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A distinction between working memory components as
unique predictors of mathematical components in 7–8
year old children
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ABSTRACT
Despite evidence for the involvement of working memory in
mathematics attainment, the understanding of its components
relationship to individual areas of mathematics is somewhat
restricted. This study aims to better understand this relationship.
Two-hundred and fourteen year 3 children in the UK were admin-
istered tests of verbal and visuospatial working memory, followed
by a standardised mathematics test. Confirmatory factor analyses
and variance partitioning were then performed on the data to
identify the unique variance accounted for by verbal and visuo-
spatial working memory measures for each component of math-
ematics assessed. Results revealed contrasting patterns between
components, with those typically visual components demonstrat-
ing a larger proportion of unique variance explained by visuo-
spatial measures. This pattern reveals a level of specificity with
regard to the component of working memory engaged depend-
ing on the component of mathematics being assessed.
Implications for educators and further research are discussed.
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Introduction

Mathematics is a very heterogeneous concept, including several different sub-domains.
Dating back to the prehistoric times of the hunter-gatherer, the use of mathematics in
the forms of number, magnitude, and form can be seen (Boyer & Merzbach, 2011; De
Cruz, 2006); however, the term itself is not used until the time of the Greeks. Since its
first use by the Ancient Greeks (Boyer & Merzbach, 2011), mathematics has been used
as an umbrella term, seemingly accounting for pure arithmetical concepts, as well as
other more specific concepts, such as geometry. Boyer and Merzbach (2011) describe
how the term was coined by the Pythagoreans, and used by those who first began to
study mathematics for its own sake. In literature surrounding these times, one can
clearly see a distinction between arithmetical and geometrical mathematics.
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This sharp distinction between arithmetic and geometry was maintained for several
centuries. For example, in the medieval age, arithmetic and geometry were distinguished
and, alongside music and astronomy, were included in the so-called qudrivium, encom-
passing these four ‘mathematical’ subjects (Grant, 1999). Nowadays, curricula around the
world have somewhat abandoned this distinction and we usually refer to mathematics,
although a variety of different forms of mathematics exist and seem to be very different
from one another.

Different predictors of mathematics performance have been identified but – among
several others – working memory, a system for the short-term storage and manipulation
of information, has been repeatedly associated with several different mathematic skills.
It has been shown that working memory predicts performance on tests of approximate
mental addition (Caviola et al., 2012, 2016; Kalaman & Le Fevre, 2007; Mammarella et al.,
2013), written subtractions (Caviola et al., 2016, 2018), number facts (Steel & Funnell,
2001), multi-digit operations (Heathcote, 1994), magnitude representation (Pelegrina
et al., 2015), arithmetical problems (Passolunghi & Siegel, 2001; Passolunghi &
Mammarella, 2010; Rasmussen & Bisanz, 2005), quantitative central conceptual structures
(Morra et al., 2019), and geometrical achievement (Giofr�e et al., 2013, 2014). Importantly,
working memory is a generic term, for which we also see alternative models.

Several alternative working memory models have been proposed, but the classical
tripartite working memory model (Baddeley & Hitch, 1974), which includes a central
executive, responsible for controlling resources and monitoring information, and two
domain-specific modules for either verbal or visuospatial information, tends to be one
of the most well-known (see Baddeley, 2000 for a review). Other accounts postulate
the existence of a sharp difference between a working memory factor, which requires
cognitive control to a large extent, and a short-term memory factor, which requires
less cognitive control (i.e. fewer attentional resources; Kane et al., 2004). Finally, there
is a domain-specific factors model, only distinguishing between verbal and visuospatial
modalities (Shah & Miyake, 1996). The distinction between verbal and visuospatial
working memory has recently received broader attention and might be of particular
importance when considering mathematics as it aligns well with the historical argu-
ment that geometry is distinct from arithmetic, dealt with by visuospatial and verbal
working memory, respectively, given the nature of the requirements of each.

Only a few studies consider the relationship between verbal and visuospatial work-
ing memory in mathematics or in typically developing children. The literature is rife
with debate regarding the specific contributions to academic performance in both typ-
ically and atypically developing children (e.g. Alloway & Alloway, 2010; Geary et al.,
2004; Sz}ucs et al., 2013). Studies have found evidence in support of the stronger influ-
ence of visuospatial working memory (e.g. Caviola et al., 2014; Clearman et al., 2017;
Holmes et al., 2008; Li & Geary, 2017), however, evidence for the influence of verbal
working memory can also be found (e.g. Hitch & McAuley, 1991; Wilson & Swanson,
2001), particularly verbal-numeric working memory (see Raghubar et al., 2010 for a
review). Such diverse findings, however, might be attributable to the particular math-
ematical tasks used in different studies, and it appears plausible to hypothesise that
different mathematical subdomains might require verbal and visuospatial working
memory resources to a different extent.
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The particular relation of the components of working memory to the components
of mathematics is as yet a relatively under-researched topic, with much of the litera-
ture concerning the relationship between working memory components and mathem-
atics performance as a whole. These particular relationships are not considered in
recent meta-analyses, for example, by Friso-van den Bos et al. (2013) and Peng et al.
(2016). Whilst there have been studies investigating the relationship between working
memory and particular elements of mathematics (e.g. arithmetic: Ashkenazi et al.,
2013; Caviola et al., 2012; Passolunghi & Cornoldi, 2008, or word problem solving:
Swanson & Beebe-Frankenberger, 2004; Swanson & Sachse-Lee, 2001; Zheng et al.,
2011), this remains an area that requires development. Research into the relationship
between working memory and geometry has also received attention (e.g. Giofr�e et al.,
2013, 2014), as has its relationship with mathematical difficulties (Andersson & Lyxell,
2007; D’Amico & Guarnera, 2005; McLean & Hitch, 1999; Passolunghi & Cornoldi, 2008;
Sz}ucs et al., 2013).

A more intricate understanding of the relationships between working memory and
the components of mathematics is fundamental before future work can begin on
developing interventions targeting children vulnerable to mathematics difficulties. This
paper aims to further the debate discussed above by highlighting the differential con-
tributions of components of working memory to different forms of mathematics. In
this study, working memory will be divided into verbal and visuospatial components,
whilst arithmetic will comprise using and applying mathematics, counting and under-
standing numbers, knowing and using number facts, and calculating. Geometry will
consist of understanding shape, and handling data in order to encompass tasks that
are inherently more visual in nature. These tasks rely heavily on diagrams and mental
images of space, hence are intuitively more likely to draw on the visuospatial compo-
nent of working memory. By assessing each of these areas with regard to the relative
contributions of verbal and visuospatial working memory, it will be possible to under-
stand more specifically how mathematics and working memory are related, as well as
where to target mathematics interventions for the greatest effect. This analysis is per-
formed on a data set previously analysed in Allen et al. (2020), which demonstrates
the strongest unique influence of verbal-numeric working memory on mathematics,
followed by spatial-simultaneous working memory (spatial working memory tasks dur-
ing which all to-be-remembered information is presented simultaneously). This paper
seeks to further this understanding to address how the balance of influence identified
may be affected by the area of mathematics in question. It is important to note that
no overlapping analyses are reported in either paper. We hypothesise that visuospatial
working memory will be more influential in geometry due to the inherently visual
nature of the tasks, whilst verbal working memory will remain more influential in arith-
metic tasks since verbal working memory seems to be involved in tasks requiring fact
recall and basic mathematical skills.

Method

Participants

The sample initially included 214 7–8 year old children. Some children were absent
during the second administration and so were excluded from the final sample.
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The final sample included a total of 197 children (95 males and 102 females,
Mage¼ 95.99months, SD¼ 3.63). An opportunity sample of Year 3 pupils in each of the
five schools was gathered, using opt-out parental consent to reduce bias in the sam-
ple (Krousel-Wood et al., 2006). The study was approved by the School of Education
Ethics Committee at the University of Durham. Parental consent was assumed if opt-
out forms were not returned. Children with a diagnosis of a special educational need,
including intellectual disability, or neurological or genetic disorder, were not included
in the study. Children classed as low functioning or ‘gifted’ are routinely included in
typical classes in the UK and were not therefore excluded from our sample.

Procedure

All children were tested individually, in a quiet area of their school. Measures were
administered in a randomised order, so as to account for any order effects, however,
the size of the grids used in the derived measures of visuospatial working memory
were administered in a fixed order (3� 3 then 4� 3, and 4� 3 then 4� 4, for sequen-
tial and simultaneous, respectively). A correlational design was used to explore the
relationships between visuospatial working memory and maths performance. Working
memory measures were administered as per the administration instructions provided
with the Working Memory Test Battery for Children (WMTB-C), in their original format.
Additional visuospatial measures were derived for the purpose of the study, for which
administration procedures paralleled those set out for standardised measures, how-
ever, were presented using a Windows laptop computer, as opposed to in
physical form. The battery of measures used was chosen in order to ensure a fully
crossed model for each type of verbal and visuospatial working memory. The mathem-
atics test was presented in paper format, however, children could ask for questions to
be read aloud in order to not place children of lower reading ability at a
disadvantage.

Measures

Verbal Working Memory
Working memory test battery for children (WMBT-C). Three subtests of the WMTB-
C were administered: digit recall (children recall a list of digits presented to them
verbally), backwards digit recall (children recall a list of digits presented to them
verbally in reverse order), and counting recall (children count aloud the number of
dots on a page then recall the list of totals, in the correct order, once all pages in
the sequence have been counted). All subtests were administered in accordance
with the instructions set out for the WMTB-C, with items presented at a rate of
one item per second. Trials were administered in blocks of six trials of the same
length. Following four correct trials, testing moved on to the next block. Testing
was discontinued following three mistakes within one block, unless this was the
first block of trials, in which case the previous block was administered to ascertain
the child’s span score. A raw score, standard score, and span score was recorded
for each child on each subtest.
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Visuospatial Working Memory
Children were presented with three visuospatial working memory tasks (simultaneous,
sequential without order during recall, and sequential with order during recall). For
simultaneous and sequential without order tasks, a grid was presented containing
dots. The dots were either presented all at the same time (simultaneous) or one at a
time (sequential) for 3 s and 1 s each, respectively. Children were required to observe
the positions of the dots and recall these positions following the removal of the stimu-
lus. For sequential visuospatial working memory with order, the block recall subtest
from the WMTB-C was employed.

Mathematics
Access mathematics test (AMT). The AMT was employed as a standardised measure
of mathematics, available for use with children between the ages of 6 and 12 years. As
such it provides a comprehensive profile of how children perform when faced with dif-
ferent aspects of maths. Further, the same measure can be given to older children in
order to understand how this relationship with working memory may develop over
time. The AMT is aligned to the areas of maths taught on the curriculum, hence pro-
viding a valid measure whereby performance on the test demonstrates likely perform-
ance on Government-prescribed mathematics tests. ‘Children were read the
instructions set out for the AMT, which included a time limit of 45minutes, clarification
of where to write their answer on the paper, and explanation that workings are
allowed on the paper, providing their answer is clearly written in the correct space.
Typical test conditions were adopted throughout. Children were permitted to request
questions be read aloud to them should they have difficulties so as not to disadvan-
tage those with weaker reading abilities, however, no further explanation of the ques-
tion, or what was required, was given. No discontinuation rule was employed as
children were instructed to complete as many questions as they could, but that ques-
tions were also included for children much older than they were so not to worry if
they could not complete them all’ (Allen et al., 2020, p. 241). All mathematics testing
was carried out after the completion of all working memory testing. The two testing
phases were on different days for all children. The components of mathematics
included were as follows: using and applying mathematics (8 questions), counting and
understanding number (12 questions), knowing and using number facts (8 questions),
calculating (8 questions), understanding shape (8 questions), and handling data (8
questions) (a ¼ .96 and a ¼ .97 for test forms A and B, respectively).

Questions included those concerning using and applying mathematics (e.g.
‘circle the two addition facts that give the same answer’), counting and understand-
ing number (e.g. ‘circle the number that is nearest in value to 75’), knowing and
using number facts (e.g. ‘what is double 32?’), calculating (e.g. ‘complete this
calculation and show the remainder: 659� 5 ¼ __ remainder __’), understanding
shape (e.g. ‘a tetrahedron has four corners and four faces. How many edges does a
tetrahedron have?’ [a picture of a tetrahedron is included for reference] and see
Figure 1(a) for a further example), and handling data (see, e.g. Figure 1(b)).
Arithmetic tasks are presented in a variety of ways and ask children to do a num-
ber of things from completing calculations to selecting from multiple-choice options.
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Geometric tasks also concern a number of skills, with handling data questions
mainly concerning the construction and interpretation of graphs and charts, and
understanding shape tasks including tasks encompassing a range of skills such as
transformations and properties of shapes.

Data analysis

The R program (R Core Team, 2018) with the ‘lavaan’ library (Rosseel, 2012) was used.
Model fit was assessed using various indices according to the criteria suggested by Hu
and Bentler (1999). We considered the chi-square (v2), the standardised root mean
square residual (SRMR), the root mean square error of approximation (RMSEA), and the
comparative fit index (CFI). This data set has been previously analysed in Allen et al.
(2020), however, previous analysis was concerned only with the relationship between
verbal and visuospatial working memory and mathematics, but without distinguishing
between different mathematic subcomponents. Analyses in the variance partitioning
section were performed using the latent correlation matrix for each model.
This matrix was used for calculating the R2 for multiple regressions using the
‘mat.regress’ function available for the ‘psych’ package (Revelle, 1970; see Cohen et al.,
2003 for the statistical rationale).

(a)

(b)
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Figure 1. Diagrams showing example questions for understanding shape and handling data sub-
scales of AMT (a and b, respectively). (a) The point A is moved two squares to the left and four
squares up. Write the coordinates of the new point A. (b) The bar chart, from a spreadsheet, shows
the number of pets each pupil owns. How many pupils own 3 or more pets?
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Results

Descriptive statistics

Descriptive statistics and age-covaried correlations are provided in Table 1. Age-
covaried values were obtained using regressions in which age was entered as a pre-
dictor and residuals, controlling for age, were obtained. Age-controlled values were
then used for all subsequent analyses (see Allen et al., 2020; Giofr�e & Mammarella,
2014; for a similar procedure).

Confirmatory factor analysis (CFA)

In model (CFA00) the factorial structure of working memory, including two compo-
nents (verbal and visuospatial) was evaluated, results indicated that the fit for this
model was adequate (see also Giofr�e et al., 2018 for a similar result) and this factor
structure has therefore been maintained for subsequent analyses. Successively, we per-
formed a series of CFA analyses, one for each component of mathematics, using the
overall scores, and following the general guidelines for SEM with observed indicators
(Kline, 2011). Importantly, the fit index of each individual model was good, indicating
that a distinction between verbal and visuospatial working memory was adequate. We
decided to use CFA because we were mainly interested in the relationship between
constructs at the latent level (i.e. verbal vs. visuospatial working memory). Moreover,
CFA allows a more precise estimate of the relationship between the construct of inter-
est, reducing problems related to the unreliability of individual predictors (Kline, 2011).
Several different models for each individual task were tested in order to obtain base-
line estimates (i.e. correlation matrices) to be used in subsequent analyses (Table 2).

Variance partitioning

In the final set of analyses, starting from the correlation matrices obtained in the CFA,
we used variance partitioning to examine the unique and shared portion of the vari-
ance of mathematics explained by the verbal and visuospatial factors. A series of
regression analyses were conducted (see Chuah & Maybery, 1999; Giofr�e et al., 2018
for a similar procedure). To derive the R2 components for the various tasks, a number
of regression analyses must be conducted (Chuah & Maybery, 1999). In this specific
case, if verbal working memory is included in the first step (Model 1), while spatial
working memory is included in the second step (Model 2), the resulting DR2 corre-
sponds to the unique contribution of spatial working memory over and above the
effect of verbal working memory (i.e. R2 of Model 2 – R2 of Model 1). Vice versa, if spa-
tial working memory is included in the first step, while verbal working memory is
included in the second step, the resulting DR2 corresponds to the specific contribution
of spatial working memory over and above the effects of verbal working memory.
Finally, the shared variance between verbal and visuospatial working memory can be
obtained by subtracting the unique portions of variance uniquely explained by verbal
and visuospatial working memory from the overall portion of the variance explained
when these indicators are included simultaneously in the equation (i.e. the overall R2 –
unique variance of both verbal and visuospatial working memory).
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The variance partitioning analysis is particularly useful for distinguishing shared vari-
ance, i.e. the portion of the variance that is common to two or more predictors, and
unique variance, i.e. the portion of the variance which is uniquely predicted by one
indicator (verbal or visuospatial working memory in this case).

Some mathematics components, i.e. using and applying mathematics, counting and
understanding numbers, are more heavily influenced by verbal working memory
(Figure 2), whereas understanding shape and handling data demonstrate a larger
visuospatial component (Figure 3).

Figure 2. Venn diagrams indicating the shared and unique variance explained in using and apply-
ing mathematics, counting and understanding number, knowing and using number facts, and cal-
culating by visuospatial and verbal factors. The overall area is proportional within each task, but
not across tasks. � ¼ p < .05, calculated using semi-partial correlations. ns ¼ not statistically sig-
nificant, calculated using semi-partial correlations.

Table 2. Fit indices for different CFA models.
Model v2(df) p RMSEA SRMR CFI AIC

CFA00WM 8.36 (8) .371 0.021 0.041 0.997 6858
CFA01 UA 10.657 (12) .559 0.000 0.038 1.000 7458
CFA02 CN 10.608 (12) .563 0.000 0.038 1.000 7633
CFA03 NF 11.377 (12) .497 0.000 0.038 1.000 7511
CFA04 Ca 9.103 (12) .694 0.000 0.036 1.000 7480
CFA05 Sh 27.756 (12) .006 0.082 0.056 0.934 7394
CFA06 HD 11.518 (12) .485 0.000 0.039 1.000 7464

v2: chi-square; RMSEA: root mean square error of approximation; SMSR: standardised root mean square residuals;
CFI: comparative fit index; AIC: Akaike information criterion. UA: using and applying mathematics; CN: counting and
understanding number; NF: knowing and using number facts; Ca: calculating; Sh: understanding shape; HD: han-
dling data.
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Discussion

The principal aim of this paper was to further understand the individual contributions
of verbal and visuospatial working memory on several distinct aspects of mathematic
achievement. Previous evidence tends to be limited to the analysis of the overall per-
formance in mathematics while an intricate understanding of the relationships between
working memory and the components of mathematics might have important implica-
tions on developing interventions targeting children with mathematics difficulties.

From the venn diagrams, it is evident that the percentage variance accounted for
by working memory components varies depending on the element of mathematics in
question. Consistently, the largest percentage is accounted for by the shared variance
between verbal and visuospatial measures. With regard to using and applying math-
ematics and counting and understanding number, the next largest percentage is
accounted for by verbal measures (7.9% and 11.9%, respectively). This can be inter-
preted as the amount of variance in these components of mathematics accounted for
by verbal-numeric measures over and above the influence of all other variables meas-
ured. Such a relationship is in line with previous literature relating verbal-numeric
measures to mathematics performance (see Raghubar et al., 2010).

One potential explanation for this relationship emerging for these components is
the mental maturation of the children, here accounted for by age. Age appears critical
when considering the relationship between visuospatial working memory and math-
ematics (Holmes and Adams, 2006; Holmes et al., 2008; Li & Geary, 2013) with a stron-
ger relationship demonstrated with younger children. Hence, by the age of the
children involved in this study, there may have been a shift to verbal strategies, as
suggested by Soltanlou et al. (2015). Further, the suggestion of a cyclical relationship
between visuospatial working memory and verbal working memory conforms to the
assumption that visuospatial working memory relates more strongly to the acquisition
of new skills (Andersson, 2008). Consequently, once children reach 7–8 years of age,
they may have sufficient experience with the material required for answering ques-
tions of this nature that they do not need to rely on visuospatial supports.

Figure 3. Venn diagrams indicating the shared and unique variance explained in understanding
shape, and handling data by visuospatial and verbal factors. The overall area is proportional within
each task, but not across tasks. � ¼ p < .05, calculated using semi-partial correlations. ns ¼ not
statistically significant, calculated using semi-partial correlations.
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When considering knowing and using number facts and calculating, a different
relationship is evident. Whilst verbal-numeric measures technically continue to explain
the second greatest portion of unique variance, this difference with visuospatial
measures is negligible. One potential explanation for the influence of visuospatial
measures on these tasks is the format of the questions. All mathematical questions
were presented to children in written format; a format which may inherently engage
the visual component (e.g. Wong & Sz€ucs, 2013). This may be particularly potent for
measures of calculating as question format has been shown to influence strategy
choice (Katz et al., 2000). Strategy choice may be more or less ‘fixed’ in different
areas of mathematics, depending on children’s familiarity and experience with the
component. For areas such as calculating that are taught from an early age and
where children have more experience, they may have a greater variety of strategies
at their disposal which may be a better or worse fit for a question depending on the
style of presentation. However, this is speculation in this case as it is beyond the
realms of this paper to answer this question. Whilst this may affect written over ver-
bal question presentations, the influence of strategy choice dependent on the layout
of written questions (as shown by O’Neil Jr & Brown, 1998) should be minimal in this
study as questions were presented in a variety of ways, e.g. multiple-choice, open
questions. Future research should be mindful of this influence and could seek to
investigate how the layout of the questions themselves may influence method
choice, and thus the extent of the involvement of visuospatial working memory
(Cragg & Gilmore, 2014).

Perhaps the starkest difference is present between these previous four components
of mathematics and the understanding shape and handling data components. In
these cases, a shift towards a much larger influence of visuospatial working memory
is clear. This shift is as expected, given the visual nature of the tasks, and confirms
the heavy involvement of visuospatial working memory in those tasks wherein visual
information is paramount to success. Previous work has identified a similar relation-
ship between visuospatial working memory and geometry (e.g. Kyttaelae & Lehto,
2008), with complex visuospatial working memory tasks demonstrating predictive
power for academic achievement in geometry (Giofr�e et al., 2013), as well as account-
ing for group differences in performance in geometry between typically developing
children and those with a non-verbal learning difficulty (Mammarella et al., 2013). Our
findings mirror these results, suggesting that further research should be conducted in
this area to determine the specific nature of the relationship between visuospatial
working memory and shape in order that preventative and/or restorative measures
can be devised.

Importantly, evidence of the distinct contributions of elements of working mem-
ory to geometry performance has been shown for both typically (Bizzaro et al.,
2018; Giofr�e et al., 2013, 2014) and atypically developing (Mammarella et al., 2013)
children, distinct from measures of pure arithmetic. The aforementioned work
revealed that academic achievement in geometry was influenced by working mem-
ory, with exaggerated differences between typically and atypically developing chil-
dren in terms of Euclidian geometry as a result of visuospatial working memory
performance.
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In a meta-analysis focussed on working memory updating and its relation with math-
ematics, it was found that the comparison between verbal and visuospatial working
memory subdomains was in fact statistically significant (see Table 2 of the original
report), albeit modest in terms of magnitude (Friso-van den Bos et al., 2013). Intriguingly,
arithmetic, counting and conceptual skills showed lower correlations with visuospatial
updating. It is worth noting, however, that Peng et al. (2016) in their recent meta-analysis
did not find significant differences between verbal and visuospatial working memory
regarding their relationship with mathematics. It is also worth mentioning that concern-
ing geometry, these results were based on a very limited number of observations, i.e.
seventeen effect sizes for visuospatial working memory and sixteen for verbal working
memory, with a very small number of studies overall, thus making it hard to test other
moderating effects (e.g. the school year). Taking these results overall, we can confirm
that more research is needed, confirming the importance of evaluating the unique con-
tribution of verbal and visuospatial working memory on each mathematical subdomain.

It is important to note that the relationship identified here, specific to geometry,
shows some variation from relationships identified between pure arithmetic compo-
nents and working memory (e.g. arithmetic: Ashkenazi et al., 2013; Caviola et al., 2012;
Passolunghi & Cornoldi, 2008, word problem solving: Swanson & Beebe-Frankenberger,
2004; Swanson & Sachse-Lee, 2001; Zheng et al., 2011, mathematical difficulties:
Andersson & Lyxell, 2007; D’Amico & Guarnera, 2005; McLean & Hitch, 1999;
Passolunghi & Cornoldi, 2008; Sz}ucs et al., 2013). Here, we see a greater contribution
made by verbal working memory (e.g. Wilson & Swanson, 2001) over that contributed
by visuospatial working memory (e.g. Caviola et al., 2014; Clearman et al., 2017;
Holmes et al., 2008; Li & Geary, 2017), which is not entirely unexpected, given the
types of questions associated with assessments of each type of mathematics.

With regard to the alternative models described in the introduction, the findings
refute the model by Kane et al. (2004) as we see domain-specific contributions despite
the inclusion of working memory measures. This model postulates that only short-
term memory is domain-specific, whilst working memory tasks represent a domain
general executive component, though this does not seem to be the case with the
results here. In contrast, the results do seem to align with the domain-specific findings
of the model by Shah and Miyake (1996), however, their measure of verbal working
memory involved reading span. Hence, we cannot be sure our findings have not been
influenced in some way by the numeric component of the verbal tasks used, which
may have increased the strength of the relationships with verbal working memory
(see Raghubar et al., 2010 for a review of the influence of verbal-numeric tasks).

In conclusion, this paper highlights a differential relationship between working
memory tasks and mathematics attainment, dependent on the component of math-
ematics in question. Verbal-numeric tasks appear to be more predictive of perform-
ance on tasks more closely linked to factual recall and basic mathematical skills. In
contrast, we see a stronger influence of visuospatial working memory in components
of mathematics with a clear visual element: understanding shape and handling data.
This is also in line with evidence indicating that different brain areas are activated in
tasks requiring the manipulation of number or space (Arsalidou & Taylor, 2011;
Kanayet et al., 2018).
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To sum up, mathematics is a very broad term which encompasses several different
domains, which are probably distinguishable. This should be taken into account in
future research, in fact talking about ‘mathematics’ might not make sense, and
research should focus on a more in-depth understanding of different mathematics
subdomains. Finally, practitioners working with children with mathematical difficulties
should try to understand the causes of these difficulties, trying, for example, to under-
stand whether or not the impairment is confined to the visual domain (and hence dif-
ficulties in tasks requiring the manipulation of visual materials) or in the verbal
domain (and hence in tasks which are prevalently requiring the maintenance
of words).
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