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a b s t r a c t

Free vibration characteristics of thin perforated shells of revolution vary depending not
only on the dimensionless thickness of the shell but also on the perforation structure.
All holes are assumed to be free, that is, without any kinematical constraints. For a
given configuration there exists a critical value of the dimensionless thickness below
which homogenisation fails, since the modes do not have corresponding counterparts in
the non-perforated reference shell. For a regular g × g-perforation pattern, the critical
thickness is reached when the lowest mode has an angular wave number of g/2. This
observation is supported both by geometric arguments and numerical experiments.
The numerical experiments have been computed in 2D with high-order finite element
method supporting Pitkäranta’s mathematical shell model.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Solving partial differential equations (PDEs) over complicated domains remains a challenge even with modern
omputing environments. In this work we are interested in parameter-dependent eigenproblems on one specific class
f complicated domains, namely the perforated ones. Ultimately one would hope to use homogenisation techniques for
nstance to find effective material parameters in elasticity problems. What makes parameter-dependent eigenproblems
nteresting in this context is that the eigenmodes can be modelled as dynamical systems. It is possible that the perforations
ead to perturbations in the spectrum including mixing of modes. In such a situation it is not sufficient just to know the
eference configuration, but also be able to match the modes between the reference and perturbed configurations. In
ther words, relying on the order of modes can lead to physically incompatible matchings.
Our model application is a linear elasticity one of engineering interest — the free vibration of perforated thin shells of

evolution. The introduction of both Martikka et al. [1] and Kalamkarov et al. [2] provides an excellent overview for various
elated applications. Our initial interest to this particular problem is from homogenisation of effective material parameters
n this context, in particular Jhung and Yu [3]. There exists a substantial body of literature on related problems, where
he material used in the construction has some structure of its own, for instance, composites with varying properties in
he thickness direction, see [4–6].

The central parameter is the dimensionless thickness of the shell, t . We assume that the shell has a constant thickness
d, which is replaced in the dimension reduction by t = d/L, where L represents some characteristic length scale, typically
the diameter of the computational domain. For different types of shell geometries the asymptotic behaviour for both
the smallest eigenvalues and related modes are known as the thickness of the shell tends to zero. For references in the
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Fig. 1. Transverse deflection profiles of the smallest eigenmodes on 12 × 12 regular grid with hole coverage percentage of 12%. The ends are
lamped, but the holes are free. Illustration of the global and local feature ranges: top row, surface plots, second row, t = 1/100 ≫ tc , third row,
= 0.007 ≈ tc , and bottom row t = 0.0025 ≪ tc . On the top row, notice the alignment with respect to the perforation pattern of the Modes 1 and
at t ≈ tc . Profiles plotted along the middle line (x = 0) avoiding any perforations; locations of the perforation rows are marked with horizontal

ines and light grey background. In the third row the wave numbers of the 1st and 4th modes are the same.

tyle used here, see for instance [7–11]. At least for the cylindrical shells, the dynamics of the eigenmodes are now well
nderstood. For this class of structures, clusters of eigenmodes arise naturally due to symmetries. It follows that clusters
an be identified with mode-dependent quantities of interest, such as the wave number of the mode in the angular
irection.
One of the main results of this paper is that there is a connection between the perforation patterns and the

imensionless thickness. For every structured pattern there exists a critical thickness or parameter value tc , below which
he dynamics have a different asymptotic behaviour. The approximate critical value of tc can be predicted with high
eliability using the theoretical a priori information available, once the given configuration is related to a reference one.
ased on the characteristics of the smallest eigenmode, the parameter range t ∈ [t0, t1] can be divided into two parts: the
lobal feature range with t1 ≥ t ≥ tc , where the mode has the same features as in the reference case, and the local feature
ange with t0 ≤ t ≤ tc , where the asymptotic behaviour does not follow the reference case and the local features due to
he perforation pattern begin to affect the mode. In Fig. 1 the transverse deflection profiles of the smallest eigenmodes on
2
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12 × 12 regular grid with hole coverage percentage of 12% at three different parameter values are shown. The values of
have been chosen to illustrate qualitatively the transition of the modes around the critical value. Of particular interest
s the row of profiles starting from Fig. 1i. Notice that the modes belong to two clusters, with Modes 1 and 4, and 2 and
, being the basis modes of the respective clusters. The Modes 1 and 4 have the same wave numbers, but the separation
ithin the cluster comes from the maximal amplitudes coinciding with the perforations in Mode 1, and the minimal ones
ith the perforations in Mode 4. This observation is central to our analysis.
In engineering applications the perforation patterns are hardly ever random, since there is an underlying assumption of

epeatability in designs. Therefore we do not consider fully random perforations but deterministic patterns derived from
uasi-Monte Carlo quadrature rules. The numerical experiments indicate that the value of the critical thickness depends
n the average density of the perforations, however, the sharpness of the value depends on the quality of the pattern
ith the strongest effect with regular perforation patterns.
It is interesting to contrast these results with those in the context of perforated shells under static loading. There

similar phenomenon of dominant local features is observed, but the source of the local features is the excitation of
oth boundary and internal layers at the boundaries of the perforations and within the patterns. Such localisation in
igenmodes occurs only at high in the spectrum, however. The shapes or wave numbers of the smallest modes we are
ocusing on are driven only by the internal layers.

The rest of the papers is structured as follows: In Section 2 we introduce the shell model, including the perforations,
nd outline the hp-finite element method (FEM) used in the numerical experiments. The asymptotics of the modes and
heir dynamics with the clusters are the topics of Sections 3 and 4, respectively. The numerical experiments (Section 5)
re followed by concluding remarks in Section 6.

. Preliminaries

In this section we cover the model problem, discuss perforation patterns including the quasi-Monte Carlo ones based
n Halton sequences, and finally give a brief overview of the hp-FEM used in our numerical experiments below. As always
ith preliminaries, most of the material is available in many previous studies. However, since the focus in this paper is
ore on the parameter-dependent effects rather than shell problems as engineering problems, the shell model presented
ext is highly simplified and suitable for relative easy implementation within any FEM-solver framework.

.1. Model problem: Parabolic shell of revolution

As our model shell geometry we choose the cylinder — the simplest parabolic shell. We start by introducing the
onnection between the exact shell geometry and the curvature tensor central to the mathematical shell model. We
tart by defining the shell geometry first and then outline the shell model used in the numerical experiments.

.1.1. Shell geometry
In this work we study thin shells of revolution. They can formally be characterised as domains in R3 of type

Ω = {x + zn(x) | x ∈ ω,−d/2 < z < d/2} , (1)

where d is the (constant) thickness of the shell, ω is a (mid)surface of revolution, and n(x) is the unit normal to ω.
or realistic geometries we assume principal curvature coordinates, where only four parameters, the radii of principal
urvature R1, R2, and the so-called Lamé parameters, A1, A2, which relate coordinate changes to arc lengths, are needed to
pecify the curvature and the metric on ω. There are other options, however. We can simplify the model above by assuming
hat ω can be unfolded as a rectangular domain expressed in the coordinates x1 and x2. We denote this computational
omain with D (Fig. 2). Furthermore, we assume that the curvature tensor {bij} of the midsurface is constant, and as already
entioned in the introduction, in the sequel we replace the thickness d with the dimensionless thickness t = d/L, where
∼ diam(D).
Let us consider a cylindrical shell generated by a function f1(x1) = 1, x1 ∈ [−x0, x0], x0 > 0. In this case the product

of the Lamé parameters (metric), A1(x1)A2(x1) = 1, and the reciprocal curvature radii are 1/R1(x1) = 0 and 1/R2(x1) = 1,
since

A1(x1) =

√
1 + [f ′

1(x1)]2, A2(x1) = f1(x1), (2)

and

R1(x1) = −
A1(x1)3

f ′′(x1)
, R2(x1) = A1(x1)A2(x1). (3)

Thus, in the simplified model we can choose b11 = 0, b22 = 1, and b12 = b21 = 0, and arrive at a very good approximation
of the exact geometry.
3
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Fig. 2. Parabolic shell of revolution and the corresponding computational domain with a 7 × 7 regular perforation pattern with 12% hole coverage.
For free vibration the boundaries at x1 = ±π are clamped, holes are free, and x2 = 0 and x2 = 2π are periodic.

2.1.2. Two-dimensional mathematical shell model
Our two-dimensional shell model is of the so-called Reissner–Naghdi type [12] — the mathematical shell model by

Pitkäranta [13], where the transverse deflections are approximated with low-order polynomials. The resulting vector field
has five components u = (u, v, w, θ, ψ), where the first three are the displacements and the latter two are the rotations
in the axial and angular directions, respectively. Here we adopt the convention that the computational domain D is given
by the surface parametrisation and the axial/angular coordinates are denoted by x and y.

Deformation energy A(u,u) is divided into bending, membrane, and shear energies, denoted by subscripts B, M , and
S, respectively.

A(u,u) = t2AB(u,u) + AM (u,u) + AS(u,u). (4)

Bending, membrane, and shear energies are given as

t2AB(u,u) = t2
∫
D

[
ν(κ11(u) + κ22(u))2 + (1 − ν)

2∑
i,j=1

κij(u)2
]
dx dy, (5)

AM (u,u) = 12
∫
D

[
ν(β11(u) + β22(u))2 + (1 − ν)

2∑
i,j=1

βij(u)2
]
dx dy, (6)

AS(u,u) = 6(1 − ν)
∫
D

[
(ρ1(u)2 + ρ2(u))2

]
dx dy, (7)

here ν is the Poisson ratio (constant). We have omitted the scaling E/(12(1− ν2)), where E is the Young’s modulus. The
trains are (with the curvature tensor values already inserted) as follows:

κ11 =
∂θ

∂x
, κ22 =

∂ψ

∂y
, κ12 =

1
2

(
∂θ

∂y
+
∂ψ

∂x

)
,

β11 =
∂u
∂x
, β22 =

∂v

∂y
+ w, β12 =

1
2

(
∂u
∂y

+
∂v

∂x

)
,

ρ1 =
∂w

∂x
− θ, ρ2 =

∂w

∂y
− ψ.

(8)

2.2. Perforation domains

Perforated domains are characterised by the penetration patterns which in turn depend on the underlying manufac-
turing processes and the related hole coverage, typically given as a percentage. Here we consider standard structured
patterns and extend the concepts to quasi-random patterns. We also consider a simple randomised damage model.

2.2.1. Regular penetration patterns
The quantity used to characterise perforated sheets of metal is the ligament efficiency η. Let us assume that the holes

are ellipses with a, b as the horizontal and the perpendicular semiaxis, and the separation of the centres is Px and Py,
respectively. Following [3,14,15], we define the horizontal and the perpendicular ligament efficiency, denoting them as
ηx, ηy, respectively. For regular arrays of holes

η = (P − 2 a)/P , η = (P − 2 b)/P , (9)
x x x y y y

4
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Fig. 3. Penetration patterns.

and for triangular arrays, allowing for alternating layers,

ηx = (Px − 4 a)/Px, ηy = (Py − 4 b)/Py. (10)

For circular holes the radius r = a = b, of course, and further if the pattern is regular η = ηx = ηy. Both pattern types
are illustrated in Fig. 3. Notice that the triangular pattern in the figure has a tighter packing than that implied by (10).

2.2.2. Quasi Monte-Carlo
An intriguing option is to replace a regular pattern with one induced by a quasi-random process. Notice that quasi-

random means that the process is deterministic which has implications to manufacturing. Of course, the ligament
efficiencies cannot be defined as above. One of the simplest sequences of points generated by such a process is the Halton
sequence [16].

Definition 1 (Halton). Let i ∈ N0 and basis b ∈ N be such that b ≥ 2. Then the inverse representation function φb(i) is
given by

i =

∞∑
k=1

ikbk−1, ik ∈ {0, 1, . . . , b − 1} −→ φb(i) =

∞∑
k=1

ik
bk
.

et q1, q2, . . . , qs be the s first primes. The s-dimensional Halton sequence is

H(q1, q2, . . . , qs) = {φq1 (i), φq2 (i), . . . , φqs (i)}
∞

i=0.

The choice of the primes is crucial, and in the context of this paper only two have to be chosen. The effect of
this selection is shown in Fig. 4, where the local structures of two sequences are compared. As can be seen from the
definition of the Halton sequences, in 2D the points populate the unit square [0, 1]2 and have to be mapped to the actual
computational domain. The process does not take into account the sizes of the holes and therefore we filter the sequence
so that the distance between any two points in the final sequence are not closer than 2.5R, where R is the hole coverage
calibrated radius of the holes. The filtered sequences are denoted by HF (·, ·).

Another process is to take a regular pattern and perturb it while avoiding coalescing holes. The perturbations can either
be shifts of the underlying patterns or pointwise pseudo-random translations. Since the domains we are interested in are
periodic in the angular direction, we only consider pointwise translations in the numerical experiments below.

We do not attempt to define averaging ligament efficiencies for pseudo-random penetration patterns. However, a
useful concept used to relate different kinds of patterns is the cell size ϵ, which is the size of the cell containing exactly
one hole on average. In the case of a regular n × n-grid on a shell of revolution over (x, y) ∈ [−π, π] × [0, 2π ], we have
ϵ = 2π/n. In the limit as ϵ → 0, we expect regular and quasi-regular penetration patterns to converge.

2.3. hp-FEM

All the numerical simulation reported here are computed with two different high-order continuous Galerkin codes in
2D solving the variational formulation (12) on conforming meshes of triangular and quadrilateral elements. The first one
is implemented with Mathematica, providing exact geometry handling of the holes via blending functions [17]. This code
has been used to compute smaller examples and in calibration of the second solver.
5
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Fig. 4. Filtered quasi-random penetration patterns of Halton type; HF (·, ·). The sequences have been selected by trial and error.

Fig. 5. Typical mesh configuration. In the detail, the hole is programmatically mapped to be circular in the assembly of the system. In the simulations
the boundaries at x1 = ±π are clamped, holes are free, and x2 = 0 and x2 = 2π are periodic.

The second one is a parallel code implemented in FORTRAN90 and MPI. The code allows for any order of polynomials to
e used in the elements. Different order of polynomials can be used in different elements in the same mesh. To minimise
ntegration errors on complicated domains, the shape of the elements is represented using the transfinite interpolation
ethod [18] which allows for the edges of the elements to be bent exactly to match the shape of the holes. Together
ith high order quadrature rules, the integration errors in the discrete problem are controlled. One sample configuration

s shown in Fig. 5.
The solution of the eigenvalue problems are computed using ARPACK [19] and MUMPS [20–22] as linear solver called

rom inside ARPACK. To reduce the computational time and exploit parallelism of modern HPC machines, MPI is used in
he assembly of the linear system and in MUMPS to approximate the eigenpairs.

Due to this two-pronged simulation strategy including adaptivity, we have high confidence in the accuracy of the
omputed results and the conclusions drawn from them.

. Shell eigenproblem: Eigenmode asymptotics

The free vibration problem for a dimensionally reduced shell in the case of a shell of revolution with constant thickness
leads to the following eigenvalue problem: Find u(t) and ω2(t) ∈ R such that{

t AMu(t) + t ASu(t) + t3 ABu(t) = ω2(t)M(t)u(t)
(11)
+ boundary conditions.

6
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u(t) represents the shell displacement field, while ω2(t) represents the square of the eigenfrequency. The differential
operators AM , AS and AB defined above, account for membrane, shear, and bending potential energies, respectively, and
are independent of t . Finally, M(t) is the inertia operator, which in this case can be split into the sum M(t) = t M l

+ t3 Mr ,
with M l (displacements) and Mr (rotations) independent of t .

Let us next consider the variational formulation of problem (11). Accordingly, we introduce the space V of admissible
displacements, and consider the problem: Find (u(t), ω2(t)) ∈ V × R such that

t AM(u(t), v(t)) + t AS(u(t), v(t)) + t3 AB(u(t), v(t)) =

ω2(t)M(t;u(t), v(t)) ∀v ∈ V ,
(12)

where AM(·, ·), AS(·, ·), AB(·, ·) and M(t; ·, ·) are the bilinear forms associated with the operators AM , AS , AB and M(t),
respectively. Obviously, the space V and the three bilinear forms depend on the chosen shell model, here the mathematical
shell model.

3.1. Symmetries

In the standard (non-perforated) case the model for a shell of revolution can be further reduced to a one-dimensional
one, since the eigenmode must be periodic in the angular direction. Assuming that the transverse deflection w(x) ̸= 0, it
follows from the strains that the eigenmode u(x, y) has either one of the forms

u1(x, y) =

⎛⎜⎜⎜⎝
u(x) cos(k y)
v(x) sin(k y)
w(x) cos(k y)
θ (x) cos(k y)
ψ(x) sin(k y)

⎞⎟⎟⎟⎠ or u2(x, y) =

⎛⎜⎜⎜⎝
u(x) sin(k y)
v(x) cos(k y)
w(x) sin(k y)
θ (x) sin(k y)
ψ(x) cos(k y)

⎞⎟⎟⎟⎠ . (13)

In other words, the selection of the ansatz in the angular direction is not unique. Hence, the corresponding eigenvalues are
in fact always double eigenvalues, unless the mode is a torsion mode, i.e., one acting in the tangent plane of the surface.
For torsion modes the transverse deflection is identically zero, w(x) = 0.

3.2. Asymptotics of parabolic shell eigenmodes

Parameter-dependent deterministic asymptotics (asymptotics as t → 0) of the smallest eigenpairs are known
rigorously for parabolic and elliptic shells, and well-understood for hyperbolic ones.

First, let us for simplicity consider just one component of the displacement field. The transverse profilew of the smallest
eigenmode has a parabolic profile, see [7]. This means that we can omit torsional modes from our discussion here. Shells
exhibit a rich variety of boundary layers, including internal layers, each of which has its own characteristic length. Indeed,
every shell eigenmode can be viewed as a linear combination of characteristic features. Formally, we can write for w,
(x, y) ∈ D:

w(x, y) =

∑
k

w(k)(x, y),

where each w(k)(x, y) has its own parameter-dependent characteristic length, with the smooth part with length scale equal
to the diameter of the domain D. In [7] it is also established that for the smallest eigenmode the boundary layers do not
carry significant amount of energy and we can restrict our discussion to the smooth part only. This has the consequence
that the natural choice for a basis — the Fourier basis the functions of type

wmn(x, y) = cos
(m
2
x
)
cos(ny), x ∈ [−π, π], y ∈ [0, 2π ], (14)

here m, n ∈ Z, leading to general eigenbasis

W = {wmn(x, y)}∞m,n=0 ,

oes not satisfy the axial boundary conditions. As is demonstrated below, this is indeed a sufficient model for our purposes.
imilar expansions for different components can be derived with axial parts

u(x) = sin
(m
2
x
)
, v(x) = cos

(m
2
x
)
, θ (x) = sin

(m
2
x
)
, ψ(x) = cos

(m
2
x
)

nd angular parts depending on the chosen ansatz.
Notice, that we can now track modes in the parameter space using wavenumbers m and n only, since for every

component of the eigenmode they are the same even if the trigonometric basis function may differ. Hence, we can use
notation (λmn,umn) for a corresponding eigenpair.

For a fixed value of t the eigenvalues can be ordered

λ (t) = λ (t) ≤ λ (t) ≤ · · · ≤ λ (t) ≤ · · ·
min m1n1 m2n2 mjnj

7
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Fig. 6. Reference asymptotic analysis: t ∈ [10−4, 10−2
], uniform logarithmic scale with 100 samples. Observed rates: λ(t) ∼ t; k(t) ∼ t−1/4;

B(t) → 1/2.

and naturally this is an ordering of the eigenmodes as well. Here m1 = 1 always, i.e., the smallest eigenpair is of type

(λ1ni (t),u1ni (t))

with ni ≥ 1.
For parabolic shells, the asymptotics of the eigenvalues and the angular wave number k are known and are summarised

in Theorem 1. These results are also visualised in Fig. 6.

Theorem 1 ([7,8]). For cylindrical shells of revolution, the smallest eigenvalue λmin(t) and the integer valued wavenumber

kmin(t) := min{k ∈ N | λmin(t) = λ1k(t)}

scale as functions of dimensionless thickness t:

λmin(t) ∼ t, kmin(t) ∼ t−1/4.

As t → 0, the ratio of the bending energy over the total energy B(t) → 1/2.

The bending energy convergence graph is of particular interest (Fig. 6b). The convergence is somewhat unusual — the
ratio of the bending energy converges to a limit of 1/2, but for parabolic shells, the relative amount of the bending energy
in the smallest mode decreases as long as its angular wave number remains constant. Therefore, one has to observe the
behaviour of the averages within the bands.

3.3. A priori model for asymptotics of perforated parabolic shell eigenmodes

It is clear that the perforations will have an effect on the asymptotics of the smallest mode. In standard homogenisation
theory the idea is to let the hole coverage and the dimensionless thickness tend to zero simultaneously. Our approach is
different, however. We keep the hole coverage percentage fixed, and let the number of holes increase and thereby let the
sizes of the holes decrease.

Consider a regular g×g perforation pattern (g ∈ N) or alternatively a given cell size ϵ in the language of homogenisation
(ϵ ∈ R). As the thickness t changes, so does the angular wave number k. Let us assume that g is even. If k = g/2, the
ansatz (13) does not produce double eigenvalues, since the two candidate modes have their maximal amplitudes either
8
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Fig. 7. Asymptotic analysis: 14 × 14 regular grid; hole coverage 12%; t ∈ [10−4, 10−2
], uniform logarithmic scale with 100 samples. Observed rates:

(t) ∼ t; k(t) ∼ t−1/4 , k(t) ≤ 7. Notice the width of the interval of thicknesses at k = 7. Behaviour of B(t) changes at k = 7.

t the holes or on the domain in between. This leads to separation within the cluster. Let us denote the corresponding
ave number and thickness, as kc and tc , respectively. If t ≤ tc and thus k ≥ kc , the smallest mode acts more on the holes
hich are ‘‘softer’’ and the wave number k cannot grow as fast as in the non-perforated configuration as t → 0.
In Figs. 7–9 we show three sets of results on different regular grids. Somewhat surprisingly, the eigenvalue asymptotics

emain as in the standard case. However, as predicted, the angular wave number follows the standard asymptotics only
own to the critical thickness, below which the trend falls behind. The trend lines are computed by collecting the first
hickness of the observed k-value. For the 30 × 30 regular grid the critical thickness is below the range of thicknesses
onsidered and the asymptotics are exactly those of the standard case.
The observed bending energy ratios tell the same story. As the local features start to have stronger relative effects, the

redicted energy balances cannot hold below the critical thickness.
We can now predict the asymptotic behaviour of the perforated parabolic shells of revolution using the existing theory

s foundation.

onjecture 1 (Asymptotics of Perforated Parabolic Shells of Revolution). Given a g ×g regular perforation pattern, there exists
critical dimensionless thickness tc at which the angular wave number kc ≈ g/2. For thicknesses t < tc the asymptotics of

he smallest eigenmode do not conform to those of the non-perforated case.

. Dynamics of clusters of modes

In this section we discuss another feature of parameter-dependent eigenproblems, the dynamics of the modes. In the
ontext of shells of revolution it is more accurate to refer to clusters of modes as we have already established above.
he asymptotics indicate that the smallest mode changes as the parameter t → 0. This observation raises an interesting
uestion: What is the ordering of the modes at the given value of the parameter and how does the relative ordering change
s the parameter changes? The correct approach is to consider the modes as a dynamical system with the thickness as
he parameter.

.1. Dynamics of shell eigenmodes

Using the Fourier expansion idea outlined in Section 3.2 above, every mode can be identified using angular and axial
ave numbers. By computing the spectrum and then identifying the modes, we can track the relative orderings of the
9
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Fig. 8. Asymptotic analysis: 15 × 15 regular grid; hole coverage 12%; t ∈ [10−4, 10−2
], uniform logarithmic scale with 100 samples. Observed rates:

(t) ∼ t; k(t) ∼ t−1/4 , k(t) ≤ 7. Notice that the width of the interval of thicknesses at k = 7 extends below t = 5 × 10−4 . Again, behaviour of B(t)
hanges at k = 7.

odes as the parameter changes. In Fig. 10 three different regular grids are considered. In each case every mode which
ventually becomes the smallest one is traced through the sampled parameter values. As one would expect based on the
bservation on the asymptotics, it should not come as a surprise that at the critical thickness tc the dynamics change
s well. For instance, consider the two modes k = 6 and k = 7, indicated with red and purple lines, respectively. Their
elative positions in the spectrum change roughly at the same rate until the critical thickness is reached in the coarser
erforations. In the reference case, the mode k = 6 is not among the 40 smallest modes at the lower limit of the interval,
hereas in the 14 × 14-case it is still within that range.

.2. A priori model for perforated shell dynamics

Following the discussion in Section 3.3 we can now formulate a similar conjecture for the dynamics.

onjecture 2 (Dynamics of Perforated Parabolic Shells of Revolution). Given a g × g regular perforation pattern, there exists
critical dimensionless thickness tc at which the angular wave number kc ≈ g/2. For thicknesses t < tc the dynamics of the
igenmodes do not conform to those of the non-perforated case. For thicknesses t < tc the mixing of modes happens at a lower
ate.

. Numerical experiments

In this section we consider a series of regular perforation patterns and one filtered Halton or Quasi-Monte Carlo
attern. The numerical experiments are designed to demonstrate the features outlined above in configurations where
he dimensionless thicknesses are within the practical range.

As before, we consider three different hole coverage percentages: 7, 12, and 25%. The discussion above suggests that the
ending energy ratio B(t) is a sensitive indicator of local features in the smallest eigenmodes. It should be noted, however,
hat the limit limt→0 B(t) of course depends on the hole coverage percentage. As can be seen below, it is sufficient to
bserve local changes in the convergence of B(t) rather than focus on the limit value.
10
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Fig. 9. Asymptotic analysis: 30 × 30 regular grid; hole coverage 12%; t ∈ [10−4, 10−2
], uniform logarithmic scale with 100 samples. Observed rates:

(t) ∼ t; k(t) ∼ t−1/4 . Notice that the width of the interval of thicknesses at k = 7 does not extend below t = 5 × 10−4 . Within the parameter
ange B(t) → 1/2.

Fig. 10. Relative ordering of modes: loglinear plot; hole coverage 12%; t ∈ [10−4, 10−2
], uniform logarithmic scale with 100 samples. Different

olours refer to different eigenmodes and their relative positions in the spectrum. The bottom line in each plot indicates the smallest mode the
alue of which can be inferred from Figs. 7–9. The upper sections of the figures appear sparser, since only those modes that ever become the smallest
nes are shown. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 1
Observed rates for λ(t) and k(t), over a set of perforations; t ∈ [10−4, 10−2

], uniform logarithmic scale with
100 samples. HF (7, 61) ∼ 14 × 14. Rates for k(t) have been computed over the interval k1 ≤ k(t) ≤ k2 .
QoI % 7 × 7 8 × 8 10 × 10 12 × 12 HF (7, 61)

λ(t) 7 0.93 0.96 0.98 0.99 1.01
12 0.97 0.98 1.00 1.00 1.02
25 0.99 1.02 1.10 1.10 1.09

[k1, k2] [4, 7] [5, 8] [6, 10] [4, 6] [4, 7]
k(t) 7 0.21 0.20 0.23 0.24 0.23

12 0.22 0.21 0.22 0.24 0.23
25 0.24 0.24 0.25 0.22 0.21

Fig. 11. Asymptotic analysis: k(t) and trend line; hole coverage 12%; t ∈ [10−4, 10−2
], uniform logarithmic scale with 100 samples. The rate in

able 1 is computed in the interval indicated with a solid line and in the caption, dashed line represents the perturbed part.

Fig. 12. Asymptotic analysis: Regular 8 × 8 grid; t ∈ [10−4, 10−2
], uniform logarithmic scale with 100 samples. Hole coverage percentages are

ndicated in the subtitles.

.1. Regular perforations

Let us consider our standard cylinder with four different regular perforations. As shown in Fig. 6 the range of angular
ave numbers is [4, 12]. Therefore each grid in the set G = {g × g | g ∈ {7, 8, 10, 12}} should exhibit some local features.

The computed rates for λ(t) and k(t) are given in Table 1. Interestingly, the eigenvalues decay asymptotically as in the
standard case. For the wave numbers, the situation is more complicated. In each case, we can identify a range of wave
numbers within which the asymptotic growth rate is close to that in the standard case. In Fig. 11 two cases are shown
where asymptotic and local ranges are indicated. The connection between the B(t) and the size of the grid g is evident in
igs. 12 and 13. For g = 8 the energy band corresponding to k(t) = 4 stands apart, and similarly for the pair g = 12 and
(t) = 6. For 25% hole coverage, the onset of local features appears as the loss of clear band structure at the critical k(t).

.2. Quasi Monte-Carlo perforations

We have included in the set of grids one filtered Halton grid, HF (7, 61). We have included the rate data in Table 1 and
he energy bands in Fig. 14. Since HF (7, 61) ∼ 14×14 these results should be compared with those of Fig. 7. Even though
t 12% the local features do emerge at around k(t) = 7, the transition is not as sharp. Since the modes in the smallest
luster are not maximally separated due to irregularity of the pattern, this is in line with our discussion in the previous
ections.
12
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i

p

Fig. 13. Asymptotic analysis: Regular 12 × 12 grid; t ∈ [10−4, 10−2
], uniform logarithmic scale with 100 samples. Hole coverage percentages are

ndicated in the subtitles.

Fig. 14. Asymptotic analysis: Filtered Halton grid; HF (7, 61) ∼ 14× 14; t ∈ [10−4, 10−2
], uniform logarithmic scale with 100 samples. Hole coverage

ercentages are indicated in the subtitles.

Fig. 15. Transition analysis: Comparison of cluster separation measured by energy; Hole coverage percentage is 12%; t ∈ [10−4, 10−2
], uniform

logarithmic scale with 100 samples. Clusters within which the bending ratios differ by more than 1% are indicated with open circles.

5.3. Analysis of transition from global to local features

Already in Fig. 1 we have seen how in the neighbourhood of the critical thickness tc the smallest cluster can be
separated when the grid parameter g is even. However, also in the case of g odd (see Fig. 8) such a transition appears to
take place, but not as sharply.

In Fig. 15 the same data already shown above for the regular grid cases of 14 × 14 and 15 × 15 is augmented by
indicating the clusters where the two modes of the cluster have a difference in their bending energy ratios B(t). The
chosen tolerance is 1%. We observe, that as expected the transition zone or parameter interval is the same. The only
difference is in the sharpness of the transition.

Within the transition interval it can happen that due to the separation of the smallest cluster the second smallest
‘‘slides’’ in between the two separated modes. (This is visible already in Fig. 1.) This phenomenon is the reason why in
mode identification the modes belonging to the same cluster can appear in non-adjacent positions.

6. Conclusions

Parameter-dependent eigenproblems on perforated domains are intricate. Through computational means one can gain
insight into the complex interplay of the parameter-dependent features of the modes and the perforation patterns. Our
model problem, free vibration of thin perforated parabolic shells of revolution, is rich in interesting features which can
be analysed and in some cases predicted based on the existing a priori knowledge of such problems.

The key observation here is the connection between the value of the parameter and the perforation density. For every
perforation pattern there exists a critical value of the parameter which divides the parameter range into two parts where
13
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either the global or local features of the smallest eigenmodes dominate. For a regular g×g-perforation pattern, the critical
thickness is reached when the lowest mode has an angular wave number k ∼ g/2. For instance, for parabolic shells
considered here, the asymptotic connection between the wavenumber and the dimensionless thickness is k(t) ∼ t1/4.
This observation is supported both by geometric arguments and numerical experiments. This is likely to be of significance
when effective material parameters are searched for via homogenisation in practical engineering applications.
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