to τ(s, x) via (2.2). In this paper, we are interested in their expectations

η̄(s, x) := E[η(s, x)], τ̄(s, x) := E[τ(s, x)]. (2.3)

In conventional notation, one typically writes η̄ = Es,x[η] and τ̄ = Es,x[τ ]. For subsequent proofs,
it is often more convenient that we keep the explicit dependence on the random variables.

In this paper, we are specifically interested in the expected exit and duration time for T -periodic
non-degenerate SDEs on Rd of the form{

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, t ≥ s,
Xs = x, x ∈ D,

(2.4)

where Wt is a d-dimensional Brownian motion on a probability space (Ω,F ,P), b ∈ C(R× Rd,Rd)
and σ ∈ C(R× Rd,Rd×d) are T -periodic i.e.

b(t, ·) = b(t+ T, ·), σ(t, ·) = σ(t+ T, ·),

such that a unique solution Xt = Xs,x
t exist. To avoid triviality, we always assume the coefficients

collectively have a minimal period i.e. at least one of the coefficients have a minimal period.
When a unique solution of (2.4) exists, one can define the Markovian transition probability

P (s, t, x,Γ) := P(Xt ∈ Γ|Xs = x), s ≤ t,Γ ∈ B(Rd). (2.5)

If SDE (2.4) is T -periodic, then it is straightforward to show that

P (s, t, x, ·) = P (s+ T, t+ T, x, ·), s ≤ t. (2.6)

We refer to SDEs as non-autonomous when there is an explicit time-dependence, periodic or
otherwise. When the SDE coefficients are time-independent i.e. b(t, ·) = b(·) and σ(t, ·) = σ(·), then
the SDE (2.4) is said to be autonomous. It is well-known that for autonomous SDEs, the expected
exit time and expected duration coincide [Gar09, Pav14, Zwa01]. Denoting both the expected exit
and duration time by τ̄(x), it is moreover known that τ̄(x) satisfies the following second-order
elliptic PDE with vanishing boundaries [Has12, Gar09, Pav14, Zwa01, Ris96]{

Lτ̄ = −1, in D,
τ̄ = 0 on ∂D,

(2.7)

where

Lf =
d∑
i=1

bi(x)∂if(x) +
1

2

d∑
i,j=1

aij(x)∂2
ijf(x), f ∈ C2

0 (Rd), (2.8)

is the usual infinitesimal stochastic generator with the conventional notation ∂i = ∂xi and a(x) =
(σσT )(x).
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For non-autonomous SDEs however, due to the explicit dependence on time, expected exit time
and expected duration no longer coincide. That is, τ̄(s, x) generally depends on both initial time
and initial state. In this non-autonomous case, we write explicitly the time-dependence and define
the stochastic infinitesimal generator of (2.4) by

L(s)f(x) =
d∑
i=1

bi(s, x)∂if(x) +
1

2

d∑
i,j=1

aij(s, x)∂2
ijf(x), f ∈ C2

0 (Rd), (2.9)

and its adjoint (on C2
0 (Rd)), the Fokker-Planck operator by

L∗(s)f(x) = −
d∑
i=1

∂i(b
i(s, x)f(x)) +

1

2

d∑
i,j=1

∂ij
(
aij(s, x)f(x)

)
, f ∈ C2

0 (Rd). (2.10)

It is easy but important to see that for non-autonomous SDEs, τ̄(s, x) does not satisfy (2.7)
even if L is replaced by L(s). We note also one approach is to consider lifted coordinates (t,Xs,x

t ).
This autonomisation approach was noticed by two of the authors in their work [FZ16], where the
terminology “lift” was used. In fact, the lift leads to Markovian RDS (Random Dynamical System)
cocycle and homogeneous Markov semigroup. This allows us to obtain an invariant measure from
the periodic measure. The operator ∂s+L(s) appeared naturally as the infinitesimal generator of the
lifted semigroup and its spectral structure was also analysed to have an infinite number of equally
placed pure imaginary eigenvalues. This very interesting phenomena is due to the degeneracy of
∂s + L(s) and periodic boundary condition. This agrees with their spectral structure of ergodic
periodic measures of homogeneous Markov semigroup studied in the first part of the paper which
was already published in [FZ20]. The lifting was heavily used in our earlier paper [FZZ19], where we
discussed Fokker-Planck equation for the density of periodic measure. However for the problem we
consider in this paper, we need to come back to the spatial state space due to technical challenges
that arises when applying the techniques of autonomous system directly to the lifted coordinates
(t,Xt). We briefly survey these issues below.

We note that while the Markov transition probability of lifted coordinates (t,Xt) is time-
homogeneous, it immediately loses other important properties such as irreducibility and strong
Feller property. This means classical results are not applicable. For instance, it is easy to show
the lifted process can never be ergodic. Some papers such as [BDE01] observed that (t,Xt) is
time-homogeneous and applied (2.7) with operator ∂s + L(s). However, upon close inspection of
the derivation of (2.7) from texts including [Has12, Gar09, Pav14, Zwa01, Ris96], we note that (2.7)
was derived only for autonomous systems, rather than non-autonomous systems.

Directly applying the autonomous results for non-autonomous SDEs with lifted coordinates
(t,Xt) leads to technical boundary conditions issues. For instance, from a SDE perspective, while
(2.1) is well-defined in spatial coordinates, it is not immediately clear how to define exit time in
(t,Xt) coordinates. Possibly the most natural choice is πx(t,Xt), where πx is the spatial projection.
This adds unnecessary complexity and leads to further issues from a PDE perspective. Specifically,
suppose we can extend the classic result from [Has12, Gar09, Pav14, Zwa01, Ris96] directly to (t,Xt),
then it suggests we replace the boundary conditions of (2.7) with u(s, x) = 0 on ∂(R+ × D) =
({0} ×D) ∪ (R+ × ∂D). This is problematic. Treated as a parabolic PDE, this suggest that if
the process starts at time s = 0, then for any x ∈ D, the exit time to leave the domain is zero.
This cannot be the case. If persisted to interpreted as an elliptic equation, the elliptic PDE would
be degenerate and the boundary conditions is insufficient (as conditions on {T} × D is missing,
assuming we cap R+ to some finite T ). If we diverge from [Has12, Gar09, Pav14, Zwa01, Ris96]
slightly, the intuitive boundary condition is again πxu(s, x) = 0. This is problematic in that there
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are minimal (if any) PDE theory that deals with such projection boundary conditions therefore
making attempts to prove existence and uniqueness difficult. It is our assumption that particular to
the boundary conditions is why [Has12, Gar09, Pav14, Zwa01, Ris96] and other similar texts have
omitted the non-autonomous SDE case.

The novel contribution of this paper is the rigorous derivation of the second-order parabolic
PDE (2.24) in which τ̄ satisfies for T -periodic SDEs. This is complete with boundary conditions in
space and periodicity in the time domain to show the PDE is well-posed. Furthermore, using the
framework we build in this paper, we provide numerical methods for solving the periodic solution
of the parabolic PDE.

2.2 Expected Duration PDE Derivation

To rigorously derive the expected duration PDE, we first fix some standard nomenclature and
notation. For the open domain D ⊂ Rd and open interval I ⊂ R+. We define their Cartesian
product by DI := I ×D. When I = (0, T ), we define DT := (0, T ) ×D. And we define Br(y) :=
{x ∈ Rd| ‖x− y‖ < r} for the open ball of radius r > 0 centred at y, and denote for convenience
Br := Br(0). On Rd, we let Λ be the Lebesgue measure. For matrices, we let L2(Rd) := {σ ∈
Rd×d|‖σ‖2 < ∞}, where ‖σ‖2 =

√
Tr(σσT ) =

√∑d
i,j=1 σ

2
ij is the standard Frobenius norm. For

θx ∈ (0, 1], denote by Cθx(D) the collection of all functions globally θx-Hölder continuous on D.
For θt, θx ∈ (0, 1], denote by Cθt,θx(I ×D) the set of functions θt-Hölder and θx-Hölder functions in
the t and x variable respectively.

Let kt, kx ∈ N, we denote by Ckt,kx(I×D) to be the space of continuously kt-differentiable func-
tions in t and continuously kx-differentiable function in x. For θt, θx ∈ (0, 1], Ckt+θt,kx+θt(I × D)
denotes the space of Ckt,kx(I ×D) functions in which the kt’th t-derivative and kx’th x-derivatives
are θt and θx are Hölder respectively. We also let C∞b (Bn) denote the space of bounded infinitely
differentiable real-valued functions on Bn. Define for ease, ‖σ‖∞ := sup(t,x)∈R+×Rd‖σ(t, x)‖2. Fol-
lowing the conditions required of Theorem 1 of [HLT17], we say that drift is said to be locally
smooth and bounded if for all n ∈ N,

b(t, x) + ∂βb(t, x) bounded on R+ ×Bn, (2.11)

where β = (β0, β1, ..., βd) ∈ Nd+1, |β| :=
∑d

i=0 βi = d and ∂β := ∂|β|

∂
β0
t ∂

β1
x1
···∂βdxd

. Note that the partial

derivative here refers to derivative in any spatial direction and in the time direction.
We say the SDE (2.4) satisfies the regularity condition if its coefficients b and σ are locally

Lipschitz and there exists a function V ∈ C1,2(R+ × Rd,R+) and a constant c > 0 such that
limx→∞ V (t, x) =∞ for all fixed t and

L(t)V ≤ cV, on R+ × Rd. (2.12)

It was shown in [Has12] that if SDE (2.4) satisfies the regularity condition (2.12), then the process
is regular i.e. Ps,x{η∞ =∞} = 1, where η∞ = limn→∞ ηBn . Moreover, there exists a unique almost
surely finite solution. SDE (2.4) is said to be weakly dissipative if there exists a constant c ≥ 0,
λ > 0 such that

2〈b(t, x), x〉 ≤ c− λ‖x‖2 on R+ × Rd. (2.13)

If c = 0, then it is said to be dissipative. While weak dissipativity is a stronger condition than (2.12)
and is also often easier to verify, particularly for many typical physical systems. It was shown that
T -periodicity and weak dissipativity leads to the geometric ergodicity of periodic measures [FZZ19].
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We say σ is locally smooth and bounded if for all n ∈ N

σij ∈ C∞b (Bn), 1 ≤ i, j ≤ d. (2.14)

Finally, we say σ is (globally) bounded with (globally) bounded inverse if

max{‖σ‖∞, ‖σ−1‖∞} <∞. (2.15)

Observe (2.14) and (2.11) imply the respective functions are locally Lipschitz. Whenever we assume
(2.14), we always demand that σ is a function of spatial variables only.

It appears that in numerous existing literature, almost surely finite exit time is implicitly as-
sumed. Particularly for degenerate noise, it may well be that the exit time is infinite with positive
probability or indeed almost surely. Utilising asymptotic stability of diffusion processes, it is easy to
construct examples where the process never leaves a point or domain. We refer readers to [Mao07]
for examples. In the following lemma, we give verifiable conditions to imply irreducibility and show
further that η is almost surely finite with finite first and second moments.

Lemma 2.1. Let D ⊂ Rd be a non-empty open bounded set. Assume that the T -periodic SDE (2.4)
satisfies (2.12), (2.11), (2.14) and (2.15). Then η(s, x) is finite almost surely for all (s, x) ∈ R+×D.
Moreover, η(s, x) has finite first and second moments.

Proof. It was shown in [FZZ19] that (2.12) and (2.15) sufficiently implies P is irreducible i.e.
P (s, t, x,Γ) > 0 for all x ∈ Rd, 0 ≤ s < t < ∞ and non-empty open set Γ ∈ B(Rd). Then for
any fixed s ∈ R+, for all x ∈ Rd, it follows that there exists an ε(x) = ε(s, x,D) ∈ (0, 1) such that

ε(x) = P (s, s+ T, x,D).

By the results of [HLT17], [FZZ19] showed that when conditions (2.12), (2.11), (2.14) and (2.15)
hold then P possesses a smooth density. This implies that P is strong Feller i.e. P (s, t, ·,Γ) is
continuous for all s < t and Γ ∈ B(Rd). Then it follows from the boundedness of D that the
probability of staying within D in one period is at most

ε := sup
x∈D̄

ε(x) > 0.

Since P is irreducible and D ⊂ Rd is non-empty open, we have that P (s, s+ T, x,Dc) > 0 for any
x ∈ D. Further, since D is bounded, we deduce that ε < 1. By (2.6), Zs,x = (Zs,xn ) := (Xs,x

s+nT )n∈N
is time-homogeneous Markov chain with one-step Markovian transition P (s, s+ T, x, ·). Define the
exit time

ηZ = ηZ(s, x) := min{n ∈ N : Zs,xn /∈ D}.

By sample-path continuity of Xt, it is clear that Xt /∈ D for at least one t ∈ [s+(ηZ−1)T, s+ηZT ].
Hence τ(s, x) := η(s, x)− s ≤ ηZ(s, x) · T , in particular, we have

{ηZ(s, x) ≥ n} ⊂ {η(s, x) ≥ s+ nT}.

Hence if P(ηZ <∞) = 1 then P(η <∞) = 1 i.e. if Zsn leaves D in almost surely finite time then Xt

does also. For any n ∈ N, it is easy to see that

{ηZ = n} = {Zsn ∈ Dc} ∩
n−1⋂
m=1

{Zsm ∈ D}.
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Since Zs0 = x ∈ D, by elementary time-homogeneous Markov chain properties,

P(ηZ = n) = P(Zsn ∈ Dc|
n−1⋂
m=0

{Zsm ∈ D})P(
n−1⋂
m=0

{Zsm ∈ D})

= P(Zsn ∈ Dc|Zsn−1 ∈ D)
n−1∏
m=1

P(Zsm ∈ D|Zsm−1 ∈ D)

≤ εn−1. (2.16)

This concludes that η is almost surely finite. Via (2.16), it is elementary to show that τ has finite
first and second moments:

E[τ(s, x)] ≤ TE[ηZ(s, x)] = T
∞∑
n=0

nP(ηZ = n) ≤ T
∞∑
n=0

d

dε
εn = T

d

dε

1

1− ε
=

T

(1− ε)2 <∞.

Similarly,

E[τ2(s, x)] ≤ T 2E[η2
Z(s, x)] = T 2

∞∑
n=0

[
d2

dε2
εn+1 − d

dε
εn
]

=
T 2(1 + ε)

(1− ε)3
<∞.

It follows that η has finite first and second moments.

Remark 2.2. Observe that Lemma 2.1 abstractly holds provided that P is irreducible and strong
Feller. It is well-known that for autonomous SDEs, Hörmander’s condition sufficiently implies the
existence of a smooth density for P and therefore implies the strong Feller property. However,
we note that Hörmander’s condition is not sufficient for Lemma 2.1 to hold. Firstly, Hörmander’s
condition is insufficient to imply irreducibility, we refer readers to Remark 2.2 of [Hai11] for a
counterexample. Secondly, Hörmander’s condition was classically written for autonomous systems
hence not directly applicable to the current non-autonomous case. Inclusive of the non-autonomous,
it is well-known that density of P exists for uniformly elliptic diffusions with globally Hölder and
bounded coefficients in Rd [FW98, SV06]. However, these conditions can be too restrictive for applic-
ations from the SDE perspective. On the other hand, Theorem 1 of [HLT17] extends Hörmander’s
condition to the case of non-autonomous SDEs with the conditions (2.11), (2.12) and (2.14). While
these conditions require more smoothness than globally Hölder mentioned, the coefficients can be
unbounded and is flexible enough for a wide range of SDEs.

Remark 2.3. It should be clear that Lemma 2.1 can be adapted to hold in the more general (not-
necessarily T -periodic) non-autonomous case. Namely by picking any fixed T > 0, define εn :=
supx∈D P (s+(n−1)T, s+nT, x,D), then the same calculations via properties of the two-parameter
Markov kernel yields P(ηZ = n) ≤ εn, where ε := maxn∈N εn.

The Fokker-Planck equation is a well-known second-order linear parabolic PDE that describes
the time evolution of the probability density function associated to SDEs [BKRS15, Ris96, Has12,
Pav14, Gar09, Zwa01]. The existence and uniqueness of Fokker-Planck equation have been studied in
many settings including irregular coefficients and time-dependent coefficients [LL08, BKRS15, RZ10,
DR12]. In [FZZ19], it was shown that the periodic measure density is necessarily and sufficiently
the time-periodic solution of the Fokker-Planck equation. Existence of time-periodic solution of the
Fokker-Planck has been discussed in [Jun89, CHLY17, JQSY19].

To study the exit problem, we study the Fokker-Planck equation in the domain D and impose
absorbing boundaries [Ris96, Gar09, Pav14]. Specifically, let pD(s, t, x, y) denote the probability
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density of the process starting at x at time s to y at time t that gets absorbed on ∂D. Then the
density pD satisfies the following Fokker-Planck equation

∂tpD(s, t, x, y) = L∗(t)pD(s, t, x, y),

pD(s, s, x, y) = δx(y), x ∈ D,
pD(s, t, x, y) = 0, if y ∈ ∂D, t ≥ s.

(2.17)

Here L∗(t) acts on forward variable y. To discuss the solvability of (2.17) and subsequent PDEs,
we lay out typical PDE conditions that are weaker than conditions required by Lemma 2.1.

Condition A1: For some θ ∈ (0, 1],

(i) Domain D ∈ B(Rd) is non-empty and open with boundary ∂D ∈ Cθ(Rd−1).

(ii) The coefficients aij , bi ∈ C
θ
2
,θ(D̄T ).

(iii) The matrix a(s, x) = (aij(s, x)) is uniformly elliptic i.e. there exists α > 0 such that

〈a(s, x)ξ, ξ〉Rd ≥ α ‖ξ‖
2
Rd , (s, x) ∈ DT , ξ∈ Rd. (2.18)

Particularly for adjoint operator L∗(t) where more differentiability is required, we consider further

Condition A2: For some θ ∈ (0, 1], Condition A1 holds and moreover aij , bi ∈ C1+θ,2+θ(D̄T )
and ∂D ∈ C2+θ(Rd−1).

It is well-known that if Condition A2 holds, then there exists a unique solution pD(s, ·, x, ·) ∈
C1,2(DT ) to (2.17). Moreover, pD(s, t, x, y) is jointly continuous in (x, y). For details, we refer
readers to Section 7, Chapter 3 in [Fri64]. The following lemma and its proof are similar to the
one presented in [Gar09, Pav14, Ris96] when the coefficients are time-independent. We prove for
the time-dependent coefficients case. For clarity of the key ingredients of the following lemma, we
assume η to have finite second moment rather than the conditions assumed in Lemma 2.1.

Lemma 2.4. Assume that Condition A2 holds for SDE (2.4). Assume further that η has finite
second moment. Then

τ̄(s, x) =

∫ ∞
s

∫
D
pD(s, t, x, y)dydt, (2.19)

where pD(s, ·, x, ·) is the unique solution to (2.17).

Proof. Let G(s, t, x) be the probability that the process starting at x at time s is still within D at
time t ≥ s. In the derivation below, we treat (s, x) as fixed parameters so that G is only a function
of t. By the absorbing boundary conditions of pD, we have

G(s, t, x) =

∫
D
pD(s, t, x, y)dy. (2.20)

On the other hand,
G(s, t, x) = P(η(s, x) > t) = 1− P(η(s, x) ≤ t).

Then, since pD is t-differentiable, by (2.20), it is clear that a density pη(s, t, x) exists for η(s, x)
given by

pη(s, t, x) = −∂tG(s, t, x). (2.21)
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Note that if x ∈ D then G(s, s, x) = 1. Note further that by Chebyshev’s inequality,

G(s, t, x) = P(η(s, x) > t) ≤ 1

t2
E
[
η2(s, x)

]
, t > s.

Since G ≥ 0, it follows that limt→∞ tG(s, t, x) = 0, hence the following holds by an integration by
parts

η̄(s, x) =

∫ ∞
s

tpη(s, t, x)dt

= −
∫ ∞
s

t∂tG(s, t, x)dt

= −tG(s, t, x)|∞t=s +

∫ ∞
s

G(s, t, x)dt

= s+

∫ ∞
s

G(s, t, x)dt.

Hence
τ̄(s, x) =

∫ ∞
s

G(s, t, x)dt. (2.22)

The result follows by (2.20).

While finite first moment of η was not explicitly used in Lemma 2.4, we note that it is of course
finite since it has finite second moment and applying Hölder’s inequality. It is then obvious then
that (2.22) is finite.

Let X0 and X1 be two random variables, we write X0 ∼ X1 if they have the same distribution.
Then we have the following intuitive lemma that was proved and presented in [FZZ19].

Lemma 2.5. Let Condition A2 hold for T -periodic SDE (2.4). Let
(
X0
t

)
t≥s ,

(
X1
t

)
t≥s+T be two

processes satisfying (2.4). If X0
s ∼ X1

s+T then X0
s+t ∼ X1

s+T+t for all t ≥ 0.

For T -periodic SDEs, we show in the next lemma, that the expected duration τ̄ is also T -
periodic. While this holds in expectation, the same cannot be said of the sample-path realisations
of τ . This is essentially because the noise realisation is not periodic! In the context of random
dynamical systems, this can be proven rigorously. Indeed, if ω denotes the noise realisation and θt
to be the Wiener shift, then one has τ(s, x, ω) = τ(s+ T, x, θTω), see [FZ16] for further details.

Lemma 2.6. Assume that Condition A2 holds for T -periodic SDE (2.4). Assume further that η
has finite second moment. Then τ̄ is also T -periodic.

Proof. By Lemma 2.5 and (2.19), we have

τ̄(s, x) =

∫ ∞
s

∫
D
pD(s, r, x, y)dydr

=

∫ ∞
s

∫
D
pD(s+ T, r + T, x, y)dydr

=

∫ ∞
s+T

∫
D
pD(s+ T, r, x, y)dydr

= τ̄(s+ T, x).
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For the following theorem, we recall Kolmogorov’s backward equation

∂sp(s, t, x, y) + L(s)p(s, t, x, y) = 0, (2.23)

where L(s) acts on x variable.
We are now ready to derive the PDE in which τ̄(s, x) satisfies. When the SDE is T -periodic, we

show τ̄(s, x) is the T -periodic solution of a second-order linear parabolic PDE. This contrasts with
the autonomous case where the expected exit time satisfies the second-order linear elliptic PDE
(2.7). To our knowledge the derived PDE and particularly its interpretation is new in literature.
We note further that the following theorem establishes a Feynman-Kac duality for time-periodic
SDEs for the expected duration.

Theorem 2.7. Assume T -periodic SDE (2.4) satisfies the same conditions as Lemma 2.1. Then the
expected duration τ̄ is the periodic solution of the following partial differential equation of backward
type 

∂su(s, x) + L(s)u(s, x) = −1, in DT ,

u = 0, on [0, T ]× ∂D,
u(0, ·) = u(T, ·). on D.

(2.24)

Proof. By Lemma 2.1, η has finite second moment and Condition A2 holds. Hence Lemma 2.4
holds. Thus, by (2.22), observe that for any δ > 0,

τ̄(s+ δ, x)− τ̄(s, x) =

∫ ∞
s+δ

(G(s+ δ, t, x)−G(s, t, x)) dt− G(s+ δ),

where for clarity, G(r) :=
∫ r
s G(s, t, x)dt. It follows by the fundamental theorem of calculus that

∂sτ̄(s, x) =

∫ ∞
s

∂sG(s, t, x)dt− G′(s)

=

∫ ∞
s

∫
D
∂spD(s, t, x, y)dydt−G(s, s, x)

=

∫ ∞
s

∫
D
∂spD(s, t, x, y)dydt− 1,

where recall that G is expressed by (2.20) and G(s, s, x) = 1 since x ∈ D. Acting L(s) on τ̄ by
(2.19) and (2.23), we have

L(s)τ̄(s, x) =

∫ ∞
s

∫
D
L(s)pD(s, t, x, y)dydt = −

∫ ∞
s

∫
D
∂spD(s, t, x, y)dydt.

Summing these quantities yields
(∂s + L(s))τ̄(s, x) = −1. (2.25)

For T -periodic systems, Lemma 2.6 showed that τ̄(s, ·) = τ̄(s+ T, ·) for all s ∈ R+ hence deducing
τ̄ satisfies (2.24) and u is T -periodic. By Lemma 2.6, this is sufficient by imposing u(0, ·) = u(T, ·)
and the result follows.

Remark 2.8. In the proof of Theorem 2.7, note that T -periodicity was not assumed until (2.25).
This suggests that for general non-autonomous (not necessarily periodic) SDEs, τ̄ satisfies (2.25).
However, as (2.25) is a parabolic PDE, in the absence of initial (or terminal) conditions, PDE
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(2.25) alone is generally ill-posed. Indeed, in the general non-autonomous non-periodic case, both
the time and the initial/terminal condition is part of the unknown. Indeed, if τ̄(0, ·) is known, then
this implies we already know the expected exit time when the system starts at time s = 0, however
it is an unknown to-be solved. Resultantly, in some works such as [BDE01], it was assumed that for
sufficiently large T̃ that u(x, y, T̃ ) = 0 for all (x, y) ∈ D. This is to impose some terminal condition
of the parabolic PDE. This however suggests that for all (x, y) ∈ D, the expected exit time is a
constant time T̃ . While this assumption may hold in certain systems, it does not hold in general.
For example, in the stochastic resonance problem that we shall discuss in Section 4.2 with Figure
2, (approximately) constant expected exit time only holds for a subdomain rather than across the
entire domain. In fact, in these papers, one usually chooses T̃ > sup τ(x, y, t) by repeatedly running
SDE simulations to find a sufficiently large T̃ greater than sample expected exit times. The results
of this paper show that one can avoid simulations altogether and only solve the periodic solution of
the PDE to attain the expected exit time. For time-periodic SDEs, the boundary conditions issue
are partially resolved by Lemma 2.6, where initial and terminal conditions coincide, albeit unknown.

Remark 2.9. It should be clear that for coefficients with non-trivial time-dependence, the parabolic
PDE (2.24) would generally imply that τ̄(s, x)− τ̄(s′, x) 6= (s−s′) for s 6= s′. That is, the difference
in initial starting time does not imply the same difference in expected time. This reinforce that
initial time generally plays a non-trivial role in the expected duration.

As mentioned in the introduction, numerically solving PDE (2.24) can be an appealing altern-
ative to stochastic simulations of the expected hitting time. We note further that solving (2.24)
solves the expected hitting time for all initial starting points. On the other hand, direct simulation
would (naively) require many simulations for each starting point.

Assuming a priori that the expected exit time is finite, then we can prove a converse of Theorem
2.7 via Dynkin’s formula. In passing, this reassures that Theorem 2.7 is correct.

Proposition 2.10. Assume η associated to T -periodic (2.4) has finite expectation. Then if (2.24)
has a solution u. Then u(s, x) = τ̄(s, x).

Proof. Since η is a stopping time and has finite expectation, by Itô’s and Dynkin’s formula, then

Es,x [ϕ(η,Xη)] = ϕ(s, x) + Es,x
[∫ η

s
(∂t + L(t))ϕ(t,Xt)dt

]
, ϕ ∈ C1,2

0 (R+ × Rd).

Remark 2.8 implies that there does not generally exist a u ∈ C1,2(D) such that (∂s+L(s))u(s, x) =
−1 and vanishes on ∂D until we impose T -periodicity of u. Therefore if such a u exists, we have by
(2.2)

0 = Es,x [u(η,Xη)] = u(s, x) + Es,x
[∫ η

s
−1dt

]
= u(s, x)− τ̄(s, x).

i.e. u(s, x) = τ̄(s, x) and so the results follows.

3 Well-Posedness of Expected Duration PDE

3.1 Fixed Point of an Initial Value Problem

In this section, utilising classical results for the well-posedness of initial value parabolic PDEs, we
will show the existence of a unique solution to the expected duration PDE (2.24) for the associated
T -periodic SDE. As mentioned in the introduction, we solve (2.24) with typical PDE conditions
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rather than the stronger SDE conditions required for the rigorous derivation of the PDE. This has
the advantage of a clearer exposition and key elements to solve the PDE.

In this subsection, we associate (2.24) with an initial value boundary PDE problem and show
that (2.24) can be rewritten as a fixed point problem. We note however that (2.24), as an initial
value problem, is a backward parabolic equation. Such equations are known to be generally ill-posed
in typical PDE spaces. By reversing the time, we introduce a minus sign thus PDE is uniformly
elliptic and hence more readily solvable in typical function spaces.

We give a general uniqueness and existence result via a spectral result of [Hes91] in Lp(D).
Specifically on L2(D), we show that if the associated bilinear form is coercive then one can apply a
Banach fixed point argument to deduce the existence and uniqueness. This yields a practical way
to numerically compute the desired solution.

To discuss the well-posedness of (2.24), we recall some standard Borel measurable function
spaces. For any 1 ≤ p < ∞, we denote the Banach space Lp(D) to be the space of functions
f : D → R such that its norm ‖f‖Lp(D) :=

(∫
D|f(x)|pdx

)1/p
< ∞. For k ∈ N, we define

as usual the Sobolev space W k,p(D) to contain all functions f in which its norm ‖f‖Wk,p(D) :=(∑
|β|≤k‖∂βf‖

p
Lp(D)

)1/p
<∞. We let W k,p

0 (D) = {f ∈W k,p(D)|f = 0 on ∂D}. For p = 2, L2(D)

and Hk
0 (D) := W k,2

0 (D) are Hilbert spaces with inner-product 〈f, g〉L2(D) :=
(∫
D f(x)g(x)dx

)1/2
and 〈f, g〉Hk

0 (D) :=
∑
|β|≤k

∑d
i=1〈∂βf, ∂βg〉L2(D) respectively. Occasionally, we let (H, ‖·‖H) denote

a generic Hilbert space. To avoid any possible confusion, we will be verbose with the norms and
inner-products.

We begin by fixing 1 < p <∞ and define the time-reversed uniformly elliptic operator associated
to (2.9) by

LR(s) := L(T − s) =
d∑
i=1

bi(T − s, x)∂i +
1

2

d∑
i,j=1

aij(T − s, x)∂2
ij , s ∈ [0, T ]. (3.1)

Note that D(LR(s)) = W 2,p(D) ∩W 1,p
0 (D) ⊂ Lp(D) for all s ∈ [0, T ]. As mentioned, the initial

boundary value problem (IBVP) associated to (2.24) is a backward hence ill-posed in Lp(D). Sup-
pose that u satisfies (2.24), consider the the time-reversed solution v(s, x) = u(T − s, x). Then v
satisfies 

∂sv − LR(s)v = f, in DT ,

v = 0 on [0, T ]× ∂D,
v(0, ·) = v(T, ·),

(3.2)

where f ≡ 1. Clearly the solvability of (2.24) is equivalent to (3.2) up to time-reversal. Hence, for
the rest of the paper we focus on showing existence and uniqueness of a solution to (3.2).

Due to the general applicability of the methods presented in this section, where possible, we
retain a general inhomogeneous function f : [0, T ]→ Lp(D). We expect that this generality benefits
some readers for solving similar problems.

The following IBVP associated to (3.2),
(∂s − LR(s))v = f, in DT ,

v = 0, on [0,T]×∂D,
v(0, ·) = v0 on D,

(3.3)

is a “forward” parabolic equation and is readily solvable. We say that v is a generalised solution of
(3.3) if v ∈ C([0, T ],W 2,p(D)∩W 1,p

0 (D)), its derivative ∂v
∂s ∈ C((0, T ), Lp(D)) exists and v satisfies
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(3.3) in Lp(D) [Paz92, Ama95, DM92]. Consider also φ(s, x) satisfying the homogeneous PDE of
(3.3) i.e. 

(∂s − LR(s))φ = 0, in (r, T )×D,
φ = 0 on [r, T ]× ∂D,
φ(r, ·) = φr, in D.

(3.4)

Given φr ∈ Lp(D), (3.4) is well-posed, we can define the evolution operator

Φ(r, s) : Lp(D)→W 2,p(D) ∩W 1,p
0 (D), r ≤ s ≤ T, (3.5)

by
Φ(r, s)φr := φ(s). (3.6)

It is known that Φ(s, r) satisfies the semigroup property Φ(r, r) = Id and Φ(r, s) = Φ(s, t)Φ(r, s)
for r ≤ s ≤ t. We refer readers to [Paz92] for regularity properties of Φ. When (3.3) is well-posed,
it is well-known that by a variation of constants or Duhamel’s formula [Ama95, DM92, Paz92], the
solution to inhomogeneous problem (3.3) satisfies

v(s) = Φ(r, s)vr +

∫ s

r
Φ(r′, s)f(r′)dr′. (3.7)

It is well-known that if Condition A1 holds and f ∈ Cγ(0, T ;Lp(D)) for some γ ∈ (0, 1), then (3.3)
is well-posed [Paz92, Ama95]. Furthermore, we can define the solution operator after one period
A : Lp(D)→W 2,p(D) ∩W 1,p

0 (D) by

Aϕ := Φ(0, T )ϕ+

∫ T

0
Φ(r, T )f(r)dr. (3.8)

We discuss further conditions for regular solutions. Theorem 24.2 of [DM92] employed Schauder
estimates and Sobolev embedding to show that if p > d/2, ∂D ∈ C2(Rd−1) then the solution to
IBVP (3.3) with initial condition v0 ∈W 2,p

0 (D) satisfies the following regularity

v ∈ C(D̄T ) ∩ C1+ θ
2
,2+θ((0, T ]× D̄). (3.9)

Furthermore, if d < p <∞, by Sobolev embedding, then v ∈ C
1+ξ
2
,1+ξ(D̄T ) ∩ C1+ θ

2
,2+θ((0, T ]× D̄)

for some ξ ∈ (0, 1), see [Hes91]. Thus, we write our first existence and uniqueness result.

Proposition 3.1. Assume Condition A1 holds. Assume that d < p < ∞, ∂D ∈ C2(Rd−1) and
f ∈ Cγ(0, T ;Lp(D)) for some γ ∈ (0, 1). Then there exists a unique regular solution satisfying
(3.2). Moreover, if f 6= 0 then the solution is non-trivial.

Proof. Since f ∈ Cγ(0, T ;Lp(D)), by Condition A1, IBVP (3.3) is well-posed for any v0 ∈ Lp(D).
Hence the evolution operator Φ defined by (3.6) is well-defined. In general, to solve T -periodic PDE
(3.2), by Duhamel’s formula (3.7), one wishes to find existence and uniqueness of a v0 ∈ Lp(D) such
that

v0 = Av0. (3.10)

For initial conditions in W 2,p
0 (D), by rearranging from (3.8), we have

(I − Φ(0, T ))v0 =

∫ T

0
Φ(r, T )f(r)dr, (3.11)
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where Φ(0, s) : W 2,p
0 (D) → W 2,p

0 (D) and I : W 2,p
0 (D) → W 2,p

0 (D) is the identity operator. With
the current conditions, via Krein-Rutman theorem, it was shown in [Hes91] that λ = ρ(Φ(0, T )) ∈
(0, 1), where λ denotes the spectral radius of Φ(0, T ). This implies that 1 is in the resolvent i.e.
(I − Φ(0, T )) : W 2,p

0 (D)→W 2,p
0 (D) is invertible. It follows that

v0 = (I − Φ(0, T ))−1

∫ T

0
Φ(r, T )f(r)dr, (3.12)

uniquely solves (3.10). By Sobolev embedding,

v(s, ·) = Φ(0, s)v0 +

∫ s

0
Φ(r, s)f(r)dr, s ∈ (0, T ], (3.13)

is a regular solution to (3.2). It is easy to see that (3.2) does not admit trivial solutions since (D is
non-empty and) v ≡ 0 cannot satisfy (3.2) for f 6= 0.

As noted in [DM92], via the semigroup property, one can approximate Φ(0, T ) '
∏N−1
n=0 Φ(tn, tn+1)

for 0 = t0 < t1 < ... < tN = T . Hence one can approximate the inverse in (3.12) by

(I − Φ(0, T ))−1 ' (I −
N−1∏
n=0

Φ(tn, tn+1))−1. (3.14)

We note however computing (3.14) is generally computationally expensive.
We can gain more from (3.12). We recall the weak maximum principle: if the solution is regular

and f ≥ 0, then
min

(s,x)∈D̄T
v(s, x) = min

x∈D̄
vr(x) (3.15)

holds. We have seen that, by (3.11), the existence and uniqueness of v0 ∈ L2(D) satisfying (3.10)
requires the invertibility of I − Φ(0, T ). By von Neumann series, we have

(I − Φ(0, T ))−1 =
∞∑
k=0

Φk(0, T ),

where Φk(0, T ) denotes the composition of the operator Φ(0, T ).
It is well-known that parabolic PDEs experience parabolic smoothing (see e.g. [Paz92, Eva10])

i.e. the solution of parabolic equations are as smooth as the coefficients and initial data. For example
if p > d/2 and f ∈ Cγ(0, T ;W 2,p(D)), then Φ(s, t)f is a regular solution by (3.9). Moreover, if
f ≥ 0, by the maximum principle, Φ(s, t)f ≥ 0 for all 0 ≤ s ≤ t ≤ T . It follows that I :=∫ T

0 Φ(r, T )f(r)dr ≥ 0 and Φk(0, T )I ≥ 0 for all k ∈ N. Moreover, it follows from (3.12) that

v0 =

∞∑
k=0

Φk(0, T )I ≥ 0, (3.16)

i.e. the solution to (3.10) is non-negative. Furthermore, if the coefficients and f are smooth then
condition p > d/2 can be dropped and the same conclusion holds with a smooth solution [Paz92]. In
particular, since 1 ∈ C∞((0, T )×D) is non-negative, this aligns with physical reality that expected
duration time τ̄(0, ·) = v0 indeed is non-negative.

To gain further insight into solving (3.2) from both a theoretically and computational viewpoint,
we progress our study with Hilbert spaces i.e. p = 2 and forego some of the regularity gained from
Sobolev embedding e.g. (3.9). The following approach allows us to study (3.2).
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We start with a standard framework to deduce the existence and uniqueness of (3.2) on the
Hilbert space L2(D). For convenience, we define the bilinear form BR : H1

0 (D) × H1
0 (D) → R

associated to −LR defined by

BR[ϕ,ψ; s] = −
d∑
i=1

∫
D
b̃i(T − s, x)∂iϕ(x)ψ(x)dx+

1

2

d∑
i,j=1

∫
D
aij(T − s, x)∂iϕ(x)∂jψ(x)dx, (3.17)

where b̃i(s, x) = bi(s, x) +
∑d

j=1 ∂ja
ij(s, x) for each 1 ≤ i ≤ d. We recall that a bilinear form

BR : H1
0 (D)×H1

0 (D)→ R is coercive if there exists a constant α > 0 such that

BR[ϕ,ϕ; s] ≥ α ‖ϕ‖2H1
0 (D) , ϕ ∈ H1

0 (D), s ∈ [0, T ]. (3.18)

Assuming coercivity, we give the following existence and uniqueness theorem to (3.2).

Theorem 3.2. Assume that aij , bi ∈ L∞(DT ) and a(·, ·) satisfies uniformly elliptic condition (2.18)
and furthermore (3.17) is coercive for s ∈ [0, T ]. Then for any f ∈ L2(0, T ;L2(D)), there exists a
unique solution v ∈ C([0, T ], H1

0 (D))to (3.2). If f 6= 0, then the solution is non-trivial.

Proof. It is well-known (e.g. [Eva10]) that there exists a unique weak solution v to the IBVP (3.3)
i.e. v ∈ C([r, T ];L2(D)) ∩ L2(r, T ;H1

0 (D)) such that v(r) = vr, ∂sv ∈ L2(r, T ;H−1(D)) and for
almost every s ∈ [r, T ],

〈∂sv(s), ϕ〉H−1(D)×H1
0 (D) +BR[v, ϕ; s] = 〈f(s), ϕ〉H−1(D)×H1

0 (D), ϕ ∈ H1
0 (D), (3.19)

whereH−1(D) is the space of linear functionals of the subspaceH1
0 (D) on L2(D) and 〈·, ·〉H−1(D)×H1

0 (D) :

H−1(D)×H1
0 (D)→ R denotes the duality pairing between H−1(D) and H1

0 (D). To prove our res-
ult, it is sufficient to assume f ∈ L2(D). To cast (3.10) in terms of a self-mapping, consider
Φ̄(0, T ) : L2(D) → L2(D) as the operator Φ(0, T ) with its range enlarged to L2(D) and define
Ā : L2(D)→ L2(D) by

Āϕ := Φ̄(0, T )ϕ+

∫ T

0
Φ̄(r, T )f(r)dr. (3.20)

We show there exists a unique fixed point of operator Ā. By Banach fixed point theorem, it suffices
to show Ā is a contraction on L2(D). Observe that this is sufficient provided Φ̄(0, T ) is a contraction
mapping on L2(D) since∥∥Āϕ− Āψ∥∥

L2(D)
=
∥∥Φ̄(0, T )(ϕ− ψ)

∥∥
L2(D)

≤ ‖Φ̄(0, T )‖ ‖ϕ− ψ‖L2(D) , ϕ, ψ ∈ L2(D).

In fact, we show that Φ̄(0, s) is a contraction for any s > 0.
From (3.5), for initial condition φ0 ∈ L2(D), the homogeneous solution, φ(s) ∈ H2(D)∩H1

0 (D)
satisfies (3.4). Then from (3.19), one has by coercivity

0 = 〈∂sφ(s), φ(s)〉+BR[φ(s), φ(s); s]

≥ 1

2

d

ds
‖φ(s)‖2L2(D) + α ‖φ(s)‖2H1

0 (D)

≥ 1

2

d

ds
‖φ(s)‖2L2(D) + α ‖φ(s)‖2L2(D) .

Gronwall’s inequality then yields

‖φ(s)‖2L2(D) ≤ e
−2αs ‖φ0‖2L2(D) , s ≥ 0.
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Hence indeed

∥∥Φ̄(0, s)
∥∥ := sup

φ0∈L2(D)

∥∥Φ̄(0, s)φ0

∥∥
L2(D)

‖φ0‖L2(D)

≤ e−αs < 1, s > 0, (3.21)

i.e. Φ̄(0, s) is a contraction on L2(D). Therefore there exists a unique v0 ∈ L2(D) satisfying (3.20).
Since A :L2(D)→ H1

0 (D) ( L2(D), then by the right hand side of (3.10), it is easy to deduce that
v0 ∈ H1

0 (D). Define v by (3.13), then v ∈ C([0, T ], H1
0 (D)) is the unique solution to (3.2). Lastly,

if 0 6= f ∈ L2(D), then v is non-trivial.

Theorem 3.2 offers not only a theoretical existence and uniqueness result on the solution to
(3.2), by Banach fixed point, Theorem 3.2 immediately offers an iterative numerical approach to
the solution. To numerically computing the next Banach fixed point iterate, one only requires
to solve a IBVP for the parabolic PDE. Compared to (3.14), there are well-established numerical
schemes for parabolic PDEs with known order of convergences.

We remark that coercivity is actually stronger than required. In the proof of Theorem 3.2, it is
sufficient that B[ϕ,ϕ; s] ≥ α‖ϕ‖2L2(D). We give an example where coercivity is shown. We consider
the example of a one-dimensional Brownian motion with periodic drift.

Example 3.3. Let S ∈ C1(R+) be a T -periodic function and σ 6= 0 and consider the one-
dimensional T -periodic SDE

dXt = S(t)dt+ σdWt,

on some bounded interval D. Clearly Condition A2 is satisfied. By Theorem 3.2, it is sufficient to
show the associated (time-reversed) bilinear form

BR[ϕ,ψ; s] = −
∫
D
S(T − s)∂xϕ(x)ψ(x)dx+

σ2

2

∫
D
∂xϕ(x)∂xψ(x)dx, ϕ, ψ ∈ H1

0 (D),

is coercive. This is obvious by an integration by parts with vanishing boundaries and applying the
Poincaré inequality

BR[ϕ,ϕ; s] = −S(T − s)
2

∫
D
∂x(ϕ2(x))dx+

σ2

2
‖∂xϕ‖2L2(D)

≥ −S(T − s)
2

ϕ2(x)|∂D +
σ2

4
‖∂xϕ‖2L2(D) +

σ2

4CD
‖ϕ‖2L2(D)

≥ α‖ϕ‖2H1
0 (D),

where CD denotes the Poincaré constant for the domain D such that ‖ϕ‖2L2(D) ≤ CD ‖∂xϕ‖2L2(D)

and α = min(σ
2

4 ,
σ2

4CD
) > 0. Hence by Theorem 3.2, there exists a unique solution to (2.24).

3.2 Convex Optimisation

In Section 3.1, we showed that if the bilinear form associated to the PDE is coercive, then Theorem
3.2 yields a unique solution to (3.2). However, in general, coercivity of the associated bilinear form
can be difficult to verify. Instead, we now seek to solve (3.2) by casting it as a convex optimisation
problem with a natural cost functional. Convex optimisation has been a standard method to study
solutions of elliptic PDEs.

In the presented convex optimisation framework, we show that the unique minimiser of the
cost functional is a solution to (3.2). In this approach, coercivity of the functional holds almost
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immediately, provided the maximum principle holds. When the maximum principle holds, it follows
that the solution is a classical/strong solution as opposed to the weak solution given in Theorem
3.2.Furthermore, we show that the convex optimisation problem can be implemented readily by
standard gradient methods.

We begin with a standard convex optimisation result on Hilbert spaces. Let (H, ‖·‖H) be a
Hilbert space, C ⊆ H be a closed convex subset and F : H → R be a functional. The functional F
is said to be norm-like (or coercive) over C if

F (ϕ)→∞, as ‖ϕ‖H →∞, ϕ ∈ C .

The functional F is Gateaux differentiable at ϕ ∈ H if for any φ0 ∈ H, the directional derivative of
F at ϕ in the direction φ0, denoted by DF (ϕ)(φ0), given by

DF (ϕ)(φ0) = lim
ε→0

F (ϕ+ εφ0)− F (ϕ)

ε
(3.22)

exists. By definition, the gradient of F is δF
δϕ ∈ L

2(D) satisfying

〈δF
δϕ

, φ0〉 = DF (ϕ)(φ0), φ0 ∈ H. (3.23)

We shall use the following standard result from convex optimisation theory (see e.g. [ET99, Tro10]).

Lemma 3.4. Let H be a Hilbert space and C ⊆ H be a closed convex set. Let F : H → R
be a functional such that F is convex and norm-like over C . Assume further that F is a (lower
semi)continuous and bounded from below. Then there exists at least one v0 ∈ C such that F (v0) =
infϕ∈C F (ϕ). If F is Gateaux differentiable, then for any such v0, DF (v0)(·) = 0. If F is strictly
convex then v0 is unique.

We now focus specifically on using Lemma 3.4 to solve (3.2). Recall that if Condition A1 holds
then (3.3) is well-posed. We then associate to (3.3) the natural cost functional F : L2(D) → R
defined by

F (ϕ) =
1

2
‖Aϕ− ϕ‖2L2(D) =

1

2

∫
D

[(Aϕ)(x)− ϕ(x)]2dx, (3.24)

where A is given by (3.8). This functional is natural to our periodic problem because if there exists
v0 ∈ L2(D) which minimises the functional to zero, it is a solution to (3.2) i.e.

F (v0) = 0 ⇐⇒ Av0 = v0,

i.e. v0 solves (3.10) and therefore is a (possibly weak) solution to (3.2).
Optimisation briefly aside, we recommend using the cost functional F to quantify the conver-

gence of the Banach iterates of Theorem 3.2.
In order to apply Lemma 3.4 on F , we recall some properties associated to linear parabolic

PDEs. Suppose that (3.3) is well-posed. Since PDE (3.3) is linear, by the superposition principle,
Φ(·, ·) is a linear operator, i.e. Φ(s, t)[λ1φ1 + λ2φ2] = λ1Φ(s, t)φ1 + λ2Φ(s, t)φ2. However, due to
the inhomogeneous term, observe that A is not linear. Instead, if λ1, λ2 ≥ 0 such that λ1 + λ2 = 1
then

A(λ1ϕ+ λ2ψ) = Φ(0, T )[λ1ϕ+ λ2ψ] + (λ1 + λ2)

∫ T

0
Φ(r, T )f(r)dr = λ1Aϕ+ λ2Aψ. (3.25)

Since τ̄ is non-negative, we consider

C (D) := {ϕ ∈ H2
0 (D)|ϕ ≥ 0}.

It is easy to verify that C (D) is a closed convex Hilbert subspace of L2(D).
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Theorem 3.5. Let Condition A1 hold, f ∈ Cγ(0, T ;L2(D)) for some γ ∈ (0, 1), f ≥ 0 and d ≤ 3.
Let F : C (D) ⊂ L2(D)→ R be defined by (3.24) . Then there exists a unique v0 ∈ C (D) minimising
F .

Proof. Since Condition A1 holds, the IBVP (3.3) is well-posed. Hence the operators A and Φ(s, t)
and thus F are all well-defined. We show that F satisfies the assumptions of Lemma 3.4. Obviously
F ≥ 0 and hence bounded from below. By the well-posedness of (3.3), it is clear that ϕ → Aϕ
and moreover ϕ → Aϕ − ϕ are continuous from L2(D) to L2(D). It follows that F is continuous.
Utilising the strong convexity of the quadratic function and (3.25), we show the strong convexity of
F : for any λ ∈ (0, 1) and ϕ,ψ ∈ C (D), we have that

F (λϕ+ (1− λ)ψ) =
1

2

∫
D

[A(λϕ+ (1− λ)ψ)− (λϕ+ (1− λ)ψ)]2dx

=
1

2

∫
D

[λ (Aϕ− ϕ) + (1− λ)(Aψ − ψ)]2dx

<
1

2

∫
D

[
λ (Aϕ− ϕ)2 + (1− λ)(Aψ − ψ)2

]
dx

= F (ϕ) + (1− λ)F (ψ).

Since d ≤ 3, by Sobolev embedding and Schauder estimates, it follows from (3.9) (as d
2 < p = 2)

that for any ϕ ∈ C (D) ⊂ H2(D) and f ≥ 0, the solution to (3.3) with initial condition ϕ is regular.
Therefore, the maximum principle (3.15) applies. Hence together with the homogeneous Dirichlet
boundary conditions, it follows that Aϕ ≥ 0. Therefore, for any x ∈ D and ε ∈ (0, 1), Young’s
inequality yields that

F (ϕ) =
1

2

∫
D

((Aϕ)2 − 2(Aϕ)ϕ+ ϕ2)dx

≥ 1

2

∫
D

((1− ε)ϕ2 + (1− ε−1)(Aϕ)2)dx

=
1− ε

2
‖ϕ‖2L2(D) +

1− ε−1

2
‖Aϕ‖2L2(D).

Hence it follows that F (ϕ) → ∞ as ‖ϕ‖L2(D) → ∞. Then Lemma 3.4 yields a unique solution
v0 ∈ C (D) minimising F .

In the following proposition, we derive an expression for the directional derivative DF (ϕ)(φ0).
While it is then straightforward to apply the maximum principle to show that DF (ϕ)(·) is a linear
continuous operator to deduce existence and uniqueness of the gradient (via Riesz representation the-
orem), we employ numerical analysts’ adjoint state method (see e.g. [GP00, CLPS03, SFP14, Ple06])
to attain an expression for the gradient directly. From a numerical perspective, the gradient allows
us to apply gradient methods to iteratively minimise F . Numerically, we note that it is not neces-
sary to use adjoint state method to compute the gradient. However, it is well-known that adjoint
state method is (generally) computationally efficient see e.g. [SFP14]. It is noted that comparing
to Banach fixed point iterates of Theorem 3.2, the adjoint state method is computationally less
efficient because a pair of IBVP is required to be solved rather than one.

To employ the adjoint state method, we recall that L∗(s) is the Fokker-Planck operator given
by (2.10). Akin to (2.17), if Condition A2 holds, then

∂sw = L∗(s)w in DT ,

w = 0 on [0, T ]× ∂D
w(0, ·) = w0, on D,

, (3.26)
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is well-posed for any w0 ∈ L2(D)[Paz92, Eva10, Ama95]. Hence, akin to (3.4) and (3.5), we define
the evolution operator W for (3.26) i.e.

w(s, ·) = W (0, s)w0, s ≥ 0, (3.27)

where W (0, s) : L2(D)→ H2(D) ∩H1
0 (D).

The following proposition was inspired by [AW10, BGP98] in employing the adjoint state method
for periodic solutions of the Benjamin-Ono and autonomous evolution equations respectively. It
plays a significant role to prove Theorem 3.7.

Proposition 3.6. Let Condition A2 hold and F be defined by (3.24). Then for any ϕ ∈ L2(D), we
have the expressions for the directional derivative

DF (ϕ)(φ0) =

∫
D

(Aϕ− ϕ)(Φ(0, T )φ0 − φ0)dx, φ0 ∈ L2(D), (3.28)

and the gradient
δF

δϕ
= W (0, T )w0 − w0, (3.29)

with initial condition w0 = Aϕ− ϕ.

Proof. Utilising the linearity properties of A and Φ(0, T ), from (3.8) and (3.22), we have

DF (ϕ)(φ0) = lim
ε→0

1

2

∫
D

(A(ϕ+ εφ0)− (ϕ+ εφ0))2 − (Aϕ− ϕ)2

ε
dx

= lim
ε→0

1

2

∫
D

((Aϕ− ϕ) + ε(Φ(0, T )φ0 − φ0))2 − (Aϕ− ϕ)2

ε
dx.

Hence (3.28) follows by collecting terms and taking the limit. We now wish to find δF
δϕ ∈ L

2(D)
such that

DF (ϕ)(φ0) = 〈δF
δϕ

, φ0〉 =

∫
D

δF

δϕ
(x)φ0(x)dx, φ0 ∈ L2(D).

To compute the gradient, consider wR(s, x) satisfying the adjoint equation of PDE (3.4)
−∂swR = L∗R(s)wR in DT ,

wR = 0, on [0, T ]× ∂D,
wR(T, ·) = wT , on D.

(3.30)

for some terminal condition wT ∈ L2(D). Note that (3.30) is a backward equation. However, as
terminal conditions are provided, (3.30) is well-posed provided Condition A2 are satisfied. This
contrasts to the backward equation associated to (2.24) as a IBVP with initial conditions. For
clarity, we introduce w(s, ·) = wR(T−s, ·). Then it is clear that w satisfies (3.26), since L∗R(T−s) =
L∗(T−(T−s)) = L∗(s) by (3.1). In this form, it is clear that (3.26) and equivalently (3.30) are well-
posed provided Condition A2 is satisfied. With the repeated time-reversal, w(s, x) is understood to
solve the Fokker-Planck equation forward in time.
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Let φ be the homogeneous solution satisfying (3.4) with initial conditions φ(0, ·) = φ0. By
multiplying φ by wR and integrating by parts over DT , we have by (3.30)

0 =

∫ T

0

∫
D

(∂sφ(s, x)− LR(s)φ(s, x)) · wR(s, x)dxds

=

∫
D

[φ(s, x)wR(s, x)]Ts=0 dx−
∫ T

0

∫
D
φ(s, x)∂swR(s, x)dxds−

∫ T

0

∫
D
φ(s, x)L∗R(s)wR(s, x)dxds

=

∫
D
φ(T, x)wR(T, x)dx−

∫
D
φ0(x)wR(0, x)dx.

That is, in terms of w and Φ,∫
D

Φ(0, T )φ0(x) · w(0, x)dx =

∫
D
φ0(x)w(T, x)dx. (3.31)

Impose the initial condition,
w(0, ·) = wT = Aϕ− ϕ. (3.32)

Then it follows from (3.28), (3.31) and (3.32) that

DF (ϕ)(φ0) =

∫
D
w0(x)Φ(0, T )φ0(x)dx−

∫
D
w0(x)φ0(x)dx =

∫
D

[w(T, x)− w0(x)]φ0(x)dx.

(3.33)

Since φ0 was arbitrary, by (3.27), we attain (3.29).

We note that while Lemma 3.4 yields a unique minimiser, it was not immediate whether F was
minimised to zero. In the following theorem, we show indeed that the unique minimiser of F indeed
minimises F to zero.

Theorem 3.7. Let Condition A2 hold and d ≤ 3, f ∈ Cγ(0, T ;H2(D)) for some γ ∈ (0, 1) and
f ≥ 0. Then v0 ∈ C (D) obtained in Theorem 3.5 is the unique function in L2(D) satisfying (3.10).
Moreover there exists a unique v ∈ C(D̄T ) ∩ C1,2(DT ) satisfying (3.2).

Proof. By Theorem 3.5, the functional F has a unique minimiser v0 ∈ C (D). By Lemma 3.4 and
(3.33), it follows that

DF (v0)(φ0) =

∫
D

(w(T, x)− w0(x))φ0(x)dx = 0, φ0 ∈ L2(D).

By the fundamental lemma of calculus of variations, we have by (3.27)

0 ≡ w(T, ·)− w0(·) = W (0, T )w0 − w0,

i.e. w0 is a fixed point of W (0, T ). Clearly w0 ≡ 0 is a fixed point of W (0, T ). Let w0 ∈ H2(D)
be another fixed point solution to W (0, T ) and define w(s, ·) by (3.27). With d ≤ 3, by (3.9), it
follows that w ∈ C(D̄T ) ∩ C1+ θ

2
,2+θ((0, T ] × D̄). In fact, since D is bounded, w(s, ·) ∈ L∞(D) for

s ∈ [0, T ]. Note that pD of (2.17) is a fundamental solution of (3.26), hence since w0 is a fixed point
of W (0, T ), it follows that

w0(x) =

∫
D
pD(0, T, x, y)w0(y)dy, x ∈ D.
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Due to the absorbing boundaries of (3.26), note that for any Γ ∈ B(Rd),

PD(s, t, x,Γ) :=

∫
D∩Γ

pD(s, t, x, y)dy

= P({Xs,x
t ∈ D ∩ Γ} ∩

t⋂
r=s

{Xs,x
r ∈ D})

≤ P({Xs,x
t ∈ D ∩ Γ})

= P (s, t, x,D).

Hence with ε ∈ (0, 1) from Lemma 2.1, it follows that

‖w0‖∞ ≤ ‖w0‖∞
∫
D
p(0, T, x, y)dy ≤ ε‖w0‖∞.

Thereby deducing 0 ∈ H2(D) is the only fixed point of W (0, T ). Therefore, from (3.32), v0 ∈ C (D)
is the unique minimiser such that Av0 = v0 and F (v0) = 0. It follows then from (3.9) that

v(s, x) := Φ(0, s)v0(x) +

∫ s

0
Φ(r, s)f(r)dr ∈ C(D̄T ) ∩ C1+ θ

2
,2+θ((0, T ]× D̄)

satisfies (3.2). We show that v0 is the unique fixed point of A in the entire L2(D). Indeed suppose
there exists another solution ṽ0 ∈ L2(D)\C (D) such that ṽ0 = Aṽ0. By (3.9), Aṽ0 ∈ C2+θ(D̄) ⊂
H2(D̄) and satisfies the boundary conditions i.e. ṽ0 ∈ H2

0 (D). Since H2(D) 3 f ≥ 0, it follows
from (3.16) that ṽ0 ≥ 0 i.e. ṽ0 ∈ C (D). Since uniqueness already holds in C (D), we conclude the
uniqueness of v0 satisfying (3.10) extends to L2(D).

We summarise the PDE results in the context of expected duration τ̄ of SDEs. It will be clear
that the SDE coefficients assumptions sufficiently implies Conditions A2 required for Theorem 3.7.

Theorem 3.8. Let d ≤ 3 and D ⊂ Rd be a non-empty open bounded set. Assume that the T -periodic
SDE (2.4) satisfies (2.12), (2.11), (2.14) and (2.15). Then the expected duration τ̄ exists and is
unique in C(0, T ;L2(D)). In fact, τ̄ ∈ C(D̄T ) ∩ C1,2(DT ) is non-negative and non-trivial.

Proof. Specific to expected duration, we let f(s, x) = ID(x), the indicator function on D for all
s ∈ [0, T ]. Since D is bounded, obviously f ∈ Cγ(0, T ;H2(D)) is non-negative. Then by Theorem
3.7, there exists a unique non-trivial non-negative solution v ∈ C(D̄T ) ∩ C1,2(DT ) satisfying (3.2).
Then by time-reversal,

τ̄(s, ·) := v(T − s, ·) = Φ(0, T − s)v0 +

∫ T−s

0
Φ(r, T − s)IDdr, s ∈ [0, T ],

satisfies (2.24).

4 Applications

4.1 Numerical Considerations

As discussed in the introduction, expected exit times have a range of applications including modelling
the occurrence of certain events. Depending on the context, the problem is typically phrased as the
stochastic process hitting a barrier or a threshold. While many physical problems have naturally
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bounded domains, some applications have unbounded domains. For example, D = (0,∞) is a
typical unbounded domain for species population or a wealth process, and exit from D implies
extinction and bankruptcy respectively.

However, unbounded domain brings various technical difficulties for the expected duration PDE.
Particularly from a computational viewpoint, any numerical PDE scheme requires a bounded do-
main. In the following remark, we show that the recurrency condition (4.1) below is sufficient to
approximate the expectation duration from an unbounded domain to a bounded domain.

Remark 4.1. Suppose that there exists a radius r∗ > 0 and ε > 0 such that the coefficients of SDE
(2.4) satisfies

2〈b(t, x), x〉+ ‖σ‖22 ≤ −ε on R+ ×Bc
r∗ . (4.1)

Note that if b is continuous, then there exists a constantM ≥ −ε such that 2〈b(t, x), x〉+‖σ‖2 ≤M .
Let D be an unbounded domain that is bounded in at least one direction hence rD := infy∈∂D‖y‖
is finite. We suppose initial condition x ∈ BrI ∩D for some fixed rI ≥ 0.

For any fixed R∗ > max{r∗, rD, rI}, define D̃ := D ∩ BR∗ . Note that D̃ is an open bounded
domain with boundary ∂D̃ = ∂D̃1 ∪ ∂D̃2, where ∂D̃1 := ∂D ∩ BR∗ and ∂D̃2 := D ∩ ∂BR∗ are
the subset of original boundary and “artificial” boundary to “close up” the original boundaries
respectively. Observe that ‖x‖ ∈ (rD, R∗) for x ∈ ∂D̃1 and ‖x‖ = R∗ for x ∈ ∂D̃2.

For ηD̃ as defined by (2.1) for the domain D̃, by Itô’s formula, we have

‖Xt∧ηD̃‖
2 = ‖x‖2 +

∫ t∧ηD̃

s
2〈b(r,Xr), Xr〉+ ‖σ‖22dr +

∫ t∧ηD̃

s
〈Xr, σdWr〉.

Under the assumption (4.1), Corollary 3.2 of [Has12] implies that Es,x(ηD̃− s) ≤
‖x‖2
ε . Since Xr∧ηD̃

is bounded for r ∈ [s, t], it follows by taking expectations that

Es,x‖Xt∧ηD̃‖
2 ≤ ‖x‖2 +MEs,x[ηD̃ − s] ≤ (1 +

1

ε
)‖x‖2.

By Markov’s inequality, it follows that P(‖XηD̃
‖2 ≥ R2

∗) ≤ R−2
∗ (1 + 1

ε )‖x‖
2 ≤ R−2

∗ (1 + 1
ε )r

2
I → 0 as

R∗ →∞. This implies that for sufficiently large R∗, the process exits D̃ via ∂D̃1 rather than ∂D̃2,
thus

τ̄D|D̃(s, ·) ' τ̄D̃(s, ·),

where τ̄D|D̃ denotes τ̄D restricted to D̃. In practice, R∗ = 2 max{r∗, rD, rI} is sufficient for weakly
dissipative SDEs. We consider two examples and assume for simplicity that rI = r∗.

It was shown in [FZZ19] that the periodic Ornstein-Uhlenbeck process possesses a geometric
periodic measure [FZ16], furthermore it has a periodic mean reversion property akin to its classical
counterpart with (constant) mean reversion. In applications, these properties are desirable for
processes with underlying periodicity or seasonality. Indeed electricity prices in economics [BKM07,
LS02] and daily temperature [BS07] were modelled by periodic Ornstein-Uhlenbeck processes. In
[IDL14], the authors performed statistical inference of biological neurons modelled by Ornstein-
Uhlenbeck processes with periodic forcing. In such models, one may be interested in the expected
time in which a threshold is reached. For model parameter estimation, we refer readers to [DFK10].

Example 4.2. Consider the periodically forced multi-dimensional Ornstein-Uhlenbeck process

dXt = (S(t)−AXt) dt+ σdWt,
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where S ∈ C(R+,Rd) is T -periodic and σ,A ∈ Rd×d with A positive definite i.e. there exists a
constant α > 0 such that 〈Ax, x〉 ≥ α‖x‖2 for all x ∈ Rd. Denote ‖S‖∞= supt∈[0,T ]‖S(t)‖. By
Cauchy-Schwarz inequality and Young’s inequality, it follows that

2〈S(t)−Ax, x〉 ≤ 2‖S‖∞‖x‖−2α‖x‖2 ≤ ‖S‖
2
∞

α
− α‖x‖2,

i.e. weakly dissipative with coefficients c = ‖S‖2∞
α and λ = α. Then

r2
∗ =

1

α

(
‖S‖2∞
α

+ ‖σ‖2
)
.

Remark 4.1 suggests one can reasonably approximate the unbounded domain D = (0,∞)d by the
bounded domain D̃ = (0, 2r∗)

d. We remark also, to our current knowledge, there is no closed-form
formula to solve (2.24) even in this simple example. As such, we provide the numerical solution to
(2.24) in Section 4.2.

Example 4.3. Consider the stochastic overdamped Duffing oscillator

dXt =
(
Xt −X3

t +A cos(ωt)
)
dt+ σdWt, (4.2)

where A,ω ∈ R and σ ∈ R\{0} are (typically small) parameters. By elementary calculus, it is
straightforward to show (4.2) satisfies the weakly dissipative condition for any fixed λ ∈ (0, 2) and
c = 1

2−λ + 2|A|+ λ
4 for small A. Thus

r2
∗ =

1

λ

(
1

2− λ
+ 2|A|+ ‖σ‖2

)
+

1

4
.

For concreteness, suppose that A = 0.12, ω = 10−3, σ = 2.85 and λ = 1, then r∗ =
√

1.57 = 1.25
(2 dp). Remark 4.1 suggests that the process exiting D = (−1,∞) can be approximated by the
bounded domain D̃ = (−1, 2r∗).

Via Monte Carlo simulations, we numerically demonstrate Remark 4.1 for (4.2) to estimate
τ̄D̃(0, x) for different bounded domains D̃. We partition D̃ into N sde

x = 100 uniform initial con-
ditions. For each fixed initial condition x ∈ D̃, we employ Euler–Maruyama method with time
intervals of ∆t = 5 · 10−3 to generate 1000 sample-paths of Xt until it exits D̃. We record and
average the sample-path exit time to yield an estimate for τ̄D̃(0, x). Figure 1 shows that the es-
timation of τ̄D̃ are “stable” for bounded domain D̃ = (−1, 2) and larger. Where the differences
between these curves can be explained by the randomness of Monte Carlo simulations and sample
size. On the other hand, the estimation of τ̄D̃ differs significantly for D̃ = (−1, 1.5). Physically, this
is interpreted as the artificial boundary R∗ = 1.5 set too low and many sample-paths leave via this
artificial boundary rather than via −1.

Finally, for subsequent analysis, while D̃ = (−1, 2) is sufficient, we will reduce D to D̃ = (−1, 3).
We pick this larger domain to accommodate when we use σ = 1 where r∗ = 1.58 (2 dp).

Remark 4.4. We remark that in Figure 1 for stochastic resonance problem such as (4.2), τ̄(s, x)
visually resembles a step-function is intuitively expected. We indeed expect τ̄(s, x) small when the
process starts near the left well because the process does not need to cross the potential well to exit.
On the other hand, τ̄(s, x) is large when the process starts in the right well. By the well-posedness
of the PDE, τ̄(s, x) is continuous and hence we expect a sharp increase between the two wells.
Therefore, for the stochastic resonance problem, we expect τ̄(s, x) to appear like a step-function.
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Figure 1: Monte Carlo estimation of τ̄D̃(0, x) with different D̃, plotted for x ∈ (−1, 3) ∩ D̃.

4.2 Numerical Solution of Expected Duration PDE

In this section, we describe how one may numerically solve the PDE (3.2) using Theorem 3.2 and
Theorem 3.7. For simplicity of this exposition, we do this in the one-dimensional case only. We
remark that the presented numerical procedure does not claim originality nor optimal efficiency nor
optimal accuracy as it is not the purpose of the current paper. We state and prove the following
lemma that would be useful in applying Theorem 3.7 numerically. It provides an analytical step
size in numerically computing the next iterate, given the initial point and iteration direction.

Lemma 4.5. The function Ψ(γ) := F (v + γϕ) for v, φ ∈ L2(D) is minimised when

γ = −
〈Av − v,Φ(0, T )− I)φ〉L2(D)

‖(Φ(0, T )− I)φ‖2
L2(D)

. (4.3)

Proof. Using the identities (3.28) and A(v+γφ) = Av+γΦ(0, T )φ as well as the linearity property
of Φ(0, T ), we have that

Ψ̇(γ) = DF (v + γφ)(φ)

=

∫
D

(A(v + γφ)− (v + γφ))(Φ(0, T )− I)φdx

=

∫
D

(Av − v) (Φ(0, T )− I)φ)dx+ γ

∫
D

(Φ(0, T )− I)φ)2dx.

It follows that Ψ̇(γ) = 0 when γ is given by (4.3). Note in fact, F (v) = 0 is already at a minimum
when Av = v and hence γ = 0 using (4.3).

We now describe the numerical PDE scheme to solve (3.2). For given spatial domain D =
(dmin, dmax), we partition it into Npde

x = 500 uniform interior nodes and the time interval [0, T ] into
Npde
t = 500 uniform points. To evolve the parabolic IBVPs (3.4) and (3.26) in time, we implement
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a backward Euler scheme with central differencing. We note that in problems such as stochastic
resonance where the period T is large, backward Euler method is preferred over Crank-Nicholson
method to enable larger time steps and less prone to spurious oscillations.

To apply Banach Fixed Point numerically of Theorem 3.2, we seek an finite representation of A
given by (3.8). We first discretise the continuous solution v(t, x) to the IBVP (3.3) with

vni := v(tn, xi), 0 ≤ n ≤ Npde
t , 0 ≤ i ≤ Npde

x ,

where xi = dmin + i∆x, i = 0, .., Npde
x + 1, ∆x = dmax−dmin

Npde
x +1

, tn = n∆t, n = 0, .., Npde
t and

∆t = T

Npde
t

. Using backward time-differencing and central spatial differencing, it is straightforward

to attain the following parabolic PDE discretisation for (3.4)

(
1 + ani

∆t

(∆x)2

)
un+1
i = uni +

(
ani
2

∆t

(∆x)2
+
bni
2

∆t

∆x

)
un+1
i+1 +

(
ani
2

∆t

(∆x)2
− bni

2

∆t

∆x

)
un+1
i−1 ,

for 1 ≤ i ≤ Npde
x , 0 ≤ n ≤ Npde

t and ani = a(T − tn, xi) and bni = b(T − tn, xi) are the time-reversed
coefficients evaluated at the grid points. We then define the tridiagonal matrix Φ̂−1(n) ∈ RN

pde
x ×Npde

x

for 1 ≤ n ≤ Npde
t by

Φ̂−1(n) :=


i’th diagonal: 1 + ani

∆t
(∆x)2

,

i’th superdiagonal: − ani+1

2
∆t

(∆x)2
− bni+1

2
∆t
∆x ,

i’th subdiagonal: bni−1

2
∆t
∆x −

ani−1

2
∆t

(∆x)2
.

Hence, for a given f ∈ Cγ(0, T ;Lp(D)), define f̂n = (f(T − tn, x1), ..., f(T − tn, x
Npde
x

))T ,
together with homogeneous Dirichlet boundary conditions, we have the following linear system for
(3.3)

Φ̂−1(n)v̂n+1 = v̂n + ∆t · f̂n, n = 1, ..., Npde
t . (4.4)

Equation (4.4) implies that v̂n+1 = Φ̂(n)(v + ∆t · f̂n) and so Φ̂(n) is the finite dimensional
analogue of Φ(tn, tn+1) given by (3.6). Since Φ̂−1(n) is tridiagonal, equation (4.4) can be efficiently
solved by utilising lower decomposition or iterative methods which are generally more efficient than
explicitly inverting the matrix. By iteratively solving, one evolves the IBVP (3.4) from initial time
t = 0 to time t = T for some given initial conditions. Define Â−1 := Φ̂−1(1)Φ̂−1(2) · · · Φ̂−1(Npde

t ),
then it follows that

v̂N
pde
t = Âv̂0, v̂0 ∈ RN

pde
x , (4.5)

numerically solves (3.3) from initial time t = 0 to time t = T . Note further that Â is the finite
counterpart of (3.8), the period solution map of (3.3). Given Âv̂, we define the finite dimensional
cost functional

F̂ (v̂) :=

√
∆x

2
‖Âv̂ − v̂‖2

RN
pde
x
,

where ‖·‖
RN

pde
x

is the standard RN
pde
x Euclidean norm. Thus, to apply Banach Fixed Point iteration

of Theorem 3.2, one can arbitrary choose initial vector v̂0 ∈ RN
pde
x and iterate v̂n+1 = Âv̂n until

F̂ (v̂n) ≤ 10−6. While v̂0 can be chosen arbitrarily, since τ̄(s, x) ≥ 0, see (3.16), it is recommended to
choose v̂0 ≥ 0 also. Particular to stochastic resonance problems, by Remark 4.4, it is recommended

26



to pick v̂0 by a step-like function such as a scaled sigmoid function 1
σ2(1+e−x)

. The scaling is due to
our anticipation that the expected duration time is inversely proportional to the diffusion coefficient.

Given that the F is strictly convex and we have the gradient (3.29), we can numerically solve
Theorem 3.7 by a gradient descent method scheme. For simplicity we assume a = const and again
apply backward time differencing and central spatial differencing, we have the discretisation for
(3.26)

(
1 + a(tn, xi)

∆t

(∆x)2
+ ∂xb(t

n, xi)∆t

)
un+1
i

= uni +

(
a(tn, xi)

2

∆t

(∆x)2
− b(tn, xi)

2

∆t

∆x

)
un+1
i+1 +

(
a(tn, xi)

2

∆t

(∆x)2
+
b(tn, xi)

2

∆t

∆x

)
un+1
i−1 .

Note here, the coefficients are not time-reversed. We similarly define the following tridiagonal
matrices W−1(n) ∈ RN

pde
x ×Npde

x for n = 0, ..., Npde
t by

Ŵ−1(n) :


i’th diagonal: 1 + a(tn, xi)

∆t
(∆x)2

+ ∂xb(t
n, xi)∆t,

i’th superdiagonal: − a(tn,xi+1)
2

∆t
(∆x)2

,

i’th subdiagonal: − b(tn, xi−1) ∆t
∆x −

a(tn,xi−1)
2

∆t
(∆x)2

.

We analogously define Ŵ−1(n,m) := Ŵ−1(n)Φ̂−1
W (n + 1) · · · Ŵ−1(m), where 0 ≤ n < m < Npde

t

hence Ŵ (1, Npde
t ) is the finite counterpart to W (0, T ) defined in (3.27). As with (4.5), we evolve

(3.26) by solving the triangular system of equations. Unlike numerically solving Theorem 3.2, the
initial conditions in (3.26) is not chosen arbitrarily. Instead given v̂n , the vector

ŵn := Âv̂n − v̂n ∈ RN
pde
x

serves as the n’th initial condition to (3.26). Therefore, by (3.29), the finite dimensional gradient is
given by

ˆδF

δvn
= Ŵ (1, Npde

t )ŵn − ŵn ∈ RN
pde
x .

Then one can compute the gradient descent iterates by

v̂n+1 = v̂n − γn
ˆδF

δvn
, (4.6)

that is we pick the next iterate in the direction φ = − δ̂F
δvn

with some step size γn. By Lemma 4.5,
we can pick γn optimally with the formula

γn =
〈ŵn, (Φ̂(1, Npde

t )− I) δ̂Fδvn 〉RNpde
x

‖(Φ̂(1, Npde
t )− I) δ̂Fδvn ‖

2

RN
pde
x

,

as the finite dimensional counterpart of (4.3) replacing L2(D) inner-product with RN
pde
x Euclidean

inner-product. To compute γn, one just need to compute (Φ̂(1, Npde
t ) δ̂Fδvn by again solving (4.4)

where f̂n ≡ 0 and computing the inner-product. Thus to perform the gradient descent procedure,
we again choose an arbitrary initial v̂0 ∈ RN

pde
x and iterate (4.6) until F̂ (vn) ≤ 10−6.
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Using the procedure described above, we end this section numerically solve (3.2) for the expected
duration for the Duffing Oscillator (4.2). Following Example 4.3, we choose the same parameters
A = 0.12, ω = 10−3 and σ = 0.285. The same parameters was considered in [CLRS17]. As
Example 4.3 and Figure 1 demonstrated, we reduce the unbounded domain to the bounded domain
D̃ = (−1, 3). We then estimate the s = 0 cross-section τ̄0.285(0, ·) by three approaches. In this
demonstration, we let τ̄ sde

0.285, τ̄
bfp
0.285 and τ̄grad

0.285 to respectively represent the Monte Carlo simulation
from Example 4.3, Banach fixed point iteration (Theorem 3.2) and gradient descent iteration via
convex optimisation (Theorem 3.7). Figure 2 shows these approximations.

Figure 2: Numerical approximation of the expected transition time τ̄0.285(x) by τ̄ sde
0.285(x), τ̄bfp

0.285(x)

and τ̄grad
0.285(x) to SDE (4.2) with parameters A = 0.12, ω = 0.001, σ = 0.285, s = 0, D = (−1, 3).

For stochastic simulation of Figure 2, τ̄ sde
0.285 from Example 4.3 for the domain D = (−1, 3) was

reused. Figure 2 shows that τ̄bfp
0.285 and τ̄grad

0.285 closely approximate each other very well and in turn
both visually approximate τ̄ sde

0.285 well, particularly for initial conditions starting in the right well.
In the absence of an analytic formulae of τ̄0.285, we take τ̄ sde

0.285 to be the “true” solution. Hence

we estimated the relative errors
‖τ̄ sde

0.285−τ̄
bfp
0.285‖L2(D̃)

‖τ̄ sde
0.285‖L2(D̃)

= 1.65% (2 dp) and
‖τ̄ sde

0.285−τ̄
grad
0.285‖L2(D̃)

‖τ̄ sde
0.285‖L2(D̃)

= 1.74%

(2 dp). The small relative error validates approximating expected transition time τ̄0.285 by solving
PDE (3.2) numerically by either τ̄bfp

0.285 or τ̄grad
0.285 for the Duffing Oscillator. It is anticipated that the

(relative) errors can be explained by the particular numerical scheme and parameters used in the
PDE and SDE methods. It may be particularly remarkable that the Banach fixed point iterates
converges because it is not immediate whether the associated bilinear form is coercive.

Figure 2 is a cross-section of τ̄0.285(s, x) with s = 0. With the knowledge that the PDE solution
approximates the SDE solution well, we produce Figure 3, a surface plot of τ̄(s, x) to see how
changing both initial time and initial state changes the expected duration time. As expected, the
surface is indeed periodic in s.

Similarly, Figure 4 shows the surface plot for Example 4.2.
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Figure 3: Numerical approximation of the expected duration τ̄(s, x) of SDE (4.2) with parameters
A = 0.12, ω = 0.001, σ = 0.285, s = 0, D = (−1, 3) and s ∈ [0, 3T ],where T = 2π

ω is the period.

4.3 Stochastic Resonance

We now apply the results of this paper to study the physical phenomena of stochastic resonance.
In the introduction, we discussed the modelling of stochastic resonance by a periodically-forced
double-well potential SDEs and the interest in the expected duration time between the two wells.
We refer to this time as expected transition time to align with the physical interpretation of the
problem. In [FZZ19], it was shown that time-periodic weakly dissipative SDEs, which includes
double-well potential SDEs, possesses a unique geometric periodic measure. The existence and
uniqueness of geometric periodic measure of (4.2) implies that transitions between the metastable
states do occur as well as asymptotic periodic behaviour [FZZ19]. Note however this does not imply
that the transition time between the wells is periodic.

We consider specifically the stochastic overdamped Duffing Oscillator (4.2) as our model of
stochastic resonance, this is a typical model in literature [BPSV82, BPSV81, BPSV83, CLRS17,
GHJM98, HI05, HIP05]. It is easy to see that (4.2) is a gradient SDE

dXt = −∂xV (t,Xt)dt+ σdWt,

derived from the time-periodic double-well potential V ∈ C1,2(R× R) given by

V (t, x) = −1

2
x2 +

1

4
x4 −Ax cos(ωt).

In the absence of the periodic forcing (A = 0), V has two local minimas at x = ±1 which are the
metastable states and has a local maxima at x = 0, the unstable state. We consider the left and right
well to be the intervals (−∞, 0) and (0,∞) respectively. Although the local minimas change over
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Figure 4: Numerical approximation of the expected duration τ̄(s, x) of SDE dXt =
(cos(0.1t)−Xt) dt + 0.285 · dWt with the domain D = (−1, 1) and s ∈ [0, 3T ],where T = 2π

ω is
the period.

time, by the nature of the problem, we shall normalise the problem to have x = −1,+1 as the bottom
of the left and right well respectively. It is well known (see e.g. [Gar09, Jun93, Ris96, Zwa01]) that
in these double-well systems, the process quickly goes to the bottom of the well (if not already) and
stays there for a long period of time before transitioning to the other well. This remains true even
for A 6= 0, see [BPSV82, BPSV81, BPSV83, Nic82, Jun93, JH07, ZMJ90].

Currently, there appears to be neither standard nor rigorous definition of stochastic resonance
[HI05, JH07]. In the context of this paper, a working definition is that the stochastic system is
in stochastic resonance if the noise intensity is tuned optimally such that the expected transition
time between the metastable states is (approximately) half the period [CLRS17]. We approach the
stochastic resonance problem by solving the PDE for many fixed noise intensity values.

For the stochastic resonance problem, we take the starting time s = 0 (modulo the period), the
time in which the right well is at its lowest point. In other words, we consider the process transition
from the bottom of the right well to the left well. Formally, for D = (−1,∞) , consider

τσ(x) = inf
t≥0
{Xt = −1|X0 = x}, x ∈ D,

associated to the SDE (4.2). We choose the same parameters A = 0.12, ω = 10−3 and keep the
explicit σ subscript as we shall fine-tune σ to attain stochastic resonance. The same parameters
was considered in [CLRS17].

We first study the sharpness of transition of the particle crossing the maxima point to reach the
potential’s minimum. We numerically solve the PDE (3.4) for different domains Db = (b, 3) for left
boundary point b = −1.0,−0.9, · · ·, 0.4, 0.5. This is shown in Figure 5. The left graph shows the
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expected transition times with respect to the different domains specified for all initial position within
that domain. Observe that as b goes towards −1 from 0.5, the transition times accumulates quickly.
The right graph fixes the initial position at the larger minima x = 1 of the double well potential and
the curve is the expected transition time as a function of the left boundary point b of the domain Db.
It is the cross section of the left graph at x = 1. We see sharp increase of the expected transition
time when b approaches 0, the maxima of the double well potential, from the right. This says that
the particle would stay on the right hand side of well for long time. Note however that when b
crosses 0 and towards −1, the expected transition time remains almost unchanged as the domain
expands to (−1, 3). This means that once the particle crosses the maxima, it quickly reaches and
settles around the local minima x = −1. This is a reflection of the accumulating curves of the
left graph. Note that the system does not need to exhibit stochastic resonance for these abrupt
transitions and periods of long stability properties to occur. Furthermore, it is worth noting that this
behaviour is expected by linearising the SDE around its the stationary points. In fact, we anticipate
multiplicative ergodic theorem of non-autonomous random dynamical systems to rigorously explain
this behaviour. Finally, we note that this this abrupt transition behaviour has been observed in the
cyclical ice age climate change phenomena [BPSV82, Nic82].

Figure 5: For SDE (4.2) with parameters A = 0.12, ω = 0.001, σ = 0.285, we solve and plot the
associated PDE (3.4) for expected transition time τ̄bfp

0.285(x) (left) and τ̄bfp
0.285(1) (right) for domains

Db = (b, 3) for b ∈ [−1, 0.5].

For the stochastic resonance problem, we consider also the transition from the left well to the
right well. Specifically, consider the SDE{

dYt =
[
Yt − Y 3

t +A cos(ωt)
]
dt+ σdWt, t ≥ T

2 ,

YT
2

= y,

and define
τL→Rσ (y) = inf

t≥T
2

{Yt ∈ ∂D|YT
2

= y} − T

2
, y ∈ DL,

where DL = (−∞, 1) and noting that s = T
2 . Clearly, by a change of variables, Ỹt = −Yt+T

2
and
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since cos(ω(t+ T
2 )) = − cos(ωt), we have that{

dỸt =
[
Ỹt − Ỹ 3

t +A cos(ωt)
]
dt− σdW̃t,

Ỹ0 = −y,

where W̃t = Wt+T
2
−WT

2
. It follows then that τL→Rσ (y) = inft≥0{Ỹt ∈ ∂D|Ỹ0 = −y}. Note that W̃

and W have the same distribution, hence it follows that

τ̄σ(x) = τ̄L→Rσ (−x), x ∈ D. (4.7)

Indeed the same computation holds provided the drift is an odd function when A = 0.
Specifically for SDE (4.2) where ω = 0.001, T = 2000π is the period. Given (4.7), it is sufficient

to cast the stochastic resonance problem as finding σ∗ 6= 0 such that

τ̄σ∗(1) ' T

2
= 1000π. (4.8)

i.e. the expected transition time between the wells is half the period.
To fine tune for stochastic resonance, we repeatedly solve the same PDE computations with

the same numerical parameters and methods (as for Figure 2), changing only σ and considering
the expected transition time τ̄grad

σ (1) as a function of σ. We vary σ in the σ-domain [0.2, 1]. We
partition this σ-domain into two subintervals [0.2, 0.3] and [0.3, 1] and uniformly partition them into
50 and 100 points respectively. As a function of σ, we plot the expected transition time τ̄σ(1) in
Figure 6.

Figure 6: Plot of τ̄grad
σ (1) for σ ∈ [0.2, 1] for SDE (4.2) with parameters A = 0.12 and ω = 0.001,

s = 0 and D̃ = (−1, 3).

It can be seen from Figure 6 that (4.8) is satisfied for some σ∗ ∈ [0.245, 0.25]. We compute
further τ̄grad

σ (1) on a finer partition of the interval [0.245, 0.25] further and tabulate its numerical
values in Table 1. Numerically, from Table 1, it can be seen that τ̄grad

0.2485 ' T
2 = 1000π to the nearest

5 · 10−4.
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σ 0.245 0.2455 0.246 0.2465 0.247 0.2475 0.248 0.2485 0.249 0.2495 0.25
τ̄grad
σ (1) 3388 3346 3306 3267 3230 3194 3159 3125 3093 3061 3030

Table 1: Computation of τ̄grad
σ (1) (4sf) on a finer partition of σ ∈ [0.245, 0.25].

5 Discussion

In this paper, we rigorously derived parabolic PDE (2.24) that the expected duration of time-periodic
non-degenerate SDEs satisfies, complete with time-periodic boundary conditions and assumptions
on the SDE coefficients. Furthermore, we proved that the PDE is well-posed by casting the problem
as a fixed point problem in Theorem 3.2 as well as a convex optimisation problem in Theorem 3.7.
In Section 4.2, we provided how these approaches can be applied numerically to solve PDE (2.24).
In Section 4.3, we apply our theory and provide numerics to compute the expected duration time
to switch from the regime and how it varies with the change of the noise intensity. This provides a
fine-tuning method to find the noise intensity from historical events in reality. While it works very
well for stochastic resonance problem, our theory is applicable to many real world and scientific
problems where random periodicity is ubiquitous and exit duration is of important consideration.

Some conditions was assumed in this paper to simplify the exposition and to focus on the main
ingredients and techniques used to attain the results given in this paper. For example, it was
assumed the diffusion coefficient of SDE (2.4) is non-degenerate. We believe that this assumption
can be relaxed along the lines of (time-dependent) Hörmander’s condition and possibly even the
UFG (Uniformly Finitely Generated) condition [KS82]. Similarly, we anticipate that the results in
the paper can be extended to Lévy noise with a different infinitesimal generator. Another example
is that in Theorem 3.7 we posed the solution of the (2.24) as convex optimisation problem in the
L2(D) Hilbert space. We note that Lemma 3.4 applies more generally to reflective Banach spaces
such as Lp(D) for 1 < p <∞. If Theorem 3.7 can be established for Lp(D), by Sobolev embedding,
this would imply that (2.24) is well-posed for a wide range of systems and in higher dimensional
systems.

On a broader view, there are a few different directions that this paper opens up. For instance, in
Section 4.3, we implicitly assumed that the mapping σ → τ̄σ(s, x) is continuous in the fine-tuning of
σ for the stochastic resonance problem. While we expect this to be true, a rigorous proof would be
of interest. From a theory perspective, we recall that Theorem 2.7 can be regarded as an instance
of time-periodic Feynman-Kac duality in relating the expected duration of time-periodic SDEs to
time-periodic solution of a parabolic PDE. We anticipate using a similar approach of this paper,
other time-periodic Feynman-Kac dualities exist for other quantities of time-periodic SDEs.
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