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1 Introduction

Time-independent black hole solutions have a wormhole, or Einstein-Rosen bridge, con-
necting two asymptotic regions. In holography, these solutions are related to entangled
states in two copies of the dual CFT [1]. In the classical solution, this wormhole is not
traversable; the two asymptotic regions are causally disconnected. In the holographic the-
ory, this is a consequence of the fact that the two copies of the CFT are not coupled (only
entangled), so no signal can propagate from one to the other. In [2], a simple coupling
between the two boundaries was shown to make the wormhole traversable. In addition
to realising the dreams of many science fiction authors, this provides a new insight into
the relation between entanglement and spacetime in holographic theories: the passage of
a bulk observer through the wormhole can be understood as quantum teleportation in the
dual theory, using the entanglement of the dual state as a resource and using the coupling
to communicate the needed classical information from one theory to the other [3, 4].

Much of the quantitative analysis of this phenomenon has focused on the simple ex-
ample of the BTZ black hole in three dimensions, dual to a thermofield double (TFD)
state in two copies of a two-dimensional CFT (although TFD states translated in time
were considered in [5], and rotating BTZ was considered in [6]). It is interesting to extend
the discussion to more general cases: any entangled state can be used to realise quantum
teleportation, but the bulk description in terms of a traversable wormhole may be special
to particular forms of entanglement.

In this paper, we take a step in this direction, by considering adding a boundary cou-
pling to a charged Reissner-Nördstrom black hole in AdSd+1, dual to a TFD state with a
chemical potential for the charge in the CFT. The interest in this case is that the black holes
have finite entropy (indicating finite entanglement in the dual state) but an infinitely long
throat in the extremal limit. We would like to understand how difficult it is to make this
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infinite wormhole traversable, enabling communication between the two CFTs through the
bulk. The divergence in the length of the throat implies that the correlation functions of op-
erators on different boundaries vanishes in the extremal limit, unless the field dual to the op-
erator is tuned to the threshold of an instability [7], suggesting that the effect of the bound-
ary coupling on the bulk geometry may also vanish in this limit. Indeed, we find that unless
we tune the bulk field to this instability threshold, we need to take the coupling between the
two boundaries to scale to infinity as an inverse power of the temperature to have a finite
effect on the bulk geometry in the extremal limit. If we accept this tuning of the coupling,
however, we can communicate an amount of information that scales with the entropy of the
black hole through the wormhole in the bulk. This is qualitatively different from the quo-
tient construction of [8, 9], where the traversability of the wormhole traversable increased in
the extremal limit. The key reason for this difference is that the double trace deformation
we consider is a marginal or irrelevant deformation in the near-horizon AdS2 region.

In section 2, we review the bulk solution, its extremal limit, and the dual CFT state.
In section 3, we add a double-trace boundary coupling and consider the resulting bulk
deformation. There are no analytic solutions for the propagator of bulk fields on the
full black hole background, so in our analysis we focus on the near-horizon region, which
in the extremal limit has an AdS2 × Sd−1 geometry. Boundary couplings on AdS2 and
traversable wormholes have been considered previously [4, 10–12], but our case is different
as we emphasize the relation to the extremal limit of the asymptotic charged black hole
geometry; we consider a charged field on the original near extremal black hole, which
reduces to a charged field on AdS2 with a uniform electric field background. We explicitly
calculate the propagator for this charged field with the double-trace boundary condition.

We find that to obtain a non-trivial opening of the wormhole, we need to either consider
the operators dual to fields at threshold, or take the strength of the coupling to infinity as
we take the temperature to zero. We argue that the limit of infinite coupling remains under
control, precisely because the distance between the two boundaries in the bulk diverges, so
the back-reaction in the bulk remains finite. Under these conditions, the coupling leads to
a traversable wormhole in the bulk. The timescale for travel through this wormhole is set
by the temperature of the black hole.

We consider the back-reaction of a particle propagating through the wormhole in sec-
tion 4, and infer bounds on the amount of information that can be transmitted through the
wormhole. We find that the bound is related to the entropy of the black hole, as expected
from the relation to quantum teleportation. This indicates that this entropy from the
entanglement of ground states is “available” as a resource for teleportation using simple
boundary couplings, just as the thermal entropy in the usual TFD state was.

It would be interesting to extend the calculations to consider other, general entangled
states of the dual field theory where the two-point functions between the two boundaries
are suppressed [13, 14]. The entanglement in such states in principle provides a resource for
quantum teleportation, but it is not clear if this teleportation could have a bulk description
as in [2]. It would also be interesting to consider states where the dual field theory has
interacted with an environment, as in [15].
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2 Bulk geometry and boundary CFT

2.1 RNAdS bulk solution

We consider Einstein-Maxwell gravity with a negative cosmological constant. The action is

S = 1
2κ2

∫
dd+1x

√
−g

[
(R− 2Λ)− `2

g2
F

F 2
]
, (2.1)

where gF is an effective dimensionless gauge coupling and the cosmological constant is
related to the AdS radius by

Λ = −d(d− 1)
2`2 . (2.2)

The theory admits a spherically symmetric Reissner-Nördstrom AdS black solution with
the metric and gauge field given by

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2
d−1, A = µ

(
1− rd−2

0
rd−2

)
dt, (2.3)

where dΩ2
d−1 is the round metric on Sd−1 and

f(r) ≡ 1− M

rd−2 + Q2

r2d−4 + r2

`2
. (2.4)

The full black hole geometry has two asymptotic regions, connected by an Einstein-Rosen
bridge. These coordinates cover one of the asymptotic regions.

The constants Q and M are proportional to the charge and ADM mass of the black
hole respectively. The gauge field At is dual to a conserved current Jt in the boundary
theory corresponding to a global U(1) symmetry. According to the holographic dictionary,
the boundary value of the gauge field, µ = At(r → ∞), is equal to the source of the
conserved current, i.e. µ is the chemical potential in the field theory. It is related to the
other bulk quantities through

µ =
√

d− 1
2(d− 2)

gFQ

`rd−2
0

, (2.5)

where r0 is the horizon radius, the largest positive root of the metric function f(r0) = 0.
Far from the black hole horizon, r � r0, the metric reduces to that of AdSd+1 in global
coordinates. For fixed mass M there is an open interval Q ∈ (0, Q∗) for which f has two
distinct positive roots. As Q approaches the extremal charge Q∗, these two roots converge
and f develops a double root at r = r∗. For Q > Q∗, the metric function has no positive
roots and no black hole solution exists. The temperature of the black hole is

T = d− 2
4πr0

[
1 + dr2

0
(d− 2)`2 −

Q2

r2d−4
0

]
= d− 2

4πr0

[
1 + dr2

0
(d− 2)`2 − µ

2 2(d− 2)`2

(d− 1)g2
F

]
. (2.6)

In the extremal limit Q → Q∗, T → 0. If we work in the grand canonical ensemble with
fixed µ, zero temperature is only reached if µ2 > µ2

c = (d−1)g2
F

2(d−2)`2 .
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The Euclidean black hole geometry is a saddle-point for the dual CFT in an appropriate
ensemble, and the Lorentzian black hole is a saddle-point for the TFD state obtained by
slicing the Euclidean path integral defining the ensemble in half. The TFD state for the
grand canonical ensemble is [7]

|ψ〉 = 1√
Z

∑
i

e−β(Ei+µQi)/2|Ei, Qi〉1 ⊗ |Ei,−Qi〉2. (2.7)

This is a state in the Hilbert space of two copies of the CFT, |ψ〉 ∈ H1⊗H2, corresponding to
the two asymptotic boundaries in the full spacetime, where |Ei, Qi〉 are a basis of eigenstates
of the Hamiltonian and the U(1) charge in the CFT Hilbert space. For this state to be
well-defined at low temperatures, β → ∞, E + µQ must be bounded below. The black
hole is the dominant saddle-point in the grand canonical ensemble for all temperatures if
µ > µc [16], so it provides the dual of this generalised TFD state. The finite entropy of
the black hole in the extremal, zero-temperature limit implies an approximate degeneracy
in the states at minimal E + µQ; in the extremal limit the TFD state remains entangled,
with an entanglement entropy given by the black hole entropy.

2.2 Near horizon geometry

In the zero temperature limit the metric develops a double pole at the horizon r = r∗. This
implies that the black hole develops an infinite throat; the horizon is an infinite proper
distance away on constant t hypersurfaces. Taylor expanding,

f(r) = 1
2(r − r∗)2f ′′(r∗) +O(r − r∗)3 ≈ (r − r∗)2

`22
, (2.8)

where

`2 ≡
[
d(d− 1)

`2
+ (d− 2)2

r2
∗

]− 1
2

. (2.9)

For a large black hole r∗ � ` we have `2 ≈ `/
√
d(d− 1). If we introduce the coordinate

ζ = `22
r − r∗

, (2.10)

the extremal geometry for large ζ is approximately AdS2 × Sd−1,

ds2 ≈ `22
ζ2

(
−dt2 + dζ2

)
+ r2
∗dΩ2

d−1, A ≈ e2
ζ

dt, (2.11)

where we have defined

e2 ≡ (d− 2) `
2
2
r∗
µ∗ =

√
(d− 1)(d− 2) `22QgF√

2`rd−1
∗

, (2.12)

with e2 ≈ gF /
√

2d(d− 1) for r∗ � `. We see that `2 and r∗ become the radii of AdS2 and
the (d−1)-sphere respectively. In this coordinate system the horizon is at ζ →∞, and the
geometry above is valid in a region of large ζ, ζ > ζc where ζc ∼ `22/r∗ is a cutoff where we
patch onto the full geometry, which is small for r∗ � `.
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For near-extremal, finite temperature black holes, we in addition define

ζ0 ≡
`22

r0 − r∗
. (2.13)

Close to extremality ζ0 � ζc, and the near-horizon geometry becomes an AdS2 black hole,

ds2 = `22
ζ2

−(1− ζ2

ζ2
0

)
dt2 + dζ2

1− ζ2

ζ2
0

+ r2
∗dΩ2

d−1, A = e2
ζ

(
1− ζ

ζ0

)
dt, (2.14)

with inverse temperature β = 2πζ0. The extremal limit is ζ0 → ∞. Rescaling the coordi-
nates z = ζ/ζ0, τ = t/ζ0, the AdS2 metric becomes

ds2 = `22
z2

[
−(1− z2)dτ2 + dz2

1− z2

]
. (2.15)

with β̃ = 2π and cut-off zc = ζc/ζ0. This is the metric of AdS2 in Rindler coordinates.
There is a horizon at z = 1 and the conformal boundary is at z = 0. We see that in these
coordinates the extremal limit ζ0 → ∞ leaves the metric unchanged and acts to take the
cut off zc → 0, reflecting the infinite length of the throat in the extremal limit.

These Rindler coordinates cover the right wedge of the spacetime. To discuss the full
AdS2 black hole region, we will also work in Kruskal coordinates on the AdS2, which are
related to the Rindler coordinates above by

U, V =
√

1− z
1 + z

e±τ . (2.16)

In these coordinates, the metric and gauge field are

ds2 = 4`22dUdV
(1− UV )2 , A = e2

V dU − UdV
(1− UV ) . (2.17)

The bifurcation surface of the Rindler horizon is at U = V = 0. The asymptotic boundaries
are at UV = 1; the right boundary has U, V > 0 and the left boundary has U, V < 0. The
near-horizon geometry is pictured in figure 1.

It will also be useful later in discussing the back-reaction to write AdS2 in terms of
embedding coordinates (X0, X1, X2) in R2,1, where AdS2 is realised as the universal cover
of the hyperboloid −X2

0 − X2
1 + X2

2 = −`22. The embedding coordinates are related to
Kruskal coordinates by

(X0, X1, X2) = `2

(
U − V
1− UV ,

1 + UV

1− UV ,
U + V

1− UV

)
. (2.18)

If we define lightlike coordinates X± = X0 ±X2, the hyperboloid is −X+X− −X2
1 = −`22,

and
(X+, X−, X1) = `2

( 2U
1− UV ,−

2V
1− UV ,

1 + UV

1− UV

)
. (2.19)

The near-horizon AdS2 region is associated in the dual CFT description with a flow
to a theory with an IR conformal symmetry acting just on the time direction [17]. This
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U

V

Figure 1. Near-horizon AdS2 geometry of the near-extremal black hole, showing the cutoff bound-
aries and horizons. The coordinates U, V increase towards the right boundary.

IR conformal symmetry is broken by the deviation away from AdS2 in the full geometry,
and we have a nearly AdS2/ nearly CFT1 duality in the IR [18–20].1 The dynamics of the
Einstein-Maxell theory in this near-horizon region of the RNAdS black hole reduces to JT
gravity [21].

It is useful to organise bulk fields in the near-horizon region in terms of their scaling
with respect to this IR conformal symmetry. Consider a bulk scalar field Φ(t, r,Ω) of mass
m and charge q on the full RNAdS background, dual to a local operator O(t,Ω) in the UV
boundary theory.

Expanding in spherical harmonics on the sphere,

Φ(x) =
∑
l,m

φlm(t, ζ)Ylm(Ω),
∫
Sd−1

r∗

dΩY ∗lmYl′m′ = δll′δmm′ , (2.20)

the field modes φlm are scalar fields on AdS2 of mass

m2
l ≡ m2 + l(l + d− 2)

r2
∗

. (2.21)

The coupling to the gauge field implies these fields are dual to operators of scaling dimen-
sion [17]

∆ = 1
2 +

√
1
4 +m2

l `
2
2 − q2e2

2. (2.22)

If we take q2e2
2 > m2`22 + 1

4 , the scalar field is unstable to condensing in the near-horizon
AdS2 region [22, 23], and the RNAdS solution will become unstable sufficiently close to
extremality. We will be interested in studying fields just below this instability threshold,
corresponding to ∆ ' 1

2 .
2

1The one-dimensional conformal symmetry of the fixed point is not related to the conformal invariance
of the ultraviolet CFTd which is broken by the non-zero chemical potential.

2In AdS2, we could obtain operators with ∆ < 1
2 by considering the alternative quantization of the scalar

field, but the near-horizon limit of the higher-dimensional solution gives us the standard quantization, so
∆ ≥ 1

2 .
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3 Wormhole construction

We want to consider the analogue of the traversable wormhole construction of [2] for this
black hole. This involves turning on a double trace deformation coupling the two CFTs on
the left and right cut-off boundaries with a time-dependant Hamiltonian

δH(t, ζc) = −h(t)OL(−t, ζc)OR(t, ζc), (3.1)

where h(t) is a coupling which we take to vanish for t < t0, and O is a boundary CFT
operator dual to some bulk scalar field Φ on the RNAdS black hole. This coupling is dual
to a modified boundary condition for the scalar Φ relating the fast fall-off part of the scalar
at one asymptotic boundary to the slow fall-off part at the other and vice-versa. The idea
of [2] is that introducing this coupling (with an appropriate choice of sign of h) produces
a quantum stress tensor which violates the averaged null energy condition (ANEC) along
the black hole horizon. That is,

∫
dU〈TUU 〉 < 0, where U is an affine parameter along the

horizon. This ANEC violation means that the back-reaction of this quantum stress tensor
can make the wormhole traversable; an observer crossing the horizon from one asymptotic
region experiences a time advance due to the negative null energy (crossing the horizon
moves them to an earlier time), and if they enter sufficiently early this enables them to
escape into the other asymptotic region.

In [2], this calculation was carried out on the BTZ black hole, where it was possible to
calculate the propagator for the scalar field with the modified boundary condition explicitly,
at leading order in the coupling h, and hence to obtain the ANEC violating stress tensor
on the horizon. We cannot do such a calculation explicitly in the full RNAdS black hole
geometry, as the scalar propagator on this geometry is not known in closed form. We
therefore focus on the calculation in the near-horizon AdS2 region. We can see the essential
physics of the extremal limit in this near-horizon region. In particular, we can study how the
calculation is affected by the diverging length of the Einstein-Rosen bridge. As discussed
in the previous section, in the Rindler coordinates of (2.15), this divergence is reflected in
the cutoff approaching the boundary of the AdS2 space, zc → 0.

We will consider one of the scalar modes φlm on the AdS2 space, and take a double-
trace coupling of the form (3.1) on the cutoff boundary at z = zc in AdS2. This is not
precisely the same as taking this double-trace coupling on the boundary of the full AdSd+1
spacetime, but we assume that in the limit of large black holes r∗ � `, the renormalization
group flow from the AdS boundary to the near-horizon region has a small effect.

As in [2], we then want to calculate the modified propagator for a charged scalar
field on AdS2 with these boundary conditions. Using the evolution operator U(t, t0) =

T e−i
∫ t

t0
dtδH(t,ζc) in the interaction picture the modified Wightman function is

〈φHR (t, ζ)φH†R (t′, ζ ′)〉 = 〈U−1(t, t0)φIR(t, ζ)U(t, t0)U−1(t′, t0)φI†R (t′, ζ ′)U(t′, t0)〉. (3.2)

– 7 –
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The superscripts H and I represent the Heisenberg and interaction picture respectively. To
leading order in h this is (suppressing the ζ coordinate at intermediate steps and omitting I)

Gh+ ≡ −i
∫ t

t0
dt1h(t1)〈[OL(−t1)OR(t1), φ†R(t)]φR(t′)〉

− i
∫ t′

t0
dt1h(t1)〈φ†R(t)[OL(−t1)OR(t1), φR(t′)]〉

≈ i
∫ t

t0
dt1h(t1)〈φR(t′)OL(−t1)〉〈[φ†R(t),OR(t1)]〉

+ i

∫ t′

t0
dt1h(t1)〈φ†R(t)OL(−t1)〉〈[φR(t′),OR(t1)]〉

= i

∫ t

t0
dt1h(t1)〈φR(t′)O†R(−t1 + iβ/2)〉〈[φ†R(t),OR(t1)]〉

= −
∫ t

t0
dt1h(t1)G+(t′, ζ ′;−t1 + iβ/2, ζc)G†ret(t, ζ; t1, ζc) (3.3)

where G+,ret are the Wightman and retarded bulk-to-boundary propagators respectively,
with the standard Dirichlet boundary conditions, and we have used analytic continuation
to write tL = tR + iβ/2. In the second line we used large N factorization and causality
[OL, φR] = 0. The second term in the second line is zero from 〈φφ〉 = 〈φ†φ†〉 = 0.

This expression is written in terms of the t, ζ coordinates obtained from the near-
horizon limit of the RNAdS black hole; to make the dependence on the extremal limit
more explicit, it is useful to switch to the τ, z Rindler coordinates. We have

Gh+ = −ζ1−2∆
0

∫ τ

τ0
dτ1h(τ1)G+(τ ′, z′;−τ1 + iπ, zc)G†ret(τ, z; τ1, zc), (3.4)

we see that this vanishes in the extremal limit ζ0 → ∞, unless ∆ = 1
2 . The wormhole is

becoming infinitely long in this limit, so the bulk-boundary two-point functions G go to zero
as ζ−∆

0 , and the effect of the change on the boundary conditions on the propagator between
points in the interior of the geometry is going to zero. There is an exception for fields with
∆ = 1

2 , which correspond, as discussed at the end of the previous section, to scalars on the
threshold of instability. For this case the effect remains finite in the extremal limit.

This discussion is assuming fixed coupling h(t1). We can instead take it to scale with
the inverse temperature β. This source function has dimension 1− 2∆, so we can take the
coupling to scale as

h(t1) = h

(2π
β

)1−2∆
θ

(2π
β

(t1 − t0)
)

= hζ2∆−1
0 θ(τ1 − τ0), (3.5)

where h is a dimensionless constant.3 The scaling of the prefactor will then cancel the
ζ1−2∆

0 term in Gh+, giving us a finite result for ∆ > 1
2 . This requires a diverging boundary

3This scaling of the coupling is introduced by hand to offset the behaviour of the propagator. There is
an RG flow from the AdSd+1 boundary to the AdS2 boundary, but this is unaffected by the extremal limit,
as the matching surface remains at finite distance from points in the outside region in the extremal limit.
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coupling in the extremal limit, but we see explicitly from the bulk propagator calculation
that this has only a finite effect in the bulk.

We will be interested in evaluating Gh+ for bulk points on the Killing horizon. In the
Kruskal coordinates, this corresponds to V = V ′ = 0 and some values U,U ′. On the right
boundary, the Kruskal coordinates U1, V1 are related to τ1, zc by (2.16), which for small
zc gives 1 − U1V1 ≈ 2zc. On the left boundary, we have (UL, VL) = −(VR, UR). Thus the
modified propagator is

Gh+ = −
∫ U

U0

dU1
U1

hG+(U ′, 0;−V1,−U1)G†ret(U, 0;U1, V1) (3.6)

with 1− U1V1 = 2zc.4

3.1 Charged scalar in AdS2

To calculate Gh+ explicitly, we need to know the bulk-boundary propagators for a charged
scalar field on AdS2, with the standard Dirichlet boundary conditions. By symmetry, the
propagator for a neutral scalar on AdSd+1 is a function only of the invariant distance
between the two points. On AdS2, the bulk-bulk Green’s function is (see e.g. [24])

G(x, x′) = C∆ξ
∆

2F1

(∆
2 ,

∆ + 1
2 ; 2∆ + 1

2 ; ξ2
)
, (3.7)

C∆ ≡
Γ(∆)

2∆π1/2(2∆− 1)Γ(∆− 1
2)
, ∆ = 1

2 +
√

1
4 +m2`22, (3.8)

where we represent the bulk points in terms of their embedding coordinates X,X ′, thinking
of AdS2 as the hyperboloid −X2

0 −X2
1 + X2

2 = −`22 in flat R2,1, and ξ = −1/X ·X ′ is an
SL(2)5 invariant related to the invariant distance between the two points.

For a charged scalar, by contrast, the Green’s function cannot be written purely as an
SL(2) invariant function of the coordinates. This is because the gauge field is not invariant
under SL(2) transformations, so the scalar equation of motion isn’t either. However, as the
field strength is invariant, the gauge field must only transform by some gauge transforma-
tion. The solution of the scalar equation of motion will then be some phase times an SL(2)
invariant function of the coordinates, G(x, x′) = eiqe2Λ(x,x′)P (ξ). We can determine P (ξ) by
solving forG in the case where the source is at the bifurcation surface of the Rindler horizon,
that is at U ′ = V ′ = 0 in the Kruskal coordinates of (2.17). The scalar equation of motion is

DµDµφ−m2φ = 0, (3.9)

where Dµ = ∂µ − iqAµ. In this case ξ = z, and we expect the solution to be independent
of τ by time-translation symmetry. Taking φ = P (ξ), the equation of motion becomes

ξ2∂ξ
((

1− ξ2
)
∂ξP

)
−
(
m2`22 − q2e2

2
1− ξ
1 + ξ

)
P = 0. (3.10)

4The scaling of the boundary coupling assumed in (3.5) cancels against the explicit dependence on ζ0 in
the propagator, so even though the boundary coupling is growing in the extremal limit, the perturbative
calculation of the propagator remains valid so long as the dimensionless constant h is small.

5We use the notation SL(2) ≡ SL(2,R).
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Taking the solution that is normalizable at infinity we get

P (ξ) = C∆

(
ξ

1− ξ

)∆ (1 + ξ

1− ξ

)iqe2

2F1

(
∆ + iqe2,∆ + iqe2; 2∆; 2ξ

ξ − 1

)
, (3.11)

with ∆ now given by expression (2.22). For q = 0, this reduces to (3.7) by applying a
transformation formula for the hypergeometric function.

In the gauge we have chosen for A, the phase factor Λ in the Green’s function vanishes
for a source on the bifurcation surface. To find Λ for a general point on the horizon we
can move the source along the horizon using an SL(2) transformation. A basis for the Lie
algebra sl(2) in terms of the embedding coordinates (X±, X1) is

Qa = 1
2ε

abcJbc, Jab = Xa
∂

∂Xb
−Xb

∂

∂Xa
. (3.12)

Let us consider the killing vector

v = Q+ = X−∂1 −X1∂− = ∂U − V 2∂V , (3.13)

we see that on the horizon v generates translations along the horizon, so it can be used
to move the source off the bifurcation surface. Under the action of this vector field, the
gauge field changes by LvA = dV . This means that under an infinitesimal transformation
x′ = x+εv the gauge transformation required to return A to the form in (2.17) is Λ = −εV .
This suggests that for a source at position U ′ on the horizon we should make the ansatz
G(x, x′) = eiqΛ(U ′,V )P (ξ). Plugging this into (3.10) one finds that this is a solution provided

Λ = ln(U ′V − 1). (3.14)

Thus, the bulk-bulk propagator for a source on the horizon is

G(U ′, 0, U, V ) = (U ′V − 1)iqe2P (ξ), (3.15)

where for a source point on the horizon,

ξ = 1− UV
1 + UV − 2U ′V . (3.16)

For a single propagator, the phase factor is not physical; one can always choose a gauge to
set it to zero. However, the calculation for Gh+ involves a product of propagators from the
left and right boundaries to the horizon and it’s not possible to chose a gauge which sets
both of the phase factors to zero. The relative phase between the propagators is physical.

We now want to obtain the bulk-boundary propagator between a point on the horizon
and points on the left and right boundaries. For the bulk-boundary propagator G+ between
the left boundary and the horizon, let us consider a point on the horizon at U ′ > 0, so that
the two points are spacelike separated. We can then simply take

G+(U ′, 0,−V1,−U1) = bmz
−∆
c G(U ′, 0,−V1,−U1), (3.17)
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Figure 2. The portion of the cutoff boundary between the two dashed curves is connected to the
point on the horizon by a geodesic.

where the constant bm relating the bulk-bulk and bulk-boundary propagators is

bm =

2∆− 1, ∆ > 1
2 ,

1
2 , ∆ = 1

2 .
(3.18)

In the limit as the bulk point approaches the boundary, ξ ≈ zc
1−U ′V , so the propagator

simplifies, as the hypergeometric function is simply one to leading order. Thus

G+(U ′, 0,−V1,−U1) = bmC∆e
−πqe2

( 1
1 + U ′U1

)∆−iqe2

. (3.19)

For the propagator to the right boundary, G†ret(U, 0;U1, V1), there is an interesting
subtlety; at finite cutoff, there is a region of the boundary with U1 ∈ (U(1− 2zc), U) which
is connected to the point (U, 0) by a timelike geodesic, as shown in figure 2. The structure
of the propagator is different in this region. The size of this region goes to zero as zc → 0,
but we need to check whether it makes a finite contribution to Gh+. In this region, it is
useful to make a change of variables U1 = U(1− 2zcx), with x ∈ (0, 1). Then

2ξ
ξ − 1 = (1− U1V1)

V1(U − U1) ≈
1
x
. (3.20)

Thus, the bulk-bulk propagator does not simplify in this region. However, P (ξ) is a function
only of x, with no dependence on zc at leading order, and the phase factor

(UV1 − 1)iqe2 ≈ (2zc(x− 1))iqe2 . (3.21)

The bulk-boundary propagator is thus G†ret(U, 0;U1, V1) = bmz
−∆
c G(U, 0, U1, V1) ∼

z−∆−iqe2
c f(x), so the contribution to Gh+ from this region is

Gh+ ∼
∫ U

U(1−2zc)

dU1
U1
G†ret(U, 0;U1, V1) ∼ z1−∆−iqe2

c

∫ 1

0
dxf(x), (3.22)

so the contribution from this region vanishes in the limit as zc → 0 so long as ∆ < 1. We
will henceforth assume that we consider operators with 1

2 ≤ ∆ < 1.
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In the region U1 ∈ (U0, (1− 2zc)U), we have

2ξ
ξ − 1 ≈

zc
UV1 − 1 , (3.23)

so
P = bmz

−∆
c P = bme

−iπ∆(UV1 − 1)−∆, (3.24)

and

Gret,R = (UV1 − 1)iqe22 ImP = −2bmC∆ sin(π∆)
(

U1
U − U1

)∆−iqe2

. (3.25)

We arrive at

Gh+ ≈ −
hC∆

2

∫ U

U0

dU1
U1

( 1
1 + U1U ′

)∆∗q ( U1
U − U1

)∆q

≡ −hC∆
2

∫ U

U0

dU1
U1

H(U,U ′, U1), (3.26)

where ∆q ≡ ∆ + iqe2 and C∆ ≡ 4b2mC2
∆e
−πqe2 sin(π∆).

3.2 Calculation of the stress tensor on the horizon

We now calculate the quantum stress tensor on the horizon due to this boundary condition,
showing that it leads to a violation of the ANEC. The stress tensor for a charged scalar is6

Tµν = (Dµφ)(Dνφ)† + (Dνφ)(Dµφ)† − gµνgρσ(Dρφ)(Dσφ)† − gµνm2|φ|2. (3.27)

In the original AdS2 geometry gUU = AU = 0 on the horizon, so the terms involving the
metric and gauge field drop out. The one-loop expectation value can then be related to
the modified bulk propagator via point splitting,

〈TUU 〉 = 2〈∂Uφ∂Uφ†〉 = lim
U ′→U

∂U ′∂U (Gh+(U,U ′) +Gh†+ (U,U ′)). (3.28)

Evaluating the integral in (3.26) we find a closed form expression for the modified bulk
propagator on the horizon7

Gh+ = hC∆
2(∆q−1)

( 1
1+U0U ′

)∆∗q( U0
U−U0

)∆q−1
F1

(
1;1−∆q,∆∗q ;2−∆q;1−

U

U0
,
(U0−U)U ′

1+U0U ′

)
,

(3.29)
where F1 is the Appell hypergeometric function. Thus, from (3.27), we also have a closed
form expression for the quantum stress tensor.

The wormhole is rendered traversable if the ANEC is violated on the horizon, so we
are interested in calculating the ANE given by

A∞(U0) =
∫ ∞
U0

dU〈TUU 〉 = 2
∫ ∞
U0

dU lim
U ′→U

∂U ′∂U ReGh+, (3.30)

6As the matter fields are charged, they will source a change in the electric field as well, which changes
the Maxwell stress tensor at the same order, but because of the index structure this does not contribute to
the null-null component of the stress tensor we consider below.

7Note that we have used a transformation formula for the Appell function to get Gh
+ in this form.
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where the superscript indicates that we are considering a source that is left on forever.
Note that A∞ has a simple relationship to the ANE for a source that is turned on for a
finite interval (U0, Uf ),

A(U0, Uf ) = A∞(U0)−A∞(Uf ). (3.31)

Rather than attempting the daunting task of directly integrating the stress tensor, we
choose a different tack; instead, we consider an instantaneous source function given by

hinst(t1) = h

(2π
β

)1−2∆
δ

(2π
β

(t1 − t0)
)

= h

ζ1−2∆
0

U0δ(U1 − U0). (3.32)

The ANE for this source is related to A∞ by (see [25])

A∞(U0) =
∫ ∞
U0

du
u
Ainst(u), (3.33)

where the limits of integration are determined by A∞(∞) = 0, i.e. if the source is never
turned on, nothing happens. The delta function source significantly simplifies the calcula-
tion. For an instantaneous source, the modified bulk propagator is simply

Ginst+ = −1
2hC∆H(U,U ′, U0). (3.34)

To calculate the ANE, however, it is better to start with the general expression (3.26) and
take the derivatives before setting the source to a delta function. This gives closed form
expressions for both ANEs

Ainst(U0) = Re

hC∆Γ(1−∆q)Γ(2Re∆q+1)
Γ
(
∆∗q
) U

2∆q+1
0

(1+U2
0 )2Re∆q+1

 , (3.35)

A∞(U0) = Re

hC∆Γ(1−∆q)Γ(2∆q+1)
(2∆q+1)Γ(∆q)

2F1
(

1
2 +∆q,

1
2−∆q; 3

2 +∆q; 1
1+U2

0

)
(1+U2

0 )∆q+ 1
2

 . (3.36)

It is interesting to note that if we considered an uncharged field, q = 0, our final
expression has the same U0 dependence as was found for the BTZ black hole in [2]. Ainst

and A∞ for q = 0 are plotted against U0 for different values of ∆ in figure 3. For the
instantaneous source, maximal ANE is achieved when the non-local coupling is turned on
at U0 = 1 which corresponds to tR = tL = 0. Conversely, A∞ is maximal when the coupling
is turned on in the infinite past U0 = 0 (tR = tL = −∞). For q = 0 and ∆ = 1

2 , we have
the simple expressions

Ainst(U0) = hU2
0

8
(
1 + U2

0
)2 (3.37)

A∞(U0) = h

16
(
1 + U2

0
) . (3.38)

The ANE for q > 0 is plotted against U0 in figure 4, and against ∆ for representative
values of U0 in figure 5. We see that while it increases with ∆ for q = 0, for q > 0 there is
some maximum at an intermediate value ∆ ∈ (1

2 , 1).
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Figure 3. The ANE as a function of U0 for q = 0.

4 Back-reaction and information bound

As discussed in the introduction, the back-reaction of this energy along the horizon will
produce a time advance, making it possible for a message from the left boundary sent in
at early times to reach the right boundary. This makes the Einstein-Rosen bridge in the
black hole into a traversable wormhole. We would like to understand how much information
can be transmitted through the wormhole, which requires taking into account the back-
reaction of the message. In the AdS2 context, these back-reaction questions can be easily
addressed using a JT gravity description of the nearly-AdS2 gravitational dynamics, as in [4]
(see [19, 26] for further discussion). The result is the same as in [4], as the back-reaction
only depends on the ANE along the horizon, which have seen above is qualitatively the same
for uncharged or charged fields. Thus, introducing a double-trace coupling for a single field
only allows us to communicate order one bits of information from one boundary to the other.

We will describe the calculation here briefly for completeness. In the JT gravity de-
scription, we take the bulk geometry to be fixed to be AdS2, and the position of the
boundaries is the dynamical information. When some matter is emitted into the bulk from
one of the boundaries, the back-reaction causes the boundary trajectory to change. This
change is described in terms of the SL(2) charges associated with the trajectories of the
boundary and the emitted particles.
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Figure 4. The ANE as a function of U0 for non-zero qe2 = 0.1.

In terms of the embedding coordinates Xa, the trajectories of the cutoff boundaries are
described by X ·Q = −2Φb, where Qa is a vector in R2,1 which specifies the charges of the
boundary trajectory under the SL(2) isometries of the bulk (we are thinking of the boundary
as a particle moving in the bulk), and Φb is the boundary value of the dilaton. This equation
gives a hyperbolic trajectory for the boundary, and the vector Qa can also be thought of as
specifying the center of this hyperboloid Xa = X̄a ∝ Qa, that is, the point in the bulk which
is light-like separated from the points where the trajectory meets the conformal boundary
of AdS2. For the near-horizon AdS2 geometry described in (2.15), the boundaries lie at
X1 ≈ `2/zc, whose center is the bifurcation surface at U = V = 0, that is X̄± = 0, X̄1 = `2.
This implies X · X̄ = −`22/zc. For the right boundary, the SL(2) charge is QR = Q, and
for the left boundary, QL = −Q, so that the total SL(2) charge vanishes, QL +QR = 0.

If we inject matter into the bulk it will also carry an SL(2) charge. Matter particles
in the bulk follow geodesics, which can be described by trajectories X ·Qm = 0, where Qm
is the SL(2) charge of the matter. The total SL(2) charge vanishes, QL + QR + Qm = 0,
so the addition of matter will change the trajectories of the boundaries. If say the left
boundary emits some positive energy matter, the recoil pushes it away, increasing the
distance between the two boundaries.
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Figure 5. The ANE as a function of ∆. For q > 0, the ANE is suppressed at ∆ = 1 by the factor
of sin(π∆) in C∆.

We are interested in two forms of back-reaction. First we consider the back-reaction
of the bulk stress tensor due to the double-trace coupling. In the previous section, we
calculated the null energy integrated along the horizon; this is precisely the charge

Qm,− =
∫

dU〈TUU 〉. (4.1)

This matter was emitted by the right boundary, so this shifts the right boundary trajectory
by QR → QR − Qm. The negative Qm,− thus moves the center of the right boundary
trajectory to negative V ; the shift ∆V = CQm,−/2, where C is a normalization factor
depending on our conventions for the charges. This makes it possible for messages leaving
the left boundary at early times, at small negative V , to reach the right boundary. Note
that the message needs to enter the wormhole at some finite time in the past in the Rindler
time coordinate τ ; this implies that the time with respect to the asymptotic time t = ζ0τ

scales as the inverse temperature, so in the extremal limit the time it takes the message to
go through the wormhole diverges.

Secondly, we consider the back-reaction on the left boundary of the emission of such
a message. The message must be emitted at early times, so it is highly boosted relative
to our bulk coordinate system, and will follow a nearly null trajectory in the bulk, with
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Figure 6. The emission of a null particle back-reacts on the trajectory of the left boundary, moving
the center down along the horizon.

some momentum Q′m,+ = pV . The back-reaction of the message shifts the left boundary
by QL → QL − Q′m, moving the two boundaries further apart and suppressing the effect
of the double-trace coupling. The center of the left boundary trajectory shifts down by
δU = CpV /2, as pictured in figure 6. This corresponds to transforming the boundary
trajectory by a translation along the vector field v considered earlier.

This shift can thus be accounted for by a shift in the horizon coordinate in the cal-
culation of the propagator from the left boundary to the horizon, so the integrand of the
modified bulk propagator in the shockwave geometry is

Hδ(U,U ′, U1) =
( 1

1 + U1(U ′ + δU)

)∆∗q ( U1
U − U1

)∆q

. (4.2)

Repeating the same analysis as before we find

Ainstδ (U0) = Re

hC∆Γ (1−∆q) Γ (2 Re ∆q + 1)
Γ
(
∆∗q
) U

2∆q+1
0(

1 + U2
0

(
1 + δU

U0

))2 Re ∆q+1

 . (4.3)

Comparing this expression to (3.35) we see that the probe approximation is valid for
δU/U0 � 1. This implies that the total momentum carried by the message is bounded,

ptotalV

2 <
U0
C
. (4.4)

A lower bound on the momentum carried by the individual particles making up the
message can be found using the uncertainty principle,

peachV &
1

∆V = 2
C|A|

. (4.5)
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Combining this with the probe approximation gives a bound on the number of bits that
can be sent through the wormhole,

N = ptotalV

peachV

< U0|A|. (4.6)

We see from the discussion of the ANE in the previous section that the r.h.s. takes values
less than one.

Thus, coupling a single field in the AdS2 region would only allow us to send less than one
bit of information before the back-reaction of the message starts to close up the wormhole.
It might seem surprising that this result is independent of the entropy of the black hole;
but this is just because we have focused on coupling a particular spherical harmonic φ`m
of a (d + 1)-dimensional scalar field Φ. If we want to restrict attention to operators with
∆ = 1

2 , for which we can generate a traversable wormhole with a finite boundary coupling
even in the extremal limit, we will only be able to consider the s-wave excitation of a
scalar that saturates the instability threshold, and we will only be able to communicate
less than a single bit for each field. However, if we allow consideration of operators with
1
2 < ∆ < 1 in the AdS2 region, with a coupling that scales with the temperature, we get
to consider a large number of spherical harmonics on the Sd−1: for r∗ � `, we have K
spherical harmonics with ∆ < 1 where

K ∼ rd−1
∗
`d−1
2
∼ A

`d−1 , (4.7)

so the number of fields we can introduce such a coupling for, and hence the number of bits
we can send through the wormhole, scales as the area of the horizon in AdS units, as in the
BTZ analysis of [25]. As in [25], to make the number of bits scale like the area in Planck
units, we would need to consider a large number of (d+ 1)-dimensional fields Φ.
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