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The Work-Averse Cyberattacker Model: Theory and
Evidence from Two Million Attack Signatures

Luca Allodi ,1,∗ Fabio Massacci ,2,3 and Julian Williams 4

The assumption that a cyberattacker will potentially exploit all present vulnerabilities drives
most modern cyber risk management practices and the corresponding security investments.
We propose a new attacker model, based on dynamic optimization, where we demonstrate
that large, initial, fixed costs of exploit development induce attackers to delay implementa-
tion and deployment of exploits of vulnerabilities. The theoretical model predicts that mass
attackers will preferably (i) exploit only one vulnerability per software version, (ii) largely
include only vulnerabilities requiring low attack complexity, and (iii) be slow at trying to
weaponize new vulnerabilities . These predictions are empirically validated on a large data
set of observed massed attacks launched against a large collection of information systems.
Findings in this article allow cyber risk managers to better concentrate their efforts for vul-
nerability management, and set a new theoretical and empirical basis for further research
defining attacker (offensive) processes.
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1. INTRODUCTION

A natural starting point for an evidence, big-data
based cyber-risk model is to look at “attacks in the
wild”: Each attempt to attack a system using a vulner-
ability and an exploit mechanism generates a specific
attack signature, which may be recorded by software
security vendors and can be identified by security re-
searchers (Bilge & Dumitras, 2012) and linked to vul-
nerabilities that attackers seek to exploit (Allodi &
Massacci, 2014).
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For example, attackers focusing on chip and pin
credit cards, which require physical access, are proac-
tive and rapidly update their small menu of exploits
(Murdoch, Drimer, Anderson, & Bond, 2010). In
contrast, attackers on the web seem to be wary of
exploiting the full range of vulnerabilities available
to them: The actual risk of attacks in the wild is lim-
ited to 100 vulnerabilities out of the 50,000 reported
in vulnerability databases (Allodi & Massacci, 2014;
Nayak, Marino, Efstathopoulos, & Dumitraş, 2014).
Even untimely disclosures do not seem to increase
attack volumes (Mitra & Ransbotham, 2015).

This empirical evidence of web attacker behav-
ior is at odds with the attacker models that un-
derpin most cyber-risk models: A system should be
secured “against arbitrary behavior of the saboteur”
(Dolev & Yao, 1983). Variants of the all-powerful
attacker model exist (e.g., honest-but-curious, game-
based models) but they only changed the power and
speed of attacks not the will: If there is a vulnerabil-
ity that the attacker can exploit, she will eventually
do it.
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As a result, current cyber-risk standards (e.g., US
NIST-800, UK IAS) provide advice based on vulner-
ability severity: All severe vulnerabilities present in
a system should be addressed ((e.g., the comments
by Schneier, 2008, that cover similar ground). Indeed,
papers on web security report the persistence of vul-
nerabilities on internet sites as evidence for risk un-
derestimation by website owners (Nikiforakis et al.,
2014; Stock, Lekies, & Johns, 2013). While sound in
the presence of limited information, this advice of-
ten yields disproportionate mitigations, which only
address threat inflation by security vendors (Brito
& Watkins, 2011). Big data on attacks may allow
us to use more accurate models of attackers and
empirically validate them. Such models will then
provide a better cyber-risk assessment strategy for
defenders.

The key contribution of this article is a novel the-
oretical model of the dynamic decisions of the at-
tacker based on Stokey’s logic of inaction (Stokey,
2008). We call attackers “work averse” to capture the
natural assumption that attackers will not engineer
and adopt new, complex exploits if they can obtain
a satisfactory result with what they already have. If
this assumption empirically holds, attackers will flock
to the set of low-complexity vulnerabilities with high
impact, and postpone the adoption of new exploits
until the previous ones become ineffective (e.g., as
most vulnerable systems get patched). The proposed
model steers away from classical, and empirically dis-
proved (e.g., Allodi, 2015; Nayak et al., 2014) as-
sumptions on the production function of new cyber-
attacks, and reconciles these empirical observations
with a novel model describing the arrival process of
new attacks at scale. Our model has profound impli-
cations for practical cyber-risk management; for ex-
ample, our model indicates that once an attack for a
vulnerability in a software is deployed at scale, the re-
maining vulnerabilities for the same software will—
at large—be left untouched by mass attackers. De-
fenders can then concentrate efforts in different parts
of the system (e.g., a different software component).
We enucleated several empirical hypotheses of at-
tacker behavior that are direct consequences of this
model, with a direct impact on the corresponding risk
management process by defenders.

Mathematically, we model the timing of effort by
the attacker as a dynamic programming problem and
then, for the purpose of empirical analysis, restrict it
to an attacker focusing on the “next” update of their
exploit portfolio (Section 3). To evaluate empirically

the time delays in between these exploit updates
we derive, directly from the theoretical model, a
regression model of equilibrium update times (Sec-
tion 8) regressing over vulnerability and attacked
system characteristics. We then use results from the
regression model to test several empirical hypothe-
ses for the regression variables emerging naturally
from the theoretical model (summary in Table V).
To empirically validate our model, we leverage on
big data analysis and the Worldwide Intelligence
Network Environment (WINE) data set (Dumitras
& Shou, 2011) spanning two million attack signatures
recorded in the wild by Symantec, a large security
firm (Section 6). In the empirical study, we control
for several factors related to the characteristics of the
user and their system (e.g., user geographical loca-
tions). We discuss the results of the empirical analysis
(Section 7) and conclude the article by outlining im-
plications for theory and practice (Section 10).

2. BACKGROUND

The risk analysis literature has considered the
need for data-driven cyber-risk models numerous
times (Allodi & Massacci, 2017; Rao et al., 2016).
A significant obstacle of cyber-risk models is the
lack of an empirically tested attack production model
that describes the attacker decision process (Cox
Jr, 2008). A major difficulty is that attackers are
very diverse and do not have any sort of central-
ized decision-making process. When characterizing
this process, a crucial differentiation must however
be made between “Mass-Attackers” (who focus
on high-volume of possibly low-value targets) and
“Advanced Persistent Threats” (or APTs for short)
generated by highly specialized groups that target
specifically few high-value targets. Targeted cyber-
attacks are characterized by a strong “adversarial”
connotation (Rios Insua, Rios, & Banks, 2009) where
the attacker can (and has the resources to) perform
sophisticated reconnaissance of the target(s), identify
suitable 0-day attacks, and tailor the whole attack
process against the specific target (Paté-Cornell,
2012). Yet, these attackers only make up for a small
fraction of the attack space (Bilge & Dumitras, 2012;
Research, 2018).

By contrast, mass-scale attacks focus on (known)
vulnerabilities that remain long unpatched (Nappa,
Johnson, Bilge, Caballero, & Dumitras, 2015; Re-
search, 2018) and are concentrated among a few only
of the several thousand vulnerabilities available to
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attackers (Allodi & Massacci, 2014; Research, 2018).
Unfortunately, timely patching of all vulnerabilities is
infeasible (Kotzias, Bilge, Vervier, & Caballero, 2019)
due to the high costs associated with the patching
decision (Verizon, 2011). This effectively makes the
problem of identifying which vulnerabilities are (or
are going to be) high risk a highly practical problem
to solve.

To help defenders make more informed deci-
sions, we need a characteristic model of the mass at-
tackers that does not depend on idiosyncratic charac-
teristics of the attacker (e.g., their origin or motive).
Since exploit engineering is an expertise-intensive,
time-consuming process, and the mass attackers do
not generate APTs, a realistic model of the mass
attacker is incompatible with models whereby the
attacker can exploit any vulnerability at will. Without
reconstructing this missing block, it is impossible to
build predictive models to infer which vulnerabilities
must be fixed immediately, and which can wait.

Defender strategies in terms of patching times
have been investigated both empirically (Kotzias
et al., 2019; Okhravi & Nicol, 2008) and theoretically
(Serra, Jajodia, Pugliese, Rullo, & Subrahmanian,
2015b), assuming specific threat models and attack
production functions. For example, software vendors
may maximize profit by exploiting attacker behavior
(Kannan, Rahman, & Tawarmalani, 2016); system di-
versification, as opposed to patching, may yield lower
costs when compared to ineffective “single-metric”
patching policies (Dey, Lahiri, & Zhang, 2015). Simi-
larly, security best practices do not necessarily lead to
more robust firm security, and the relation between
security and liability may also be affected by differ-
ent managerial settings (Lee, Geng, & Raghunathan,
2016).

The importance of well-grounded observations
for realistic and operational models capable of sup-
porting strategic decision making at the level of a
firm or organization is of relevance across several do-
mains, including system resilience (Guikema, McLay,
& Lambert, 2015). For example, the balance between
recommendation and implementation of rules and
regulations aimed at reducing the attack surface of
a system is delicate, and must be modulated against
the threat: overregulation risks (e.g., by alienating
users that are supposed to implement those policies)
opening up additional attack paths exploitable by
attackers. On the other hand, underregulation is
also undesirable to avoid leaving important vulner-
abilities open (Gisladottir, Ganin, Keisler, Kepner,

& Linkov, 2017). Game theory is a popular tool
to investigate these trade-offs, but assumptions be-
hind those model must remain realistic to derive
effective “operational” recommendations (Guikema
et al., 2015). Most game-theoretic models gener-
ally consider the attacker to be potentially capable
of adopting any strategy with different degrees of
probability, depending on the conditions of the game
(see Do et al., 2017, for a survey). For instance, Man-
shaei, Zhu, Alpcan, Bacşar, and Hubaux (2013) posit
a case where attacker strategies can range from fixed
attack updates to adaptive strategies based on the de-
fender’s decisions (van Dijk, Juels, Oprea, & Rivest,
2013), or on expectations of the attack’s persistence
and stealthiness to defender detection and remedia-
tion capabilities (Smeets, 2018). Attacker/defender
equilibrium forces are further analyzed by Zhang
and Zhuang (2019), who study optimal defensive
strategies in the presence of adaptive attackers and
multiple attack types, for which different probabili-
ties of success and impact on the defended infrastruc-
ture lead to different defensive outcomes. Whereas
Zhang and Zhuang (2019) do not focus on cyberat-
tackers, the cyber-threat landscape of mass attackers
and APT-level attackers poses similar challenges
for the strategic allocation of defensive resources.
Recent papers have also focused on systemic issues;
for example, Kuper, Massacci, Shim, and Williams
(2020) develop a static game in which network
structure plays a role in the equilibrium actions of
attackers. However, the dynamics of adjustments in
attacker effort has not yet been explored.

Attacks against large pools of “similar” targets
(e.g., by geographical distribution, or system con-
figuration) adapt to the state of the population of
potential targets (as opposed to one specific target),
for which attack technologies developed “ad-hoc”
are not always viable (Ransbotham & Mitra, 2009).
For an attacker sensitive to the cost of engineering a
technical or social exploit, not all attack types make
sensible avenues for investment (Herley, 2013). This
is supported by empirical evidence showing that
attack tools actively used by attackers embed only
an handful of exploits (Kotov & Massacci, 2013),
and that the vast majority of attacks recorded in the
wild are driven by only a small fraction of known
vulnerabilities (Allodi, 2015; Nayak et al., 2014).
Some reward must be forthcoming, as the level of
effort required to implement and deliver the attack
observed in the wild is not negligible, as demon-
strated by the presence of an underground market
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where vulnerability exploits are rented to attackers
(“exploitation-as-a-service”) as a form of revenue
for exploit writers (Grier et al., 2012). In fact, recent
studies on different samples (Allodi & Massacci,
2014) have challenged the automatic transfer of
the technical assessment of the “exploitability” of a
vulnerability into actual attacks against end users:
There is a substantial lack of correlation between the
observed attack signatures in the wild and metrics
(such as the Common Vulnerability Scoring Sys-
tem [CVSS)aintained and employed by the NIST;
First.org, 2015) providing an assessment of the vul-
nerability severity. The current trend in industry is
to use metrics such as CVSS as proxies for risk and
demanding immediate action (Beattie et al., 2002),
but evidence suggests this may be neither sensible,
nor effective (Allodi & Massacci, 2014).

The risk analysis literature has also identified the
importance of contextual factors to the realization of
adversarial risks (Rios Insua et al., 2009; Serra, Ja-
jodia, Pugliese, Rullo, & Subrahmanian, 2015a), par-
ticularly when aiming at building probabilistic and
quantitative models of attack arrival (Allodi & Mas-
sacci, 2017; Brown & Cox Jr, 2011). The current lack
of a sound model describing the generation of new
cyberattacks is effectively preventing the literature
to fully move from a qualitative/semiquantitative
risk framework to a quantitative one (Cherdantseva
et al., 2016).

3. THE WORK-AVERSE ATTACKER

Our model captures the update process of at-
tacks deployed at scale by a large collection of unco-
ordinated mass attackers. Importantly, mass attack-
ers seldom build their own independent attack tech-
nologies, but rather fetch attacks from a shared pool
of available attacks (e.g., by acquiring them through
the underground economy; Allodi, 2017; Grier et al.,
2012; Kotov & Massacci, 2013). The intuition behind
our model is that mass attackers with similar objec-
tives (e.g., to install botnet malware on Windows sys-
tems in the United States) will have, at large, to move
over to the next available attack when those targets,
on average, cannot be infected anymore with the old
attack technology. Hence, the process with which
attackers of the same “type” update their attack
portfolio can be captured by a unified model con-
sidering all attackers of that type jointly. We model
attackers to be risk neutral, and to gain revenue by
making both fixed and variable cost investments in

attacking a large group of independent target sys-
tems. The parameters determining the optimization
problem faced by the attacker are presumed to be
independent and identically distributed across the
collection of attackers.

Each attacker starts their activities at time t = 0
by identifying a subset of vulnerabilities V ⊂ V from
a universe V affecting a number of target systems
N. A fraction θV of the N systems is affected by V
and would be compromised by an exploit in absence
of security countermeasures. Targets deploy patches,
update systems, or use new signatures in antivirus
or IPSs whose relative effect on attack success has
been discussed in extant literature (Chen, Kataria, &
Krishnan, 2011; Nappa et al., 2015). Such arrival rate
is typically uncorrelated with vulnerability discovery
as it depends on external scheduling by software ven-
dors, or testing in companies. For example, a recent
empirical study (Kotzias et al., 2019) showed that it
may take more than six months to arrive at patching
90% of the vulnerable systems. Denoting the mitiga-
tion and patching adoption rate by λ, we define the
number of systems impacted by vulnerabilities in V
at time t as

NV (t) = NθV e−λt . (1)

To engineer the exploits for the vulnerabilities V , the
attacker will pay an upfront cost C(V |∅) and has an
instantaneous stochastic profit function of

�V (t) = [r(t, NV (t),V ) − c(t,V )]e−δt . (2)

The function r(t, NV ,V ) is a stochastic revenue com-
ponent that accounts for the probability of estab-
lishing contact with a vulnerable system (Franklin,
Paxson, Perrig, & Savage, 2007), making a successful
infection given a contact (Allodi, Kotov, & Massacci,
2013), and monetizing the infected system (Grier
et al., 2012; Rao & Reiley, 2012); the factor c(t,V ) is
the variable costs of maintaining the attack (payload
obfuscation to avoid detection; Kotov & Massacci,
2013) or renew the domain names to prevent do-
main blacklisting (Stone-Gross et al., 2009), both
subject to a discount rate δ. We do not make any
assumption on the accounting unit for revenues from
successful attacks. For instance, revenues can also
be in the form of kudos on hacker forums (Ooi,
Kim, Wang, & Hui, 2012), or revenues from trading
victim’s assets in black markets (Campobasso &
Allodi, 2020).

At some point, the attacker might decide to
perform a refresh of the attacking capabilities by
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Table I. Parameters and Variables from the Model

Parameter Description
Variable

t Continuous time index.
Ti An update time when an attacker updates the

vulnerabilities, indexed by i ∈ {0, 1, 2, . . .}. n is
the last update (if it is finite).

V The universe of known vulnerabilities affecting
all systems.

N The total number of target machines affected by
vulnerabilities in V .

V The subset of vulnerabilities in V identified by
attackers for exploitation.

θV The fraction of N affected by V ∈ V .
r(t, NV ,V ) Revenue function from successful attacks.
c(t,V ) Variable cost function for deploying attacks.
Ci Fixed cost of adding at Ti new vulnerabilities to

be exploited by the attacker.
λ Arrival rate of vulnerability patches to the

universe of systems.
δ Discount rate of the attacker.
�V (t) Profit function for a given set of vulnerabilities

V .

introducing a new vulnerability and engineering
its exploit by incurring an upfront cost of C(v|V ).
This additional vulnerability will produce a pos-
sibly larger revenue r(t, NV∪{v}(t),V ∪ {v}) at a
marginal cost c(t,V ∪ {v}). As the cost of engineer-
ing an exploit is large with respect to maintenance
(C(v|V ) � c(t,V ∪ {v})) and neither successful
infection (Allodi et al., 2013) nor revenues are guar-
anteed (Allodi, Corradin, & Massacci, 2015; Rao
& Reiley, 2012), the attacker faces a problem of
deciding action versus inaction in the presence of
fixed initial costs as described by Stokey (2008). The
optimal strategy is to deploy the new exploit only
when the old vulnerabilities no longer guarantee
a suitable expected profit. This decision problem
is then repeated over time for n newly discovered
vulnerabilities, and n refresh times denoted by Ti.
Model parameters are summarized in Table I.

We denote by C0 = C(V |∅) the initial develop-
ment cost and by Ci+1 ≡ C(vi+1|V ∪ {v1 . . . vi}) the
cost of developing the new exploits, given the ini-
tial set V and the additional vulnerabilities v1 . . . vi.
We denote by Ni(t) ≡ NV∪{v1,...,vi}(t) the number of
systems affected by adding the new vulnerability at
time t. We make no assumption on the particular or-
der over the vulnerabilities vi. We simply assume that
there is some sequence in which they are engineered
and that sequence will be determined empirically.

Similarly, we define ri(t) and ci(t) as, respectively,
the revenue and the marginal cost of the vulnera-
bility set V ∪ {v1, . . . , vi}. The critical tipping point
is when the instant marginal cost is equal to the in-
stant marginal revenue ri(Ti+1, Ni(Ti+1)) = ci(Ti+1),
and at this point, the attacker will need to refresh the
set of exploited vulnerabilities in order to continue
making a profit, thus identifying all action points
Ti+1 > Ti. Since the maintenance of malware, for ex-
ample, through “packing” and obfuscation (i.e., tech-
niques that change the aspect of malware in memory
to avoid detection) is minimal does not depend on
the particular vulnerability (Brand, Valli, & Wood-
ward, 2010; Kotov & Massacci, 2013), and can be
automated in matter of minutes (Castro, Schmitt,
& Rodosek, 2019), the maintenance costs are neg-
ligible relative to the fixed costs of updating, hence
ci(t) 	 Ci, and thus the next interval tends to infin-
ity, Tn+1 → ∞. A change of technological constraints
(e.g., widely deployed detection techniques capable
of identifying any variant of the same attack) would
require to at least partially revise these assumptions,
and therefore the model, in the future.

Empirical evidence indicates the mass attacker
faces a decision problem with repeated peak ac-
tions with random revenues followed by long periods
of quasi-inaction (Allodi, 2015; Nayak et al., 2014).
Whereas problems of this type are oftentimes ana-
lytically intractable, Stokey (2008) provides a frame-
work offering a series of approximating solutions that
can be applied to generic formulations of processes
with “quasi-inaction.”1 Accordingly, we assume an
history-less payoff with a risk-neutral preference so
that expected pay-off and expected utility coincide
and risk preferences are then encapsulated in the dis-
count factor. See Stokey (2008) and Birge and Lou-
veaux (2011) for a discussion.

The expected payoff from deployed malware at
time t (where t ≥ T is the amount of time since the
attacker updated the menu of attacks by engineering
new exploits at time T) is then as follows:

r(t, NV∪{v}(t)) = rN
(
θV e−λt + (θV∪{v} − θV )e−λ(t−T )

)
. (3)

The first term in the parentheses measures the
systems’ vulnerability to the set V of exploited vul-
nerabilities that have been already partly patched,
while the second term accounts for the new, alterna-

1In practice, these approximations allow to pass from the Riemann
stochastic integral that emerges from the problem formulation, to
a standard Leibniz-style integral so that the resulting optimiza-
tion problem is more tractable.
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tive systems that can now be exploited by adding v
to the pool of vulnerabilities being targeted. For the
latter systems, the unpatched fraction restarts from
one at time T . Together the terms deliver the instant
expected revenue process across their campaign. The
attackers’ decision problem is then to establish the
timing of when to implement v. Indeed, from an em-
pirical observation of malware in the wild, it is clear
that technology diffusion is not strictly continuous
(Allodi & Massacci, 2013; Bilge & Dumitras, 2012;
Nayak et al., 2014).

The attacker faces the problem of choosing a se-
quence of update times indexed from n → ∞

{T ∗
1 , . . . , T ∗

n } = arg max
{T1,...,Tn}

n∑
i=0

(�(Ti+1, Ti) − Ci)e−δTi , (4)

�(Ti+i, Ti) =
∫ Ti+1

Ti

(ri(t, Ni(t)) − ci(t))e−δtdt

= rN
λ + δ

· (
θi − θi−1 + θi−1e−λTi

) · (5)

(
1 − e−(λ+δ)(Ti+1−Ti )

)
,

where θ−1 ≡ 0, θ0 ≡ θV , and θi ≡ θV∪{v1...vi}.
Note that, from the above formulation, relatively

large discount rates lead to an exponential decrease
of the impact of update decisions. This is a com-
mon observation also in dynamic planning problems
(see DeGroot, 2005, for an extended discussion),
and provides us with a clear rationale for restricting
our attention to cases when T ∗

1 > 0 (since the opti-
mal subsequent update T ∗

2 is then sufficiently far into
the future to not disturb the first update T ∗

1 ). Indeed,
for cases when T ∗

1 > 0 and T ∗
2 → ∞, a closed-form

solution for the next update is easily obtained by ma-
nipulation of the first-order conditions for T ∗

1 holding
T ∗

2 as constant. Due to the high uncertainty of future
vulnerability discoveries and achievable attack relia-
bility (Allodi & Massacci, 2014; Bozorgi, Saul, Sav-
age, & Voelker, 2010), it is reasonable to assume that
attackers generally operate under an assumption of
sufficiently high discount rates for the above to hold.

Proposition 1. A risk-neutral attacker focusing on
the next update with decreasing effectiveness due to
patching and antivirus updates, a negligible cost of
maintenance for each exploit, and a marginal profit at
least equal to the marginal revenue for each machine
(∂�/∂T ≥ r(0, NV (0),V )/NV (0)) will renew her

exploit at time T �

T � = 1
δ

log
(

C(v|V )
r

− δ

λ + δ
(θV∪{v} − θV )N

)
(6)

under the condition C(v|V )
rN ≥ 1

N + δ
λ+δ

(θV∪{v} − θV ).

This condition provides a lower bound for the
trade-off provided by the cost of introducing a new
exploit (C(v|V )), and the expected revenue across
infected systems (rN); as the latter decreases as sys-
tems get patched, the cost of introducing a new ex-
ploit becomes justified and leads to the satisfaction
of the condition, and hence to the existence of an
optimal update time T ∗. The proof for Equation (6)
is available in the Supporting Information (Allodi,
Massacci, & Williams, 2017).

The “all–powerful” attacker is still admitted as a
particular case when the attacker cost function C(v|V )

r
for weaponizing a new vulnerability goes to zero.
In this case, Proposition 1 predicts that the attacker
could essentially deploy the new exploit at an arbi-
trary time [0,+∞] even if the new exploit would not
yield a large impact.

4. EMPIRICAL MODEL DERIVATION

To empirically evaluate this model, we would
need to measure the time T � of introduction of new
exploits by attackers at scale. This is clearly not pos-
sible without the attackers’ cooperation. To avoid
this identification problem, we use the time in be-
tween two consequent attacks T as a suitable proxy.
Fig. 1 reports a pictorial representation of the trans-
formation. Each curve represents the decay in time
of number of attacks against two different vulnera-
bilities. The first attack (blue line) is introduced at
t = 0, and the second (red line) at t = T �. The num-
ber of received attacks is described by the area below
the curve. Let U (�V ∪ {v}, t, T ) represent the num-
ber of systems that receive two attacks T days apart,
at times t − T and t, respectively. Setting the number
of attacks at time t − T as U (θv, t − T ) = Nθve−λ(t−T )

and the attacks received on the second vulnerability
at time t as U (θV∪{v}, t) = NθV∪{v}e−λ(t−T �), we obtain

U (θV∪{v}, t, T ) = min
(
NθveλT , NθV∪{v}eλT �) ·

·
∫ ∞

max(T ,T �)
e−λtdt. (7)

Solving for the two cases T � > T and T � < T , we for-
mulate the following claim:
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Fig 1. Computing the delay (T ) between attacks against different vulnerabilities.
Note: Change in the number of attacked systems for two attacks against different systems 	 = T days apart. The first attack happens at
t − T ≥ 0 and the number of attacked systems U (�V ∪ {v}, t, T ) is derived from Equation (1) as �V Ne−λ(t−T ). The number of systems
attacked by the new exploit introduced at T � is derived as U (�V∪{v}, t, T �) = N�V∪{v}e−λ(t−T� )dt.
Note: Change in the number of attacked systems for two attacks against different systems 	 = T days apart. The first attack happens at
t − T ≥ 0 and the number of attacked systems U (�V ∪ {v}, t, T ) is derived from Equation (1) as �V Ne−λ(t−T ). The number of systems
attacked by the new exploit introduced at T � is derived as U (�V∪{v}, t, T �) = N�V∪{v}e−λ(t−T� )dt.

Claim 1. The sign of the coefficient for T oscillates
from positive to negative as T increases.

logU (θV∪{v}, t, T ) = log
N
λ

+
{

−λ(T � − T ) + log θv if T � > T
+λ(T � − T ) + log θV∪{v} if T � < T

(8)

The proof is available in the online SSRN re-
port (Allodi et al., 2017). As the empirical evidence
indicates (see Fig. 2) that T is substantial, we in-
fer T � < T . Hence, by substituting the corresponding
term for T � from Equation (6), we obtain the number
of expected attacked systems after T days:

logU = −λT + log
N
λ

+ log θV∪{v}

+λ

[
1
δ

log
(

C(v|V )
r

− δ

λ + δ
(θV∪{v} − θV )N

)]
.(9)

5. HYPOTHESIS DERIVATION

Proposition 1 and Equation (9) can be used to
define suitable empirical hypotheses. At first, we no-
tice that for two vulnerabilities of the same software

version, θV∪{v} = θV , and therefore we hypothesize
the following,

Hypothesis 1. A work-averse attacker has only one
reliable exploit per software version.

The practical implications for mitigation mech-
anisms is significant: If attackers are likely to ex-
ploit different vulnerabilities of the same software,
the only secure solution would be update the whole
system. If only one vulnerability is exploited, one
can resort to filtering those specific attacks by an in-
trusion prevention system (IPS), or deploying other
vulnerability-specific defenses at the system level.
For industrial control systems, that cannot be up-
dated, deploying an IPS is the approach used in prac-
tice. Hypothesis 1 shows that this may actually be an
effective defensive strategy, vastly reducing the scope
of the threat caused by mass attackers. In turn, this
simplifies decisions on defensive resource allocation
and allows defenders to more effectively focus on de-
fenses for different attackers and attack types (e.g.,
APT protection), as opposed to wasting resources to
protect against all vulnerabilities for which an attack
at scale will not, most likely, materialize (Zhang &
Zhuang, 2019).
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Fig 2. Distribution of time between of subsequent attacks with similar signatures.
Note: Fraction of systems receiving the same attack repeatedly in time (red, solid) compared to those receiving a second attack against a
different vulnerability (black, dashed). The vertical line indicates number of days after the first attacks where it is more likely to receive an
attack against a new vulnerability rather than against an old one
Note: Fraction of systems receiving the same attack repeatedly in time (red, solid) compared to those receiving a second attack against a
different vulnerability (black, dashed). The vertical line indicates number of days after the first attacks where it is more likely to receive an
attack against a new vulnerability rather than against an old one

When two vulnerabilities cover essentially the
same fraction of the population (θV∪{v} − θV ≈ ε),
a low cost would make quick exploit develop-
ment more appealing for an attacker because it
would match the marginal condition (C(v|V )/rN ≤
δ/(λ + δ)(θV∪{v} − θV ) ≈ ε) when the attacker would
consider deploying an exploit to have a positive
marginal benefit. To capture this aspect, we observe
that we have a suitable proxy among our parame-
ters to capture development costs. The technical term
of “exploit complexity” used by the CVSS standard
refers to the technical possibility of easily develop-
ing a reliable exploit that works at all times without
a “complex” engineering effort to cater for random
factors (e.g., the specific system configuration, mem-
ory layout) that are outside the control of the at-
tacker. Hence low complexity significantly decreases
the fixed costs of development.

Hypothesis 2. A work-averse attacker has exploits
with similar low complexity for similar popular soft-
ware.

Assuming costs and rewards over [0, T ∗
i ] are

measured in the same numèraire and approximately
within the same order of magnitude, the model im-
plies that the discount factor (the term 1/δ in Equa-
tion (6)) plays a leading role in determining the
optimal time for the new exploit deployment. Mi-
croeconomics literature (Frederick, Loewenstein, &

O’donoghue, 2002) sets eδ − 1 to vary between 1%
and 20%. Hence, a lower bound on T ∗

1 would be
≈ [100, 400] when time is measured in days.

Hypothesis 3. The time interval after which a new
exploit would economically dominate an existing ex-
ploit is large (e.g., T ∗

1 > 100 days).

Since ∂T �/∂((θv − θV )N) < 0, a larger number
of attacked systems U on different versions (θv �= θV )
would imply a lower delay T (as there is an attrac-
tive number of new systems that guarantee the prof-
itability of new attacks). In contrast, the baseline rate
of attacks impacts negatively the optimal time T as
∂T �/∂(θV N) > 0, since a larger pool of vulnerable
machines makes it more profitable to continue with
existing attacks (as per Hypothesis 1). The uncondi-
tional fraction of attacked systems with new updates
from the WINE data set is illustrated in Fig. 2, where
the crossover point of half the systems receiving at-
tacks with the same signature but a new vulnerabil-
ity targeted is around 800 days. It shows the key idea
behind Hypothesis 4: If a good old exploit works, at-
tackers will keep using it for a long time, even if a
new exploit could be used.

Hypothesis 4. The possibility of launching a large
number of attacks against systems for which an ex-
ploit already exists lengthens the time for weaponiz-
ing a new vulnerability (N · (Ver0 = Verv) ↑ implies
T ↑), whereas an increase in potential attacks on
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different systems is an incentive toward a shorter
weaponization cycle (N · (Ver0 �= Verv) ↑ then T ↓).

When considering the effects of costs, we ob-
serve that, as ∂T �/∂C(v|V ) > 0, the presence of a
vulnerability with a low attack complexity implies
dC(v|V ) < 0, and therefore reflects a drop in the de-
lay T between the two attacks. We have already dis-
cussed this possibility as Hypothesis 2. As for rev-
enues, ∂T �/∂r < 0 implies that a lower profit results
in a longer time before it makes sense to engineer a
new exploit targeting a new vulnerability. When the
time to engineer a new exploit is substituted into the
equation of the number of attacked machines that
are needed to make a profit, a dual phenomenon
takes place: An increase in revenue per attack means
that less machines are needed to achieve the profit
condition. We however cannot precisely measure the
increase in revenues, as of course no telemetry data
can reveal the exact revenue extracted from a sys-
tem.2

Hypothesis 5. Vulnerabilities with higher impact in-
crease revenue and therefore decrease the number of
attacks (ImpCVE2

> ImpCVE1
implies U ↓).

6. DATA SET

To reconstruct the delay between arrival of mul-
tiple (identical, new) attacks on real systems, we
build a data set where each row is a pair of attacks
(targeting the same or different vulnerabilities) reg-
istered on similar systems deployed worldwide. The
objective is to construct a data set that represents the
decisions of attackers of the same “type” (see discus-
sion on the model intuition at the beginning of Sec-
tion 3) to update the attacked vulnerability (e.g., be-
cause those attackers target MS Windows machines
in a specific region, and old attacks became ineffec-
tive against these targets). To construct these data,
we merge information from three data sources:

2A possible proxy is to consider the technical impact of the attack
as the level of system compromise that is possible to achieve by
exploiting the vulnerability. Intuitively, the higher the level of ac-
cess, the greater the potential revenue the attacker could extract
from the system. A possible limitation is that such information
might not correspond to the actual revenue for some specific at-
tackers. For example, vulnerabilities that only compromise the
availability of a system are typically scored low according to stan-
dard metrics such as the CVSS. (First.org, 2015) Yet, for an hacker
offering Distributed Denial of Service (DDoS) targeted attack
against online gamers, these vulnerabilities maybe the most inter-
esting source of revenues (Hutchings & Clayton, 2016).

First, the National Vulnerability Database
(NVD) is the vulnerability database maintained by
the US NIST. Known and publicly disclosed vul-
nerabilities are published in this data set along with
descriptive information such as publication date,
affected software, and a technical assessment of the
vulnerability as provided by the CVSS. Vulnerabil-
ities reported in NVD are identified by a Common
Vulnerabilities and Exposures identifier (CVE-ID)
that is unique for every vulnerability.

Second, the Symantec threat report database
(SYM) reports the list of attack signatures detected
by Symantec’s products along with a description in
plain English of the attack. Among other informa-
tion, the description reports the CVE-ID exploited
in the attack, if any.

Third, the WINE, maintained by Symantec, re-
ports attack signatures detected in the wild by
Symantec’s products. In particular, WINE is a rep-
resentative, anonymized sample of the operational
data Symantec collects from users that have opted
in to share telemetry data (Dumitras & Shou, 2011).
WINE comprises attack data from more than one
million hosts, and for each of them, we are tracking
up to three years of attacks. Attacks in WINE are
identified by an ID that identifies the attack signature
triggered by the detected event according to Syman-
tec’s threat database. To obtain the exploited vulner-
ability, we match the attack signature ID in WINE
with the CVE-ID reported in SYM.

The data extraction involved three phases: (1) re-
construction of WINE users’ attack history, (2) build-
ing the controls for the data, and (3) merging and
aggregating data from (1) and (2). Because of user
privacy concerns and ethical reasons, we did not ex-
tract from the WINE data set any potentially iden-
tifying information about its hosts. For this reason,
it is useful to distinguish two types of tables: tables
computed from WINE, namely, intermediate tables
with detailed information that we use to build the fi-
nal data set; and extracted tables, containing only ag-
gregate information on user attacks that we use in
this research. The full list of variables included in our
data set is described in Table II. The full data set com-
puted from WINE was collected in July 2013 and is
available for sharing at Symantec Research Labs (un-
der NDA clauses for access to the WINE repository)
under the reference WINE-2012-008. A full replica-
tion guide is also available in Allodi et al. (2017).

We are interested in the new vulnerability v
whose mass exploit is being attempted in the wild
after an exploit for V vulnerabilities have been
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Table II. Variables Included in Our Data Set

Variable Description

CVE1,2 The identifier of the previous and the current
vulnerability v exploited on the user’s
machine.

T The delay expressed in fraction of year between
the first and the second attacks.

N The number of detected attacks for the pair
previous attack, actual attack.

U The number of systems attacked by the pair.
Compl The Complexity of the vulnerability as indicated

by its CVSS assessment. Can be either High,
Medium,or Low as defined by CVSS(v2) Mell,
Scarfone, and Romanosky (2007).

Imp The impact of the vulnerability measured over
the loss in confidentiality, integrity, and
availability of the affected information. It is
computed on a scale from 0 to 10 where 10
represents maximum loss in all metrics, and 0
represents no loss. Mell et al. (2007).

Day The date of the vulnerability publication on the
National Vulnerability Database.

Sw The name of the software affected by the
vulnerability.

Ver The last version of the affected software where
the vulnerability is present.

Geo The country where the user system is at the time
of the second attack.

Hst The profile of the user or “host.”
Frq The average number of attacks received by a

user per day.
Pk The maximum number of attacks received by a

user per day.

already engineered and attempted in the recent past.
Our goal is to empirically evaluate whether this past
is indeed more or less recent. To do so, we initially (1)
extract from WINE two attack signatures received
by a system (host) monitored by Symantec at differ-
ent moments in time, (2) associate each attack signa-
ture to the corresponding vulnerability whose exploit
is attempted (Combining WINE, SYM, and NVD),
and (3) collect from WINE some features of the host,
which suffered such attacks as control variables. We
use the host’s profile in terms of countries it connects
to the Internet from, whether the host moves geo-
graphically, and whether the host upgraded to a new
version of the operating system because users with
profiles that change in time may look different to the
attacker, and may therefore be subject to different at-
tacks and attack volumes (Chen et al., 2011; Baltazar,
2011; Kotov & Massacci, 2013).

Table III reports an excerpt from the data set,
with only selected columns for brevity. Each row

Table III. Summary Excerpt from Our Data Set

CVE1 CVE2 T U N Geo Hst

2003-0533 2008-4250 83 186 830 IT Up
2003-0818 2003-0818 146 1 1 US Rm
2003-0818 2009-4324 616 1 1 CH Ev
2003-0818 2009-4324 70 52 55 US Ev

Note: We provide an example useful to interpret these data. Look-
ing at the third row, one WINE system (U= 1) located in Switzer-
land (Geo= CH) suffered only once (N= 1) from an attack tar-
geting the vulnerability CVE2 = CVE-2009-4324 that was preceded
by an attack targeting CVE1 = CVE-2003-0818 almost two years
earlier (T = 616). In the fourth row, U= 52 systems in the United
States (Geo= US) received N= 55 times the first attack on CVE1
followed by the second attack on CVE2 just two months apart (T =
70). In both cases, the systems considered are of type EVOLVE, in-
dicating that the affected systems have been upgraded and moved
from some other country to the country listed in Geo during our
observation period.

represents a pair of detected attack signatures. The
columns CVE1 and CVE2 report, respectively, the CVE-
ID of the attacked vulnerability in v and in the novel
attack against V . Column T reports the time delay,
measured in days, between the two attacks. Column
N reports the overall number of attacks detected for
CVE2 after an attack against CVE1; U reports the num-
ber of single systems receiving the same pair of at-
tacks. Column Geo reports the country in which the
second attack was recorded. Finally, Hst reports the
type of user affected by the attack. Additional infor-
mation regarding both attacked CVEs is extracted
from the NVD (not reported in Table III): For each
CVE, we collect publication date (Day), vulnerable
software (Sw), last vulnerable version (Ver), and an
assessment of the Compl of the vulnerability exploita-
tion and of its Imp, provided by CVSS (v2).

As we mentioned, we associate an attack signa-
ture to the corresponding CVE-ID by combining in-
formation from WINE with Symantec own database
of attack signatures (SYM). However, attack signa-
tures as reported by Symantec have varying degrees
of generality, meaning that they can be triggered by
attacks that targets different vulnerabilities but still
follow some common pattern. For this reason, some
signatures reference more than one vulnerability. In
this case, we have no means to know which of the
vulnerabilities was effectively targeted by the attack.
Of 1,573 different attack signatures, 112 involve more
than one vulnerability; to avoid introducing count-
ing errors on the number of attacks per CVE, we
dropped these attack signatures from further consid-
eration.
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Table IV. Sample Attack Scenarios and Compatibility with Work-Aversion Hypothesis

Type Condition Hypothesis

A1: First attack and second attack affect precisely the same vulnerability and,
consequently, the same software version

CVE1 = CVE2 Often for Hypothesis 3
as T � → ∞

A2: First attack and second attack affect the same software but different CVEs and
different software versions.

CVE1 �= CVE2,
SwCVE1 = SwCVE2 ,
VerCVE1 �= VerCVE2

Less frequent for
Hypothesis 1 and
Hypothesis 2 as

0 < T � < ∞
A3: First and second attacks affect the same software and the same version but exploit

different vulnerabilities
CVE1 �= CVE2,
SwCVE1 = SwCVE2 ,
VerCVE1 = VerCVE2

Almost never for
Hypothesis 1 as

θV∪{v} = θV

Note: We expect the majority of attacks generated by the work-averse attacker to be of type A1. Attack A2 should be less frequent than A1,
as it requires to engineer a new exploit. A3 contradicts the work aversion hypothesis and should be the least common type.

7. EMPIRICAL ANALYSIS

Prior to conducting any correlative analysis, we
illustrate some scenarios that provide prima facie sta-
tistical evidence on the validity of the hypotheses
identified from our theoretical model.

According to Equation (6), the attacker, will
postpone the choice of weaponizing a vulnerability v
if the ratio between the cost of developing the ex-
ploit and the maximal marginal expected revenue is
larger than the discounted increase in the fraction
of exploited vulnerabilities, namely, C(v|V )/rN >

δ/(λ + δ)(θV∪{v} − θV ). Empirically, this means that
the attacker should prefer to (i) attack the same vul-
nerability multiple times rather than for only a short
period of time and (2) create a new exploit only when
they want to attack a new software version. To evalu-
ate these scenarios, we identify three types of attack
pairs that are summarized in Table IV: In the first
type of attack pair (A1), the first attack and the sec-
ond attack affect the same vulnerability and, conse-
quently, the same software version; in the second pair
(A2), the first attack and the second attack affect the
same software, but different CVEs and different soft-
ware versions; finally in the third pair, the first and
second attacks affect the same software and the same
version but exploit different vulnerabilities (A3). Ac-
cording to our hypothesis, we expect that attacks of
type A1 should be more common than A2 (in par-
ticular when the delay between the attacks is small),
while A3 should be the least common of the three.

To evaluate the relative ordering of these at-
tack types, it is important to consider that users
have diverging models of software security (Wash,
2010), and different software have different up-
date patterns, frequencies, and attack vectors (Nappa
et al., 2015; Provos, Mavrommatis, Rajab, & Mon-

rose, 2008). For example, an attack against a browser
may only require the user to visit a webpage, while
an attack against a word processing application may
need the user to actively open a file on the system
(see also the definition of the Attack Vector metric
in the CVSS standard). As these clearly require a dif-
ferent attack process, we further classify Sw in four
categories: SERVER, PLUGIN, PROD(-ductivity),
and Internet Explorer (the only browser represented
in our WINE data). The categories are defined by
the software names in the database. For example,
SERVER environments are typically better main-
tained than “consumer” environments and are of-
ten protected by perimetric defenses such as firewalls
or IDSs. This may in turn affect an attacker’s atti-
tude toward developing new exploits. This may re-
quire the attacker to engineer different attacks for
the same software version in order to evade the addi-
tional mitigating controls in place. Hence we expect
the difference between A2 and A3 to be narrower for
the SERVER category. Fig. 3 reports a fitted curve
of targeted machines as a function of time by soft-
ware category. As expected, A1 dominates in all soft-
ware types. The predicted order is valid for PLUGIN
and PROD. For PROD software, we find no attacks
against new vulnerabilities for different software ver-
sions, therefore A2 = A3 = 0. This may be an effect
of the low update rate of this type of software and
relatively short timeframe considered in our data set
(three years), or of a scarce attacker interest in this
software type. Results for SERVER are mixed: The
difference between A2 and A3 is very narrow and
A3 is occasionally higher than A2. Since oscillations
occur within confidence intervals, they might be due
to chance.

Internet Explorer is an interesting case in itself.
Here, contrary to our prediction, A3 is higher than
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Fig 3. Loess regression of volume of attacks in time.
Note: Volume of received attacks as a function of time for the three types of attack. A1 is represented by a solid black line, A2 by a long-
dashed red line, A3 by a dashed green line. The gray areas represent 95% confidence intervals. For Internet Explorer vulnerabilities, the
maximum T between two attacks is 1,288 days; for SERVER it is 1,374 days; PROD 1,411; PLUGIN 1,428. This can be determined by the
timing of first appearance of the attack in the WINE database.
Note: Volume of received attacks as a function of time for the three types of attack. A1 is represented by a solid black line, A2 by a long-
dashed red line, A3 by a dashed green line. The gray areas represent 95% confidence intervals. For Internet Explorer vulnerabilities, the
maximum T between two attacks is 1,288 days; for SERVER it is 1,374 days; PROD 1,411; PLUGIN 1,428. This can be determined by the
timing of first appearance of the attack in the WINE database.

A2. By further investigating the data, we find that the
reversed trend is explained by one single outlier pair:
CVE1 = CVE-2010-0806 and CVE2 =CVE-2009-3672.
These vulnerabilities affect Internet Explorer version
7 and have been disclosed 98 days apart. More in-
terestingly, they are very similar: They both affect a
memory corruption bug in Internet Explorer 7 that
allows for an heap-spray attack resulting in arbitrary
code execution. Two observations are particularly in-
teresting:

1. Heap spray attacks are unreliable attacks that
may result in a significant drop in exploita-
tion success. This is reflected in the Access

Complexity:Medium assessment assigned to
both vulnerabilities by the CVSS v2 framework.
In our model, this would imply a lower return
r(t, NV (t),V ) for the attacker, as the unreliable

exploit may yield control of fewer machines
among the vulnerable ones.

2. The exploitation code found on Exploit-DB3 is
essentially the same for these two vulnerabili-
ties. The code for CVE2 is effectively a rearrange-
ment of the code for CVE1, with different vari-
able names. In our model, this would indicate
that the cost C(v|V ) ≈ 0 to build an exploit for
the second vulnerability is negligible, as most of
the exploitation code can be reused from CVE1

(see the Appendix for details).

Hence, this vulnerability pair is only an apparent
exception: The very nature of the second exploit for
Internet Explorer 7 is coherent with our model and in

3See Exploit-DB (http://www.exploit-db.com, last accessed Jan-
uary 15, 2017.), which is a public data set for vulnerability proof-
of-concept exploits. CVE1 corresponds to exploit 16547 and CVE2
corresponds to exploit 11683.

http://www.exploit-db.com
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Table V. Summary of Predictions Derived from the Model

Model Variable Regressor Expectation Hypothesis Rationale

T T β1 < 0 3 and 4 Shorter exploitation times are
associated with more vulnerable

systems, hence T ↑⇒ U ↓.
C(V |v) ComplCVE2,L β2 < 0 1, 4, and 2 The introduction of a new reliable,

low-complexity exploit minimizes
implementation costs, thus

C ↓⇒ U ↓.
θV∪{v} ImpCVE2,H β3 > 0 5 and 4 High impact vulnerabilities allow the

attacker for a complete control of
the attacked systems, hence

θV∪{v} ↑⇒ U ↑.
r, (θV∪{v} − θV ) ImpCVE2 > ImpCVE1 β4 < 0 5 Selecting a higher impact exploit for

a new vulnerability increases the
expected revenue and increases
the fraction of newly controlled
systems with respect to the old

vulnerability. r ↑⇒ U ↓ and
(θV∪{v} − θV ) ↑⇒ U ↓.

line with Hypothesis 1 and Hypothesis 2. Removing
the pair from the data confirms the order of attack
scenarios identified in Table IV.

8. DATA ANALYSIS

Table V summarizes the predictions implied by
the solution to the model given in Equation (9). T
can be measured directly in our data set; the cost of
development of an exploit C(v|V ) can be estimated
by the proxy variable ComplCVE2

, as by definition the
complexity associated with exploit development re-
quires additional engineering efforts (and is thus re-
lated to an increase in development effort). We can-
not directly measure the revenue r and the number
of systems N affected by the vulnerability, but we can
estimate the effect of an attack on a population of
users by measuring the impact (Imp) of that vulner-
ability on the system: Higher impact vulnerabilities
(i.e., ImpCVE2 > ImpCVE1) allow the attacker to con-
trol a higher fraction of the vulnerable system, and
therefore extract higher revenue r from the attack.
Similarly, the introduction of an attack with a higher
impact can approximate the difference in attack pen-
etration (θV∪{v} − θV )N for the new set of exploits as
it allows the attacker for a higher degree of control
on the affected systems. Finally, high impact vulnera-
bilities (ImpCVE2,H), for example, allowing remote ex-
ecution of arbitrary code on the victim system, leave
the �V∪{v}N systems under complete control of the
attacker; in contrast, a low impact vulnerability, for

example, causing a denial of service, would allow for
only a temporary effect on the machine and therefore
a lower degree of control. It is important to note that
other vulnerability characteristics, such as require-
ments on attacker positioning (e.g., local to the sys-
tem, or remote) and preexistent privileges required
for the attack to work may have an impact on the
decisions of an attacker. On the other hand, previ-
ous research showed that, considering mass attack-
ers, only certain types of vulnerability are effectively
exploited at scale (Allodi & Massacci, 2014): Mass
attackers generally attack from remote, do not have
preexistent privileges on the vulnerable system, and
prefer vulnerabilities for which no user interaction
is required (to avoid detection, and therefore main-
tain exploit functionality, for longer; Allodi, 2017).
Using CVSS as the framework of reference to evalu-
ate vulnerability characteristics, most of the variabil-
ity in vulnerabilities exploited at scale is captured by
the relationship between attack complexity and vul-
nerability impact (Allodi & Massacci, 2014). Hence,
these are the main factors we capture in our model.
A limitation of our data set is that we cannot as-
cribe a specific collection of observations to a specific
individual. This unobserved variable may bias our
result. To attempt to correct for this statistical fea-
ture, we identify commonalities in attacks by includ-
ing a number of additional components based on the
type of target victim: receiving thousands of attacks
a day versus an handful a year, moving in space or
upgrading their software, and geographical location.
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Table VI. Ordinary Least Squares and Robust Regression Results

Dependent Variable: Natural Logarithm of the Number of Attacked Machines log(Ui)
Model 1 Model 2 Model 3

OLS Robust OLS Robust OLS Robust
Z1 : Z8 Z1 : Z8 Z1 : Z8 Z1 : Z8 Z1 : Z8 Z1 : Z8

c 0.927 0.006 0.731 0.096 1.065 0.122 0.845 0.171 0.933 −0.106 0.783 0.039
(0.001) (0.003) (0.001) (0.003) (0.001) (0.003) (0.001) (0.003) (0.004) (0.005) (0.003) (0.004)

T 0.018 −0.051 0.012 −0.044 −0.006 −0.092 −0.003 −0.071 −0.005 −0.091 −0.004 −0.071
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

ComplCVE2 L −0.326 −0.479 −0.228 −0.324 −0.313 −0.464 −0.22 −0.314
(0.002) (0.002) (0.001) (0.001) (0.002) (0.002) (0.001) (0.001)

ImpCVE2 H 0.144 0.236 0.063 0.131
(0.003) (0.003) (0.003) (0.003)

ImpCVE 2 > ImpCVE1 −0.088 −0.209 0.012 −0.087
(0.003) (0.003) (0.002) (0.002)

Z1: Geo North. Amer. 0.604 0.37 0.679 0.422 0.671 0.419
(0.002) (0.001) (0.002) (0.001) (0.002) (0.001)

Z2: Geo West. Eu. 0.155 0.105 0.17 0.116 0.163 0.114
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Z3: Hst EVOLVE 0.191 0.129 0.208 0.141 0.223 0.149
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Z4: Hst UPGRADE 0.112 0.072 0.116 0.076 0.113 0.075
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Z5: Frq HIGH 0.24 0.147 0.212 0.127 0.279 0.157
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Z6: Frq MEDIUM 0.328 0.227 0.358 0.246 0.41 0.271
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Z7: Pk HIGH 0.513 0.442 0.567 0.49 0.531 0.477
(0.004) (0.003) (0.004) (0.003) (0.004) (0.003)

Z8: Pk MEDIUM 0.379 0.274 0.412 0.299 0.411 0.301
(0.003) (0.002) (0.003) (0.002) (0.003) (0.002)

Pseudo R2 – – 0.326 0.341 – – 0.331 0.347 – – 0.331 0.347
R2 0.00 0.093 – – 0.016 0.126 – – 0.017 0.13 – –
F 348.66 26,551.47 – – 18,548.25 33,422.78 – – 9,989.88 28,915.60 – –
Obs. 2324500 2324500 2324500 2324500 2324500 2324500 2324500 2324500 2324500 2324500 2324500 2324500

Note: Model 1: log(Ui) = β0 + β1Ti + εi
Model 2: log(Ui) = β0 + β1Ti + β2Compli,CVE2,L + εi
Model 3: log(Ui) = β0 + β1Ti + β2Compli,CVE2,L + β3Impi,CVE2,H + β4Impi,CVE2 > Impi,CVE1εi
The three model equations reflect the definition of the expected (log) number of affected machines after an interval T . The regres-
sion model formulation is derived from prime principle from Equation (9). The expected coefficient signs are given in Table V. For
each model, we run four sets of regressions. OLS and robust regressions are provided to addresses heteroscedasticity in the data. R2

and F -statistics are reported for the OLS estimations. Note that the pseudo-R2 are computed for the robust regressions, using the
McFadden-adjusted approach R2 = 1 − (log(LL f ull ) − K)/ log(LLint ), where log(LL f ull ) is the log likelihood for the full model minus
the number of slope parameters K versus the log likelihood of the intercept alone and should not be compared directly to the OLS R2.
Coefficient estimations of the two sets of regressions are consistent. All coefficient signs for the three models reflect the work-averse
attacker model predictions, with the only exception of the estimation for T with no controls for which the prediction for β1 is inverted. This
may indicate that user characteristics are relevant factors for the arrival time of exploits when other factors related to the system are not
accounted for. The introduction of Compl in Model 2 significantly changes the estimate for β1, whereas Imp in Model 3 leaves the estimates
for Compl and T unchanged. High Imp vulnerabilities tend to increase volume of attacks. We report only standard errors without starring
p-values as all coefficients are significant due to the number of observations in the data set. All standard errors are estimated using the
Huber–White approach.

Descriptive statistics of these variables are provided
in the Supporting Information (Allodi et al., 2017).

We present the estimates of Equation (9) from
data in Table VI, with a number of conditioning vari-
ables. These range from just a constant (Model 1,

first column) to Model 3 where we include all avail-
able conditioning variables to extract systematic at-
tack characteristics. It is important to note that for
the model to be consistent with the properties of the
observed empirical data the coefficient predictions
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from Hypotheses 1–5 summarized in Table V must be
satisfied. All predictions are confirmed by the data.
We utilize two estimators as we have little informa-
tion on the error structure of the regression model
and we are subject to certain statistical issues caused
by the right truncation of the data, that is, we do not
observe T asymptotically by construction. First is a
simple ordinary least squares (OLS) estimator with
Huber–White standard errors and second is a robust
fit model that utilizes a weighted least squares (WLS)
type estimator with iterative reweighting and we im-
plement the sandwich form standard error from the
WLS iterations. The weighting function for the itera-
tive reweighting is a bisquare function, experimenta-
tion with spectral and Andrews-type weightings sug-
gest the regressions are insensitive to kernel and tun-
ing function. For the robust fit, we compute a Mc-
Fadden adjusted pseudo-R2, which sets the numera-
tor as the log likelihood function at the estimate and
the denominator as the log likelihood of just the in-
tercept alone. Note that it is not appropriate to com-
pare directly the pseudo-R2 and the R2 from the OLS
estimates, which suggests that the model captures
roughly 10% of the variation in numbers of attacked
machines, as opposed to explaining 35% of the model
likelihood for the pseudo-R2.

The set of OLS and robust regressions returns
very similar estimations. We also experimented with
various regression estimators (e.g., 2SLS, 3SLS) and
they produced markedly similar results to OLS, sub-
ject to the standard caveats on misidentification. The
introduction of the controls only change the sign of β1

from positive to negative for Model 1. This may indi-
cate that the type of user is a significant factor in de-
termining the number of delivered attacks, which is
consistent with previous findings (Nappa et al., 2015).
Interestingly, the factor that introduces the highest
change in the estimated coefficient β1 for T is Compl
(Model 2), whereas its estimate remains essentially
unchanged in Model 3. This may indicate that the
cost of introduction of an exploit has a direct impact
on the time of delivery of the exploit. The coefficients
for all other regressors are consistent across models,
and their magnitude changes only slightly with the in-
troduction of the controls. This observation is to be
expected: User characteristics should not influence
the characteristics of the vulnerabilities present on
the system; as such, the distribution of attacks in the
wild seems to depend mostly on system characteris-
tics rather than user type.

The signs of coefficients for the Imp variables
suggest that both impact of a new vulnerability and

its relation with the impact of previous vulnerabilities
have an effect on the number of attacked systems.
Interestingly, a high impact encourages the deploy-
ment of attacks and increases the number of attacked
systems, whereas the introduction of a higher impact
vulnerability requires the infection of a smaller num-
ber of systems as revenues extracted from each ma-
chine increase. Hence, when introducing a new ex-
ploit, the attacker will preferably choose one that
grants a higher control over the population of users
(θV∪{v} > θV ) and use it against a large number of sys-
tem. This is consistent with recent findings suggesting
that vulnerability severity alone is not a good predic-
tor for exploitation in the wild (Allodi & Massacci,
2014; Bozorgi et al., 2010). Other factors such as soft-
ware popularity may play a role (Nayak et al., 2014).

9. SUMMARY OF FINDINGS AND
LIMITATIONS

This article implements a model of the Work-
Averse Attacker as a new conceptual framing to un-
derstand cyber threats. Our model presumes that an
attacker is a resource-limited actor with fixed costs
that has to choose which vulnerabilities to exploit to
attack the “mass of Internet systems.” Work aver-
sion simply means that effort for the attacker is
costly (in terms of cognition and opportunity costs),
hence a trade-off exists between effort exerted on
new attacking technologies and the anticipated re-
ward schedule from these technologies. As systems
in the wild get patched unevenly and often slowly
in time (Nappa et al., 2015), we model the produc-
tion of new vulnerability exploits following Stokey’s
“economy of inaction,” whereby “doing nothing” up
to a certain time is the best strategy. A cost constraint
driving the attacker’s exploit selection strategy natu-
rally emerges from the model. In particular, we find
theoretical and empirical evidence as follows:

1. First, an attacker massively deploys only one ex-
ploit per software version. The only exception
we found is for Internet Explorer; the exception
is characterized by a very low cost to create an
additional exploit, where it is sufficient to essen-
tially copy and paste code from the old exploit,
with only few modifications, to obtain the new
one. This finding is predicted by the model and
supports Hypothesis 1.

2. Second, low complexity vulnerabilities for
which a reliable exploit can be easily engi-
neered lower the production costs and favor the
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deployment of the exploit. This finding supports
Hypothesis 2.

3. Third, the attacker deploys new exploits rela-
tively slowly over time, driven by a slowly de-
creasing instantaneous profit function; empiri-
cally, we find that attacks 1,000 days apart are
still driven by the same exploits in about 20%
of the cases, and that the effect of the passage
of time in between attacks (T ) on the number
of affected system is indeed negative and very
small. This finding supports Hypothesis 3 and
Hypothesis 4.

4. Fourth, the presence of a high impact vulnera-
bility increases the incidence of exploitation in
the wild. Similarly, gaining a higher control over
attacked systems heightens the attacker’s rev-
enue and decreases the number of systems that
need to be infected to balance costs. This sup-
ports Hypothesis 5.

Such findings should be considered in the frame-
work of the limitations of the data that we have
collected, and the theory we have developed. The
“Work-Averse Attacker” may be only one of the pos-
sible explanations of the distribution of exploits in
the wild previously noted in the literature (Allodi,
2015; Nayak et al., 2014). For example, it could be
that only a handful of individuals possess the techni-
cal skills to develop (and subsequently distribute to
the mass of attackers) working exploits. The strong
skew in the exploit distributions could then be ex-
plained by those individuals not being work-averse,
but only in terms of available capacity for exploit
production. To evaluate this possibility in the data
is hard or impossible as it would require to identify
(all) exploit developers and observe the exploit pro-
duction process. On the other hand, the presence of
competitive underground markets where multiple ac-
tors trade different, but long lived, exploits, and mal-
ware techniques does not appear compatible with the
hypothesis of only a handful of productive but time-
limited exploit developers (Allodi, 2017). Alterna-
tively, explanations for the data could be identified in
the efficiency of the supply chain of the components
needed to engineer and deploy an attack: If finding
producers of the necessary attack components (or es-
tablishing business relationships with them) is hard,
the inefficiency of the required supply chain could ex-
plain the observed delays in the exploit deployment
process, and the scarcity of available exploits for at-
tacks at scale. The existence of composed services for

the delivery of attacks is clear evidence of the exis-
tence of this supply chain, at least for attack provision
and delivery (Campobasso & Allodi, 2020; Grier
et al., 2012). These inefficiencies could push attack-
ers to strategize on which exploits to develop, lead-
ing to similar output dynamics as those considered
in this article. A rigorous evaluation of the supply
chain of cyberattacks is hard to perform (Bhalerao,
Aliapoulios, Shumailov, Afroz, & McCoy, 2019), but
may shed additional light on the bottlenecks or hard-
ship of development of exploits for attacks at scale.
Importantly, work-averse dynamics may still emerge,
from this setting, underlying that the complexity of
the problem requires a deeper empirical understand-
ing of the ecosystem enabling attacker operations
at scale.

Other limitations concern the nature of the data.
Records of attacks detected over a user’s machine are
necessarily conditioned over the user’s proneness in
receiving a particular attack. For example, a user may
be inclined to open executable email attachments,
but not in visiting suspicious websites. Thus, there
may be a disassociation between the observed attacks
and those engineered by the attacker. For our em-
pirical data set, this limitation is mitigated by WINE
reporting attack data on a very large representative
sample of Internet users (Dumitras & Shou, 2011).
Albeit we do have some system-level information
(e.g., geographic location, system evolution), we do
not have all possible conditioning user variables (e.g.,
educational level), which are very difficult or close
to impossible to gauge at the scale of data needed
for this type of analysis. Similarly, software version-
ing information is known to be unreliable at times
with respect to vulnerability existence (Nguyen, Da-
shevskyi, & Massacci, 2015). Further, software ver-
sions cannot be easily “ordered” throughout soft-
ware types, as different vendors adopt different nam-
ing schemes for software releases (for an overview,
see, e.g., Christey & Martin, 2013). We cannot there-
fore order software versions over time easily. An-
other limitation of our data set is the market penetra-
tion of Symantec. In 2016 (i.e., around the time of the
data collection), Symantec self-reported that it is the
largest security vendor for the last 15 years by mar-
ket share in antivirus and overall software security,
and hence has a broad coverage recording attacks
on customers. However, third-party verifiable mea-
surement of these claims are difficult, hence replica-
tion studies across different security vendors would
be welcome.



The Work-Averse Cyberattacker Model 17

10. CONCLUSIONS AND IMPLICATIONS

This article develops the thesis that an attacker
will generally “avoid to work” until the perceived
utility of the deployment of a new attack becomes
positive w.r.t. expectations derived from previous at-
tacks. This economic perspective has been previously
employed in game-theoretic approaches (Manshaei
et al., 2013), and it typically considers two actors
(namely, the defender and the attacker) that react
to each other’s strategies. The realistic threat mod-
eling is of key importance in this context, and has
been identified multiple times in the system resilience
(Gisladottir et al., 2017; Guikema et al., 2015) and se-
curity (Do et al., 2017; Hewett, Rudrapattana, & Ki-
jsanayothin, 2014) literature. This article is the first
to propose and validate this approach for the “mass
attacker” that deploys attacks against the vast In-
ternet population. In this respect, this contribution
provides a better theoretical and empirical under-
standing for the behavior of “untargeted” mass at-
tackers: A slow periodic update of an attacker’s ar-
senal with selected picks of low hanging fruits seems
to be the theoretical and empirically winning strat-
egy. This finding is particularly interesting because
recent, game-theoretic work on APTs has also shown
that periodic renewal strategies might also be domi-
nant strategies for targeted attacks (van Dijk, Juels,
Oprea, & Rivest, 2013). This dominance, in the Nash
equilibrium sense, remains even in the case where the
attacker can reliably evaluate some characteristics of
the defender’s setting such as system configuration
changes or an average patching rates (Nappa et al.,
2015).

From the perspectives of cyber-risk assessment,
this means that several alternative strategies might
be equally successful than the “upgrade to the last
version” (or “do nothing” if such upgrade is not pos-
sible) strategy, which currently dominates risk mit-
igation best practices. For example, maintaining in-
trusion detection systems (IDS/IPS) signatures for
the low hanging fruit vulnerabilities might be a bet-
ter option than updating the software, because one
IDS signature eliminates the majority of risks faced
be that system; a software patch may ‘overdo-it” by
fixing more vulnerabilities than necessary at a severe
functional costs (Dashevskyi, Brucker, & Massacci,
2018; Huang, Borges, Bugiel, & Backes, 2019). An
important assumption in this respect is the cost of ex-
ploit maintenance being negligible as some empirical
research implies (Castro et al., 2019; Kotov & Mas-
sacci, 2013). If the maintaining the success of exploits

would become a significant part of the cost, attack-
ers might still be work averse but different dynamics
or mechanisms may emerge. We leave this work for
future research.

Another major implication for this research
work is the current policy discussion on the timing of
vulnerability disclosures. The United States Depart-
ment of Commerce NTIA set up multistakeholders
forum to discuss procedures and timings of the vul-
nerability disclosure process.4 This discussion is not
currently guided by a theoretical framework for deci-
sionmakers to estimate effect in terms of the effective
increase in risk of attacks that follows the disclosure
(Mitra & Ransbotham, 2015). Our findings would in-
dicate that there is a limited risk in additional disclo-
sures of minor vulnerabilities for the same software
version (i.e., Hypothesis 1). Further, the time/space
dimension may also be relevant to evaluate from a
policy perspective, for example, by asynchronously
releasing patches to users or by deploying differ-
ent versions across systems. By diversifying software
(Chen et al., 2011; Homescu, Neisius, Larsen, Brun-
thaler, & Franz, 2013), the defender can effectively
decrease the number of systems the attacker can
compromise with one exploit, effectively making the
existence conditions for Equation (6) hard to satisfy.
For example, a random distribution of patches would
simply decrease the fraction of attackable systems re-
gardless of the attacker’s choice in which vulnerabil-
ity to exploit. Moreover, diversifying defenses may
be in fact less onerous than recompiling code bases
(when possible) or maintaining extremely diverse op-
erational environments. More studies are needed to
evaluate cascading effects of generalized strategies
against “mass attackers” on exposure to attacks of
other types (e.g., perpetrated by APT-level attack-
ers capable of adapting to specific system conditions).
In general, a more precise and data-grounded under-
standing of the attacker poses a strategic advantage
for the defender (Dey et al., 2015). This article is a
step in this direction.
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APPENDIX A: INTERNET EXPLORER
EXPLOIT CODE

Here, we report the exploit code for
CVE1 =CVE-2010-0806 and CVE2 =CVE-2009-3672
both affecting Internet Explorer version 7. On
Exploit-DB5 CVE1 corresponds to exploit 16547 and
CVE2 corresponds to exploit 11683.

5See Exploit-DB (http://www.exploit-db.com, last accessed April
12, 2018.)

The exploit code fragments (10+ lines of code
out of 260+ for CVE1 and 130+ for CVE2) below il-
lustrates the difference between the two exploits as
scripted for the Metasploit engine. The exploit code
for CVE2 is effectively a rearrangement of the exploit
code for CVE1, with different variable names (e.g. by
replacing j_memory with var_memory, j_shellcode
with var_shellcode) and repositioned at the appro-
priate memory addresses (0x …).
function j_function1()

2 ...

3 j_memory = new Array();

4 var j_shellcode = unescape(...);

5 var j_slackspace = 0x86000 -

(j_shellcode.length*2);

6 while(j_nops.length< j_slackspace/2)

7 j_nops+=j_nops;

8 for(j_counter=0; j_counter<270;

j_counter++)

9 j_memory[j_counter] = j_fillblock +
j_fillblock + j_shellcode;

function var_body()

2 ...

3 var var_memory = new Array();

4 var var_shellcode = var_unescape(..);

5 var var_ss = 20 + var_shellcode.length;

6 while (var_spray.length < var_ss)

7 var_spray+=var_spray;

8 var_bk = var_spray.substring(..);

9 while(var_bk.length+var_ss < 0x100000)

10 var_bk = var_bk + var_bk + var_fb;

11 for (var_i=0; var_i<1285; var_i++)

12 var_memory[var_i]= var_bk +
var_shellcode;

SUPPORTING INFORMATION

Additional supporting information may be found on-
line in the Supporting Information section at the end
of the article.
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