
Price Bubbles in Beijing Carbon Market and

Environmental Policy Announcement

Min Lu∗

Institute of Statistic Science and Big Data, Nanjing Audit University, China

Xing Wang†

Durham University Business School, UK

Rosalie Speeckaert‡

Durham University Business School, UK

November, 2020

Abstract

This paper examines price bubbles in the relatively new carbon emission trading

scheme of Beijing carbon market by employing a recently proposed econometric test

which can stamp the occurrence and burst of financial bubbles. We find multiple

bubbles in Beijing carbon market over the sample period between January 2014 to

April 2018, and that the occurrences of carbon price bubbles are closely related to

the announcements of environmental policies by the Chinese government. Com-

paring our results to the EU ETS, we find that the volatility of carbon price in

Beijing market is higher than EU, and interestingly, the bubbles in Beijing market

occur when the price volatility is relatively low, while in EU market the bubbles

correspond to the peaks of volatility. Our empirical results provide insightful policy

implications in the context of the actual China’s carbon market reform. To achieve

effective stabilization of carbon price, policymakers should publicize alert notifica-

tions of the price fluctuations, and strengthen the carbon markets supervision and

promote its improvement.
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1 Introduction

With increasing concerns for greenhouse gas emissions, regional and national efforts to

cut down carbon dioxide has been emphasized and progressed over the past few years all

over the world. Carbon emissions trading system, introduced as an effi cient market-based

instrument, has played an important role in the effective mitigation in many countries

around the world. According to the World bank, international carbon market could

reduce 30% abatement cost by 2030 and more than 50% reduction by the middle of the

century1.

China, the world’s fastest-growing major economy, is on the way to slow down green-

house gas emission. Before the Copenhagen Climate Change Conference 2009, Chinese

government pledged to decrease per unit of gross domestic product CO2 by 40-45% below

2005 levels by 2020. In 2016, the Thirteenth Five-Year Plan issued by the National De-

velopment and Reform Commission (NDRC) declared China’s goal to further cut down

unit GDP CO2 emissions by 18% by the end of 2020 with 2015 as the base year. As

one of the important measures to reach these goals, China has launched eight regional

carbon market pilots2 since 2013, which by design are similar to the European Emission

Trading Scheme (EU ETS), the largest carbon market in the world. Although the eight

regional markets cover a small share of total carbon emissions in China, the experiences

and lessons of these pilots can present vital insights for the upcoming national emission

trading scheme. At the end of 2017, China NDRC announced the national carbon emis-

sion trading scheme (ETS). If this program proves successful, it is expected to be the

world’s largest ETS surpassing the European counterpart EU ETS.

In the pilot regions, the total amount and intensity of carbon emissions decreased

remarkably. By the end of October 2019, the trading volume of China’s eight pilot

markets has reached 347 million tons of carbon dioxide equivalent, which is about 7.68

billion yuan, and the overall compliance ratio of each pilot area has also exceeded 99%3.

Nonetheless, the regional markets has shown some sort of weakness and the national

ETS will confront with several challenges (Goulder et al., 2017). One of them is that,

while a stable carbon price is very beneficial to the operation of carbon market and the

development of the economy in the long run, the carbon prices in the eight pilot carbon

markets behaved in different manners in 2017-2018, as shown in Table 1. For instance,

price in Chongqing exhibits the minimum mean and maximum stand deviation and left

skewness, while Tianjin has the highest kurtosis.

Table 1. Summary statistics of carbon price in 2017-2018 (Yuan/ton)

1State and Trends of Carbon Pricing 2017, World Bank, Ecofys, Vivid Economics, Washington, DC.
2See Table 1 for the summary statistics of carbon price in the eight regional markets in 2017.
3http://www.chinanews.com/cj/2019/12-11/9031271.shtml
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Many literatures have explored the volatility of carbon price and its influential factors.

In mature carbon emissions trading systems, the main factors affecting carbon price are

broadly classified into the following categories. Firstly, the most widely accepted factor is

the energy price, because energy sources are the main determinants of CO2 (Mansanet-

Bataller et al., 2007). Specifically, there is negative relation between crude oil price

and carbon price, and an increase in natural gas or coal price generates a decrease in

carbon price, and changes in electricity price may exert a positive effect on carbon price

(Hammoudeh et al., 2014a, b). Changes of crude oil, natural gas, coal and electricity

may have the asymmetric and nonlinear impact on carbon price in US (Hammoudeh et

al., 2015), but carbon prices co-move only weakly with energy prices, and their link to

oil and gas prices is negative (Chevallier et al. 2019). The second factor is economic and

financial activities. Although we cannot explain 90% of the price volatility in EU ETS,

variations in economic activity are an obvious reason (Koch et al., 2014). For instance,

Financial options market provides a mechanism to hedge the uncertainty of future spot

prices and reduce the volatility of carbon price (Xu et al. 2016). Stock returns also

affects carbon market price, there is strong information interdependence between carbon

price returns and European electricity companies’stock returns(Ji et al. 2019). Besides,

carbon emissions trading market has a positive effect on the excess returns of companies

participating in carbon emission allowances trading, the carbon premium in stock returns

has increased after the establishment of carbon market (Wen et al. 2020). Thirdly, studies

such as Ellerman and Buchner (2008) and Feng et al. (2011) provided evidence that

market structure are the key factor of carbon prices volatility in EU ETS, while Jaehn

and Letmathe (2010) documented that besides market structure, asymmetric information,

interdependence between the carbon price and price of primary goods are also crucial

factors. Lastly, a few papers consider extreme temperature as an basic factor. In the

phase I of EU ETS, carbon price to some extent related to temperature (Hintermann,

2010), not only to extreme temperature, but also to unexpected temperature (Alberola

et al., 2008). In China’s Shenzhen carbon market, the carbon price is more sensitive to

coal, temperature and AQI (air quality index) than to other factors (Han et al. 2020).

However, carbon emissions trading market is also a financial market, there inevitably

exists speculation which may induce the carbon price far exceed fundamental values. The
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speculation factors could give a satisfactory explanation for some drastic rise and crash

in prices.

In fact, bubbles, as an economic phenomenon, generally arise from speculative invest-

ments. The main purpose of this kind of investment is not to make profit, but to obtain

the price difference of asset price, which has obvious short-term behavior characteristics.

With the development of carbon market, carbon emissions quota is considered as a prof-

itable investment asset displaying speculative attribute. According to Hintermann (2008),

there existed carbon price bubbles driven by a speculative factor. Cretf and Joets (2017)

also demonstrated there are multiple bubbles in this market, which cannot be incurred

by carbon price fundamentals. In China, carbon market is in early stage of development,

carbon fundamentals are weak and markets are immature (Fan and Todorova 2017). Due

to the asymmetric leverage effect and huge regional difference, China’s carbon market

provides strong arbitrage opportunities (Chang et al. 2017).

The contributions of this paper are threefold: First, to our best knowledge, no research

has been found to detect price bubbles in China’s carbon market so far. EU ETS has

been tested for the presence of price bubbles, while no paper investigates bubbles in

China. Second, unlike commonly used econometric detection techniques, we employ a

testing method developed recently for detecting multiple bubbles. This approach was

presented by Phillips and Yu (2011), Phillips et al. (2011), Phillips et al. (2015a and

2015b), and then was employed to examine multiple bubbles in iron ore price (Su et al.

2017a), crude oil price (Su et al. 2017b) and copper price (Su et al. 2020). Although

Cretf and Joets (2017) have used this method to detect price bubbles in carbon market,

it was first exploited to test bubbles in China. Last, we use detailed carbon market

price information to address the relation between price bubbles and policy events. We

found that China’s carbon price is inconsistent with market fundamentals, and several

price bubbles are detected over the period of 2014-2018 which could be explained by the

possible policy events. Furthermore, price volatility and price bubbles did not occur at

the same time, which indicates that speculative factors are less likely to work.

This paper is organized as follows. In section 2 we briefly introduce the bubble testing

procedure. Section 3 presents the empirical testing results of multiple bubbles in Chinese

ETS and their determinants with discussions. Section 4 concludes the paper.

2 Bubble testing procedure

Within the ETS framework, Carbon emission allowances are considered as tradable finan-

cial assets, see for instance, Oestreich and Tsiakas (2015). If the time series of prices of

an asset exhibits explosive behavior, there is said be bubbles in the price. Traditionally,
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unit root and cointegration tests relying on a recursive right tailed ADF unit root test are

used to detect explosive behavior. This category of test was criticized by Evans (1991)

for lacking of power when faced with periodically collapsing bubble process. Phillips and

Yu (2011), Phillips et al. (2011, 2015a and 2015b) proposed the supremum ADF (SADF)

and the generalized SADF (GSADF) tests based on forward recursive regression tech-

nique. The advantages of the two tests over the traditional ADF based test of bubble

are that, the SADF test has bigger power than the ADF test in the presence of periodic

bubbles, and the GSADF test is a generalized version of the SADF test and it is able

to detect multiple bubbles as well as to date stamp the origination and collapse of the

bubbles. Our research goal can thus be well achieved by implementing the two tests on

the time series of carbon price.

To detect a bubble or multiple bubbles, the first question is how to model the price

of an asset and how it is linked to a potential explosive process. Phillips et al. (2015b)

make the choice of picking a quite largely used model following the equation

Pt =
∞∑
i=0

(
1

1 + rf
)iEt(Dt+i + Ut+i) +Bt, (1)

where Pt is the after-dividend price, Dt is the dividend (payoff of the asset), rf is the

risk-free interest rate, Ut is the unobservable fundamentals, Bt is the bubble component.

Then, P ft = Pt−Bt is the market fundamental. Moreover, Bt satisfies the submartingale
property: Et(Bt+1) = (1 + rf )Bt which means that in case of bubble the process of Pt
will be explosive.

The intuition behind the SADF and GSADF method is: if there is no bubble (Bt = 0),

the degree of nonstationarity of the asset price, Pt, is controlled by the market funda-

mental constituted of dividend and unobservable fundamentals series. Therefore, when

unobservable fundamentals are at most I(1) and Dt is stationary after differencing, em-

pirical evidence of explosive behavior in asset prices may be used to conclude the existence

of bubbles.

Phillips et al. (2015b) suggests to use a recursive approach with a rolling window

ADF style regression to test bubble. Suppose the rolling window regression sample starts

from the rth1 fraction of the total sample T and ends at the rth2 fraction of the sample,

where r2 = r1 + rw and rw is the (fractional) window size of the regression, then, the

empirical regression model can then be written as:

∆Pt = αr1,r2 + βr1,r2yt−1 +

k∑
i=1

ψir1,r2Pt−i + εt, (2)

where k is the lag order, εt
iid∼ (0, σ2r1,r2) and yt is the price of an asset. The test for the
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bubble is a right-tail variation of the standard ADF unit root test. The null hypothesis

is of a unit root (H0 : βr1,r2yt−1 = 1) and the alternative is of an explosive autoregressive

coeffi cient (H1 : βr1,r2yt−1 > 1).

Let ADF r2r1 denotes the ADF statistics (t-ratio) based on this regression. The SADF

test operates on repeated estimation of the ADF model on a forward expanding sample

sequence. The test is obtained as the supremum value of the corresponding ADF statistic

sequence. The window size rw expands from r0 to 1; so that r0 is the minimum window

width fraction (initialising computation) and 1 is the largest window fraction (the total

sample size) in the recursion. The starting point r1 of the sample sequence is fixed at

0; so the end point of each sample (r2) equals rw, and changes from r0 to 1. The ADF

statistic for a sample that runs from 0 to r2 is denoted by ADF
r2
0 . Therefore, the SADF

statistic is defined as

SADF (r0) = sup
r2∈[r0,1]

ADF r20 . (3)

The difference between the SADF and GSADF is that besides varying the end point of

the regression r2 from r0 (the minimum window width) to 1, the GSADF test allows the

starting point r1 to change within a feasible range, i.e. from 0 to r2 − r0 . As explained
in the last section, this is what makes GSADF more accurate on longer datasets as the

subsamples used in the recursion are much more extensive than those of the SADF test.

They denote GSADF (r0) the GSADF statistic over all the feasible ranges of r1 and r2:

GSADF (r0) = sup
r2∈[r0,1]

r1∈[0,r2−r0]

{ADF r2r1 }. (4)

In the case of a rejection of the null hypothesis, SADF and GSADF methods enable

us to estimate the start and end points of the bubble (or bubbles). Table 2 shows the

difference between ADF, SADF and GSADF test: the three tests share the same null

hypothesis (H0: Unit root) but SADF test for a single bubble whilst GSADF test for

multiple.

Table 2. Comparing ADF, SADF and GSADF
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3 Empirical results

3.1 Data

Specific information on all variables are shown in Table 3. Considering the carbon emis-

sion trading market liquidity and the price stability,this paper chooses carbon emissions

trading data one year later as the research sample. China’s carbon emissions trading

market started in 2013, and the last pilot market, Fujian carbon market, was established

in December 2016. From then on, all eight pilot carbon markets in China have been

established. Therefore, we use daily time-series carbon price data from January 1, 2014

to April 2018 in the bubble analysis. The fundamental variables of economic activity and

energy price are selected monthly over the same period.

Table 3. variables and data sources

Beijing carbon emission trading scheme began at November 28, 2013 and has been

in operation for more than four years. By the end of December 31, 2017, Beijing carbon

market had traded a total of 20.13 million tons of carbon allowances and had turned over

more than 700 millions RMB, accounting for 11.03 percent and 19.44 percent of national

level separately. Since its opening, Beijing carbon market has developed smoothly and

safely, the volume of transactions expanded gradually. According to Beijing environment

exchange, the closing price in Beijing carbon market is the most stable in China, average

transaction price is about 50 yuan/ton, the highest daily price is 77 yuan/ton, the lowest

is 32.4 yuan/ton in the four-year period. We edit out all daily data with zero trading

volume and obtain the carbon price data for research.

The macroeconomic activity of a country may affect the carbon market price. During

a booming period, enterprises will expand its production scale and demand for carbon

allowances will increase correspondingly, which will lead to a rise in the carbon price.

Economic activity is often proxied by stock market index, for instance, Dow Jones Euro

Stoxx 50 (Cretí and Joëts, 2017b) and China’s Shanghai Shenzhen 300 index (Zeng et al.,

2017). However, China’s stock market is neither semi-strong nor weak form effi cient(Ma,

2017). Given the ineffi ciency of China’s stock market, it does not fully reflect the China’s

economic situation. Therefore, we choose China’s macroeconomic prosperity index as the
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economic activity variable and use its consistent index to stand for the basic trend of

current economy.

As the main cause of carbon dioxide emission, fossil energy, represented by coal, oil

and gas, still accounts for a large proportion of China’s energy consumption. Thus, we

select above three energy prices as the primary drivers in this paper. China’s medium

steam coal price index is used as substitute price for coal variable , gas variable is average

natural gas price in north China, and oil variable is Daqing crude oil price. All the data

are from WIND database.

3.2 Carbon price fundamentals

Since there is no dividend in carbon price in contrast to stock price, based on equation (1) ,

carbon price can be written in terms of two components: the traditional fundamentals

and uncertainty price bubbles:

Pt = Ft +Bt, (5)

where Ft denotes the fundamentals of carbon price which corresponds to the first term

in equation (1) .

In a initial stage of carbon emission trading system , a set of widely accepted price

fundamental drivers included are energy prices and economic activity. Evidently, energy

prices are the most common driver of carbon price, we thus consider the oil price, coal

price and gas price in China. Economic activity is indicated by China’s macroeconomic

prosperity index.Economic activity and energy prices are the fundamentals of Beijing

carbon market price. We put together mpi, coal index, gas and oil price, then after

running data standardization, we statistically estimate the fundamental component in

terms of the first principal component of the four drivers:

Ft = 0.411mpi+ 0.393oil − 0.150gs+ 0.273coal (6)

The equation (6) can explain about 59.5% of the four considered drivers. Based on the

equation, the behaviors of carbon price fundamental is reported in Fig.1, the dynamics

of carbon price is also depicted in Figure.1.

Given the divergence in trends of carbon price and fundamentals, we argue that the

determinants of carbon price are policy events characterizing environmental regulation

and energy rules. We hand-collect sample events in 2014-2018 from China national de-

velopment and reform commission , Beijing municipal commission of development and

reform and Beijing municipal environmental protection bureau . The search keywords in-

cluded carbon emission trading, carbon price, energy and environmental pollution. Only

the major regulatory polices and rules are covered. Systematizing those events, we find

that carbon price bubbles always occur in the days before or aftermath of some events.
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The events methodology is similar to the one applied by Koch et al. (2016) and Cretí

and Joëts (2017a).

Figure 1. Carbon price and its main drivers (2014-2017)

As we can see from Figure.1, the trends of carbon price and its fundamentals are

totally different, carbon price fundamentals can not illuminate the change of carbon

price in 2014-2017. Carbon price drivers declined sharply from nearly 1 in January 2014

to negative in January 2016, and climb up slowly in the next few months, while carbon

price remained almost unchanged, except two structural breaks, the first one is in July

2017, when the first commitment period come up in carbon market, the second one is in

the period when all seven pilot carbon market operated successfully. There are very few

individual and institutional investors in China carbon market, most of the participants

are enterprises that have the compulsory carbon reductions obligations, those enterprises

are more rational than individuals, therefore, carbon price is also less sensitive to the

speculative factors.
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3.3 Periodical collapsing bubbles

In this section we report the tests results for periodical collapsing bubble for the overall

sample period with a minimum window of 35 days. In table 4 both SADF and GSADF

indicate significantly the presence of bubbles in the sample.4

Table 4. Test statistics for periodically collapsing bubble

Table 5 shows that we detects fourteen bubbles over the sample period. During 2014,

there are one mild explosive bubble and three longer episodes lasting more than five days.

Four bubbles occur in 2015, whose duration ranges from one to more than five days. 2016

is characterized by one short bubble and two of five days ones, whereas one short and

one longer bubble in 2017, and one long bubble in early 2018. Overall, there are ten big

bubbles, one of three days bubble and nine of one day bubbles. The fact that there are

more big bubbles than one day small bubbles suggests that Beijing carbon market is still

immature.

Table 5. Number of bubbles5 in carbon price (Jan 2014- April 2018)

Table 6 reports the explosive periods over the sample period, where the test statistics

are above the critical values as shown in table 4. Both the originating and bursting dates

are stamped by the tests.

Table 6. Occurrence of price bubbles (Jan 2014- April 2018)

4Notes: Critical values from both tests are obtained by wild bootstrap approach from Monte Carlo
simulation with 1000 replications. The smallest window has 35 observations. ***, ** and * denotes a
rejec-tion of the nul hypothesis at 99%, 95% and 90% signi cance levelsrespectively.

5In the table, h is the minimum amount of days for a bubble to be considered.
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To see the occurrence of bubbles in more details, figure 2 shows the plot of backwards

SADF sequence (in blue) and the 95% bootstrapped critical value sequence (in red).

When the blue line goes above the red line, a bubble is identified. Moreover, we can

carefully compare and discuss the movement of carbon price, the bubbles and volatility

using figure 2-4. There are two interesting findings that are worth to note. First, three

negative bubbles are found which are marked in red in table 6. A negative bubble happens

when the price drops in an explosive way. For instance, the biggest negative bubble found

in the sample is between 14th of May 2015 and 19th August 2015, see figure 2, while

in this period the price was declining as shown in figure 3. Second, volatility plotted in

figure 4 does not seem to increase when bubbles are found. While comparing the carbon

market of Beijing and the EU, it can be seen that the volatility of the former is much

higher.

Figure 2. Backwards SADF sequence

Figure 3. Chinese carbon price

Figure 4. Volatility of price

11



3.4 Environmental policy announcement and bubbles

To explore what is behind the occurrence of bubbles of carbon price, we list the events and

corresponding explosive bubble periods in table 7. These events contain carbon market,

climate change, environmental pollution and energy saving regulations. It exhibits a

consistency between the announcement of these policies and the occurrence of bubbles.

Table 7. Regulatory events concomitant to the bubbles

To see this consistency in further detail, we conduct event analysis on the specific

dates of each of the 14 bubbles. First and foremost, big bubbles always come up near the

commitment period which is 5th June in Beijing. These explosive periods, such as 26th

Jun-21nd July 2014, 14th May-19th Aug 2015, 11th May-17th May 2016 and 26th Apr-

8th May 2017, last more than five days. A sensible explanation is, in order to complete

their annual reduction compliance, many traders start their businesses in carbon market,

buying or selling quota allocations, trigger the trade behavior change and push up carbon

price in short time, as we can seen from Figure.1. Huge volumes and high prices occur

in almost one month, which generates price bubbles. Secondly, bubbles (10th Mar-28th

Mar, 28th Apr-8th May, 25th July) occur in the initial stage of Beijing carbon market,

as table 6 documents one mild bubble and three big bubbles in the first half year of

2014. Carbon market is a newborn thing in China, most regulated firms are wondering

whether local governments take real actions to punish those who do not fulfill reduction

targets. Very few participants in carbon market trade with high price deviating from

the real value most other traders deemed. In the third, commissioners’announcements,

which are concomitant to the bubbles on 7th Jan, 27th Jan, 6th Mar-9th Mar, 17th

Mar-10th Apr, 24th Dec in 2015, 22nd Nov-28th Nov in 2016, stress the enforcement

of environmental regulations and impact the traders’expectation of deregulation, which
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leads to the greater demand of quotas. Lastly, as depicted in Table 6, there is no bubbles

at the end of 2017. Participants in Beijing carbon market become more and more rational,

carbon price also gets stable.

3.5 Comparison to EU ETS

Since the EU ETS is a much more mature market than the Chinese ETS, it is worth to

compare the two in terms of bubbles. To do this, we repeat the tests that are conducted

for the Chinese market on EU ETS over exactly the same period6. Tests results are

reported in table 8, and number of bubbles in each year in the sample are reported in

table 9. Plot of SADF test statistic can be found in figure 6 which can help stamp the

dates of bubbles.

The value of both the SADF and GSADF tests reject the null hypothesis of no bubbles

for the EU ETS. However, while comparing with the result of the Beijing Market, the

test reject less strongly. The EU market is most likely less explosive. This conclusion is

supported by the comparison between figure 5 and figure 3 illustrating the carbon price

curve. The values of the Beijing curve shows much more variations. Even though, the

GSADF test’s value is lower and the price curve is more constant, the test and many

more short-lived explosive episodes. However, most of those episodes are shorter than

the ones found in the Beijing market.

While comparing the volatility of carbon markets of Beijing and the EU, it can be

seen that the volatility of the former (shown in figure 4) is higher than the EU (shown in

figure 7) in most of the time. Indeed, it peaks in 2016 at a level of 0.16 in Beijing market,

where 0.058 is the highest value reached by EU’s carbon market.

Table 8. Test statistics for bubbles in EU ETS

Table 9. Number of bubbles in carbon price in EU ETS (Jan 2014- April 2018)

Figure 5. EU carbon price
6EU ETS data are obtained from Datastream.
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Figure 6. Backwards SADF sequence

Figure 7. Volatility of price of EU ETS7

Figure 8. Trade volume of Beijing Market

Figure 9. Trade volume of EU Market

While comparing figure 8 and figure 9, it is clear that the volumes are much higher

on the EU market. Interestingly, in Beijing market most explosive periods show also an

increase in volume. However, the comovements in the EU market of bubble and trade

volume are not as clear as in the case of the Beijing market.

7Here the volatility is calculated by two ways since there are some difference between the two. The
first one is the volatility compared to the last month (green) and the other one compared to the last
three months (red).
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Like explained in the previous section, it appears that the EU market experience much

lower volatility level than the Beijing market. A very interesting difference is, the peaks

of volatility of EU carbon price correspond to the bubbles, and this co-movement was

not found in the case of the Beijing market. On the contrary, bubbles in Beijing market

seems to happen when the price volatility are relatively low, for instance, see the bubbles

in July 2014, between March and April 2015, and between April and May 2017. While

the volatility was at the highest level around January 2016, there was no bubble found

in Beijing market.

3.6 Robustness check

In our tests we use the size of minimum window as 468. To check if our results are

sensitive to minimum window size, we perform both the SADF and GSADF tests using

different minimum windows: 35, 55 and 65. As shown in table 10, in all three cases the

null hypothesis of no bubble is rejected, which means our results are robust to the choice

of minimum window size.

Table 10. Effect of the size of minium window

4 Conclusions

In order to investigate the effi ciency of Beijing carbon market, in this paper we test and

have found multiple bubbles in Beijing carbon market over the period of January 2014

and April 2018. One of our major findings is that, most of those bubbles occurred when

there were environmental polices announced by the government. A possible explanation

of this result is, the vast majority participants (traders) in the market are state-owned

firms, therefore these firms are very likely to be affected by environmental policies issued

by the government. This suggests that to make the carbon market as an effi cient tool

to reduce carbon emission, the Chinese government can encourage more private firms to

have access to this market.

Since the Chinese carbon trading scheme is relative new, we also compared our re-

sults from Beijing market to the more mature EU ETS. We have found some interesting

differences between the two markets. First, it appears that explosive moments (bubbles)

in the Beijing carbon market present a similar pattern to the trading volume. This is not

the case for the EU carbon market. Even though most explosive periods in EU market

8This is decided by choosing r0, r1, ... in equation (3) and (4), See more details in Phillips et al (2015).
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show also an increase in volume, the comovements are not as clear as in the case of the

Beijing market. Second, the Beijing carbon market volatility is really high but does not

appears to change significantly at explosive periods. In fact, our empirical evidences show

that the EU carbon market exhibits a clear pattern of increased volatility during or just

before bubbles. while in Beijing market not all the changes in the level of volatility are

linked to a bubble.

Our analysis presents some policy implications for the development of Chinese carbon

emissions trading markets. First, policymakers should not only pay attention to the

spot price impact factors, but also forestall and defuse speculative factors in the initial

stage of carbon markets. In December 2017, China national carbon trading market

was formally established. With the rapid development of the carbon market, relevant

policies and regulations are being perfected. Policymakers should formulate and improve

relevant policies and regulations as soon as possible, guide market participants to invest

rationally and curb the aggregation and spread of price bubbles. Second, policymakers

should also publicize alert notifications of the price fluctuations. Given the current system

is not perfect, there is a serious risk asymmetry, when the market is obviously abnormal,

policymakers should timely release risk hints, guide market participants to make rational

decisions, and prevent the possible causes of the bubbles. Finally, policymakers should

strengthen the supervision and promote the improvement of carbon emissions trading

markets. Information economics theories point out that information asymmetry and

market imperfection will make the market be in an unbalanced state for a long time,

and it is diffi cult to correct the deviation of equilibrium price by relying on the market

itself. Therefore, it is very important to establish a scientific and timely price supervision

mechanism and minimize the impact of information asymmetry on market participants.
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