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Abstract3

Estimation of a probability density function (pdf) from its samples, while satisfying cer-4

tain shape constraints, is an important problem that lacks coverage in the literature. This pa-5

per introduces a novel geometric, deformable template constrained density estimator (dtcode)6

for estimating pdfs constrained to have a given number of modes. Our approach explores the7

space of thus-constrained pdfs using the set of shape-preserving transformations: an arbi-8

trary template from the given shape class is transformed via a shape-preserving transforma-9

tion to obtain the final optimal estimate. The search for this optimal transformation, under10

the maximum-likelihood criterion, is performed by mapping transformations to the tangent11

space of a Hilbert sphere, where they are effectively linearized, and can be expressed using12

an orthogonal basis. This framework is first applied to (univariate) unconditional densities13

and then extended to conditional densities. We provide asymptotic convergence rates for14

dtcode, and an application of the framework to the speed distributions for different traffic15

flows on Californian highways. The supplementary materials for our paper can be found16

online.17

Keywords: Density estimation, Modality constraints, Shape constraints, Sieve estimation, Defor-18

mation group, Conditional densities,19
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1 Introduction1

The estimation of a probability density function (pdf) from its samples is a fundamental prob-2

lem in statistics, with a multitude of applications in different fields. A subproblem, involving3

estimation of a pdf given some prior knowledge about the shape of this pdf, is also an important4

problem. In practice, the prior knowledge stems from a scientific understanding of the underlying5

process. It is therefore important that the estimate be consistent with the prior shape knowledge6

in order for it to be interpretable and practically useful as an analytical tool. While a great deal7

of past research has gone into shape-constrained density estimation, these papers have dealt with8

very specific shape constraints, including log-concavity, monotonicity, and unimodality; there is9

little to no literature on optimization-based estimation of pdfs with multimodal shape constraints.10

The earliest estimate for a unimodal density was given by Grenander (1956), who showed that11

a particular, natural class of estimators for unimodal densities is not consistent, and presented a12

modification that is consistent. Over the last several decades, a large number of papers have been13

written analyzing the properties of the Grenander estimator, e.g. Rao (1969); Izenman (1991)14

and its modifications Birge (1997). An estimator using a maximum likelihood approach was15

developed by Wegman (1970). The earlier papers assumed knowledge of the position and value16

of the mode, and applied monotonic estimators over subintervals on either side of it; later papers,17

for example Meyer (2001); Bickel and Fan (1996), include an additional mode-estimation step.18

Bayesian methods have also been developed Brunner and Lo (1989). Turnbull and Ghosh (2014),19

in addition to describing an estimator that uses Bernstein polynomials with the weights chosen to20

satisfy the unimodality constraint, also provide a useful summary of recent results on unimodal21

density estimation.22
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The obvious extension to multimodality constraints is of great practical importance because1

multimodal densities occur abundantly in nature; in particular, many biological processes are2

expected to show a known multimodal structure. For example, the DNA methylation profile in3

humans shows a bimodal structure corresponding to hypomethylated and hypermethylated re-4

gions: see Harris et al. (2010) and references therein; while the rate of nucleotide substitutions5

in DNA sequence (in non-CG-nucleotides) shows a trimodal density corresponding to acceler-6

ated, conserved, and neutral substitution rates: see Pollard et al. (2009) and references therein.7

In industrial and electrical engineering, household electricity consumption patterns and traffic8

patterns have been known to follow multimodal distributions.9

1.1 Challenges and Current Literature10

The important challenges in shape-constrained estimation are to characterize the set of all density11

functions satisfying the desired shape constraints, and to solve the maximum likelihood estima-12

tion problem on that space. Shape-constrained estimation problems would seem to encourage13

a geometric approach, but the use of geometry in density estimation has in fact been sparse in14

the literature: to the best of our knowledge, there is no current method that can impose a mul-15

timodality constraint on an estimated density and provide optimality in some way. However,16

multimodality constraints have been studied in the case of function estimation: e.g. see the very17

recent article by Wheeler et al. (2017) and references therein. Here we summarize the literature18

that is most relevant to the problem of density estimation under shape constraints.19

Hall and Huang (2002) introduced a tilting approach to convert an unconstrained density to20

an estimate within a unimodal shape class. However, the resultant density estimate often directly21
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contradicts the available data by having zero likelihood even at the data points themselves, and1

is thus not appropriate as an exploratory tool. Another paper Cheng et al. (1999) proposes to2

start with a template unimodal density and provide a sequence of transformations that when3

applied to the template both keep the result unimodal, and “improve” the estimate in some sense.4

However, the method is ad hoc, and asymptotic convergence of the estimates, although seen5

empirically, is not guaranteed. Very recently, Wolters and Braun (2018) introduced a technique6

that solves the limitations of the approach in Hall and Huang (2002). Specifically, they provide7

an algorithm to find a constrained estimate that is the nearest to an unconstrained kernel density8

estimate (under the integrated squared error loss function), and that can handle up to bimodal9

constraints. However, this method provides an estimate that satisfies the shape constraint only10

on a prespecified grid in the support, so that the estimate need not lie in the correct shape class,11

in principle. Since their construction of the constrained estimate involves smoothing out the12

spurious peaks of the initial unconstrained estimate, the resultant shape contains spurious flat13

spots, which once again limits the interpretability of the estimate. Finally, this estimate is not14

designed to be optimal under any specific criterion. This issue is also present in kernel density15

estimators, where one can always choose a bandwidth to ensure a given number of modes, but16

the resulting density is not optimal in any sense for a finite sample size.17

Recently, Dasgupta et al. (ress) introduced a geometric approach for exploring the space of all18

probability densities in order to perform unconstrained density estimation. In this approach, one19

starts with an efficient initial estimate, perhaps from a parametric family, and then transforms20

it into the desired optimal density using elements of a diffeomorphism group. The problem21

therefore shifts to finding the optimal transformation under the chosen criterion. However, no22
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shape constraints are imposed on the estimated density.1

1.2 Proposed Formulation and Its Novelty2

In the current paper, we take a principled and geometrically-intuitive maximum-likelihood ap-3

proach to the problem of modality-constrained density estimation. The primary contribution of4

this paper is to construct a framework that can handle any general modality constraint, and can5

provide smooth interpretable maximum likelihood estimates within a specified shape class.6

For this purpose, we develop a novel modification of the geometric approach used by Das-7

gupta et al. (ress). The method starts with a template density from the desired shape class, and8

then deforms it into the optimal estimate from that shape class. We shall call this estimator De-9

formable Template Constrained Density Estimator or dtcode. The advantages of dtcode over10

existing methods are as follows.11

First, while estimation is based on deformation or transformation of an initial template as in12

Cheng et al. (1999), we apply only a single transformation rather than a possibly non-convergent13

sequence. Coupled with a small number of other parameters, this transformation constitutes a14

parametrization of the whole of the shape class of interest.15

Second, we use a broader notion of shape than previous work: in its simplest form, we con-16

strain the pdf to possess a fixed, but arbitrary, number of modes; we also consider more gen-17

eral cases in the Supplementary Materials. The shape constraint is fully captured in the initial18

template itself. As a result, the subsequent estimation of the transformation is independent of19

the constraint, providing much greater stability in practical performance with respect to higher20

modality constraints than methods such as Wolters and Braun (2018).21
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Third, we use (penalized) maximum likelihood estimation, which guarantees optimality in1

principle, and allows the derivation of asymptotic rates of convergence to the true density.2

The main difference between the current approach and Dasgupta et al. (ress) is in the choice of3

transformations used. Dasgupta et al. (ress) wish to parameterize the set of all positive densities.4

As a result they choose a set of transformations that act transitively, i.e. any positive density5

may be transformed into any other. The necessary transformations take the standard form for a6

change of variable: a density is transformed by a warping of its domain: p 7→ (p ◦ γ)γ̇, where p7

is positive probability density and the warping function γ is a diffeomorphism of the domain, i.e.8

a one-to-one, differentiable map whose inverse is also differentiable. Here, γ̇ is the derivative of9

γ, that is, γ̇(t) =
dγ(t)

dt
for all t in the domain of the diffeomorphism.10

Clearly these transformations are not suitable for our case because transitivity is not com-11

patible with preserving the shape of a density, merely its normalization. We therefore propose a12

different set of transformations, which preserve both normalization and shape: they take the form13

p 7→ (p ◦ γ)/
∫

(p ◦ γ)dt. The denominator renormalizes the density after the transformation in14

the numerator; together they preserve the shape of p, in a sense that we will now explain.15

1.3 Overview of the Approach16

A precise formulation of the problem is as follows: given independent samples X = {xi} , i =17

1, . . . , n, from a pdf p0, with a known number M > 0 of well-defined modes, estimate this18

density ensuring the presence of M modes in the solution. In order to do this, we construct a19

parameterization of the set of continuous densities with M modes, PM , as follows.20

• Let the set of densities satisfying the shape constraint be denoted PM = {p : [0, 1]→ R+ :21
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p(0) = p(1) = 0, p has M interior modes}.1

• Let the critical points of a pdf p ∈ PM withM modes be located at {ba : a ∈ {0, · · · , 2M}},2

with b0 = 0 and b2M = 1.3

• We define the height ratio vector λ of p as the set of ratios of the height of the (a + 1)th
4

interior critical point to the height of the first (from the left) mode: λ = (λ1, . . . , λ2M−2),5

where λa = p(ba+1)/p(b1). Please look at the top left panel of Figure 2 for an illustration.6

The height ratio vector for the density p0 illustrated here is simply λ = (h2/h1, h3/h1).7

• Let the subset of PM with height ratio vector λ be denoted PM,λ. Note that the space PM8

is the union ∪
λ
PM,λ of the individual spaces PM,λ with different values of λ.9

We then parameterize an arbitrary member of PM by:10

1. a height ratio vector λ ∈ ΛM , where ΛM is the set of all such vectors;11

2. a diffeomorphism γ ∈ Γ, where Γ = {γ : [0, 1] → [0, 1] : γ̇ > 0, γ(0) = 0, γ(1) = 1} is12

the group of diffeomorphisms of [0, 1]. Notably, the set Γ is a group, i.e. it is closed under13

composition, has an identity element γid(t) = t, and each element γ has an inverse γ−1.14

The pdf represented by a pair λ and γ is then pλ,γ = (p̃λ, γ) ∈ PM,λ, where p̃λ ∈ PM,λ is an15

a priori fixed template function in PM,λ, and (·, γ) denotes the transformation of densities by16

elements of Γ mentioned earlier, which has the crucial property that it preserves λ.17

Using this parameterization, we can construct the log likelihood function18

L(λ, γ|X) =
∑
i

log pλ,γ(xi), (1)

and we can use maximum likelihood to estimate λ and γ.19
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We can generalize the method to a larger set of shape classes by defining a shape as a se-1

quence of piecewise monotonically increasing, decreasing, and flat intervals that together con-2

stitute the entire density function. For example, an “N-shaped” density function is given by the3

sequence: increasing-decreasing-increasing. For any such sequence, we can construct a template4

density in the appropriate shape class, and proceed with estimation as before. The assumption5

p0(0) = p0(1) = 0 can also be relaxed, by considering the height ratios of the two boundaries6

as two extra parameters λ0 and λ2M+1. We discuss these ideas in more detail in Section 5 of the7

Supplementary Materials and present some simulated examples.8

2 Geometric Representation of Densities9

In this section, we show that the above construction does indeed provide a parameterization of10

PM , by first showing that Γ is large enough to allow us to reach any element of PM,λ starting11

from a template p̃λ ∈ PM,λ, and then showing how to construct such a template for each height12

ratio vector λ ∈ ΛM .13

Theorem 1. The set of transformations of the set PM,λ by the mapping PM,λ×Γ→ PM,λ, given14

by (p, γ) = p◦γ∫
(p◦γ) dt

is a group action. Furthermore, this action is transitive and free. That is, for15

any p, p̃ ∈ PM,λ, there exists a unique γ ∈ Γ such that p = (p̃, γ).16

The proof of the theorem is in the Supplementary Materials. The theorem shows that given a17

template p̃λ ∈ PM,λ, we can uniquely represent any other pdf p with the same height-ratio vector18

(i.e. also in PM,λ) as a transformation of the template, i.e. as p = (p̃λ, γ). What is more, any pdf19

in PM,λ can serve as a template; it can thus be chosen for convenience’ sake.20
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Figure 1: Top left: Initial density. Top right: Different warping functions. Bottom left: Shapes re-

sulting from warping the initial density without renormalization. Bottom right: Resultant warped

densities after renormalization.

Figure 1 illustrates the height-ratio-vector-preserving effect of the transformations by apply-1

ing several elements of Γ to a pdf in two stages. First, the numerator of the full transformation2

is shown (bottom-left); this stage preserves the heights of all extrema. Second, the pdf is renor-3

malized by dividing by the denominator (bottom-right); this stage changes the heights, but still4

preserves the height-ratio vector.5

How then do we construct a distinguished template element p̃λ ∈ PM,λ? First we construct6

an unnormalized function gλ with M modes and height ratio vector λ:7

1. Set gλ(0) = gλ(1) = 0.8
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2. Divide the interval [0, 1] into 2M equal intervals corresponding to theM modes andM−11

interior antimodes, setting aj = j/2M , j ∈ [1, . . . , (2M − 1)], the location of the j th
2

critical point.3

3. Set gλ(a1) = 1, and gλ(aj) = λj−1 for j ∈ [2, . . . , (2M − 1)].4

4. The values of gλ for all other points are obtained by linear interpolation.5

We can now define p̃λ = gλ/(
∫
gλ) ∈ PM,λ.6

We have thus constructed a representation space ΛM × Γ, a set of coordinates for PM , where7

Λ1 = {1}, and for M > 1, ΛM = {λ ∈ R(2M−2)
+ : λ1 < 1, λ1 < λ2, λ2j+1 < λ2j, λ2j+1 <8

λ2j+2, j = 1, 2, · · · ,M − 2}, the conditions arising because the odd indices λ1, λ3, . . . , λ2M−39

correspond to antimodes, while the rest correspond to modes.10

Figure 2 shows a simple example to illustrate this representation. The top left panel is a11

density that has M = 2 modes with critical points located at bi and heights hi. The top right12

panel shows the initial template function with M = 2 modes and critical points located at ai and13

heights λi = hi/h1. The bottom left panel shows the warping function constructed according14

to the description in the proof of theorem 1, while the last panel shows that using this warping15

function, we recover the original density.16

So far, we have assumed that the densities are defined on [0, 1]. When the bounds of the17

density function are not known, they are estimated from the data X using the formula A =18

min(X)− sd(X)/
√
n and B = max(X) + sd(X)/

√
n, where A and B are the lower and upper19

bounds respectively, sd(X) is the standard deviation of the observations, and n is the number of20

observations; these estimates are taken from Turnbull and Ghosh (2014). The data are then scaled21

to the unit interval, zi = (xi − A)/(B − A), before proceeding with the rest of the estimation.22
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Figure 2: Top left: The original density. Top right: Initial template. Bottom left: The γ0 trans-

forming the template to original shape. Bottom right: Reconstructed density.

The framework readily extends to the situation where the true density has a general connected1

support D by generalizing from Γ to Γ∗ = {γ : D → D, γ̇ > 0, γ is boundary preserving}. For2

example, if the support of the true density is the entire real line then we can set D = R∪ {±∞}.3

However, from a practical standpoint, it is often beneficial to assume that the true density has4

compact rather than infinite support. Our experiments corroborate the findings in Wahba (1981),5

that it is preferable for the true density to have compact support and then to scale the data to6

the unit interval for density estimation. Thus, for the rest of the paper, we always assume that7

D = [0, 1], and that the true density has its support on the unit interval.8
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3 Parameter Estimation1

Having established a parameterization of the set of shape-constrained densities of interest, the2

next step is derive a procedure for estimating these parameters from data and specify the pdf3

estimator dtcode. We will use a maximum-likelihood framework, for which we must first4

specify the log-likelihood function and then solve the optimization problem for λ and γ. The5

optimization over Γ presents particular difficulties regardless of the likelihood function, and so6

we first describe how we deal with these.7

3.1 Finite-Dimensional Representation of Warping Functions8

In solving an optimization problem on Γ, we face two challenges. First, Γ is a nonlinear manifold,9

i.e. it is not a vector space; and second, it is infinite-dimensional. We handle the nonlinearity by10

forming a map from Γ to a vector space. (This vector space happens to be the space tangent to11

the unit Hilbert sphere S∞ as explained below.) We tackle infinite dimensionality by restricting12

to a finite-dimensional subspace of this vector space. Together, these two steps are equivalent to13

finding an increasing family of finite-dimensional subsets ΓJ ⊂ Γ that can be flattened into vector14

spaces. This then allows us to represent any element γ ∈ ΓJ using a finite orthogonal basis. Once15

we have a finite-dimensional representation of γ, we can optimize over this representation using16

standard techniques.17

To flatten Γ locally, we define a function qγ : [0, 1]→ R, qγ(t) =
√
γ̇(t), termed the square-18

root slope function (SRSF) of γ ∈ Γ. (For a discussion on SRSFs of general functions, please19

refer to Chapter 4 of Srivastava and Klassen (2016)). Note that we can reconstruct γ from qγ using20

γ(t) =
∫ t

0
q2
γ(s) ds. In particular, since ‖qγ‖2 =

∫ 1

0
qγ(t)

2dt =
∫ 1

0
γ̇(t)dt = γ(1) − γ(0) = 1,21
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we see that qγ ∈ S∞, where the unit Hilbert sphere S∞ is defined by S∞ ⊂ L2 = {q : [0, 1] →1

R :
∫
q2(t) dt = 1}. We can also see that for any q ∈ S∞, there is a γq that generates q given by2

γq(t) =
∫ t

0
q2(s) ds.3

The unit sphere S∞ has known geometry Lang (2012), but is still not a vector space. However,4

it can easily be easily flattened into a vector space (locally) due to its constant curvature. A natural5

choice for this flattening is a bijective mapping, described next, to the vector space tangent to6

S∞ at the point 1, a constant function with value 1. Note that 1 is the SRSF corresponding to7

γ = γid(t) = t, i.e. the identity, making it a natural choice for the tangent space.) The tangent8

space of S∞ at 1 is an infinite-dimensional vector space given by: T1(S∞) = {v ∈ L2([0, 1],R) :9 ∫ 1

0
v(t)dt = 〈v,1〉 = 0}.10

The bijective mapping between S∞ and T1(S∞) is the so-called inverse exponential map:11

exp−1
1 (q) : S∞ −→ T1(S∞) , v = exp−1

1 (q) =
θ

sin(θ)
(q − 1 cos(θ)) , (2)

where θ = cos−1(〈1, q〉) is the arc-length from q to 1.12

We impose a natural Hilbert structure on T1(S∞) using the standard inner product: 〈v1, v2〉 =13 ∫ 1

0
v1(t)v2(t)dt. It is easy to check that, since cos−1(〈1, q〉) < π, the norm ‖v‖ =

√∫ 1

0
v(t)2dt =14

θ < π for any v = exp−1
1 (q). Thus, the range of the inverse exponential map is not the entire15

T1(S∞), but a subset V = {v ∈ T1(S∞) : ‖v‖ < π}.16

In order to map points back from the tangent space to the Hilbert sphere, we reverse this17

process. This time we use the exponential map:18

exp1(v) : V → S∞ , exp1(v) = cos(‖v‖)1 +
sin(‖v‖)
‖v‖

. (3)

Finally, we can select any orthogonal basis B = {bj, j = 1, 2, . . . } of the Hilbert space19

T1(S∞) and express its elements v by their corresponding coefficients: v(t) =
∑∞

j=1 cjbj(t),20
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where cj = 〈v, bj〉. The elements of such a basis are just functions in L2([0, 1],R) that are or-1

thogonal to 1, that is, 〈bj,1〉 = 0 for all j. One example is the Fourier basis excluding 1, but other2

bases, such as the cosine basis, splines, and Legendre polynomials, can also be used. Efromovich3

(2010) discusses different choices of basis functions and advocates the use of trigonometric bases4

for functions with compact support.5

Given a basis B = {bj, j = 1, 2, . . . }, one can define an infinite-dimensional space of coeffi-

cients C = {c = (c1, c2, · · · ) :
∑∞

j=1 cjbj(t) ∈ V }. One can then truncate the basis expansion to

approximate elements of V using finitely-many coefficients. Suppose one uses J basis elements

to approximate the tangent space elements. Then, the approximating space of coefficients will

be denoted by CJ = {c ∈ RJ |
∑J

j=1 cjbj(t) ∈ V }. Note that CJ is a proper subset of RJ since

it contains only elements satisfying ‖
∑J

j=1 cjbj(t)‖ < π. Using these two steps, we specify a

finite-dimensional, and therefore approximate, representation of the transformation space Γ. We

define a composite map H : CJ → Γ, as

{cj} ∈ CJ
{bj}−−→ v =

J∑
j=1

cjbj ∈ V
exp1−−→ q ∈ S∞ −→ γ(t) =

∫ t

0

q(s)2ds . (4)

For any c ∈ CJ , let γc denote the diffeomorphism H(c). For any fixed J , the set H(CJ) forms6

a J-dimensional subset of Γ, denoted by ΓJ henceforth, and we pose the estimation problem on7

this subset. As J goes to infinity, this subset ΓJ converges to the full group Γ.8

3.2 Joint Estimation of λ and γ9

We use a joint maximum likelihood method to estimate the height ratios λ along with the coef-10

ficients corresponding to the estimate of γ. The maximum likelihood estimate of the underlying11
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density, given the initial template function p̃λ, is1

p̂(t) =
p̃λ̂(γ̂(t))∫ 1

0
p̃λ̂(γ̂(t))dt

, t ∈ [0, 1] , (5)

where γ̂ = H(ĉ), and2

(ĉ, λ̂) = argmax
c∈CJ ,λ∈ΛM

(
n∑
i=1

[
log

(
p̃λ (γc(xi)) /

∫ 1

0

p̃λ (γc(t)) dt

)])
. (6)

Since this optimization is over a finite-dimensional Euclidean space, any numerical optimiza-3

tion package can be applied here. The objective function (6) is not convex, and so we use the4

Matlab function fmincon for optimization. However fmincon can produce local solutions,5

and the GlobalSearch toolbox often yields better results, albeit at higher computational cost.6

The GlobalSearch toolbox is a multistarting algorithm that generates different trial points as7

initial values of the algorithm, and uses the trial point that converges to a local solution with the8

least objective function value. The algorithm and the method of generating these trial starting9

points are described in Ugray et al. (2007). Depending on the computational resource available,10

one can regulate the number of trial points generated, or can simply use the zero vector as a11

natural starting point.12

The choice of J , the number of basis elements, is important. Too large J can result in over-13

fitting and also put computational burden on the optimization algorithm which might get stuck14

in local, suboptimal solutions. We use a penalized version of the likelihood in (6), the standard15

Akaike’s Information Criterion (AIC), to choose the optimal number of basis elements.16
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4 Simulation Study1

For the numerical implementation of dtcode, we use the Fourier basis for the tangent space2

representation. We start with 2 basis elements, and increase the number up to a pre-decided3

limit; we then choose the result with the best AIC value. We chose AIC as the penalty on the4

number of basis elements because experiments suggested that BIC overpenalizes the number of5

parameters, causing the estimate to miss the sharper features of the true density. The code for6

dtcode is available online at https://github.com/Sutanoy/Shapeconstrained_7

DensityEstimation.8

For illustration, we use sample sizes of 100, 500, and 1000. To evaluate the average perfor-9

mance, we generate 100 samples (of sample size 100, 500, and 1000 respectively) and evaluate10

the mean error and the standard deviation of the errors. For the error function, we considered the11

vector L2, L1, and L∞ norms of the difference between the true density and the density estimate12

evaluated on 100 equidistant points across the support.13

The average computational time for dtcode varies from around 20 seconds for a sample of14

size 100, to 250 seconds for a sample of size 1000, while optimizing over ten different possible15

parameter dimensions using 1000 trial points in the GlobalSearch algorithm, on an Intel(R)16

Core(TM) i7-3610QM CPU processor laptop.17

Study 118

We start with two examples with one mode:19

• Example 1: a symmetric unimodal pdf given by p0 = 0.8N (0, 4) + 0.2N (0, 0.5).20

• Example 2: a unimodal pdf with contamination, given by p0 = 0.95N (0, 0.5)+0.05N (3, 1).21

16



-10 -5 0 5 10
0

0.1

0.2

0.3

0.4

-15 -10 -5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

-10 -5 0 5 10

0

0.05

0.1

0.15

0.2

0.25

-2 0 2 4
0

0.2

0.4

0.6

0.8

1

1.2

-2 0 2 4
0

0.2

0.4

0.6

0.8

1

-2 0 2 4

0

0.5

1

1.5

Figure 3: Performance of dtcode (left) vs. umd (centre) and scdensity (right) for examples

1 (top row) and 2 (bottom row) of Study 1, using the L2 loss function values calculated for

100 samples of size 100. The true density is shown as a solid line; the estimated density with

best performance as a dashed line; with median performance as a dotted line; and with worst

performance as a dashed-dotted line.

In Figure 3, we use the L2 loss function values calculated for 100 samples of size 100 to compare1

the results obtained with dtcode (leftmost column) to those obtained using the umd package de-2

veloped by Turnbull and Ghosh (2014) (centre column) and the scdensity package introduced3

in Wolters and Braun (2018) (rightmost column). The upper and lower rows show examples 14

and 2. In each plot, the true density is shown as a solid line; the estimated density: with best per-5

formance as a dashed line; with median performance as a dotted line; and with worst performance6

as a dashed-dotted line.7

In both examples, dtcode clearly outperforms umd in capturing the sharper features and in8
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Figure 4: A comparison of the variability of the estimates across different samples for example 1

from Study 1 at sample size 100. The middle dashed line indicates the average estimate across

samples, while the upper and lower dashed lines represent the 95th and 5th quantiles, respectively,

of the estimate at the location. The solid line is the true density.

stability of performance. On the other hand, the performance of dtcode is very similar to1

the performance of scdensity for both the examples. For the kurtotic unimodal example 1,2

scdensity has a slightly better performance, whereas for the contaminated unimodal density3

estimate 2, dtcode is superior. Table 1 in the Supplementary Materials gives a quantitative4

analysis.5

For the kurtotic unimodal example 1, we also study the pointwise MSE, as shown in Figure 4.6

The figure shows that across all samples, dtcode and the package scdensity have a similar7

overall performance in capturing the location and the height of the mode.8

Example 2 is a special case where there are outliers in the data that create the possibility of a9

small peak near the right boundary. These outliers also affect the boundary estimates, and reflect10

a spurious mode in the true density. In this example, we see that dtcode is very robust to the11

choice of boundary estimates, replacing the spurious mode with a wide shoulder, as shown in the12

18



bottom left panel of Figure 3. For this example, the quantitative performance of dtcode is also1

superior to the other techniques for all sample sizes, as shown in Table 1 of the Supplementary2

Materials.3

Study 24

Next, we study a bimodal density: an asymmetric bimodal density given by p0 = 1/3N (−1, 1)+5

2/3N (1, 0.3).6

We compare the estimation performance of dtcode with scdensity. Table 2 in the Sup-7

plementary Materials presents a quantitative comparison of different loss functions and the like-8

lihood for this example at different sample sizes. For all sample sizes, the performance of the9

two approaches is very similar with respect to the loss functions. However, there are some clear10

advantages to our approach. First, note that the bimodality constraints in Wolters and Braun11

(2018) are satisfied only on a pre-specified finite grid. As a result, the final estimate has spurious12

modes violating the shape constraint, and thus technically does not belong in the correct shape13

class; the ability to violate the constraints probably explains the slightly better L2 errors for its14

estimates. Secondly, the estimate itself does not enjoy any statistical optimality. The estimate15

starts with an unconstrained estimate and obtains the nearest estimate in the correct shape class.16

For that purpose, it replaces spurious peaks with flat intervals even though the data might suggest17

otherwise.18

Figure 5 illustrates an example of the performance of dtcode in comparison with scdensity.19

The left panel shows the dtcode result, while the right panel shows that for scdensity.20

The 100 observations are also shown along the horizontal axis. The quantitative performance of21

19



scdensity and dtcode (shown in Tables 1 and 2 of the Supplementary Materials) are very1

similar at all sample sizes. Further investigation reveals that small differences can mostly be2

attributed to the choice of starting point and the actual optimization algorithm used in our ap-3

proach, rather than the approach itself. For example, we notice that scdensity performs better4

if we use an external optimization function to obtain the mode locations rather than the approach5

proposed in the original paper and then used in the scdensity package. Also, dtcode shows6

improvement if we choose a more informed starting template shape, such as a kernel density with7

hand-tuned bandwidth so that the number of modes is correct.8

With respect to the shape of the resultant density estimate, however, the scdensity es-9

timate does not conform to the available data because the constraint is only satisfied on a pre-10

specified grid. The right panel of Figure 5 shows the scdensity estimate along with the local11

maxima indicated by asterisks. The left modal region is replaced by several small bumps, mak-12

ing it difficult to distinguish a true mode from the constraint violations. We also note that the13

spurious flat shape in the left tail is probably due to the inbuilt optimization code provided. In14

comparison, dtcode correctly captures the data-sparse region in between the two modal regions15

and has exactly two modes.16

Finally, we emphasize that the shape constraints appear directly in the estimation procedure of17

Wolters and Braun (2018). This makes the constrained estimation and the nested search for criti-18

cal points increasingly complex as the modality is increased and makes the approach ill-equipped19

to handle higher modality constraints. In contrast to scdensity, the constraint information in20

dtcode is captured in the initial template function itself, and the subsequent estimation of the21

transformation is free of the modality information, meaning that the approach scales much better22
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Figure 5: The left panel shows the bimodal example from Study 2, with the true density (solid)

and dtcode estimate(dotted). The right panel shows the scdensity estimate along with local

modes. The observations are shown on the x-axis.

to more general modality constraints.1

Study 32

As an extension of the previous experiments, we now study performance across a range of uni-3

modal and bimodal examples. We do this by averaging performance over random samples from4

a set of random densities in the appropriate shape family. The true densities themselves are5

generated randomly as follows:6

• Example 1: a unimodal example with random mixing proportions and standard deviations,7

given by p0 = αN (0, σ1)+(1−α)N (0, σ2), with α ∼ U(0, 1), σ1 ∼ max(0.1,N (0.4, 0.1)),8

and σ2 ∼ max(0.1,N (3, 0.2)).9

• Example 2: a bimodal example with random mixing proportions, means, and standard10

deviations, given by p0 = αN (µ1, σ1) + (1 − α)N (µ2, σ2), with α ∼ U(0, 1), σ1 ∼11

max(0.1,N (0.75, 0.2)), µ1 ∼ N (−1, 0.2), µ2 ∼ N (0.1, 0.2), and σ2 ∼ max(0.1,N (0.5, 0.2)).12

Figure 6 shows boxplots of the L2 norms of the estimation errors for example 1 (top row)13
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Figure 6: Boxplots of the L2 norms of the errors of the density estimates found using dtcode,

scdensity, and umd, for randomly sampled true densities and different sample sizes. The top

row shows the results for example 1; the bootom row those for example 2.

and example 2 (bottom row), for three sample sizes. We notice that the dtcode estimate is1

comparable to the scdensity estimate at all sample sizes under this measure. Again, as above,2

our approach is better in terms of the desired shape constraint.3

Study 44

Next, we study pdfs with three and four modes respectively:5

• Example 1: an asymmetric trimodal density with one mode well separated from the other6

two, given by p0 = 1/3N (−1, 0.25) + 1/3N (0, 0.25) + 1/3N (2, 0.3).7

• Example 2: a four-modal density, given by p0 = 0.25N (−4, 0.5) + 0.25N (−2, 0.5) +8

22



0.4N (2, 1) + 0.1N (5, 0.25).1

In Figure 7, we use the L2 norm of the errors calculated for 100 samples of size 100 to study2

the results obtained with dtcode on examples 1 (left column) and 2 (right column). The top3

row shows plots of the true density as a solid line; the estimated density: with best performance4

as a dashed line; with median performance as a dotted line; and with worst performance as a5

dashed-dotted line. The bottom row shows boxplots of the L2 norms of the errors for different6

samples sizes. The results show that the performance improves with increasing sample size, in7

both size and spread of error. Note that we do not compare the dtcode results to those of other8

methods because there is no other method that can handle M = 3 or higher.9

5 Application To Electricity Consumption Data10

Quantification and detection of patterns in electricity consumption curves across households, lo-11

cations, and seasons, is crucial for planning and forecasting, as discussed in Cordova et al. (2018)12

and Kwac et al. (2014), among others. Deployment of advanced monitoring systems, including13

smart meters and synchrophasors, in power distribution networks has created a new paradigm14

for observing and managing the electric grid, leading to an abundance of consumption data with15

different levels of granularity. The City of Tallahassee, the capital of Florida, has a Meter Data16

Management System (MDMS) that stores electricity consumption (kWh) readings from every17

customer in the city for billing purposes and further analysis. We look at the daily electricity18

consumption profiles of a randomly chosen de-identified single household in Tallahassee. The19

dataset was obtained with a Non-Disclosure Agreement with the City of Tallahassee.20

The daily consumption patterns show high variability, depending on day of the week, season,21

23



-2 0 2 4
0

0.2

0.4

0.6

0.8

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

n=100 n=500 n=1000

Sample size

0.2

0.4

0.6

0.8

1

1.2

B
ox

pl
ot

L2 norm for trimodal density

n=100 n=500 n=1000

Sample Size

0.2

0.3

0.4

0.5
B

ox
pl

ot

L2 norm for four-modal density

Figure 7: Results of the dtcode method on examples 1 (left column) and 2 (right column)

of Study 4. The top row shows plots of the true density as a solid line; the estimated density:

with best performance as a dashed line; with median performance as a dotted line; and with

worst performance as a dashed-dotted line; woith performance measure using the L2 norms of

the errors. The bottom row shows boxplots of the L2 norms of the errors for different samples

sizes.
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and other extraneous factors, even for this single household. We look at the electricity consump-1

tion values at different times in a particular day, for four different days, in order to estimate2

the daily distribution of electricity consumption. However, one can split the daily consumption3

profiles into two interpretable clusters: consumption values when the household members are at4

home versus consumption values when the households are not at home. This suggests that a two-5

mode constrained density estimation would lend interpretability to the density estimates, which6

can otherwise be very noisy.
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Figure 8: Estimated densities of electricity consumption using the warped approach (dotted)

and a kernel (ucv) approach (solid), and the associated histograms of consumption data for four

different days.

7

Figure 8 shows the density estimates and the corresponding histograms of electricity con-8

sumption for four different days at the randomly chosen household. As expected, in most cases,9

an unconstrained estimate is too bumpy and uninterpretable. The shape constraint, however, re-10

sults in much smoother and more interpretable estimates, the two peaks captured by our proposed11

method aligning well with the major peaks in the histograms.12
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6 Extension To Conditional Density Estimation1

The proposed framework for modality-constrained density estimation extends naturally to modality-2

constrained conditional density estimation. Consider the following setup. Let X be a fixed one-3

dimensional random variable with a positive density on a fixed interval. Let Y ∼ fX , where fX4

is an unknown conditional density that changes smoothly with X .5

Conditioned on X , Y is assumed to have a univariate, continuous distribution with support6

on the interval [A,B], with M modes in the interior of [A,B], and fX(A) = fX(B) = 0. We7

observe the pairs {(Yi, Xi)}, i = 1, . . . , n, and are interested in recovering the conditional density8

fX at a particular location of X , henceforth referred to as x0. The estimation is again initialized9

with an M -modal template function p̃λ. However, since fX varies smoothly with X , we assign10

more importance to observations closer to the location x0 than to observations further away, and11

hence we perform weighted maximum likelihood estimation to find the necessary parameters:12

(ĉ, λ̂) = argmax
c∈CJ ,λ∈ΛM

(
n∑
i=1

[
log

(
p̃λ (γc(xi)) /

∫ 1

0

p̃λ (γc(t)) dt

)]
Wx0,i

)
(7)

where Wx0,i is the localized weight associated with the ith observation, calculated according to:13

Wx0,i =
N (‖Xi − x0‖2/h(x0); 0, 1)∑n
j=1N (‖Xj − x0‖2/h(x0); 0, 1)

. (8)

Here N (·, 0, 1) is the standard normal pdf and h(x0) is the parameter that controls the relative14

weights associated with the observations. However, weights defined in this way result in higher15

bias because information is being borrowed from all observations. To mitigate this, as discussed16

in an example in Bashtannyk and Hyndman (2001), we allow only a specified fraction of the17

observations Xi to have a positive weight. Note that using too small a fraction will result in18

unstable estimates and poor practical performance because the effective sample size will be too19
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small. Hence we advocate using the 50% of the observations nearest to the target location for1

borrowing information, and then calculating the weights for this smaller sample as before.2

The parameter h(x0) is akin to the bandwidth parameter associated with traditional kernel3

methods for density estimation, for the predictors X . A very large value of h(x0) distributes4

approximately equal weight over all observations, whereas a very small value considers only the5

observations in a small neighbourhood around x0. The value of h(x0) can be chosen via any stan-6

dard cross-validation-based bandwidth selection method. In our experiments, we use an adaptive7

bandwidth selection method to save computation time when the predictors are independent of8

each other. It consists of a two-step procedure:9

1. Compute a standard kernel density estimate K̂ of the predictor space using a fixed band-10

width chosen according to any standard criterion. (We simply use the ksdensity esti-11

mate in MATLAB, which chooses the bandwidth optimal for normal densities.) Let h be12

the fixed bandwidth used.13

2. Then, set the bandwidth parameter h(x0) at location x0 to be h(x0) = h/

√
K̂(x0).14

The intuition behind this choice is that h controls the overall smoothing of the predictor space15

based on the sample points, while
√
K̂(x0) stretches or shrinks the bandwidth at the particular16

location. In a sparse region, increased borrowing of information from other data points is desir-17

able in order to reduce the variance of the estimate, whereas in dense regions, reduced borrowing18

of information from faraway points reduces the bias of the density estimates. A location from19

a sparse region is expected to have a low density estimate, and a location from a dense region20

is expected to have a high density estimate. Hence, varying the bandwidth parameter inversely21

with the density estimate helps adapt to the sparsity around the point of interest. The choice of22
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the adaptive bandwidth parameter is motivated by the variable bandwidth kernel density estima-1

tors discussed in Terrell and Scott (1992), Van Kerm et al. (2003), and Abramson (1982), among2

others. We provide a simulation study in the Supplementary Materials.3

7 Application To Traffic Flow Data4

As an application of modality-constrained conditional density estimation, we use the traffic flow5

data for Californian highways from the package hdrcde in R. The scatterplot shown in Figure 96

shows the distinctly bimodal nature of the speed distribution for traffic flows between 1000 and7

1620 vehicles per lane per hour, corresponding to uncongested and congested traffic. This range8

of traffic flows has already been studied by Einbeck and Tutz (2006). They note that beyond a9

traffic flow of 1620, the regression curves corresponding to uncongested and congested traffic10

are no longer distinguishable. So, we consider the speed flow in the above range (772 observa-11

tions), and estimate the density of the speed conditional on a flow of 1400. We use a bimodality12

constraint on the shape, and our prescribed 50% of the 772 observations. For the tangent space13

representation, we use up to 6 basis elements.14

The middle panel of Figure 9 (solid line) shows the conditional density estimate for flow15

= 1400 using dtcode. The left mode is at 35.56mph and the right mode is at 59.01mph. Ein-16

beck and Tutz (2006) obtain a very similar conditional density estimate. The left mode in their17

case is at 32.65mph and the right mode is at 59.18mph. On the other hand, if we find a tradi-18

tional conditional density estimate using the NP package, we find several spurious bumps; this19

estimate is shown in the middle panel of Figure 9 (dotted line), with a magnified view shown20

in the right panel. The superfluous bumps are present in the NP estimate constructed using 77221
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observations (not presented), as well as the estimate constructed using only 50% of the obser-1

vations as in our approach. This results in over-interpreting the tail and consequently a lack of2

interpretability for the modes themselves. Thus constraining the number of modes clearly helps3

with the interpretability of the resulting density.

Figure 9: Left: scatterplot of traffic flow data for Californian highways from the hdrcde pack-

age in R. Centre: traffic speed density at traffic flow 1400 as estimated by dtcode (solid line)

and the NP package (dotted line). Right: a magnified view of the left part of the centre plot.

4

8 Discussion5

Shape-constrained density estimation is a rich problem area that has a broad range of real-world6

applications, yet has been explored rigorously only in limited cases. Here we have introduced a7

novel framework, using geometric tools, that enables shape-constrained density estimation using8

a different notion of shape than studied previously. In our approach, named dtcode, a template9

from the appropriate shape class is deformed using shape-preserving diffeomorphisms of the data10

domain, the optimal deformation being defined by maximum likelihood. The problem is thereby11

reframed as one of optimizing over the diffeomorphism group.12

The framework is the first in the literature that can perform modality-constrained density13
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estimation for any number of modes. However, from a practical perspective, the performance1

suffers somewhat when the constrained shape becomes too complex or if the number of modes2

becomes high (greater than 4). This limitation is due to the current choice of numerical techniques3

used in optimization over the diffeomorphism group, and because of the choice of basis set used4

in estimation.5

Since this paper primarily focuses on the fundamental framework for dtcode, it only lightly6

touches upon or leaves out some associated problems. Examples include the choice of the number7

of basis elements for the tangent space representation, the choice of the basis itself, estimation8

of domain boundaries, and the choice of penalty for penalized estimation. These are all inter-9

esting problems in their own right, but space limitations force our focus to only the main ideas.10

Nevertheless, we can make some observations.11

• This paper uses AIC as the penalty to select the number of basis elements because, in12

comparison, BIC tends to choose an insufficient number of parameters. However, other13

model selection techniques can also be investigated.14

• Experiments using a Meyer wavelet basis for the tangent space representation yielded re-15

sults similar to those reported in the paper, although the Meyer wavelets seemed to require16

more observations than the Fourier basis to obtain satisfactory results. Clearly, one can17

choose different bases and conduct a comparative study of performance. Since the support18

of the warping functions is compact, we recommend using trigonometric (Fourier and co-19

sine) basis for representation. Please refer to Efromovich (2010) and the references therein20

for a more detailed discussion on this topic. When the sample size is small, Fourier basis21

can result in spurious bumps near the boundaries, which is why wavelets may be a good22
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alternative.1

• Our paper follows Turnbull and Ghosh (2014) in estimating the boundaries, but other2

choices can be explored as well.3

• For conditional density estimation, the weights can be defined using any kernel: the Gaus-4

sian kernel (and the L2 -loss function) was only used as an illustration.5

An advantage of the proposed framework is that it is easy to extend to conditional density6

estimation via a weighted maximum likelihood objective function. One potential future direction7

is to apply this framework to situations where a large number of covariates are present. Currently8

the bandwidth parameter is chosen adaptively based on a kernel density estimate at the location9

of the (scalar) covariate. The framework can be directly extended to a scenario with d covariates10

using a d-dimensional kernel density estimate at the location of the predictors. Such an esti-11

mate would generically suffer from the curse of dimensionality, but seems valid for applications12

where only a few of the covariates are relevant. In particular, Wasserman and Lafferty (2006)13

have developed a technique to shortlist relevant variables and to find corresponding bandwidth14

parameters. Using these bandwidth parameters, one can redefine the weights and then perform15

weighted likelihood maximization as before to produce a conditional density estimate.16

In conclusion, we have developed a framework for incorporating general modality constraints17

into a density estimation procedure, while showing very competitive performance on shape con-18

straints already studied in literature. In applications where the data shows modality constraints,19

the proposed framework will provide accurate and interpretable density estimates that fully re-20

spect the constraints in play.21
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9 Supplementary Materials1

Supplementary Materials by section In Section 1 of the Supplementary Materials, we present2

a proof of Theorem 1. In Section 2, we discuss the asymptotic properties of our estimator,3

and present a theorem which provides an upper bound on the convergence rate. We prove4

this theorem in Section 3. In Section 4, we include tables illustrating the average practical5

performance for our approach (dtcode), umd, and scdensity, for the examples considered6

in the simulation study in the main paper. In Section 4.1, we discuss the effect of the7

number of basis elements on the final estimate. In Section 5, we include some examples8

of general shape-constrained density estimation beyond M -modality, like monotonicity, an9

upper bound on the number of modes, and so on. In Section 6, we include a simulation10

study for conditional density estimation. In Section 7, we discuss an application of shape-11

constrained density estimation to DNA methylation profiles.12
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