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1. Introduction and main results

Cluster algebras were introduced by Fomin and Zelevinsky [FZ1] in an effort
to describe dual canonical bases in the universal enveloping algebras of Borel
subalgebras of simple complex Lie algebras. A cluster algebra possesses the dis-
tinguished set of generators, cluster variables, organized in the groups of the
same cardinality called clusters which form a combinatorial structure described by
an exchange graph, where clusters correspond to vertices of the exchange graph.
The generators of the neighboring clusters are algebraically dependent, where the
corresponding relations are encoded by an exchange matrix or, equivalently, by
an exchange quiver. In the famous paper [FZ2] Fomin and Zelevinsky obtained
Cartan–Killing type classification of all cluster algebras of finite type, i.e., cluster
algebras having only finitely many distinct cluster variables. A wider class of cluster
algebras is formed by cluster algebras of finite mutation type which have finitely
many exchange matrices (but are allowed to have infinitely many cluster variables).
These algebras found various applications, including ones in quantum field theories
(see, e.g., [ACCERV], [CV]).

Skew-symmetric cluster algebras (i.e., with skew-symmetric exchange matrices)
of finite mutation type were classified in [FeSTu]: it was shown there that such
algebra either has rank at most two, or corresponds to a triangulated surface,
or belongs to one of finitely many exceptional mutation classes. The approach
in [FeSTu] was based on a computer assisted analysis of the combinatorial structure
of the exchange graph of mutation-finite cluster algebras. This paper is written
in an effort to develop a more conceptual characterization of the mutation finite
phenomenon. We consider the property of mutation finiteness to be related to the
existence of some positive semi-definite symmetric form similar to the classification
of finite type cluster algebras [FZ2] and to the classification of reflection groups of
finite and affine types [C].

In the present paper, we follow the path started in [BGZ], [Se1], [Se2], [Se3]
characterizing mutation-finite cluster algebras of rank at least 3 using associated
quadratic forms called quasi-Cartan companions.

The notion of a quasi-Cartan companion of a skew-symmetric matrix B (or,
equivalently, of the corresponding quiver) was introduced in [BGZ] as a symmetric
matrix whose off-diagonal entries have the same moduli as ones of B (we recall the
precise definitions in Section 3). It was proved in [BGZ] that a matrix B defines a
cluster algebra of finite type if and only if it has a positive definite quasi-Cartan



CLUSTER ALGEBRAS AND EXTENDED AFFINE WEYL GROUPS

companion, and all the cycles in the associated to B quiver are cyclically oriented.
This result was extended to the case of algebras of affine type in [Se2], where it

was proved that a matrix defines a cluster algebra of affine type if and only if it
has a positive semi-definite quasi-Cartan companion of corank one satisfying some
additional admissibility conditions (see Section 6).

Our first construction provides the following result (for brevity, we formulate
everything in terms of quivers, see Section 2 for details).

Theorem 3.14. Let Q be a connected quiver of finite mutation type with at least
3 vertices. Then Q has a positive semi-definite quasi-Cartan companion.

As a corollary, we obtain the following characterization of finite mutation classes.

Corollary 3.15. A connected quiver Q with at least three vertices is mutation-
finite if and only if every quiver in the mutation class of Q has a positive semi-
definite quasi-Cartan companion.

A quasi-Cartan companion A of a quiver Q can be mutated along with the
quiver (we recall the definition given in [BGZ] and our geometric interpretation
of it in Section 3). Understanding A as a matrix of a quadratic form on a real
vector space, and thus as a Gram matrix of a certain basis (called a companion
basis [P1], [P2]), the mutation corresponds to a change of basis (we call this
procedure a mutation of a basis). However, the mutated matrix µk(A) may not be
a quasi-Cartan companion of the mutated quiver µk(Q). A notion of k-compatible
companion was introduced in [BGZ] to guarantee that µk(A) is again a quasi-
Cartan companion of µk(Q). We introduce a notion of a fully compatible companion
which is k-compatible for every vertex k, and thus its mutation in every direction
leads to a quasi-Cartan companion of the mutated quiver. We then prove the
following result.

Theorem 3.17. Let Q be a mutation-finite quiver with at least 3 vertices. If Q is
not the quiver shown in Fig. 3.3 then Q has a fully compatible positive semi-definite
quasi-Cartan companion.

Although every mutation of a fully compatible positive semi-definite quasi-
Cartan companion provided by Theorem 3.17 is again a positive semi-definite
quasi-Cartan companion, it may not be fully compatible, and thus further mutation
may not lead to a quasi-Cartan companion. So, the main question we want to
explore is when we are able to mutate a quasi-Cartan companion throughout
the whole mutation class of a quiver (we call such a quasi-Cartan companion
a symmetric twin of a quiver). This is the case, for example, for quivers without
oriented cycles: it was proved in [ST] that a quasi-Cartan companion of such a
quiver with all off-diagonal entries being non-positive can be mutated along any
mutation sequence to produce a quasi-Cartan companion again.

Our main result is the following. For every unpunctured surface we pick a specific
representative from its mutation class of quivers, and then construct a companion

basis u belonging to an extended affine root system of type A
[n0]
n−n0

(we recall the
definitions in Section 5), which agrees with the results of [CdZ] (where n is the rank
of the quiver, and n0 is the dimension of the kernel of the corresponding quadratic
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form which can be expressed in terms of Euler characteristics of S). Then the next
theorem states that this collection of roots gives rise to a positive semi-definite
symmetric twin for every quiver in the mutation class.

Theorem 5.5. Given a quiver Q constructed from a triangulation of an unpunc-
tured surface, there exists a companion basis u for Q such that for any mutation
sequence µ the Gram matrix of vectors µ(u) is a positive semi-definite quasi-Cartan
companion for µ(Q).

Moreover, we claim in Corollary 6.4 that the choice of such basis u is essentially
unique up to a linear isometry and sign changes of vectors in u.

We approach Theorem 5.5 in two different ways. The first one is through the
groups constructed in [FeTu] by quivers originating from unpunctured surfaces.
With any such quiver we can then associate two groups, whose generators are
involutions indexed by vertices of the quiver: a group G constructed in [FeTu]
(which is a quotient of a certain Coxeter group), and an extended affine Weyl
group W generated by reflections. These groups turned out to be related in the
following way.

Theorem 5.1. There exists a surjective homomorphism ϕ : G→W taking gene-
rating involutions of G to generating reflections of W .

In finite and affine types the groups G and W are actually isomorphic, which
gives rise to the following conjecture.

Conjecture 5.2. The map ϕ in Theorem 5.1 is an isomorphism.

We note that both groups G and W can also be defined for all 9 exceptional
mutation-finite classes of types E (see Fig. 2.2), and the conjecture holds in these
cases (see Remark 5.4).

Assuming Conjecture 5.2, Theorem 5.5 holds easily (see Proposition 5.6).
As we do not have a proof of Conjecture 5.2, we prove Theorem 5.5 in a different

way by using the notion of an admissible quasi-Cartan companion introduced
in [Se2]. The admissibility condition is stronger than full compatibility, so Theo-
rem 5.5 can be deduced from the following result which we prove in Section 6.

Proposition 6.2.1 Given a quiver Q constructed from a triangulation of an un-
punctured surface, there exists an admissible quasi-Cartan companion A of Q such
that for any mutation sequence µ the matrix µ(A) is an admissible quasi-Cartan
companion of µ(Q). In particular, A is a symmetric twin of Q.

The paper is organized as follows. Section 2 contains the essential facts about
mutations of quivers, and about finite mutation classes. In Section 3, we first
recall the basics on quasi-Cartan companions, and then construct positive semi-
definite quasi-Cartan companions for all mutation-finite quivers. In Section 4,
we discuss the group constructed from a quiver in [FeTu]: after recalling the
presentation, we show that the group depends on three numerical parameters
only, namely, on the topological type of the surface (genus and the number of

1While preparing the paper we were informed by Ahmet Seven that he has obtained
an independent proof of Proposition 6.2.
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boundary components), and the number of marked points. In other words, the
group turns out to be independent on the distribution of marked points amongst
the boundary components (note that if Conjecture 5.2 is true, the group would
depend on two numerical parameters only). In Section 5, we associate with every
unpunctured surface an extended affine Weyl group of type A, and then discuss
the relations between this group and the one constructed above. Finally, Section 6
is devoted to the proof of Proposition 6.2 and Theorem 5.5 by using admissible
quasi-Cartan companions. We also discuss the geometric interpretation of the ad-
missibility condition.

Acknowledgements. The authors are grateful to the anonymous referee for valu-
able comments. The authors would like to express their gratitude to the Research
Institute for Mathematical Sciences, Kyoto, and the organizers of the program
on Cluster Algebras at RIMS in the Spring of 2019. M.S. is also grateful to the
Research in Pairs Program at the Mathematisches Forschungsinstitut Oberwolfach
(Summer 2019) and Mathematical Science Research Institute, Berkeley (Fall 2019)
for their hospitality and outstanding working conditions they provided.

2. Quivers of finite mutation type

In this section, we recall the essential notions on mutations of quivers of finite,
affine, and finite mutation type. For details see [FST].

2.1. Quivers and mutations

An n × n skew-symmetric integer matrix B can be encoded by a quiver Q which
is a (multi)-graph with oriented edges (called arrows). Vertices of Q are labeled
by [1, . . . , n]. If bij > 0, we join vertices i and j by bij arrows directed from i to j.
Throughout the paper we assume that all diagrams are connected (equivalently,
matrix B is assumed to be indecomposable).

For every vertex k of a quiver Q one can define an involutive operation µk called
mutation of Q in direction k. This operation produces a new quiver denoted by
µk(Q) which can be obtained from Q in the following way (see [FZ1]):

• orientations of all arrows incident to a vertex k are reversed;
• for every pair of vertices (i, j) such that Q contains arrows directed from i to
k and from k to j the number of arrows joining i and j changes as described
in Figure 2.1.

Figure 2.1. Mutations of quivers. The sign before c (resp., d) is positive if the three
vertices form an oriented cycle, and negative otherwise. Either c or d may vanish. If ab
is equal to zero then neither value of c nor orientation of the corresponding arrow does
change.

a b a b

c d

k k

µk

±c± d = ab
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Given a quiver Q, its mutation class is the set of all quivers obtained from the
given one by all sequences of iterated mutations. All quivers from one mutation
class are called mutation-equivalent.

2.2. Finite type

A quiver is of finite type if it is mutation-equivalent to an orientation of a simply-
laced Dynkin diagram. So, a quiver of finite type is of one of the following mutation
types: An, Dn, E6, E7 or E8.

It is shown in [FZ2] that mutation classes of quivers of finite type are in one-
to-one correspondence with skew-symmetric cluster algebras of finite type. In
particular, this implies that any subquiver of a quiver of finite type is also of
finite type.

2.3. Affine type

A quiver is of affine type if it is mutation-equivalent to an orientation of a simply-
laced affine Dynkin diagram different from an oriented cycle. A quiver of affine type
is of one of the following mutation types: Ãk,n−k, 0 < k < n (see Remark 2.1),

D̃n, Ẽ6, Ẽ7 or Ẽ8.

Remark 2.1. Let D̃ be an affine Dynkin diagram different from Ãn. Then all
orientations of D̃ are mutation-equivalent. The orientations of Ãn−1 split into

[n/2] mutation classes Ãk,n−k (where by [x] we mean the integer part of x): each
class contains a cyclic representative with only two changes of orientations, with
k consecutive arrows in one direction and n− k in the other, 0 < k < n.

We will heavily use the following statement.

Proposition 2.2 ([BMR], [Zh]). Any subquiver of a quiver of affine type is either
of finite or of affine type.

2.4. Finite mutation type

A quiver is called mutation-finite (or of finite mutation type) if its mutation class
is finite.

As it is shown in [FeSTu], a quiver of finite mutation type either has only two
vertices, or corresponds to a triangulated surface (see Section 2.5), or belongs to
one of finitely many exceptional mutation classes.

Theorem 2.3 ([FeSTu]). Let Γ be a mutation-finite diagram with at least 3 ver-
tices. Then either Γ arises from a triangulated surface, or Γ is mutation-equivalent

to one of 18 exceptional diagrams E6, E7, E8, Ẽ6, Ẽ7, Ẽ8, E
(1,1)
6 , E

(1,1)
7 , E

(1,1)
8 , X6, X7

shown in Fig. 2.2 on the next page.

2.5. Triangulated surfaces and block-decomposable quivers

The correspondence between quivers of finite mutation type and triangulated
surfaces is developed in [FST]. Here we briefly recall the basic definitions.

By a surface we mean a genus g orientable surface with r boundary components
and a finite set of marked points, with at least one marked point at each boundary
component. A non-boundary marked point is called a puncture.
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Figure 2.2. Exceptional finite mutation classes

An (ideal) triangulation of a surface is a triangulation with vertices of triangles
in the marked points. We allow self-folded triangles and follow [FST] considering
triangulations as tagged triangulations (however, we are neither reproducing nor
using all the details in this paper).

Given a triangulated surface, one constructs a quiver in the following way:

• vertices of the quiver correspond to the (non-boundary) edges of a triangula-
tion;

• two vertices are connected by an arrow if they correspond to two sides of the
same triangle (i.e., there is one simple arrow between given two vertices for
every such triangle); inside the triangle orientations of the arrow are arranged
counter-clockwise (with respect to some orientation of the surface);

• two arrows with different directions connecting the same vertices cancel out;
two arrows in the same direction result in a double arrow;

• for a self-folded triangle (with two sides identified), two vertices of the quiver
corresponding to the sides of this triangle are disjoint; a vertex corresponding
to the “inner” side of the triangle is connected to other vertices in the same
way as the vertex corresponding to the outer side of the triangle.

It is shown in [FST] that any surface can be cut into elementary surfaces; we
list their quivers in Fig. 2.3. We use white color for the vertices corresponding to
the “exterior” edges of these elementary surfaces (such vertices are called open)
and black for the vertices corresponding to “interior” edges. The quivers in Fig. 2.3
are called blocks. Depending on a block, we call it a block of type I, II, etc.

E6

E7

E8

Ẽ6

Ẽ7

Ẽ8

E
(1,1)
6

E
(1,1)
7

E
(1,1)
8

X6

X7
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As elementary surfaces are glued to each other to form a triangulated surface,
the blocks are glued to form a block-decomposition of a bigger quiver. A connected
quiver Q is called block-decomposable (or simply, decomposable) if it can be obtained
from a collection of blocks by identifying white (i.e., open) vertices of different
blocks along some partial matching (matching of vertices of the same block is not
allowed), where two simple arrows with the same endpoints and opposite directions
cancel out, and two arrows with the same endpoints and the same directions form
a double arrow. A non-connected quiver Q is called block-decomposable if every
connected component of Q is either decomposable or a single vertex.

Figure 2.3. Blocks used to obtain quivers from triangulations

Block-decomposable quivers are in one-to-one correspondence with adjacency
matrices of arcs of ideal (tagged) triangulations of bordered two-dimensional sur-
faces with marked points (see [FST, Sect. 13] for the detailed explanations).
Mutations of block-decomposable quivers correspond to flips of (tagged) triangu-
lations. In particular, this implies that the mutation class of any block-decom-
posable quiver is finite, and any subquiver of a block-decomposable diagram is
block-decomposable too.

Theorem 2.3 shows that block-decomposable quivers almost exhaust mutation-
finite ones.

We will use the surface presentations of block-decomposable quivers of finite
and affine type, see Table 2.1.

Table 2.1. Surfaces corresponding to quivers of finite and affine type

I II IIIa IIIb IV V

Finite types
An, n ≥ 1 disk

Dn, n ≥ 4 punctured disk

Affine types

Ãk,n−k, n > k ≥ 1 annulus

D̃n, n ≥ 4 twice punctured disk
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Remark 2.4. A mutation class Ãk,n−k (of affine type Ãn−1) corresponds to an
annulus with k marked points on one boundary component and n − k on the
other.

2.6. Subquivers of mutation-finite quivers

In this section, we list some technical facts we are going to use in the sequel.

Oriented cycles in mutation-finite quivers. It is easy to see that there are two types
of mutation-finite oriented chordless cycles: simply-laced cycles (they are of finite

type Dn) and a cycle of length three with (1, 1, 2) arrows (of type Ã2,1). Note that
a quiver of type Dn for n ≥ 4 corresponds to a punctured disk, so these will not
appear in quivers constructed from unpunctured surfaces.

Non-oriented cycles in mutation-finite quivers. It is also a well known fact that all
non-oriented cycles in mutation-finite quivers are simply-laced (and thus of type

Ãk,n−k for some k).

We will also use the following statement proved by Seven in [Se1].

Proposition 2.5 (Proposition 2.1(iv), [Se1]). Let Q be a simply-laced mutation-
finite quiver and let C ⊂ Q be a non-oriented chordless cycle. Then for each vertex
v ∈ Q the number of arrows connecting v with C is even.

3. Quasi-Cartan companions

In [BGZ], Barot, Geiss and Zelevinsky introduced a notion of quasi-Cartan
companion of a skew-symmetrizable matrix and defined its mutation. As we restrict
ourselves to quivers, we reproduce below their definitions for skew-symmetric
matrices.

3.1. Definitions and basic properties

Definition 3.1 (Quasi-Cartan companion). Let B be an n × n skew-symmetric
matrix. An n× n symmetric matrix A is a quasi-Cartan companion of B if |aij | =
|bij | and aii = 2.

Remark 3.2. A quasi-Cartan companion contains the same information as the
skew-symmetric matrix B together with the choice of signs assigned to each (un-
ordered) pair of indices (i, j), 1 ≤ i, j ≤ n with non-zero bij (sign of the entry
aij = aji in A).

Pictorially, we will represent a quasi-Cartan companion by labelling the arrows
of a quiver with the signs of the corresponding elements.

We will also say that a quasi-Cartan companion of a skew-symmetric matrix is
a quasi-Cartan companion of the corresponding quiver.

Definition 3.3. Given a quiver Q and its quasi-Cartan companion A, consider a
quadratic vector space V defined by the quadratic form A. Let v = {v1, . . . , vn}
be basis vectors in V for which A serves as the Gram matrix, i.e., 〈vi, vj〉 = aij .
Generalizing the definition of Parsons [P1], [P2], we will call the set of vectors v a
companion basis of Q.
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Definition 3.4 (Mutation of quasi-Cartan companions). Let A be a quasi-Car-
tan companion of B. A mutation µk of A is defined as µk(A) = A′ where

a′ij =





2 if i = j;

sgn(bik)aik if j = k;

−sgn(bkj)akj if i = k;

aij − sgn(aikakj)[bikbkj ]+ otherwise.

Remark 3.5. There is a geometric interpretation of the mutation of quasi-Cartan
companions, as follows. Let v be a companion basis for Q. Then it is straightfor-
ward to check that the elements a′ij of µk(A) = A′ satisfy a′ij = (v′i, v

′
j), where

v′i =





−vi if i = k;

vi − 〈vi, vk〉vk if bi,k > 0;

vi otherwise.

In other words, a mutation of a quasi-Cartan companion corresponds to the ref-
lection of some of the vectors of the companion basis. In particular, µk(A) and A
define the same quadratic form (written in different bases).

Note that the result of a mutation of a quasi-Cartan companion is not always
a quasi-Cartan companion of the mutated matrix, see Fig. 3.1.

µ2

e1 − e2 e2 − e3

e3 − e1

e1 − e2 e2 − e1

e1 − e3

µ2(A) =




2 1 −2
1 2 −1
−2 −1 2


A =




2 −1 −1
−1 2 −1
−1 −1 2




Figure 3.1. A mutation transforming a quasi-Cartan companion of the quiver to a
matrix which is not a quasi-Cartan companion of the mutated quiver.

In [BGZ], Barot, Geiss and Zelevinsky described a sufficient condition for a
quasi-Cartan companion to ensure that the result of the mutation µk is a quasi-
Cartan companion of the mutated matrix. This is provided by the notion of k-
compatibility.

Definition 3.6 (k-compatibility). A quasi-Cartan companion A is k-compatible
if for every i, j 6= k one has

{
aijajkaki > 0 if (i, j, k) form an oriented cycle,

aijajkaki ≤ 0 otherwise.

Lemma 3.7 ([BGZ]). Let A be a k-compatible quasi-Cartan companion for B.
Then µk(A) is a k-compatible quasi-Cartan companion for µk(B).

Definition 3.8 (full compatibility). A quasi-Cartan companion is fully compa-
tible if it is k-compatible for every k ∈ {1, . . . , n}.
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Remark 3.9. Given a fully compatible quasi-Cartan companion, we can change the
sign of any vector in a companion basis to obtain a new fully compatible quasi-
Cartan companion. The resulting matrix differs by the signs of off-diagonal entries
in a given row and column.

To construct an example of a fully compatible quasi-Cartan companion, one can
take any acyclic quiver and label all its arrows with the negative sign.

Theorem 3.10 ([Se3], [ST]). Let Q be an acyclic quiver and A be its quasi-Cartan
companion with aij ≤ 0 for all i 6= j. Then for every sequence µ of mutations the
matrix µ(A) is a fully compatible quasi-Cartan companion of µ(Q).

Remark 3.11. In particular, Theorem 3.10 can be applied in all finite and affine
cases. If B is of finite type, the quasi-Cartan companion described in Theorem 3.10
is a positive definite quasi-Cartan matrix (cf. Remark 3.5). Similarly, If B is
of affine type, then the corresponding quasi-Cartan companion is positive semi-
definite.

Remark 3.12. One can extend the above construction of a positive semi-definite

quasi-Cartan companion to the case of the elliptic quivers E
(1,1)
6 , E

(1,1)
7 , E

(1,1)
8 in

the following way:

— Let Q be a quiver of one of the types above; consider a subquiver Q′ obtained
by removing one of the ends of the double arrow. Quiver Q′ is of the type
Ẽ6, Ẽ7 or Ẽ8 respectively. Now consider a quasi-Cartan companion A′ of Q′

(with all arrows labelled by the negative sign).
— Let x be the removed node in Q, and let x′ be the other end of the double

arrow. Let vi be the vector assigned to x′ in a companion basis giving rise
to A′. Assigning to x a copy of vi we obtain a positive semi-definite quasi-
Cartan companion A of Q.

One can check explicitly by computation that for each mutation sequence µ
the matrix µ(A) is a fully compatible quasi-Cartan companion of µ(Q) (this also
follows from Remark 5.4 together with Proposition 6.2).

Remark 3.13. Vectors constructed in Remark 3.12 are clearly linearly dependent.
However, we can slightly amend the construction by adding to vi a new basis
vector lying in the kernel of the quadratic form. In this way we obtain a collection
of linearly independent vectors which we have the right to call a companion basis.
We will follow this procedure throughout the paper.

3.2. Positive semi-definite companions and mutation finiteness

In this section, we prove the following theorem.

Theorem 3.14. Let Q be a connected quiver of finite mutation type with at least
3 vertices. Then Q has a positive semi-definite quasi-Cartan companion.

Proof. As follows from the classification of quivers of finite mutation type [FeSTu],
a quiver of finite mutation type is either of rank 2, or arises from a surface, or
belongs to one of 11 exceptional mutation classes.

For the exceptional quivers of finite and affine type the statement follows from
Remark 3.11.
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For quivers of the types E
(1,1)
6 , E

(1,1)
7 , E

(1,1)
8 a positive semi-definite quasi-

Cartan companion is constructed in Remark 3.12.
The mutation classes of quivers X6 and X7 are very small (containing 6 and 2

quivers respectively), for them one can check the statement directly.
We are left to consider the case of quivers arising from triangulations of surfaces.

To build (a companion basis for) a quasi-Cartan companion of a quiver Q originat-
ing from a given triangulation, we will assign vectors v1, . . . , vn to the arcs of the
triangulation, and the quasi-Cartan companion A will be constructed as the Gram
matrix of these vectors, i.e., aij = 〈vi, vj〉. Let t be the number of triangles in the
triangulation. Consider a Euclidean t-dimensional space with an orthonormal basis
e1, . . . , et. To construct the vectors vi, we first assign the basis vectors e1, . . . , et to
the triangles T1, . . . , Tt of the triangulation. To an arc contained in the triangles Ti
and Tj we assign a vector ei + ej or ei − ej , as in Fig. 3.2. It is straightforward to
see that the vectors constructed in this way provide a quasi-Cartan companion of
the quiver Q. As they all lie in the Euclidean space, the quasi-Cartan companion
is positive semi-definite. In view of Remark 3.13, we can also assume the vectors
v1, . . . , vn to be linearly independent. �

Figure 3.2. Construction of vectors for quivers from triangulations. Triangles i and j
are separated by an edge assigned with vector ei+ej , unless there are two common edges
meeting at a puncture, see the configuration in the middle of the top row. An internal
edge of self-folded triangle j surrounded by triangle i is assigned with vector ei − ej .

Corollary 3.15. A connected quiver Q of a rank higher than 2 is mutation-finite
if and only if every quiver in the mutation class of Q has a positive semi-definite
quasi-Cartan companion.

Proof. In view of Theorem 3.14 it is sufficient to show that every mutation-infinite
quiver Q has a mutation-equivalent quiver not admitting a positive semi-definite
quasi-Cartan companion. According to the well-known criterion (see, e.g., [DO,
Cor. 8]), we can always find a quiver mutation-equivalent to Q containing an arrow
of weight at least 3. Then any quasi-Cartan companion of such quiver is clearly
indefinite. �

i

j

ei + ej

i

j

ei − ejei + ej i j ei − ej

ei + ej

i j ei − ej

ei + ej

i j

ei + ej

ei + ej
i

j

k

ei − ej

ei + ej

ei − ek

ei + ek
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One can ask a natural question whether there exists a fully compatible positive
semi-definite quasi-Cartan companion for every mutation finite quiver.

Remark 3.16. It is easy to check via case by case inspection (taking into account
Remark 3.9) that the quiver on Fig. 3.3 does not admit any fully compatible quasi-
Cartan companion.

One can also check that this quiver corresponds to a closed torus with two
punctures, and it has one block decomposition only [Gu1, Gu2] (which consists of
four blocks of type II). In particular, this quiver is not a subquiver of any larger
quiver arising from a triangulation.

Figure 3.3. This quiver admits no fully compatible quasi-Cartan companion. Shaded
triangles label non-oriented cycles.

In the next section we will show that this example is unique in the class of
mutation-finite quivers.

3.3. Fully compatible positive semi-definite companions

The main result of this section is the following theorem.

Theorem 3.17. Let Q be a mutation-finite quiver with more than 2 vertices. If
Q is not the quiver shown in Fig. 3.3 then Q has a fully compatible positive semi-
definite quasi-Cartan companion.

We need to show the statement for quivers originating from triangulations and
for quivers from eleven exceptional mutation classes.

Lemma 3.18. Theorem 3.17 holds for quivers from eleven exceptional mutation
classes.

Proof. For finite, affine and elliptic quivers the statement follows directly from
Remarks 3.11 and 3.12. For the quiver in mutation classes X6 and X7 the statement
can be checked directly. �

Now, we are left to prove the theorem for the case of quivers from triangulations.
As in the proof of Theorem 3.14, we will use vectors of the form ±ei ± ej ,

where e1, . . . , en is an orthonormal basis of a Euclidean space (here vectors {ei}
correspond to the triangles in the triangulation). In view of Remark 3.13, we
assume the vectors are linearly independent.

We need the following technical definitions.
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Definition 3.19. If a vertex of Q is assigned with a vector v = ±ei ± ej , we say
that the set {ei, ej} is the support of the vector v.

Definition 3.20 (Disjoint support companion basis). Suppose that Q is a quiver
decomposed into blocks, and suppose that vectors {vk} = {±eik ± ejk} provide
a companion basis for Q. We say that {vi} is a disjoint support companion basis
if for every open vertex pk of the block decomposition of Q (i.e., an open vertex
of some block which is not matched with any other) the following holds: if pk is
not connected to any other open vertex in the block decomposition of Q then the
support of the vector vk assigned to pk is not contained in the union of all supports
of other vectors {vi} for i 6= k.

We will use the following two technical lemmas concerning disjoint support
companion bases.

Lemma 3.21. Every block has a fully compatible positive semi-definite quasi-
Cartan companion with a disjoint support companion basis.

Proof. The required companion bases are provided in Fig. 3.4. �

Figure 3.4. Fully compatible quasi-Cartan companions for blocks

Lemma 3.22 (see Fig. 3.5 on the next page). Let Q be a quiver decomposed into
blocks. Suppose that Q1 and Q2 are subquivers of Q such that Q = Q1 ∪ Q2,
every block of the decomposition of Q lies entirely either in Q1 or in Q2, and
the intersection Q1 ∩ Q2 contains no arrows. Suppose also that Q1 and Q2 have
quasi-Cartan companions with disjoint support companion bases. Then Q also has
a quasi-Cartan companion with a disjoint support companion basis.

Proof. Suppose that {p1, . . . , pk} = Q1 ∩Q2 are vertices in the intersection. Con-
sider disjoint support companion bases w = {±wi ± wj} and u = {±ui ± uj}
of Q1 and Q2. Let W and U be vector spaces spanned by vectors {wi} and {ui}
respectively. Denote by wim (uim resp.) the vectors showing up in the expressions
assigned to vertices pm, m = 1, . . . , k. Now take the vector space U + W by
identifying wim = uim , and extend the quadratic forms from U and W to U +W
by (wi, uj) = 0 for all the remaining i, j. This provides a required disjoint support
companion basis. �

To prove Theorem 3.17, we show first the statement for quivers with a block
decomposition containing blocks of type II only. More precisely, for such quivers we
will prove existence of a quasi-Cartan companion with all required properties and
additionally a disjoint support companion basis. This will be done by induction

e1 + e2 e2 + e3 e1 + e2 e2 + e3

e1 + e3

e2 + e3 e2 − e3

e1 + e2

e2 + e3 e2 − e3

e1 + e2

e1+e2 e2+e3

e2 + e4

e2 − e4

e2 − e4

e2 − e3

e2 + e3

e2 + e4

e1+e2
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on the number of non-oriented triangles in the quiver (see Lemma 3.23 for the
base of induction, i.e., the case all triangles are oriented, and Lemma 3.24 for the
induction step). We then show that one can also include blocks of type I and IV,
and then finally we use Lemmas 3.21 and 3.22 to conclude the theorem for block
decompositions containing blocks of remaining types IIIa, IIIb and V.

Lemma 3.23. Let Q be a quiver decomposed into several copies of block II. Sup-
pose that Q contains no non-oriented cycles of length 3. Then Q has a fully
compatible positive semi-definite quasi-Cartan companion with a disjoint support
companion basis.

Proof. We will use the same construction as in the proof of Theorem 3.14, see
Fig. 3.2. Since we only have copies of block II in the decomposition, the arcs
labelled by anything different from ei + ej for some i, j will only occur when two
copies of block II are attached along two vertices to create a vanishing arrow.
However, the corresponding vertex of the quiver is not a part of any triangle in the
quiver (it is a vertex in an oriented quadrilateral). By assumption, all triangles in
Q are oriented, and as we see now, every arrow in a triangle is labelled by “+”.
Therefore the quasi-Cartan companion is fully compatible.

Furthermore, observe that any open vertex of the decomposition of Q corres-
ponds to an arc of a triangle Tk such that two other arcs of Tk lie at the boundary.
Therefore, one arc of Tk only corresponds to a vertex of Q, and thus the basis
vector ek belongs to the support of the only vector corresponding to this open
vertex, so we get a disjoint support companion basis. �

Lemma 3.24. Let Q be a quiver decomposed into several copies of block II. Sup-
pose that Q is not the quiver shown in Fig. 3.3. Then Q has a fully compatible
positive semi-definite quasi-Cartan companion with a disjoint support companion
basis.

Proof. To show the statement we will proceed by induction on the number of
non-oriented triangles in Q.

Lemma 3.23 constitutes the base of the induction (no non-oriented triangles
in Q). Suppose that the statement is known for every quiver with less than n
non-oriented triangles, and consider a quiver Q with k non-oriented triangles.

Let p, q, r be vertices of some non-oriented triangle in Q. Clearly, each of the
edges pq, qr, rp belongs to its own block of type II (two of these blocks may
have a second vertex in common), so the configuration of blocks forming the
triangle pqr looks like one of the three configurations shown in Fig. 3.6, up to
a symmetry obtained by changing the direction of all arrows (the orientations of
edges of the non-oriented triangle determine all other arrows in the three blocks,

Q1 Q2

±wi ± wj ±ui ± uj

Figure 3.5. To the proof of Lemma 3.22.
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furthermore two of the three open vertices may be attached to each other; this
gives 4 possibilities, two of which coincide up to reversing all arrows). Denote
this configuration by C. Notice that as shown in Fig. 3.6, the configuration itself
has a fully compatible positive semi-definite quasi-Cartan companion with disjoint
support companion basis.

Figure 3.6. Configurations containing a non-oriented triangle.

An additional triangle attached to that configuration may be attached along
one, two or three vertices. We will consider these three cases.

Case 1: First, suppose that every triangle attached to C is attached by at most
one vertex. Then every edge of Q either belongs to C or two Q \ C (here we
understand Q \C as a subquiver spanned by all vertices contained in at least one
block not lying in C). Notice that Q \C is a quiver from triangulation containing
open vertices (so it is different from the quiver shown in Fig. 3.3). Also Q \ C
contains smaller number of non-oriented triangles than Q (as it does not contain
pqr). Hence, by the inductive assumption, Q \ C has a fully compatible positive
semi-definite quasi-Cartan companion with a disjoint support companion basis.
Furthermore, since every triangle attached to C is attached only along one vertex,
any two vertices in the intersection of C and Q\C are not adjacent in Q\C. By the
inductive assumption, C has a fully compatible positive semi-definite quasi-Cartan
companion with a disjoint support companion basis. By Lemma 3.22, this implies
that the quiver Q itself has a fully compatible positive semi-definite quasi-Cartan
companion with a disjoint support companion basis.

Case 2: Next, suppose that there is a triangle T attached to C along 2 vertices.
Then the quiver T ∪ C will be one of the quivers shown in Fig. 3.7 (again, we
identify configurations obtained by reversing all arrows). Notice that each of these
quivers has a fully compatible positive semi-definite quasi-Cartan companion with
a disjoint support companion basis (see Fig. 3.7). Furthermore, if no triangle is
attached to two vertices of T ∪ C simultaneously, then the reasoning of Case 1
shows the statement for Q. If some triangle T ′ is attached to the two open vertices
of T ∪C, then the quiver T ′∪T ∪C also has fully compatible positive semi-definite
quasi-Cartan companion with a disjoint support companion basis (to see this one
can identify f := f1 = f2 and assign the vector f + f0 to the vertex of T ′ which

e1+e3 e2+e3

e1−e2

e3+f3

e1+f1 e2+f2

e1+e3 e2−e3

e1+e2

e1+f1 e2−e3

e1+f1

e2+e3

e1+e2 e1+e3

e2−e3
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does not lie in T ∪ C, see Fig. 3.7). Then the same reasoning as in Case 1 shows
the statement for Q.

Figure 3.7. Triangle T attached to C by two vertices.

Case 3: Finally, suppose that there is a triangle T attached to C along 3 vertices.
Then the quiver T ∪ C will be one of the quivers shown in Fig. 3.8. The first of
these quivers coincides with the exceptional quiver shown in Fig. 3.3 and has no
fully compatible quasi-Cartan companion. The second one has a fully compatible
quasi-Cartan companion (see Fig 3.8 for the corresponding vectors). It has no open
vertices, so it cannot be a part of any larger quiver from triangulation. �

Figure 3.8. Triangle attached to C by three vertices.

Proof of Theorem 3.17: To complete the proof of Theorem 3.17, it is sufficient to
show that there is a required quasi-Cartan companion for block decompositions
containing blocks other than a block of type II. We will first show that one can
add blocks of type I and IV and then that one can add blocks of types IIIa, IIIb
or V.

For the blocks of types I and IV, we can substitute such a block in the block
decomposition by a block of type II (of course, this slightly changes the surface);
we will obtain some different quiver Q′. After this substitution we will never obtain
the quiver shown in Fig. 3.3 (as this quiver does not contain open vertices while
the process of substitution does introduce such vertices). So, Q′ has a required
quasi-Cartan companion with a disjoint support realisation. To get a quasi-Carton
companion for Q, we just remove the extra vertex for the case of the block of type
I, and add an additional vector as in Fig. 3.9 for the case of the block of type IV.

e1+e3

e3+e4

e4+f2

e1+f1 e2−e3

e1+e2

e2+e4

e1+f1

e1+e3

e1+e2 e4+f2

e2+e4

e3+e4

e2−e3

e1+f1

e3+f2

e1+e2
e1+e4

e2+e4

e3+e4

e2−e3

e1+f1

e3+f2

e1+e2 −e1+e4

e2+e4

e3+e4

e2−e3

e1+e3

e1+e2 e1−e4

e2+e4

e2−e3 e3+e4
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Finally, to treat also the blocks of types IIIa, IIIb and V, let Q1 be the union
of such blocks. Let Q2 be the union of all other blocks in Q. As each block of type
IIIa, IIIb or V has a unique open vertex, the subquiver Q1 ∩ Q2 has no arrows.
Furthermore, as Q2 is a quiver without blocks of type IIIa, IIIb and V, it has
a fully compatible positive semi-definite quasi-Cartan companion with a disjoint
support companion basis. In view of Lemma 3.21, the quiver Q1 also has a fully
compatible positive semi-definite quasi-Cartan companion with a disjoint support
companion basis. So, by Lemma 3.22 the quiver Q itself has a fully compatible
positive semi-definite quasi-Cartan companion with a disjoint support companion
basis, as required. �

Figure 3.9. Constructing companions for quivers with blocks of type I and IV.

Remark 3.25. A mutation of a fully compatible companion is not necessarily a
fully compatible quasi-Cartan companion, see Fig. 3.10.

Figure 3.10. Mutation of a fully compatible quasi-Cartan companion is not always
fully compatible: after the mutation there is an oriented triangle labeled with vectors
e2 + e3, e2 + e4 and e4 − e3.

4. Group from an (unpunctured) surface quiver

The construction described in this section was initiated in [BM] for the case of
quivers of finite type and then extended in [FeTu] for affine type quivers, quivers
from unpunctured surfaces and exceptional mutation-finite quivers.

e1+e2 e1+e3

e1+f1

e1+e2 e1+e3

e1+e2 e1+e3

e1+f1

e1+e2 e1+e3
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e1−f1

µ1

1
e3 − e1

e4 − e1
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e2 + e4
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e4 − e3
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4.1. Construction of the group

Here we present the construction for the case of unpunctured surface.
Given a quiver Q from an unpunctured surface, we construct a group G = G(Q)

as follows:

• the generators s1, . . . , sn of G correspond to the vertices of Q;
• there are five types of relations:

(R1) s2i = e for all i = 1, . . . , n;
(R2) (sisj)

mij = e for all i, j not joined by double arrow, where

mi,j =

{
2, if i, j, are not joined;

3, if i, j, are joined by a single arrow;

(R3) (cycle relations)
(s1 s2s3s2)2 = e for every subquiver of Q shown in Fig. 4.1(a) and
(s1 s2s3s2)3 = e for every subquiver of Q shown in Fig. 4.1(b) respec-
tively;

(R4) (Ã3-relation)
(s1 s2s3s4s3s2)2 = e for every subquiver of Q shown in Fig. 4.1(c);

(R5) (handle relations)
(s1 s2s3s4s3s2)3 = e for every subquiver of Q shown in Fig. 4.1(d);
(s1 s2s3s4s5s4s3s2)2 = e for every subquiver of Q shown in Fig. 4.1(e).

Figure 4.1. Relations R3, R4, R5 for the group G.

Theorem 4.1 ([BM], [FeTu]). If Q is a quiver arising from an unpunctured sur-
face and G = G(Q) is a group defined as above, then G is invariant under the
mutations of Q.

Remark 4.2. If Q is a quiver and µk(Q) is a mutation of Q in the direction k, then
the isomorphism of groups G1 = G(Q) and G2 = G(µk(Q)) can be described as
follows. If {si} and {ti} are the generators of G(Q) and G(µk(Q)) described above,
then

ti =

{
sksisk, if Q contains an arrow from i to k;

si, otherwise.
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Cycle relations: Ã3-relation: Handle relations:
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Remark 4.3. Theorem 4.1 implies that the group G does not depend on the choice
of triangulation of the corresponding surface S, so one can say that G = G(S) is
the group assigned to the topological surface S.

Remark 4.4. Relations (R1),(R2) define a Coxeter group, the other relations turn
G into a quotient of a Coxeter group. However, in the cases of finite and affine
quivers, by choosing an acyclic representative Q one can see that there are no
non-Coxeter relations in G, so G is a Coxeter group itself. Applying Theorem 4.1
we see that G is a Coxeter group for any quiver of finite or affine type.

4.2. Moving the marked points from one boundary component
to another

In Section 4.1 we recalled the construction of a group for any quiver from unpunc-
tured surface S. It is natural to ask whether the group G = G(S) uniquely defines
the surface S. The main result of this section indicates that it does not: one can
move boundary marked points from one boundary component to another without
changing the group.

Theorem 4.5. Let Sg,b be an unpunctured surface of genus g with b boundary
components. Then the group G(Sg,b) does not depend on the distribution of the
boundary marked points along the boundary components of the surface (depending
only on g, b and the total number of boundary marked points).

Denote by G(Sg,b; k1, . . . , kb) the group constructed from Sg,b with k1, . . . , kb
marked points on the boundary components, ki ≥ 1.

Lemma 4.6. G(S0,3; 1, 1, 3) ∼= G(S0,3; 1, 2, 2).

Proof. Let S1 and S2 be the surfaces with (1, 1, 3) and (1, 2, 2) boundary marked
points respectively. Consider the triangulations of S1 and S2 as in Fig. 4.2. Let si
be the generators for G(S1) corresponding to the triangulation, and let ti be the
set of generators of G(S1) satisfying

ti =

{
s4s5s4, if i = 5,

si, otherwise.

We will show that the defining relations for G(S1) in terms of ti will rewrite exactly
as defining relations for G(S2) in the triangulation shown in Fig. 4.2 on the next
page with ti corresponding to the ith arc. Indeed, all the relations (except for ones
corresponding to Coxeter relations and cycle relations for arcs in the dark quadri-
laterals) coincide, and all other relations can be checked directly. For example,
the Coxeter relation (s5s6)2 = e will turn into the cycle relation (t4t5t4 t6)2 = e,
while the cycle relation (s3 s4s5s4)2 = e turns into a Coxeter relation (t3t5)2 = e.
Moreover, every defining relation for G(S2) is obtained from the defining relations
for S1 in this way, which implies that the groups coincide. �
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Figure 4.2. Moving a boundary marked point form one boundary component to
another.

Lemma 4.7. G(S0,3; 1, 1,m) = G(S0,3; 1, 2,m− 1) for any m ≥ 2.

Proof. To show the statement we will adjust slightly the proof of Lemma 4.6.
Namely, we will insert one more arc between the arcs labeled 7 and 8 in both
parts of Fig. 4.2 on the next page without changing anything else in the proof
(see Fig. 4.3 on the next page, left). Repeating this several times we see that
G(S0,3, 1, 1,m) = G(S0,3, 1, 2,m− 1) for all m ≥ 3. For m = 2 the statement holds
trivially. �

Figure 4.3. Inserting more boundary marked points to each of the three boundary
components.

Lemma 4.8. If k + l+m = k′ + l′ +m′ then G(S0,3; k, l,m) = G(S0,3; k′, l′,m′).

Proof. We will prove that G(S0,3; k, l,m) = G(S0,3; k, l+ 1,m−1) for any k, l ≥ 1,
m ≥ 2. For this we modify the reasoning in the proof of Lemma 4.6 once again: in
Lemma 4.7 we increased m by inserting a new arc between arcs 7 and 8; similarly,
we can increase number k by inserting an arc between the arcs labelled 1 and 2,
and we can increase the number l by inserting an arc between the arcs labelled 1
and 3 (see Fig. 4.3, right).

So, we can move a boundary marked point from any boundary component to
any other boundary component. �

Lemma 4.9. If k + l + m = k′ + l′ + m′ and b ≥ 3 then G(Sg,b; k, l,m) =
G(Sg,b; k

′, l′,m′).
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Proof. Consider once more Fig. 4.2 and the proof of Lemma 4.6. We can increase
the genus or the number of boundary components of the surface S by attaching
a triangulated surface S1,1 (a torus with 2 boundary marked points on a unique
boundary component) or S0,2 (an annulus with 1 marked point on one boundary
component and 2 marked points on the other). We will attach this small surface
along one of its boundary segments to the boundary segment of S lying in Fig. 4.2
between arcs 7 and 8. As this does not affect the shaded regions, this will not affect
the proof. �

It is left to consider the case when we cannot choose three boundary components
as in Lemma 4.6, i.e., the case when we only have 2 boundary components (in case
of b = 1 there is nothing to prove).

Lemma 4.10. If k + l = k′ + l′ then G(Sg,2; k, l) = G(Sg,2; k′, l′).

Proof. The proof is by induction on g. The base, g = 0, is known: in this case we
deal with an annulus, and the group G is the affine Weyl group Ãk+l. Assume that
the lemma is known for all surfaces of genus g.

To increase the genus of S = Sg,2 , we cut S along any arc α connecting two
boundary components and insert a handle S1,1 (with two marked points on the
boundary) between the sides α1 and α2 of the cut as in Fig. 4.4. As a result, we
obtain a surface S′ = Sg+1,2. We then choose a triangulation of the handle so that
the arcs α1 and α2 are not adjacent (for this it is sufficient to include the arc β
separating α1 from α2 at both ends and going through the handle in between).

Cutting S′ along α1 and α2, we obtain two connected components: a torus S1,1

and some other surface P of genus g. Let G(P ) be the corresponding group for this
surface. Then G(S′) is an amalgamated product of G(P ) and G(S1,1) along the
common subgroup 〈sα1

, sα2
| (sα1

sα2
)2 = e〉. As neither G(P ) nor G(S1,1) depends

on the distribution of the boundary marked points, we get the lemma. �

Remark 4.11. While considering block decompositions of P and S1,1, we glue
additional two triangles along α1 and α2 to each of them for the arcs α1 and
α2 to be interior ones (and thus to correspond to generators of the groups). When
gluing surfaces together we remove these four triangles.

Figure 4.4. Inserting an extra handle.

Lemma 4.10 together with Lemma 4.9 prove Theorem 4.5.

α1

α2

β
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5. Extended affine Weyl group for a surface

In this section we provide a construction of another group W (S) from a bordered
marked unpunctured surface S, and then explore its relations with G(S) defined
above.

5.1. Extended affine Weyl group

We recall the definition of extended affine Weyl groups following [MS, AS] (these
groups are called “toroidal Weyl groups” in [MS]).

Let V be a quadratic space with a quadratic form 〈· , ·〉 of signature (n+, n0),
where n0 is a dimension of the radical V0. Choose a maximal positive-definite
subspace V+, i.e., dimV+ = n+ and V = V+ ⊕ V0.

An extended affine root system R is a set of roots (vectors) in V , such that
R is discrete, indecomposable, reduced and closed under reflections with respect
to the hyperplanes orthogonal to the real roots in R (for detailed definitions and
properties we refer to [Sa], [AABGP]).

Choose bases {v1, . . . , vn+
} and {δ1, . . . , δn0

} in V+and V0 respectively, and consi-
der the space V⊕V ∗0 = V+⊕V0⊕V ∗0 with basis {v1, . . . , vn+

, δ1, . . . , δn0
, δ∗1 , . . . , δ

∗
n0
}.

We extend the quadratic form 〈·, ·〉 to V ⊕ V ∗0 by

〈vi, δ∗j 〉 = 0 ∀i = 1, . . . , n+, 〈δi, δ∗j 〉 =

{
1, if i = j;

0, otherwise.

Then one can consider the action of the reflections in the real roots of R in V ⊕V ∗0 .
The extended affine Weyl group W = W (R) is the group acting in V ⊕V ∗0 generated
by reflections in real roots of R.

5.2. Construction of a special triangulation.

We now take an unpunctured surface S with a particular choice of triangulation
as described below. For this triangulation we consider the corresponding quiver Q
and construct a positive semi-definite fully compatible quasi-Cartan companion.
The reflections in the companion basis will generate an extended affine Weyl group

of type A
[n0]
n+ for certain n+, n0.

An unpunctured surface S contains the following features: boundary compo-
nents (each with a number of boundary marked points) and handles. To construct
the triangulation we do the following:

— Choose any boundary component b0 and a marked point p on it.
— Consider three arcs (loops) x, y, z as in Fig. 5.1, top:

— all three of them have both ends at p,
— x separates the boundary component b0;
— y separates all other boundary components;
— z separates all handles.

— triangulate the region separated by x as in Fig. 5.1, bottom left. We can
schematically show the quiver corresponding quiver as in Fig. 5.1 on the
next page, bottom right.

— Triangulate the regions separated by arcs y and z as in Fig. 5.2 on the next
page. Use the triangulations of handles and of annuli shown in the middle
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of Fig. 5.2 (notice that the triangulation of the annulus includes a region
triangulated as the domain separated by x, cf. Fig. 5.1, bottom left.)

Figure 5.1. Constructing the triangulation

Figure 5.2. Constructing the triangulation, cont.: regions with handles (top) and holes
(bottom).

The quiver corresponding to the constructed triangulation is shown in Fig. 5.3
on the next page.

x

z y
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Figure 5.3. The quiver

Construction of the root system. Next, we construct a companion basis by
assigning vectors to the nodes of Q. For this, we first consider a subquiver Q′ in
Q obtained by removing from Q all nodes labelled by squares in Fig. 5.4. Notice
that Q′ is a quiver of type Am for some m (see, e.g., [H]). Label the nodes of Q′

by roots in the root system of type Am (more precisely, of type An−2g−b+1, where
n is the number of nodes in Q, g is the genus of the surface and b is the number of
boundary components) providing a fully compatible quasi-Cartan companion for
Q′. We denote the vector space spanned by the companion basis by V+.

We now extend the quadratic form to n-dimensional vector space by adding
(2g+ b− 1)-dimensional radical V0. Having done that, we assign to the remaining
nodes of Q the vectors as in Fig. 5.4 on the next page: these additional vectors are
constructed from the vectors associated to the adjacent nodes and basis vectors
of the radical. More precisely, for each boundary component we have one radical
vector (δk in Fig. 5.4) and for each handle we have two radical vectors (δ1,2ij in
Fig. 5.4). Let u1, . . . , un be the vectors obtained, denote u = {u1, . . . , un}. These
vectors define a positive semi-definite fully compatible quasi-Cartan companion
of Q.

Let ri = rui
be the reflections with respect to vectors ui, denote by W =

W (u, Q) the group generated by reflections ri = rui acting on V+ ⊕ V0. We can
also consider the action of W on the V+ ⊕ V0 ⊕ V ∗0 . By construction, W is an

extended affine Weyl group of type A
[n0]
n+ , where the signature of the corresponding

quadratic form is given by (n+, n0) = (n− 2g − b+ 1, 2g + b− 1).

5.3. Homomorphism of groups

Given an unpunctured surface S, we triangulate it as in Section 5.2 and obtain a
quiver Q. Then we can construct two groups from the same quiver Q: the group
G = G(Q), generated by involutions si with relations as in Section 4, and the
extended affine Weyl group W = W (u, Q) generated by reflections ri = rui

.

Theorem 5.1. The mapping si 7→ ri of the generators extends to a surjective
homomorphism ϕ : G→W .

Proof. As the generators of G and W are in bijection, we only need to show
that the map f takes each defining relation of G to a relation which holds in the

x

yz
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Figure 5.4. Constructing the quasi-Cartan companion.

reflection group W . This is clearly the case for relations of types (R1) and (R2)
by the construction of W . Relations (R4) follow from [SaTa, Thm. 1].

For the remaining relations (R3) and (R5), the verification is straightforward:
we write the matrices of the reflections ri explicitly and check the corresponding
relations, see [FeLSTu, Appendix]. �

Conjecture 5.2. The map ϕ in Theorem 5.1 is an isomorphism, i.e., G(Q) ∼=
W (u, Q).

Remark 5.3. Conjecture 5.2 holds for surfaces of genus 0 with at most two bounda-
ry components: in this case both groups are either finite or affine Weyl groups [BM],
[FeTu].

Remark 5.4. Conjecture 5.2 also holds for exceptional mutation-finite quivers of

types E, including E
(1,1)
6 , E

(1,1)
7 and E

(1,1)
8 , in the following sense. The construction

of a group in Section 4.1 can also be applied to the mutation classes of the
quivers listed above, see [BM, FeTu]. The presentations of extended affine Weyl
groups for elliptic root systems of these types are given in [SaTa]. Comparing the
presentations, we see that the groups are isomorphic. For finite and affine Weyl
groups the isomorphism is obvious.

We will now state our main result: the group W is invariant under mutations,
i.e., one can apply mutations to the quasi-Cartan companions.

Theorem 5.5. For any mutation sequence µ, the vectors µ(u) provide a positive
semi-definite quasi-Cartan companion for µ(Q).

Our proof of Theorem 5.5 is based on the notion of an admissible quasi-Cartan
companion introduced by Seven [Se2], we prove the theorem in Section 6. At the
same time, Theorem 5.5 can be also considered as a corollary of Conjecture 5.2 (if
it holds).

Proposition 5.6. Conjecture 5.2 implies Theorem 5.5.

Proof. We will proceed inductively to prove the following claim:

vk+δk

vkvi

vj
vi+vj+δ

1
ij

vi+vj+δ
2
ij

/
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Claim. Suppose there is a quiver Q and a vector system u = {ui} satisfying the
following conditions:

— u is a companion basis for Q;
— the reflections {ri} (where ri = rui

) generate an extended affine Weyl group
isomorphic to G = G(Q) via the mapping si 7→ rui

.

Then for any mutation µk the quiver µk(Q) and the vector system µk(u) satisfy
the same conditions.

It is sufficient to show this inductive statement, as we can start with the quiver Q
and the corresponding vectors {ui} constructed in Section 5.2 and hence satisfying
the assumption.

Let Q′ = µk(Q). The group G(Q′) coincides with the group G with generators
given by

ti =

{
sksisk if Q contains an arrow from i to k,

si otherwise.

Applying ϕ (which is an isomorphism by the assumption of the proposition) to
these new generators, we obtain the set of reflections in W given by

r′i =

{
rkrirk if Q contains an arrow from i to k,

ri otherwise.

Notice that each of these new reflections r′i is a reflection with respect to a new
vector u′i obtained from ui by a reflection with respect to uk (see Fig. 5.5).
According to Remark 3.5, this is exactly the action of the mutation µk on the
vectors {ui}. In particular, the order of the element titj in G coincides with the
order of the element r′ir

′
j in W , and hence the vectors {r′i} form a quasi-Cartan

companion for Q′. �

Figure 5.5. To Proposition 5.6.

6. Admissible quasi-Cartan companions

6.1. Proof of Theorem 5.5

In [Se2], Seven generalized the notion of a k-compatible quasi-Cartan companion
of a quiver Q.

Q

G(Q)(s1, . . . , sn) = W = (ru1 , . . . , run)

Q′

G(Q′)(t1, . . . , tn) = W ′ = (ru′
1
, . . . , ru′

n
)

ϕ

ϕ

µk

µk
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Definition 6.1 ([Se2]). A quasi-Cartan companion A is admissible if the follow-
ing holds: for every chordless cycle i1, . . . , ik the cyclic product of the elements
−ai,i+1 is negative if the cycle is oriented, and positive otherwise.

One can easily see that restricting the admissibility condition to 3-cycles leads to
the definition of a fully compatible companion, and thus an admissible companion
is always fully compatible. However, the converse may not be true.

Note that the quasi-Cartan companion constructed in Section 5.2 is fully com-
patible, positive semi-definite, and does not contain any cycles of length more than
3, and thus is admissible. Therefore, to prove Theorem 5.5, it is sufficient to prove
the following statement.

Proposition 6.2. Let the quiver Q0 and a vector system u = {ui} be those con-
structed in Section 5.2, and assume that µ is a sequence of mutations such that µ(u)
provides an admissible quasi-Cartan companion of µ(Q0). Then for any mutation
µk the vector system µk(µ(u)) provides an admissible quasi-Cartan companion of
µkµ(Q0).

Definition 6.3. Given a quiver Q and its quasi-Cartan companion A, let us call
A a symmetric twin of Q if every mutation sequence µ takes A to a quasi-Cartan
companion of µ(Q).

Then Proposition 6.2 implies the following corollary.

Corollary 6.4. Every quiver constructed from a triangulation of an unpunctured
surface has a symmetric twin. The twin is unique up to simultaneous sign changes
of rows and columns.

Proof. By Proposition 6.2, the Gram matrix of the vector system u is a symmetric
twin of Q0, and thus every quiver mutation-equivalent to it also has a symmetric
twin. To prove the uniqueness, notice that a symmetric twin must be admissible.
Indeed, if a quasi-Cartan companion A of Q is not admissible, then there exist
a cycle C in Q on which the admissibility condition fails. The cycle C itself is a
quiver of type Dk or Ãm,n. It is now easy to check that the restriction of A onto
C is not a symmetric twin of C, which implies that A is not a twin of Q. Finally,
it is proved in [Se2] that an admissible quasi-Cartan companion to a quiver, if it
exists, is unique up to simultaneous change of sign of rows and columns, which
completes the proof. �

Remark 6.5. Corollary 6.4 also holds for all exceptional finite mutation classes
except for X6 and X7. Indeed, for quivers of finite and affine types this follows

from Remark 5.3 (or directly from [Se3]), and for elliptic quivers E
(1,1)
6 , E

(1,1)
7 ,

E
(1,1)
8 this follows from Remark 5.4.

Let us now prove Proposition 6.2. First, we use the properties of admissible
companions to prove the proposition for a very restricted set of surfaces.

Lemma 6.6. Proposition 6.2 holds for quivers Q0 constructed from a surface S
that is either a genus 0 surface with three boundary components, or a genus 1
surface with one boundary component.
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Proof. We will proceed inductively: suppose that a quiver Q = µ(Q0) for some
sequence of mutations µ, and A = µ(A0) is its admissible quasi-Cartan companion,
where A0 is the admissible companion of Q0 constructed as a Gram matrix of
vectors u. Choose any vertex k.

To prove that the mutation µk(A) is admissible, we need to show that the
admissibility condition holds for every chordless cycle Q′c in the quiver Q′ = µk(Q).
As Q′ is a quiver constructed from an unpunctured surface, Q′c can be either
oriented of length 3, or non-oriented.

Observe that Q′c is of affine or finite type. In particular, if the vertex k belongs
to Q′c, then the quiver µk(Q′c) is also of affine or finite type. Since µk(Q′c) is a
subquiver of Q, the restriction of A to it is also admissible, and thus its mutation
restricted to Q′c is admissible by [Se3, Cor. 1.8].

Therefore, we can now assume that the vertex k does not belong to Q′c; denote

Q̃′c = Q′c ∪ {k}.
Suppose first that Q′c contains exactly three vertices, and consider a subquiver

µk(Q̃′c) of Q. This subquiver contains four vertices and is mutation-finite. It is
easy to see that this implies that either it is of finite or affine type, or it is a
quiver shown in Fig. 6.1 (it represents a triangulation of a genus 1 surface with a
unique marked point on its boundary). In the former case the restriction of µk(A)

to Q̃′c is admissible by [Se2], and in the latter case we just need to check that
every mutation of the quiver in Fig. 6.1 leads to an admissible companion, which
is a short and straightforward calculation (note that an admissible companion is
unique up to simultaneous change of signs of rows and columns [Se2, Thm. 2.11],
so we need to choose one admissible companion, e.g., the one shown in Fig. 6.1,
and perform four mutations).

Figure 6.1. The unique quiver corresponding to triangulations of a torus with one
boundary component, and its admissible quasi-Cartan companion

Now suppose that Q′c contains more than three vertices, in particular, it is
non-oriented. By Prop. 2.5, any vertex is connected to Q′C by an even number
of arrows. Combining this with the fact that a valence of a vertex in a quiver
originating from an unpunctured triangulated surface does not exceed 4 [FST], we
see that k is connected to Q′c either by 2 or by 4 arrows.

First, suppose that k is connected to Q′c by 2 arrows. This cannot be a double

arrow, otherwise Q̃′c would be mutation-infinite. If k is connected to non-neighbor-

ing vertices of Q′c, then Q̃′c contains 3 cycles of length at least 4 (and thus non-
oriented). This contradicts [Se1, Prop. 2.1], according to which a mutation-finite
quiver with at least two non-oriented cycles must contain an oriented cycle. Thus,

e1 − e2

e1 − e3 e1 − e3

e2 − e3
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k is connected to two neighboring vertices of Q′c and forms with them an oriented

cycle of length 3. Then µk(Q̃′c) is an affine subquiver of Q, and thus the restriction

of µk(A) to Q̃′c is admissible by [Se2].

Figure 6.2. A quiver Q̃′c for k being incident to a double arrow. “Non-oriented” arrows
can be oriented in any way

Suppose now that k is connected to Q′c by 4 arrows. If k is connected to some
vertex (say, i) by a double arrow, then k and i must form oriented cycles with both
neighbors of i in Q′c, otherwise the subquiver formed by four vertices k, i and two

neighbors of i is mutation-infinite. Therefore, Q̃′c has the form shown in Fig. 6.2. A

short explicit calculation shows that if the restriction of A to µk(Q̃′c) is admissible,

then the restriction of µk(A) to Q̃′c is also admissible.
So, we can now assume that k is connected to 4 distinct vertices of Q′c. Let us

look at possible structure of the quiver Q̃′c.
By [Se1, Prop. 2.1] mentioned above, k must belong to at least one oriented

cycle (which is of length 3 since there are no punctures). Suppose first that k

belongs to one oriented cycle only. Then Q̃′c contains 3 non-oriented cycles, see
Fig. 6.3. Removing any of the two vertices of the oriented triangle belonging to
Q̃′c we obtain a subquiver with at least two non-oriented cycles and no oriented
cycles. By [Se1, Prop. 2.1], this subquiver is mutation-infinite.

Figure 6.3. A quiver Q̃′c for k belonging to exactly one oriented cycle. Cycles Ci are
non-oriented and can be of any lengths

Therefore, we can now assume that k belongs to 2 oriented cycles. If these cycles
have a common arrow, then they form a subquiver on 4 vertices composed of two
oriented triangles sharing an edge, which corresponds to a self-folded triangle and
thus can never show up in a quiver of unpunctured surface (see [Gu1], [Gu2]).

Thus, Q̃′c consists of two oriented cycles and two non-oriented cycles “between”

k

i

k

C1

C2

C3
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them, see Fig. 6.4. Mutating this quiver in k, we obtain one of the two quivers
shown in Fig. 6.4. Now an easy computation shows that an admissible companion
to the latter mutates to an admissible companion to the former, which completes
the proof. �

Figure 6.4. Quivers Q̃′c for k belonging to two oriented cycles and their mutations.
Shaded cycles are non-oriented and can be of any lengths

We can now complete the proof of Prop. 6.2 (and thus of Theorem 5.5).

Proof of Proposition 6.2. Let Q be a quiver constructed from a triangulation of an
unpunctured surface, and let A be its admissible quasi-Cartan companion. We need
to prove that the companion µk(A) of the quiver Q′ = µk(Q) is also admissible.
As in the proof of Lemma 6.6, we need to prove that the admissibility condition
holds for every chordless cycle Q′c in Q′.

Since Q′c is a cycle, it is a quiver of affine type Ãm−1 or finite type Am (type Dm

for m > 3 is excluded as there are no punctures), where m is the number of vertices
in Q′c. In the former case it corresponds to a triangulated annulus, and in the latter

case to a triangulated polygon. We now consider a subquiver Q̃′c = Q′c ∪ {k} of Q′

and determine what the corresponding to Q̃′c surface can look like.

Observe that Q′c is a subquiver of Q̃′c obtained by removing one vertex. In
the language of surfaces, the operation of removing one vertex from a quiver is
equivalent to cutting the surface along the corresponding edge of a triangulation.
Thus, the surface for Q̃′c can be obtained from the surface for Q′c by gluing two
segments of the boundary (without creating any punctures), or by attaching to
the surface for Q′c a single triangle along one boundary edge.

By gluing two segments of boundary of a polygon or by attaching a triangle to
it we can obtain either an annulus or a polygon again (closed sphere is excluded),

so Q̃′c is again of affine or finite type. By gluing two segments of boundary of an
annulus we can obtain either a 3-holed sphere (if the segments belong to the same
boundary component) or a torus with one boundary component (if the segments
belong to distinct components). Similarly, by attaching a triangle to an annulus

along one edge we can obtain an annulus only. Thus Q̃′c is either of affine type, or
of one of the types covered by Lemma 6.6.

We now observe that the restriction Ac of A to the subquiver µk(Q̃′c) of Q is

an admissible quasi-Cartan companion. Since the quiver µk(Q̃′c) is either of finite

k

i1

i2

j1

j2

µk
k

i1

j2

j1

i2

k
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j1

j2

µk k

i1

i2

j1
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type, or of affine type, or of one of the types covered by Lemma 6.6, we deduce that
µk(Ac) is also an admissible companion of Q̃′c either by [Se2] or by Lemma 6.6,
which completes the proof. �

6.2. Constructing an admissible quasi-Cartan companion
by a triangulation

Given an arbitrary triangulation T of an unpunctured surface (or, equivalently, its
quiver Q), Proposition 6.2 provides a way to construct an admissible quasi-Cartan
companion by T without making use of any mutations.

Let S be a surface of genus g with b boundary components, and let T be any
its triangulation. As before, we denote by n the number of interior edges of T (it
depends on the number of marked points); we may assume n ≥ 3. Cut along some
edges of T to obtain a topological disk. Euler characteristics considerations imply
that the number of cuts is equal to 2g + b− 1.

As in Section 3, index all the triangles of T (there are n− 2g − b+ 2 of them),
and consider a Euclidean vector space of dimension n−2g−b+2 with orthonormal
basis ei. Assign to every edge of T on the disk the vector ei+ej if the edge belongs
to triangles i and j.

Now, consider any other edge of T , assume it belongs to triangles i and j. If
we glue the disk along this edge only, we obtain an annulus. Therefore, this edge
belongs in Q either to an oriented triangle of length 3 (if triangles i and j have a
common edge in the disk), or to non-oriented cycle (otherwise). In the former case
the admissibility condition implies that the inner product of the corresponding
vector with the two others in the cycle must be positive, and thus we can take
a vector ei + ej without loss of generality. In the latter case the admissibility
condition implies that we must take either ei + ej (if the length of the cycle is
even) or ei − ej (if the length of the cycle is odd).

Therefore, we have assigned a vector to every edge of a triangulation T and
obtained a semi-positive quasi-Cartan companion A.

Corollary 6.7. A is an admissible quasi-Cartan companion of Q.

Proof. The moduli of inner products of constructed vectors match the moduli of
the entries of the matrix B, and the choice of signs in the construction was unique
(up to the change of the sign of any of the vectors) to satisfy the admissibility
condition. Therefore, if A is not admissible, then Q has no admissible companions.
However, Proposition 6.2 implies that there exists an admissible quasi-Cartan
companion of Q, which completes the proof. �

Remark 6.8. Note that although the vectors we constructed have the form ei± ej ,
all of them belong to a finite root system of type An−2g−b+1 spanned by the vectors
corresponding to the interior edges of the triangulation of the disk.

6.3. Admissible companions and reflection groups

Finally, we would like to mention a geometric interpretation of the admissibility
condition.
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Proposition 6.9. Let Q be a quiver of affine type Ãp,q, let A be a quasi-Cartan
companion with companion basis u = {u1, . . . , up+q}. For any subquiver Q′ of Q
denote by W (A,Q′) the group generated by reflections in vectors of u assigned to
vertices of Q′. Then A is admissible if and only if for any Q′ ⊂ Q of affine or
finite type the group W (A,Q′) is isomorphic to an affine (respectively, finite) Weyl
group.

Proof. Recall that, according to [Se2], any quiver of affine type has a unique
admissible quasi-Cartan companion up to equivalence (corresponding to changing
the signs of some of the vectors in the companion basis), and any mutation of an
admissible companion of an affine quiver results in an admissible companion again.
Thus, if A is admissible, then it can be obtained by mutations from an admissible
companion of an affine Dynkin diagram for which the isomorphism between the
corresponding reflection group W (A,Q) and Ãp+q−1 is obvious. We then can use
the claim from the proof of Proposition 5.6 to show that W (A,Q) is also isomorphic
to Ãp+q−1. Restricting this reasoning to any affine subquiver, we obtain the “only
if” statement.

Conversely, assume that A is not admissible. This implies that there is a chord-
less cycle for which the admissibility condition does not hold. There are three types
of chordless cycles in quivers of type Ã: oriented cycles of length 3 with weights
(1, 1, 1) or (1, 1, 2), and non-oriented cycles with all weights equal to one. If the
admissibility condition is broken for a non-oriented cycle Q′, then W (A,Q′) is a
finite Weyl group of type D; if it is broken for a cycle of type (1, 1, 2), then the
corresponding reflection group is isomorphic to a group generated by reflections in
sides of a hyperbolic triangle with angles (π/3, π/3, 0). As both of these types of
cycles are affine subquivers themselves, we see that in both cases we have an affine
subquiver Q′ with the group W (A,Q′) not being an affine Weyl group. Finally, if
the admissibility condition is broken for an oriented 3-cycle with weights (1, 1, 1),
then the corresponding reflection group is isomorphic to an affine Weyl group Ã2.
As the cycle itself is a quiver of finite type A3, we again come to a contradiction.
�

Combining Propositions 6.9 and 6.2 we obtain the following result.

Corollary 6.10. Let the quiver Q0 and a vector system u = {ui} be those con-
structed in Section 5.2. Then for any sequence of mutations µ and any subquiver
Q′ ⊂ µ(Q0) of affine or finite type the group W (µk(A), Q′) is isomorphic to an
affine (respectively, finite) Weyl group.
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