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Abstract

Motivated by a multi-fidelity Weather Research and Forecasting (WRF) climate
model application where the available simulations are not generated based on hier-
archically nested experimental design, we develop a new ko-criging procedure called
Augmented Bayesian Treed Co-Kriging. The proposed procedure extends the scope
of co-kriging in two major ways. We introduce a binary treed partition latent process
in the multifidelity setting to account for non-stationary and potential discontinuities
in the model outputs at different fidelity levels. Moreover, we introduce an efficient
imputation mechanism which allows the practical implementation of co-kriging when
the experimental design is non-hierarchically nested by enabling the specification of
semi-conjugate priors. Our imputation strategy allows the design of an efficient RJ-
MCMC implementation that involves collapsed blocks and direct simulation from con-
ditional distributions. We develop the Monte Carlo recursive emulator which provides
a Monte Carlo proxy for the full predictive distribution of the model output at each
fidelity level, in a computationally feasible manner. The performance of our method
is demonstrated on benchmark examples and used for the analysis of a large-scale cli-
mate modeling application which involves the WRF model. Supplementary materials
are available online.
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1 Introduction

Understanding the behavior as well as the underlying mechanisms of real systems such as

physical procedures is central to many applications such as weather forecasting. Direct

investigation of the real system is often impossible due to limited resources, and hence it is

simulated by computer models aiming at reproducing the real system’s behavior with high

accuracy. Our case study involves an expensive computer model which requires a significant

amount of resources to perform a single run; and hence, only a limited number of simulations

can be performed. Gaussian process (GP) regression models (Sacks et al., 1989) are statistical

models that allow the emulation of the computer model output by using only a few runs of

the computer model.

Computer models are often able to run at different levels of fidelity, sophistication, or

resolution. As high fidelity runs are usually more expensive, collecting data by simulating

the model at different fidelity levels is preferred for a given budget of resources. Statistical

inference is preferable to be made against the whole simulated data set, and thus account

for across fidelity level dependence, rather than against simulated data sets associated with

individual fidelity levels (Kennedy and O’Hagan, 2000). Assume there are available S deter-

ministic computer models {Ct}St=1 aiming at simulating the same real system. The models

are ordered by ascending fidelity level t. Let yt(x) : X → R denote the output function

of the computer model Ct with respect to a m-dimensional input x ∈ X . Autoregressive

co-kriging assumes an autoregressive model

yt(x) = ξt−1(x)yt−1(x) + δt(x) for x ∈ X , t = 2, ..., S (1)

where yt−1(x) , δt(x), ξt−1(x) are independent unknown functions a priori modeled as Gaus-

sian processes. Here, δt(·) is the location discrepancy function (representing a local adjust-

ment from Ct−1 to Ct), and ξt(·) is the scale discrepancy (representing a scale change from
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Ct−1 to Ct for t = 1, ..., S). Discrepancy terms, {δt(·)} and {ξt(·)}, can be thought of as ac-

counting for ‘missing’ or ‘misrepresented’ physical properties in the lower fidelity computer

model Ct−1 with respect to the higher one Ct. Model (1) is induced by the Markovian con-

dition cov(yt(x), yt−1(x
′)|yt−1(x)) = 0 of the heuristic ‘there is nothing more to learn about

yt(x) from yt−1(x
′) for any x′ 6= x given yt−1(x) is known ’ which is broadly accepted in

computer experiments (OH́agan, 1998). Originally, Kennedy and O’Hagan (2000) considered

a constant ξt−1 = ξt−1(x) for all x ∈ X in (1) to impose stationarity throughout t.

A number of important variations of the autoregressive co-kriging have been proposed.

Qian et al. (2005) used ξt−1(x) as a polynomial expansion to model more general autoregres-

sive dependencies. Based on this, Qian and Wu (2008) considered the scale discrepancy as a

function of the input space by casting it as a GP. In practice, their approach is applicable to

problems with only two fidelity levels, as the computational overhead caused by using more

fidelity levels is increased dramatically. Le Gratiet (2013); Le Gratiet and Garnier (2014)

modeled the scale discrepancy as an expansion of bases defined on the inputs, and presented

conditional conjugate priors which lead to standard conditional posterior distributions for

the unknown coefficients of the expansion. However, casting the scale discrepancy as a ba-

sis expansion may require an undesirably large number of bases in order to explain small

scale discrepancies; while it cannot represent discontinuities and sudden changes. Further-

more, this may aggravate non-identifiability between the scale and additive discrepancies.

Perdikaris et al. (2015) proposed a machine learning framework, which uses sparse preci-

sion matrices of Gaussian-Markov random fields introduced by Lindgren et al. (2011). This

facilitates computations that leverage on the sparsity of the resulting discrete operators.

Perdikaris et al. (2017) relaxed the auto-regressive structure by using deep learning ideas,

however the computational demands to train the model are significantly increased. The

aforementioned developments require hierarchically nested experimental designs for compu-

tational reasons, otherwise the computational demands become impractical. This constraint
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prevents their practical implementation on a number of important real world problems where

the available data set is not based on such nested designs.

We are motivated by a real world application that involves the Weather Research and

Forecasting (WRF) regional climate model (Skamarock et al., 2008). WRF is an expensive

computer model that allows the use of different resolutions leading to different fidelity levels.

We consider the WRF with the Rapid Radiative Transfer Model for General Circulation

Model (Pincus et al., 2003), with the Kain-Fritsch convective parametrisation scheme (KF

CPS) (Kain, 2004), and with five input parameters, while we are interested in the average

precipitation as an output. The available simulations were generated by running WRF

at two resolution levels, 12.5km and 25km grid spacing. The fidelity of the simulations

increases when the grid spacing gets finer. The available simulations have not been generated

based on a hierarchically nested design, while it is not possible to re-run the expensive

computer model in our facilities and generate simulations based on such a design due to the

high computational cost required. The aforesaid co-kriging methods cannot be implemented

directly due to the lack of nested design, and hence new developments are required. We are

interested in designing an accurate emulator that aggregates all the available simulations as

well as represents features of the WRF. Previous research in (Yan et al., 2014; Yang et al.,

2012) suggested that discrepancies between the two levels may depend on the five inputs of

the KF CPS. Interest also lies in better understanding how different grid spacing affects the

discrepancies in WRF with respect to the input parameters. Existing co-kriging methods do

not model/account for such behaviors, thus suitable extensions must be introduced.

We propose the Augmented Bayesian Treed co-kriging (ABTCK); a fully Bayesian method

for building multifidelity emulators of computer models that extends the scope of co-kriging

mainly in two ways. The proposed method is able to address applications where the avail-

able training data set has not necessarily been generated according to a hierarchically nested

experimental design. To achieve this, we introduce a suitable imputation mechanism that
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augments the original data set with uncertain quantities which can be thought of as miss-

ing data from a complete data set generated based on an hierarchically nested design. The

proposed imputation allows the specification of conditional conjugate priors, and analytic

integration of a large number of dimensions from the posterior. A different remedy for non-

hierarchically nested designs is studied in the Thesis of Zertuche (2015), however, unlike our

approach, that approach leads to an approximation of the posterior distribution while it is

concentrated to only two fidelity levels. Moreover, our method is able to account for non-

stationary, and possible discontinuities. This is achieved by suitably specifying the statistical

model as a combination of computationally convenient and GP regression models by using

a binary treed partition which a priori follows a process similar to (Chipman et al., 1998;

Gramacy and Lee, 2008). The additional flexibility of the proposed model aims at produc-

ing more accurate predictions as well as providing an insight of the model discrepancies. To

facilitate inference, we propose a reversible jump Markov chain Monte Carlo (RJ-MCMC)

implementation, tailored to the proposed model, that involves an efficient MCMC sampler

which operates on the joint space of the missing data and the parameters, and consists of

collapsed blocks. Due to the augmentation, the MCMC loop consists of local RJ updates

operating on a lower dimensional state space and producing more acceptable proposals, and

a block simulating the missing data directly from the conditionals. Finally, we propose the

Monte Carlo recursive emulator, as an alternative to those in (Kennedy and O’Hagan, 2000;

Le Gratiet and Garnier, 2014; Le Gratiet, 2013), which is able to provide fully Bayesian

posterior predictive inference even with non-nested designs while keeping the computational

cost lower than the others.

The rest of the paper is organized as follows. In Section 2, we present the proposed

procedure; in Section 3, we provide numerical comparisons with other methods; and in

Section 4, we implement our procedure for the analysis of the WRF model. Conclusions are

summarised in Section 5.
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2 The Augmented Bayesian Treed co-Kriging

We describe the development of our Augmented Bayesian treed co-kriging model (ABTCK)

which extends the scope of co-kriging to applications with non-nested designs and/or non-

stationary model outputs. A schematic is available in Supplementary Section S.1.

2.1 Treed auto-regressive co-kriging model

To account for non-stationarity we consider an unknown partition {Xk}Kk=1 of the input space

X , whose sub-regions are assumed to be homogeneous in the sense that a co-kriging model

(1) can be defined independently at each sub-region, i.e.

yk,t(x) =ξk,t−1(x)yk,t−1(x) + δk,t(x) for x ∈ Xk, t = 2, ..., S ; (2)

such that input dependencies are represented accurately enough by parameterizing the un-

known scale discrepancies {ξk,t(x)}, location discrepancies {δk,t(x)}, and output functions

{yk,1(x)} with computationally convenient forms.

We cast {Xk}Kk=1 as a binary tree partition with rectangular sub-regions Xk := Xk(T ),

for k = 1, ..., K(T ), determined by a binary tree T . This specification adds structure to the

model for the sake of computational convenience, however it can still provide a reasonable

approximation to the reality. Binary treed partitioning has been successfully used in other

problems (Denison et al., 1998; Chipman et al., 1998; Gramacy and Lee, 2008; Pratola et al.,

2017; Konomi et al., 2017; Karagiannis et al., 2017). To account for the uncertainty about

T , we use the binary tree process prior of Chipman et al. (1998) specified as

π(T ) = Prule(ρ|v, T )
∏
vi∈I

Psplit(vi, T )
∏
vj∈E

(1− Psplit(vj, T )), (3)

where E denotes the set of external nodes corresponding to sub-regions of the partition
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{Xk(T )} and I denotes the internal nodes. It describes a process where input space is

recursively sub-divided by spiting a sub-region, one at a time, into two regions according to

a probability low. In particular here, prior tree process T has origin denoting the whole input

space X , while each node v ∈ T represents a sub-region of the input space. Each node splits

with probability Psplit(v, T ) = ζ(1 + uv)
−d where uv is the depth of v ∈ T , ζ controls the

balance of the shape of the tree, and d controls the size of the tree. The splits are performed

based on a random splitting rule ρ which follows a distribution Prule(ρ|v, T ) ∝ 1 specifying

that the dimension and the location of the split are drawn independently and randomly.

We specify mutually independent Gaussian processes (GP) priors for yk,1(·), and δk,t(·)

yk,1(·)|T ∼ GP
(
µ1(·|βk,1), σ2

k,1R1(·, ·|φk,1)
)

; (4)

δk,t(·)|T ∼ GP
(
µt(·|βk,t), σ2

k,tRt(·, ·|φk,t)
)
, for t = 2, . . . , S, (5)

for k = 1, ..., K, to account for their uncertainty. Given a suitable partition {Xk}Kk=1

for the model (2), we can use simple and computationally convenient functions to model

µt(·|βk,t), Rt(·, ·|φk,t), and ξk,t(x). The mean functions are parametrized as basis expan-

sions µt(·|βk,t) = ht(·)Tβk,t, where ht(·) is a vector of basis functions and βk,t are vectors

of coefficients, at fidelity level t, and sub-region Xk. The GP mean parameterized as an

expansion of basis functions allows modeling long scale variations along x which facilitates

the use of computationally convenient correlation functions modeling low scale variations

in a similar manner to the standard GP regression as in (Ba and Joseph, 2012; Sang and

Huang, 2012). We consider a the family of square exponential correlation functions in sepa-

rable form Rt(x,x
′|φk,t) = exp(−1

2
(x−x′)>diag(φk,t)(x−x′)); more sophisticated ones can

be used (Williams and Rasmussen, 2006). The unknown functions {ξk,t(x)} are modeled as

low degree basis expansions ξk,t(x|γk,t) = wt(x)Tγk,t where {wt(x)} are polynomial bases

and {γk,t} are uncertain coefficients. Modeling µt(·|βk,t), and ξk,t(x) as basis expansions

facilitates the specification of conjugate priors and leads to computational savings given a
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suitable treatment in the likelihood to be introduced in Section 2.2.

2.2 Conditional conjugacy via augmentation

We do not require the available experimental design to be hierarchically nested, unlike exist-

ing co-kriging methods (Kennedy and O’Hagan, 2000; Le Gratiet, 2013). Namely, if {yt,Dt}

denotes the available training data set with output values yt ∈ Rnt at the experimental de-

sign D t of size nt at fidelity level t = 1, .., S, it may be Dt+1 6⊆ Dt for some t. This realistic

generalization prevents the direct specification of priors conjugate to the Gaussian likelihood

f(y1:S|T ,σ2
1:S,φ1:S,β1:S,γ1:S−1), and hence makes the Bayesian computations prohibitively

expensive. In such cases, direct implementation of existing co-kriging methods would require

the inversion of large covariance matrices with size
∑

t nt ×
∑

t nt for the computation of

the likelihood, and possibly the use of Metropolis-Hastings operations in high-dimensional

state spaces which would lead to practically infeasible computations. The introduction of the

binary partition exacerbates this issue as it increases the dimensionality of the posterior by

introducing additional unknown parameters βk,t,γk,t, σ
2
k,t,φk,t associated to each sub-region;

this necessitates the specification of conjugate priors.

We address this issue by properly imputing the observed data with uncertain quanti-

ties, that can be thought of as missing data of a hierarchically nested experimental design,

able to induce a conditional independence that enables the specification of conjugate priors,

facilitates tractability of posterior marginals and conditionals, and allows the design of ef-

ficient MCMC implementations, while it leads to the same Bayesian inference as if we had

considered the original data set only.

Augmentation Let {yk,t,Dk,t} be the observed data set with output values yk,t = yt(Dk,t)

and design Dk,t at sub-region Xk and fidelity level t. Assume sets of points D̃k,t and D̊k,t

such that D̃k,S = Dk,S with D̊k,S = ∅, and D̃k,t = Dk,t ∪ D̊k,t where D̊k,t = D̃k,t+1 − Dk,t

is defined as the relative complement of Dk,t in D̃k,t+1 for t = S − 1, ..., 1. It is easy to

8



check that D̃k,t = ∪Sj=tDk,j, and that {D̃k,t}St=1 is hierarchically nested; i.e. D̃k,t ⊆ D̃k,t−1.

By construction, {D̊k,t} is the smallest collection of sets of input points required to be

added to the original design {Dk,t} in order to obtain a hierarchically nested experimental

design {D̃k,t}. Let ẙk,t = yt(D̊k,t) be the missing output values of the computer model

at the corresponding input points in D̊k,t . We refer to {ẙk,t, D̊k,t} as missing data set,

and {ỹk,t, D̃k,t} as complete data set, where D̃k,t is the complete experimental design, and

ỹk,t = yt(D̃k,t) are the output model values at input points in D̃k,t. The number of input

points at sub-region Xk and fidelity level t after augmentation is denoted as ñk,t = |D̃k,t|.

The joint distribution of ỹ = (ỹk,t) given the parameters (T ,β,γ,σ2,φ) is

f(ỹ|T ,β,γ,σ2,φ) =
K∏
k=1

fk(ỹk,1|βk,1, σ2
k,1,φk,1)

S∏
t=2

fk(ỹk,t|ỹk,t−1,βk,t,γk,t−1, σ2
k,t,φk,t) (6)

where each conditional fk(ỹk,t|...) is a Gaussian distribution with mean ξt−1(D̃k,t|γk,t−1) ◦

yk,t−1(D̃k,t)+µt(D̃k,t|βk,t), and covariance σ2
k,tRt(D̃k,t, D̃k,t|φk,t). Here, ◦ denotes the Hadamard

product. The joint distribution of ỹ can be factorized as in (6) because the proposed augmen-

tation artificially creates a hierarchically nested design which due to the Markovian condition

of (2) induces the required conditional independence. The computation of the augmented

likelihood (6) is broken down into that of S Gaussian densities requiring the inversion of

ñk,t× ñk,t covariance matrices. Otherwise, we would be unable to factorize (6) and we would

be required to invert a larger covariance matrices with sizes
∑

t nt ×
∑

t nt.

Priors To account for the uncertainty about unknowns β,γ,σ2,φ, we specify a prior

factorized as

π(β,γ,σ2,φ|T ) =
K∏
k=1

π(βk,1, σ
2
k,1|T )π(φk,1|T )

S∏
t=2

π(βk,t,γk,t−1, σ
2
k,t|T )π(φk,t|T ). (7)
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We assign Normal-inverse-Gamma prior distributions on (β, γ, σ2) such as

βk,1|T , σ2
k,1 ∼ Np1

(
b1, σ

2
k,1B1

)
; σ2

k,1|T ∼ IG(λ1, χ1) ;

βk,t,γk,t−1|T , σ2
k,t ∼ Npt+qt−1

([
bt, gt−1

]>
, σ2

k,tdiag (Bt,Gt−1)
>
)

; σ2
k,t|T ∼ IG(λt, χt) ;

which are conjugate to the conditionals fk(ỹk,t|...) in augmented likelihood (6). This allows

the analytic marginalization of the posterior and leads to important computational benefits

discussed in Section 2.3. Without augmentation, we would be unable to specify conjugate

priors for the actual likelihood, and computations for learning (β,γ,σ2) would be imprac-

tical. Elicitation of the priors is performed according to (Oakley, 2002; Brynjarsdóttir and

O’Hagan, 2014). Weakly informative priors are obtained by adjusting bt, gt−1, B
−1
t and G−1t

to be close to zero as they place equal amount of prior mass above and below zero in µt(·)

and ξt(·), and λt → 1 + (pt + qt−1)/2 for t = 2, ..., S, and λ1 → 1 + p1/2. Here, {π(φk,t|T )}

are proper priors chosen by the researcher.

The posterior distribution of ABTCK model is

π(T ,β,γ,σ2,φ, ẙ|y) ∝ f(ẙ|y, T ,β,γ,σ2,φ)f(y|T ,β,γ,σ2,φ)π(β,γ,σ2,φ|T )π(T ) (8)

admits the posterior of interest π(T ,β,γ,σ2,φ|y) as marginal by construction, and hence

leads to the same Bayesian analysis.

2.3 Bayesian inference and computations

We design a RJMCMC sampler, targeting the augmented posterior (8), that involves a ran-

dom permutation scan of blocks updating [̊y|y,φ,σ2,γ, T ], [φ, T |ỹ], and [β,γ,σ2,φ|ỹ, T ].

The blocks are collapsed to avoid undesired high Monte Carlo (MC) standard errors due to

the originally high-dimensional sampling space (Liu, 1994). The sampler is computationally

efficient as it breaks down the inversion of covariance matrices and involves parallel sam-
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pling at different sub-regions k and fidelity levels t. Details regarding the MCMC blocks are

explained below.

Update [̊y|y,φ,γ,σ2, T ] The full conditional posterior of ẙk,t, after integrating out β’s

from the joint posterior (8), is a Normal distribution with mean and covariance matrix

µ̊k,t =Σ̊k,t

[
R̂−1t (φk,t|D̊k,t; Dk,t)

σ2
k,t

µ̂(t−1)→t(φk,t,γk,t−1|D̊k,t; Dk,t)

+Ξt(D̊k,t|γk,t)
R̂−1t+1(φk,t+1|D̊k,t; D

⊗
k,t+1)

σ2
k,t+1

µ̂(t+1)→t(φk,t+1,γk,t|D̊k,t; D
⊗
k,t+1)

]
(9)

Σ̊k,t =

[
R̂−1t (φk,t|D̊k,t; Dk,t)

σ2
k,t

+ Ξt(D̊k,t|γk,t)
R̂−1t+1(φk,t+1|D̊k,t; D

⊗
k,t+1)

σ2
k,t+1

Ξt(D̊k,t|γk,t)

]−1

where D⊗k,t+1 := D̃k,t+1 − D̊k,t is the relative complement of D̊k,t in D̃k,t+1 , Ξt(D̊k,t|γk,t) =

diag(ξt(D̊k,t|γk,t)), for k = 1, ..., K and t = 1, ..., S − 1. The functions R̂t, µ̂(t−1)→t, and

µ̂(t+1)→t are given in Appendix A. We observe that updating missing data ẙk,t takes into

account information from the lower level t− 1, same level t, and higher level t+ 1 by inter-

polating the associated moments. For instance, µ̂(t−1)→t (and µ̂(t+1)→t) provide information

about the location of ẙk,t from levels t − 1, t (and levels t + 1, t). It is worth mentioning

that (9) can be re-written as a matrix-weighted average of µ̂(t−1)→t, and scaled µ̂(t+1)→t ; i.e.

µ̊k,t = Ω̊k,t

(
φk,t,γk,t, σ

2
k,t, σ

2
k,t+1

)
µ̂(t−1)→t(φk,t,γk,t−1|D̊k,t; Dk,t)

+
(
I − Ω̊k,t

(
φk,t,γk,t, σ

2
k,t, σ

2
k,t+1

))
Ξ−1t (D̊k,t|γk,t) µ̂(t+1)→t(φk,t+1,γk,t|D̊k,t; D

⊗
k,t+1).

Ω̊k,t

(
φk,t,γk,t, σ

2
k,t, σ

2
k,t+1

)
= Σ̊k,t

R̂−1t (φk,t|D̊k,t; Dk,t)

σ2
k,t

.

Hence, each update interpolates both across the input space at an individual fidelity level

and across the fidelity levels. Simulating [̊yk,t|y,φ,γ,σ2, T ] can be performed in parallel for

k which is a computational benefit, and it can be suppressed if D̊k,t = ∅.
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Elaborating further into specific cases of the above imputation, if levels t and t+1 do not

share any design points at all, at sub-region Xk, i.e., D⊗k,t+1 = ∅, then R̂−1t+1(φk,t+1|D̊k,t; ∅) =

R−1t+1(D̊k,t, D̊k,t|φk,t+1), and µ̂(t+1)→t(φk,t+1,γk,t|D̊k,t; ∅) = yk,t+1(D̊k,t)−H t+1(D̊k,t)bt+1. This

implies that, given weak priors on δk,t+1(·) are specified, i.e. bt+1 → 0, the update of missing

ẙk,t obtains information from the upper level t+1 which entirely relies on the observed output

yk,t+1 and not from the discrepancy terms δk,t+1(·) and ξk,t(·) of the two levels. If levels t

and t + 1 share design points, D⊗k,t+1 6= ∅, the extra structure of the equations of µ̂(t+1)→t

and R̂−1t+1 in (27) and (26) (see Appendix A) can be interpreted as the factor quantifying the

discrepancy between levels t and t+1. Finally, we can see that when the correlation between

the two levels t and t + 1, at sub-region Xk, is weak, e.g. Ξt(D̊k,t|γk,t) → 0, the missing

data update resembles the prediction relying only on the information from the current level

t. Based on these observations, it may be preferable to consider designs with some overlap

at adjacent levels not only for computational convenience but also for modeling reasons.

However, a theoretical proof of this statement is out of scope.

Update [T ,φ|ỹ] To update [T ,φ|ỹ], we propose a mixture of the Markov transitions

targeting the augmented marginal posterior π(T ,φ|ỹ) whose density is proportional to

π(ỹ, T ,φ) = π(T )
K∏
k=1

π(ỹk,1,φk,1|T )
S∏
t=2

π(ỹk,t,φk,t|ỹk,t−1, T ), (10)

π(ỹk,t,φk,t|ỹk,t−1, T ) = π(φk,t)
|Âk,t(φk,t)|

1
2

|Bt|
1
2 |Gt|

1
2

χλtt

π
ñk,t
2

Γ(λt +
ñk,t

2
)

Γ(λt)

(
SSEk,t(φk,t)

)−λt− ñk,t
2 (11)

where SSEk,t(φk,t) = (ñk,t + 2λt − 2)σ̂2
k,t(φk,t). Functions σ̂2

k,t and Âk,t are given in (23)

and (24) in Appendix A. The Markov transitions are based on the operations change,

swap, rotate, and grow & prune, introduced by (Chipman et al., 1998; Gramacy and Lee,

2008). The first three operations are Metropolis-Hastings algorithms (Hastings, 1970) whose

implementation is straightforward. The grow & prune operations are local reversible jump
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(RJ) transitions and further specification is required.

The grow operation performing a transition from state (T ,φ) to (T ∗,φ∗) works as follows.

We randomly select an external node ωj0 and assume it corresponds to a sub-region Xj0 , data

set {D̃j0 , ỹj0}, and parameters φj0,t though the augmented statistical model. We propose

node ωj0 to split into two new child nodes ωj1 and ωj2 according to the splitting rule Prule in

prior (7), and we denote the proposed tree as T ∗. Nodes ωj1 and ωj2 correspond to disjoint

sub-regions Xj1 and Xj2 (with Xj0 = Xj0 ∪ Xj1), data sets {D̃j1,t, ỹj1,t} and {D̃j2,t, ỹj2,t},

and parameters φ∗j1,t and φ∗j2,t, respectively. Randomly, one of the parameters φ∗j1,t or φ∗j2,t

inherits the values from the parent ones; e.g., φ∗j1,t = φj0,t. The values of the other parameter

are proposed by simulating from a probability distribution; e.g., φ∗j2,t ∼ Qt(·), such as the

corresponding priors. The rest elements of φ∗t inherit their values from φt. The proposed

transition is accepted with probability min(1,∆) where

∆ =
ζ(1 + uωj0

)−d(1− ζ(2 + uωj0
)−d)2

1− ζ(1 + uωj0
)−d

|G|
|P∗|

S∏
t=2

π(ỹj1,t,φ
∗
j1
|ỹj1,t−1, T

∗)π(ỹj2,t,φ
∗
j2,t
|ỹj2,t−1, T

∗)

π(ỹj0,t,φ
∗
j1,t
|ỹj0,t−1, T )Qt(φ

∗
j2,t

)

×
π(ỹj1,1,φ

∗
j1,1
|T ∗)π(ỹj2,1,φ

∗
j2,1
|T ∗)

π(ỹj0,1,φ
∗
j1,1
|T )Qt(φ

∗
j2,1

)
, (12)

G is the set of growable nodes in tree T , and P∗ is the set of prounable nodes in tree T ∗.

The prune operation, performing a transition from state (T ∗,φ∗) to (T ,φ), is fully defined

as the reverse operation of the grow operation, and is accepted with probability min(1, 1/∆).

Due to the proposed augmentation in Section 2.2, we are able to analytically integrate

out a potentially high-dimensional parameter vector (β,γ,σ2) from the joint density (8),

and hence design local RJ moves targeting the marginal π(T ,φ|ỹ). The benefit from this

collapsed update is that the proposed RJ algorithm operates on a lower dimensional state

space, which allows for shorter and more acceptable jumps in practice. If necessary, grow and

prune operations can be further improved by using the annealing mechanism of Karagiannis

and Andrieu (2013).
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Update [β,γ,σ2,φ|ỹ, T ] The conditional posterior π(β, γ, σ2, φ|ỹ, T ) has the form

βk,t|ỹk,t, ỹk,t−1,γk,t−1, σ2
k,t,φk,t ∼N(β̂k,t(φk,t), B̂k,t(φk,t)σ

2
k,t), for t = 2, ...S (13)

βk,1|ỹk,1, σ2
k,1,φk,1 ∼N(β̂k,1(φk,1), B̂k,1(φk,1)σ

2
k,1), (14)

γk,t−1|ỹk,t, ỹk,t−1, σ2
k,t,φk,t ∼N(γ̂k,t−1(φk,t), Ĝk,t−1(φk,t)σ

2
k,t), for t = 2, ...S

σ2
k,t|ỹk,t, ỹk,t−1,φk,t ∼IG(λ̂k,t, χ̂k,t(φk,t)), for t = 2, ...S (15)

σ2
k,1|ỹk,1,φk,1 ∼IG(λ̂k,1, χ̂k,1(φk,1)), (16)

φk,t|ỹ, T ∼π(φk,t|ỹ, T ), (17)

where the hatted quantities are given in (21)-(23) of Appendix A.

Conditional distributions (13)-(16) can be sampled directly, and in parallel for different

(k, t). Sampling from the full conditional of β’s (13) and (14) is not necessary and can be

ignored from the MCMC sweep if prediction is the only concern of the analysis. This is

because β’s can be analytically integrated out from the proposed emulator in Section 2.4.

Alternatively, β’s can be sampled outside the MCMC sweep (13) and (14) by conditioning.

Updating φ by simulating from π(φ|ỹ, T ) is not necessary in theory, as it is updated in

block [T ,φ|ỹ], however it improves mixing in practice. The marginal posterior (17) cannot be

sampled directly. Conditional independence in (10) implies that {φk,t} can be simulated by

running in parallelK×S Metropolis-Hastings algorithms each of them targeting distributions

with densities proportional to (11).

2.4 Posterior analysis and emulation

Assume there is available a MCMC sample SN = (ẙ(j), T (j),γ(j),σ2,(j),φ(j))Nj=1 generated

from the RJMCMC sampler in Section 2.3, and let {X (j)
k }K

(j)

k=1 denote the partition corre-

sponding to tree T (j). Central Limit Theorem can be applied to facilitate inference as the

proposed sampler is aperiodic, irreducible, and reversible (Roberts et al., 2004).
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The proposed procedure ABTCK allows inference to be performed for the missing output

values ẙt = yt(D̊t) at input points in D̊t =
⋃
∀k D̊k,t. Inference on ẙt can be particularly

useful when the computer model has been unable to generate simulations at these input

points due to numerical crash or limitations. The marginal posterior distribution of ẙt,

along with its expectations, can be approximated via standard Monte Carlo (MC) using the

generated samples {ẙ(j)
t } at each level t. Alternatively, point estimates of ẙk,t at D̊k,t can be

approximated by the more accurate Rao-Blackwell MC estimator E(ẙk,t|y1:S) ≈ 1
N

∑N
j=1 µ̊

(j)
k,t,

where {µ̊(j)
k,t} is the j-th MCMC realization of (9).

A Monte Carlo recursive emulator able to facilitate fully Bayesian predictive inference

on the output yt(D∗) at untried input points D∗ at every fidelity level t = 1, ..., S can

be derived. The conditional distribution [y1:S(·)|y1:S, ẙ1:S,β1:S,γ1:S,σ
2
1:S,φ1:S] inherits a

conditional independence similar to (6) due to the augmentation of the data with ẙ1:S that

allows it to be analytically integrated out with respect to (13)-(16). Hence the distribution

of [y1:S(·)|yk,1:S, ẙk,1:S,φk,1:S, T ], at sub-region Xk, is calculated as

y1(·)|̊y1,φ1, T ∼ STP
(
µ∗k,1(·|̊yk,1,φk,1), σ̂2

k,1 R
∗
k,1(·, ·|̊yk,1,φk,1), 2λ1 + ñk,1

)
; (18)

yt(·)|yt−1(·), ẙt:t−1,φk,t, T ∼ STP
(
µ∗k,t(·|̊yk,t,φk,t), σ̂2

k,tR
∗
k,t(·, ·|̊yk,t,φk,t), 2λt + ñk,t

)
, (19)

where the conditionals are Student-T processes (STP) with

µ∗t (x|̊yk,t,φk,t) =Lt(x;yt)ât +Rt(x, D̃t|φk,t)R−1t (D̃k,t, D̃k,t|φk,t)
[
Lt(D̃k,t;yt)ât − yt(D̃k,t)

]
R∗t (x,x

′|φk,t) =Rt(x, x
′|φk,t)−Rt(x, D̃k,t|φk,t)R−1t (D̃k,t, D̃k,t|φk,t)R>t (x′, D̃k,t|φk,t)

+
[
Lt(x;yt)−Rt(x, D̃k,t|φk,t)R−1t (D̃k,t, D̃k,t|φk,t)Lt(D̃k,t;yt)

]
Ât

×
[
Lt(x

′;yt)−Rt(x
′, D̃k,t|φk,t)R−1t (D̃k,t, D̃k,t|φk,t)Lt(D̃k,t;yt)

]>
for x,x′ ∈ Xk, and Lt(Z;yt−1) =

[
H t(Z), diag(yt−1(Z)W t−1(Z))

]
for t = 2, ..., S and
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L1(Z; ·) = H1(Z) for a set Z. An MCMC sample from the predictive distribution of

[y1:S(·)|y1:S], at x ∈ D∗, can be obtained by simulating (18)-(19) given the sample val-

ues SN = {ẙ(j),φ(j), T (j)}. This allows the computation of a Monte Carlo approximation

of the emulator of [yt(·)|y1:S], and its moments, at any fidelity level t. The conditional in-

dependence in the predictive distribution (18) and (19) results because of our imputation

strategy.

The proposed emulator accounts for non-stationariy and discontinuity by aggregating

simpler GP emulators in a Bayesian model averaging manner, while it integrates uncertainty

regarding the unknown ‘missing data’ ẙ and parameters. It is computationally preferable

compared to existing co-kriging one (Kennedy and O’Hagan, 2000; Le Gratiet, 2013) because

it allows the parallel inversion of smaller covariance matrices with sizes ñt,k × ñt,k while the

others require the inversion of a large co-variance matrix of size
∑S

t=1 ñt×
∑S

t=1 ñt. Moreover,

it is able to recover the whole predictive distribution and its moments, unlike the derivation

in Le Gratiet and Garnier (2014) where only the predictive mean and variance are derived

recursively. More importantly, it is able to be applied in problems where the training data

set is not hierarchically nested, while its competitors cannot.

2.5 Further details

Two novel co-kriging procedures can be distinguished as special cases of the proposed

ABTCK. In applications where the design is non hierarchically nested, but the computer

model outputs can be assumed as stationary, one can consider to drop the partitioning by

setting K = 1 and suppressing the MCMC update [T ,φ|ỹ]. We will refer to this reduced

version of ABTCK as Augmented Bayesian co-kriging (ABCK). Unlike standard co-kriging,

our ABCK can be applied with non-nested designs as it makes the computations for training

the Bayesian model or computing the emulator practically feasible. In fact, the proposed

augmentation strategy separates the posterior into conditionally independent quantities and
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allows closed form inference for the majority of the hyper-parameters. Another special case

is where the design is hierarchically nested but the model outputs present non-stationarity,

the imputation mechanism can be dropped by setting {D̊k,t ≡ ∅} and suppressing the up-

date [̊y|y,φ,γ,σ2, T ]. We will refer to this reduced version of ABTCK as Bayesian treed

co-kriging (BTCK). In such a case, BTCK can be preferable to the standard co-kriging as

it can model the aforesaid stationarity by properly combining simple stationary GPs.

The computational complexity of the proposed ABTCK compared to existing co-kriging

methods is reduced in two ways: a) by breaking the emulation into K parts via the partition-

ing, and b) by breaking the emulation into S parts via the recursively prediction procedure.

In ABTCK the computational complexity of evaluating the augmented likelihood or the

predictive distribution is O(
∑S

t=1

∑K
k=1 ñ

3
k,t) in sequential computing environments, while

it can be further reduced to O(
∑S

t=1 maxk=1,...,K(ñk,t)
3) in parallel computing environments

since operations at each k can be performed in parallel. Under non-hierarchical designs,

our ABCK (assuming the partitioning is dropped) requires O(
∑S

t=1 ñ
3
t ) for the evaluation of

the augmented likelihood or the Monte Carlo emulator which is smaller than O((
∑S

t=1 nt)
3)

required by (Kennedy and O’Hagan, 2000; Le Gratiet et al., 2014) for the evaluation of the

associated likelihoods since ñt ≤ nt.

3 Case study

We examine the predictive ability of the proposed method, refereed to as augmented Bayesian

treed co-kriging (ABTCK), its special cases ABCK, and BTCK, as well as we provide com-

parisons with existing approaches of (Le Gratiet, 2013; Kennedy and O’Hagan, 2000) show-

ing the good performance of the proposed method. Details about the performance measures

used can be found in Supplementary Section S.3. For the simulations, we used in MATLAB

R2017b on a computer with specifications (IntelCore™i7-7700K CPU @ 4.20GHz × 8, and 62.8

GiBRAM).
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3.1 Numerical example

Consider functions

y1(x) = 2x1 exp(−x21 − x22) + 0.5 exp{sin((0.9(x1+2
8

+ 0.48)10))}+ 1.2, x ∈ [−2, 6]2;

y2(x) = 4x1 exp(−x21 − x22) + 0.2 exp{sin((0.9(x1+2
8

+ 0.48)10))}+ 0.5, x ∈ [−2, 6]2,
(20)

which are assumed to be output functions of computer models C1 and C2, with C2 being

more accurate but slower to run than C1. By expressing (20) as (1), it can be seen that the

discrepancy functions δ1(·) and ξ1(x) change over X . We pretend that equations in (20) are

unknown, and we are interested in learning the high fidelity y2(·).

We consider a non-hierarchically nested design D = {D1,D2}, generated as follows. For

level t = 1, the observed data are generated by employing a Latin Hypercube Sampling

(LHS) (McKay et al., 1979) to generate a point set D1 of size n1 = 120, and computing the

corresponding observations y1 from (20). For level t = 2, the observations are generated

likewise by generating a point set D2 of size n2 = 30 via LHS such that D2 6⊆ D1. For

our comparisons against, we consider a second hierarchically nested experimental design

D ′ = {D1,D ′2}, where the high fidelity point set D ′2 is randomly generated via the condition

Latin Hypercube Sampling (cLHS) design (Minasny and McBratney, 2006).

To implement our ABTCK, we consider weakly informative priors with hyper-parameters

bt = gt = 0, Bt = 10, λt = 2, χt = 2 and a mixture prior of Gamma distributions

φt|T ∼ 0.5G(1, 20) + 0.5G(10, 10) for φt distributing the prior mass on areas of smaller

and larger values (Gramacy and Lee, 2008). The scale discrepancy is parametrised as a

zero-degree basis expansion ξk,t(x|γk,t) = γk,t. The tree process prior has hyper-parameters

ζ = 0.5 and d = 2. The statistical model was trained by MCMC running for 25000 iterations

where the first 5000 iterations where discarded as as burn-in. Also, we consider ABCK

which is a special case of ABTCK where binary partitioning is suspended. Furthermore,

for comparisons involve the existing approaches: the standard GP considering only the high
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fidelity data on D2 (HFGP), Zertuche’s co-kriging approach (ZBCK) in Zertuche (2015)

against non-nested design D , Bayesian co-kriging on nested design D ′ (NBCK), and the

Kenedy & O’Hagan’s CK (K&O) approach on non-nested design D .

Figure 1 present the relative absolute error (RAE), on a 100 × 100 grid of X , produced

by ABTCK and ABCK (where partitioning is suppressed). We observe that ABTCK has

produced a significantly smaller RAE than ABCK suggesting the benefit in predictions from

including the binary partitioning mechanism in our proposed procedure.
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Figure 1: Absolute relative error (in log scale) between the real response y2(·) and the
predictive mean of the high-level computer model using the augmented Bayesian co-kriging
(ABCK) and augmented Bayesian treed co-kriging (ABTCK).

Table 1 presents the mean squared predictive error (MSPE) on a 100 × 100 grid of X

produced by the procedures under comparison, as well as the model fitting times. We observe

that MSPE produced by ABTCK is around 40 times smaller than that by ABCK suggesting

that the partitioning mechanism as implemented in our ABTCK has been able to successfully

capture and model the non-stationarity, and hence produce more accurate predictions, in the

multifidelity setting. Our ABTCK and ABCK produced smaller MSPE than ZCK which is

reasonable as the latter introduced a bias while dealing with non-nested designs. Moreover

ABTCK and ABCK on the non-nested design D produced smaller MSPEs than NBCK and

K&O on nested designs D ′. This suggests the possibility that non-nested designs can lead

to more accurate emulations (at the expense of execution time) and hence the limitation of
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approaches requiring only nested designs. We believe that this may happen because non-

nested designs allow the procedure learn from different input locations at different fidelity

levels, however a more detailed examination of this phenomenon is out of the scope of this

study. Finally, we observe that ABTCK presented smaller model fitting time than the

other co-kriging approaches. This is the result of the partitioning in ABTCK that requires

inversion of smaller covariance matrices than other methods. In fact, the computational

overhead introduced by the RJ operation is dominated by the computational gain due to the

partition and subsequent inversion of smaller matrices.

HFGP NBCK K&O ZBCK ABCK ABTCK

MSPE 0.107 0.0602 0.0550 0.0339 0.0221 0.0006
Time (sec) 71.12 314.11 738.74 484.86 500.75 220.84

Table 1: The computed MSPE and the corresponding model fitting time in seconds us-
ing: the High Fidelity Gaussian process (HFGP), nested Bayesian Co-kriging with nested
design (NBCK), Zertuche’s Bayesian Co-kriging (ZBCK), Augmented Bayesian Co-kriging
(ABCK), Augmented Bayesian Treed Co-kriging (ABTCK).

In Figures 2a and 2b, we can see the that predictive mean of high fidelity response y2(x)

by ABTCK h predictive mean of high fidelity response y2(x) for ABCK and ABTCKas been

able to emulate the sinusoidal dependence of y2(x) on the left hand side more accurately

than ABCK. The Monte Carlo approximation of the posterior mean of the scalar discrepancy

ξ̂(x) ≈ 1
N

∑N
j=1wt(x)T

(∑K(i)

k=1 1(x)γ̂k,t(φ
(j)
k,t)
)

produced by the ABTCK is presented in

Figure 2c. We observe that ABTCK has recovered a representation of the scalar discrepancy

which suggests that ξ(x) changes value. In contrast, ABCK produces a posterior scalar

discrepancy which is equal to 0.525 and constant throughout the input space due to the lack

of partitioning.
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Figure 2: The predictive mean of y2(x) produced from ABCK in (a), predictive mean of
y2(x) produced from ABTCK in (b), and posterior mean of the scalar discrepancy ξ1(x)
between low and high fidelity computer models from ABTCK in (c). ABCK produced a
posterior mean for ξ1(x) around 0.525.

3.2 Heat transfer benchmark example

We consider the benchmark problem of a heated metal block of size X = [0, 1]× [0, 3] with a

rectangular cavity of size [0.5, 0.015]× [1, 2.5] where the temperature u(x) is modeled as an

elliptic partial differential equation. Let us consider 2D elliptic PDEs −∇·c(j)(x)∇u(j)(x) =

f(x) with x = (x1, x2) and x ∈ X − ∂X , for j = 1, 2, 3. The left side of the block is heated

to 100 degrees and hence we consider Dirichlet condition u = 100. At the right side of the

metal block, heat is flowing from the block to the surrounding air at a constant rate and

we assume Neumann condition u′(x) = −20. The rest boundary conditions are Neumann

condition u′(x) = 0. The internal heat source is f(x) = 1.

Assume that there are three computer models aiming at describing the steady state of the

temperature, and they are arranged in ascending order of fidelity as {C(t)}3t=1. The spatial

dependent thermal connectivity is denoted as c(j)(x); it is c(1)(x) = 1 for the least accurate

computer model, c(2)(x) = exp(1.5 sin(3.33πx2))1(x2 < 1.8) for more accurate computer

model, and c(3)(x) = exp(1.5 sin(3.33πx2)) for most accurate computer model. The PDE is

solved via a FEM solver with the domain X discretized in 24119 nodes. The temperature

produced by the three computer models is presented in Figures 3a, 3b, and 3c.

There is an obvious discontinuity at x1 = 0.5. The accurate model C(3) has high frequen-
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Figure 3: Response surface for the temperature, steady state solution at three levels of
fidelity (fine, intermediate, and coarse).

cies not captured by the lower fidelity models C(1) and C(2). The discrepancy function δ2

varies throughout the input space, and presents discontinuity.

We compare our proposed approach against the the existing co-kriging approach of

Le Gratiet (2013) referred to as GLCK. As the latter approach requires hierarchically nested

designs, we generated a nested experimental design for models {C(t)}3t=1 according to the

condition Latin Hypercube Sampling (cLHS) design (Minasny and McBratney, 2006) with

sample sizes n(1) = 150, n(2) = 100 and n(3) = 50. For the same reason, we implement

our BTCK; the special case of ABTCK where augmentation is suppressed as not needed in

nested designs. We assume a prior φt|T ∼ 0.5G(1, 20) + 0.5G(10, 10) on φt. The model was

trained by running the suggested MCMC sampler for 25000 iterations and discarding the

first 5000 values as burn in. For or GLCK we used similar particularization.

In Figures 4a and 4b, we present the prediction of the high fidelity model output for the

proposed BTCK and the competitor in a 100× 100 grid.

We observe that BTCK managed to adequately capture the discontinuity and the smaller

scale variations in the output while the competitor failed. We speculate that the behavior of

the surface produced by the competitor in Figure 4b is because the basis expansion is unable

to represent efficiently sudden changes. The proposed BTCK produced a significantly smaller

MSPE equal to 1.4613 compared to the competitor whose MSPE was 14.1599; hence BTCK

has being able to produce more accurate predictions. Figures 5a and 5b demonstrate the
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Figure 4: Prediction mean of the temperature steady state solution for the fine computer
model using two different methods (a) co-kriging GP and (b) proposed Bayesian treed co-
kriging.

estimation of the scale discrepancy function between computer models C(1) vs. C(2) and C(2)

vs. C(3) respectively, as produced by the proposed ABTCK.
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Figure 5: Posterior mean of the scale discrepancies between C(1) vs. C(2) in (a) and C(2) vs.
C(3) in (b) using the proposed Bayesian treed co-kriging.

4 Application to large-scale climate modeling

We consider the Advanced Research Weather Research and Forecasting Version 3.2.1 (WRF

Version 3.2.1) climate model (Skamarock et al., 2008) constrained in the geographical domain

25◦–44◦N and 112◦–90◦W over the Southern Great Plains (SGP) region, and we concentrate
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on the average precipitation response over the area.

WRF is employed with the Morrison 2-moment cloud microphysics scheme (Morrison

et al., 2005) and the Kain-Fritsch convective parametrisation scheme (KF CPS) (Kain, 2004)

as in (Yang et al., 2012). The most critical parameters (Yang et al., 2012; Yan et al., 2014)

of the KF scheme are: the coefficient related to downdraft mass flux rate Pd that takes

values in range [−1, 1]; the coefficient related to entrainment mass flux rate Pe that takes

values in range [−1, 1]; the maximum turbulent kinetic energy in sub-cloud layer (m2s−2)

Pt that takes values in range [3, 12]; the starting height of downdraft above updraft source

layer (hPa) Ph that takes values in range [50, 350]; and the average consumption time of

convective available potential energy Pc that takes values in range [900, 7200]. The ranges of

the KF CPS parameters are quite wide and cause higher uncertainties in climate simulations

due to the non linear interactions and compensating errors of the parameters (Gilmore et al.,

2004; Murphy et al., 2007; Yang et al., 2012). We consider the Rapid Radiative Transfer

Model (RRTMG) for General Circulation Models (Mlawer et al., 1997) as a more accurate

radiation scheme for the geological domain of interest. We are interested in modeling the

average precipitation with respect to the five KF CPS parameters.

The available simulations have been generated by running WRF model 240 times at two

resolution levels; 90 model runs for 12.5km grid spacing and 150 model runs 25km grid

spacing. The fidelity of the simulations increases when the grid spacing gets finer. The

available data set has been generated via a simulated stochastic approximation annealing

(SSAA) calibration algorithm in (Yan et al., 2014). As the SSAA procedure progresses,

the sampling range of each parameter gradually narrows. Different resolutions correspond

to different narrowing range on the input space. This has produced simulations on a non

hierarchically nested design at the five input parameters (see Supplemental Section S.4).

Due to the high cost, it is not possible to re-run the expensive WRF model in order to

generate simulations based on a hierarchically nested design as existing co-kriging methods
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require. As discussed in (Yang et al., 2012; Yan et al., 2014) the discrepancies between

the two fidelity levels may depend on the five inputs, however no formal statistical analysis

have been performed. The atmospheric humidity at all levels is lower in the fine resolution

than coarse resolution, and the drier atmosphere may result from more condensation (so

more precipitation generated) which consumes more moisture at the finer resolution. The

explicit precipitation increases with spatial resolution because more clouds are resolved at

finer resolution. Moreover, interest lies in better understanding how different grid spacing

affects the discrepancies in WRF with respect to the input parameters.

We implement our proposed ABTCK approach to analyze the data set. For the GP priors,

we use separable square exponential covariance functions. On the correlation parameters we

assign Gamma mixture priors φk,t ∼ 0.5G(1, 10)+0.5G(5, 2) distributing the mass on areas of

smaller and larger values; for the binary treed partition priors, we consider hyper-parameters

a = 0.8 and b = 5; and for the rest parameters we consider weak informative priors as bt = 0,

Bt = 100, λt = 0.2, and χt = 0.2. Regarding the grow & prune update, we use the prior

distributions as the dimensional matching proposals φk,t ∼ 0.5G(1, 10)+0.5G(5, 2). We have

re-scaled the input space for the five parameters to be between [−1, 1] in order to be able

to use the same proposal distribution for all φk,t’s. To train the model, we run the MCMC

sampler for 30, 000 iterations from which we discard 5000 as burn in. To demonstrate

the necessity of the binary partitioning mechanism, we also consider our ABCK which is

the special case of ABTCK where partitioning is suppressed. Moreover, we consider the

standard Gaussian process emulator (HFGP) trained against the high fidelity data set only

to demonstrate the importance of using co-kriging in multi-fidelity problems even under non-

hierarchically nested designs. Existing co-kriging techniques cannot be implemented of this

application because the available experimental design is not hierarchically nested.

We study the performance of the proposed approach by performing two separate k-fold

cross validation (CV) studies; the 20%-CV leaves the 20% of the available data as a test set
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and keeps the rest as a training test, while 50%-CV leaves the 50% of the data as a test

set and keeps the rest as a training test. For the comparisons, as performance measures, we

used the MSPE, the coverage probability of the 95% equal-tail credible interval 95%-CVG,

the Nash-Sutcliffe model efficiency coefficient (NSME), and the computational time in sec;

for details see Supplementary Section S.3. Their values are the averages of 60 realizations

performed by re-running the procedures for variance reduction purposes. The results are

presented in Table 2.

We observe that both ABCK and ABTCK outperform the HFGP, by far, in terms of

accuracy and constructing more accurate credible intervals. This is reasonable as, unlike

HFGP, our ABCK and ABTCK are co-kriging approaches taking into account lower fidelity

data able to provide important information from locations at which we have no high fi-

delity observations. This demonstrates the importance of enabling co-kriging approaches to

use non-hierarchinal nested designs via the proposed augmentation mechanism. We observe

that that ABTCK which involves the partitioning mechanism, taking into account non-

stationarity, outperformed ABTCK with respect to all measures. The partitioning mecha-

nism in ABTCK caused an improvement about 20% compared to ABTCK with respect to

MSPE, indicating higher accuracy. NSME produced by ABTCK is closer to one than that

of ABTCK and HFGP, suggesting that ABTCK has been more accurate than the other two.

Figure 6 presents the variation of MSPE from the 60 realizations of the approaches under

comparison. It shows that GP is clearly outperformed from our ABCK, and ABTCK, while

MSPE of ABTCK presents a smaller variation than that of ABCK as the former can cap-

tures non-stationarities. Based on 95%-CVG, ABTCK produced the best representation of

the uncertainty than ABCK and HFGP, as well as mode accurate credible sets. Not only the

ABTCK produced more accurate predictions but also it gave a better picture of the uncer-

tainty associated with these predictions. By running ABTCK, we observed that the average

number of the generated sub-regions varies from 2 to 5; this evidence supports the use of
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ABTCK instead of ABCK in this application by the inclusion of the binary partition hence

the use of a non-stationary process via partitioning. Finally, it is important to notice that

the computational time in ABTCK is approximately two-third of the computational time

in ABCK. This means that the improvements on the prediction and uncertainty described

above come at a lower computational cost. It is worth noticing that we can further reduce

the computational cost of ABTCK if we run it in a parallel computing environment.

20%-leave out CV 50%-leave out CV

MSPE 95%-CVG NSME Time MSPE 95%-CVG NSME Time

HFGP 0.1501 0.691 0.61 418 0.2118 0.613 0.31 368
ABCK 0.1002 0.862 0.84 2404 0.1205 0.840 0.79 1804

ABTCK 0.0701 0.954 0.91 1602 0.0974 0.945 0.87 1240

Table 2: Performance measures of High Fidelity Gaussian process, Augmented Bayesian
Co-kriging, Augmented Bayesian Treed Co-kriging. The values are the resulted averages
after re-running each approach 60 times. Time is measured in sec.

HF

Figure 6: Boxplot of the MSPE for three different procedures

Figure 7 presents the simulated average precipitation from WRF at high fidelity, as well

as the predicted average precipitation produced from ABTCK, ABCK, and HFGP against

the downdraft mass flux rate Pd and entrainment mass flux rate coefficient Pe. This is the

case corresponding to realizations with the highest MSPE differences between ABTCK and

HFGP. We can observe that the HFGP have not been able to capture the variation in the
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Figure 7: Real output mean precipitation values and their corresponding predictions for
different procedures.

central part of the input domain where high fidelity observations are sparse. Both ABCK

and ABTCK were able to capture that variation by taking into account low fidelity data.

We observe that ABCK produced a smoother representation of the precipitation, however

ABTCK was able to represent local features more accurately. Finally, prediction is much

improved over the whole test data-set even in the small clustered range.

5 Conclusions and further work

We proposed a new method, called Augmented Bayesian Treed Autoregressive Co-Kriging,

which extends the scope of the co-kriging methods. First our procedure can be implemented
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in problems where the experimental design is not necessarily hierarchically nested in a princi-

pled manner while keeping the computational demands low. This overcomes the difficulty of

existing co-kriging methods which require hierarchically nested designs in order to keep the

computations practically feasible. Secondly, our method can account for non-stationarity,

and potential discontinuity, in the output of the computer models without the need to spec-

ify complicated or problem specific GP priors, in the multifidelity setting. Moreover, we

proposed a Monte Carlo recursive emulator which can recover the predictive distribution of

the computer model output at every level, and can be used with non-hierarchically nested

designs as well, while keeping the computational cost lower than the existing emulators as

it requires operations with smaller matrices. Finally, for the computations, we designed an

efficient trans-dimensional MCMC method tailored to the proposed model.

We analyzed the Weather Research and Forecasting (WRF) simulator using the Kain-

Fritsch convective parametrisation scheme by using our novel procedure. This is a large-

scale climate modeling application where the available simulations are performed at different

fidelity levels at non hierarchically nested designs, and hence we used our method to build

a Bayesian multifidelity emulator on WRF. Our method discovered non-stationarity in the

WRF output precipitation with respect to the KFC input parameters. We observed that

the use of Bayesian treed partition in the co-kriging framework as utilized in our method

is able to provide more accurate predictions than ignoring it. In the WRF application we

observed the use of the partition was able to reduce the MSPE around 21% on average when

we compared the ABTCK with the ABCK where the partitioning was dropped out. In

our simulation example considering non-nested designs, we observed that the augmentation

mechanism was able to recover the model output accurately.

The procedure can be modified to involve a basis selection mechanism for ht(·) of δt(x)

andwt(·) of ξt(·) at different input sub-regions Xk,t, by properly specifying spike-and-slab pri-

ors on βk,t and γk,t and calculating Gibbs updates. One can use the fixed hyper-parameters
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of the latent treed process π(T ) to control or mitigate possible non-identifiability between

the discrepancy functions, while setting input invariant scale discrepancy ξk,t(x) = γk,t and

meaningful priors on the location discrepancy δk,t(·) in the sense of (Brynjarsdóttir and

O’Hagan, 2014). The rational is that the treed prior can act as a penalty favoring simpler

partitions, which can mitigate the competition between the two discrepancies. An extension

of ABTCK would be to specify different partitions for ξt(x), δt(x), y1(x), which may lead to

a more flexible model, however, research has to be done on whether the conditional posteriors

can be analytically marginalized to keep the computational demands feasible. The authors

are currently working on a sequential design procedure with multifidelity simulations that

take into account non-hierarchically nested designs.

Supplementary Materials

Supplementary material: It contains Schematics & algorithms of the proposed approach

in Section S.1; a list of the performance metrics used in the numerical examples in

Section S.2, an additional toy example in Section S.3, additional plots referenced in

the application section of the main paper in Section S.4, and information of the codes

and data sets used in Section S.5.

Code & data: It contains the data-sets and code used to produce the numerical results in

the paper (Link: https://github.com/georgios-stats/ABTCK)
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A Appendix

Let Z, J denote any sub-sets of the design D̃t for t = 1, ..., S. Let |Z| denote the size of Z, and let
y0(·) = 0 and ξ0(·) = 0. The parameters of the conditional distributions in (13)-(16) are

B̂t(φ|Z) =[H>t (Z)R−1t (Z,Z|φ)Ht(Z) +B−1t ]−1, t = 1 : S (21)

β̂t(φ|Z) =B̂t(φ|Z)[H>t (Z)R−1t (Z,Z|φ)[yt(Z)− ξt−1(Z|γt−1) ◦ yt−1(Z)] +B−1t bt] (22)

Ĝt−1(φ|Z) =[W t−1(Z;yt−1)Ct−1(φ|Z)W>
t−1(Z;yt−1) +G−1t−1]

−1, t = 2 : S

γ̂t−1(φ|Z) =Ĝt−1(φ|Z)[G−1t−1gt−1 +W>
t−1(Z;yt−1)Ĉt−1(φ|Z)[yt(Z)−Ht(Z)bt]], t = 2, ..., S

Ĉt−1(φ|Z) =R−1t (Z,Z|φ) +R−1t (Z,Z|φ)Ht(Z)

× [R−1t (Z,Z|φ) +Ht(Z)B−1t H
>
t (Z)]HT

t (Z)R−1t (Z,Z|φ), t = 2, ..., S

λ̂t(Z) =λt +
|Z|
2
, t = 1, ..., S

χ̂t(φ|Z) =(|Z|+ 2λt − 2)σ̂2t (φ|Z), t = 1, ..., S

σ̂2t (φ|Z) =
1

2λt + |Z| − 2

(
2χt + y>t (Z)R−1t (Z,Z|φ)yt(Z) + b>t B

−1
t bt

+g>t−1G
−1
t−1gt−1 − α̂

>
t (φ,Z)Â

−1
t (φ|Z)α̂t(φ|Z)

)
, t = 1, ..., S (23)

Ât(φ|Z) =
[
Lt(Z;yt−1)

>R−1t (Z,Z|φ)Lt(Z;yt−1) + diag(B−1t ,G−1t−1)
]−1

; (24)

α̂t(φ|Z) =Ât(φ|Z)

(
Lt(Z;yt−1)

>R−1t (Z,Z|φ) +
[
b>t B

−1
t , g>t−1G

−1
t−1

]>)
. (25)

where: W t−1(Z;yt−1) = diag(yt−1(Z))wt−1(Z) for t = 2, ..., S and W 0(Z; ·) = 0; Lt(Z;yt−1) =[
Ht(Z),diag(yt−1(Z)W t−1(Z))

]
for t = 2, ..., S and L1(Z; ·) = H1(Z). In the manuscript, when

Z = Dk,t, we use the notation B̂k,t := B̂t(φ|D̃k,t), β̂t(φ) := β̂t(φ|D̃k,t), etc... to easy the notation.

The equations of the functions R̂k,t, µ̂(t−1)→t, and µ̂(t+1)→t in (9)

R̂t(φ|Z; J) =Rt(Z,Z|φ)−Rt(Z, J|φ)R−1t (J, J|φ)R>t (Z, J|φ)

+
[
Ht(Z) +Rt(Z, J|φ)R−1t (J, J|φ)Ht(J)

]
B̂t(φ|J)

×
[
Ht(Z) +Rt(Z, J|φ)R−1t (J, J|φ)Ht(J)

]>
(26)

µ̂(t−1)→t(φ,γ|Z; J) =ξt−1(Z|γ) ◦ yt−1(Z) +Ht(Z)β̂t(φ|J)

+Rt(Z, J|φ)R−1t (J, J|φ)

×
[
yt(J)− ξt−1(J|γ) ◦ yt−1(J)−Ht(J)β̂t(φ|J)

]
, t = 1 : S

µ̂(t+1)→t(φ,γ|Z; J) =yt+1(Z)−Ht+1(Z)β̂t+1(φ|J)

−Rt+1(Z, J|φ)R−1t+1(J, J|φ) (27)

×
[
yt+1(J)− ξt(J|γ) ◦ yt(J)−Ht+1(J)β̂t+1(φ|J)

]
, t = 1 : S − 1
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S.1 Schematics & algorithms of the proposed approach

A schematic of the proposed approach is presented in Algorithm 1.

Algorithm 1 Schematic of the proposed approach.

Returns: A MCMC sample SN = (̊y(j), T (j),γ(j),σ2,(j),φ(j))Nj=1 from π(T ,β,γ,σ2,φ, ẙ|y) in (8). Dis-
tribution of a function g(·) of y(·) at untried locations x∗ ∈ D∗.

Inquires: Seeds T (0), ẙ(0),γ(0),σ2,(0),φ(0)

Set of untried input points D∗

1. Posterior simulation:

For j = 1, ..., N : sample

T (j),β(j),γ(j),σ2,(j),φ(j), ẙ(j) ∼ P (·|T (j−1),β(j−1),γ(j−1),σ2,(j−1),φ(j−1), ẙ(j−1))

where P (·|·) is a Markov transition probability with stationary distribution π(T ,β,γ,σ2,φ, ẙ|y) that
can be simulated by Algorithm 2.

2. Parametric inference:

Estimate ẙ = (̊yk,t; k = 1, ...,K, t = 1, ..., S) either by a Blackwellized Monte Carlo estimator or vanilla
Monte Carlo estimator ; Section 2.4.

3. Emulation:

For j = 1, ..., N (parallel); for t = 1, ..., S (parallel) simulate (18) and (19) via composition, and
compute the Monte Carlo predictions.

One random scan of the RJMCMC sampler (Section 2.3) targeting the posterior distribution π(T ,β,γ,σ2,φ, ẙ|y)

is presented in Algorithm 2. The Markov transition probability of this process is denoted as P (·|T ,β,γ,σ2,φ, ẙ).
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Algorithm 2 The RJMCMC transition probability P (·|T ,β,γ,σ2,φ, ẙ) targeting π(T ,β,γ,σ2,φ, ẙ|y).

[BL.1] Update ẙ|y,φ,σ2,γ, T
For t = 1, ..., S − 1 (sequential);

for k = 1, ...,K (parallel);
draw ẙk,t by simulating from

ẙk,t|φk,t,γk,t−1,γk,t,σ
2
k,t,σ

2
k,t+1, T ∼ N(µ̊k,t, Σ̊k,t)

where µ̊k,t, Σ̊k,t are given on page 11 in the main manuscript.

[BL.2] Update T ,φ|ỹ via reversible jump algorithm:

Simulate φ, T from a reversible jump transition prob. targeting π(T ,φ|ỹ). Details can be found
on page 12 in the main manuscript.

[BL.3] Update β,γ,σ2,φ|ỹ, T
For t = 1, ..., S and k = 1, ...,K (parallel) simulate from

βk,t|ỹk,t, ỹk,t−1,γk,t−1, σ
2
k,t,φk,t ∼N(β̂k,t(φk,t), B̂k,t(φk,t)σ

2
k,t), for t = 2, ...S (1)

βk,1|ỹk,1, σ
2
k,1,φk,1 ∼N(β̂k,1(φk,1), B̂k,1(φk,1)σ2

k,1), (2)

γk,t−1|ỹk,t, ỹk,t−1, σ
2
k,t,φk,t ∼N(γ̂k,t−1(φk,t), Ĝk,t−1(φk,t)σ

2
k,t), for t = 2, ...S

σ2
k,t|ỹk,t, ỹk,t−1,φk,t ∼IG(λ̂k,t, χ̂k,t(φk,t)), for t = 2, ...S (3)

σ2
k,1|ỹk,1,φk,1 ∼IG(λ̂k,1, χ̂k,1(φk,1)), (4)

φk,t|ỹ, T ∼π(φk,t|ỹ, T ), (5)

where the hatted quantities are given in (21)-(23) of Appendix A.

As discussed in the paper, simulating (1)-(2) can be suppressed because the generated values are not

necessarily required to perform inference in Algorithm 1. In that case, Algorithm 2 samples from the

marginal P (·|T ,γ,σ2,φ, ẙ) targeting π(T ,γ,σ2,φ, ẙ|y).
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S.2 Performance metrics used in the numerical examples

In the examples, we used the following performance metrics:

1. Absolute relative error (RAE)

RAE(x) =

∣∣∣∣ ŷ(x)− y(x)

y(x)

∣∣∣∣
showing performance of a predictive model.

2. Root mean square prediction error (RMSPE) is defined as

RMSPE =

√√√√ 1

n

n∑
i=1

(ypredi − yobsi )2

where yobs is the observed value in test data-set and ypredi is the predicted value from the model.

It measures the accuracy of the prediction from model. Smaller values of RMSPE indicate more a

accurate model.

3. Nash-Sutcliffe model efficiency coefficient (NSME) is defined as:

NSME = 1−
∑n

i=1(ypredi − yobsi )2∑n
i=1(yobsi − yobs)2

where yobs is the observed value in test data-set and ypredi is the predicted value from the model. NSME
gives the relative magnitude of the residual variance from data and the model variance. NSME values
closer to 1 indicate that the model has a better predictive performance.

4. 95% CVG is the coverage probability of 95% equal tail prediction interval. 95% CVG values closer to
0.95 indicate better prediction performance for the model.

5. 95% ALCI is average length of 95% equal tail prediction interval. Smaller 95% ALCI values indicate
better prediction performance for the model.
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S.3 1-D nonlinear toy example

We use the pedagogical example in Perdikaris et al. [2017] to show that our proposed Bayesian treed co-kriging

approach can also be used to explore smooth nonlinear multi-fidelity modeling. Let us consider a low-fidelity

model to be a sinusoidal wave with four periods f1(x) = sin (8πx). The high-fidelity model is obtained

through a transformation of the low-fidelity expression involving a non-uniform scaling and a quadratic

non-linearity as f2(x) = (x −
√

2)f1(x)2) . For the co-kriging statistical model in (2), we cast the scaling

discrepancy ξ1(x) as a polynomial of degree 3, and the additive discrepancy function as a Gaussian process

with constant mean. We generate by Latin Hypercube Sampling three training data-sets with different sizes

, (n1 = 50, n2 = 15), (n1 = 50, n2 = 20) , and (n1 = 50, n2 = 25). Against each of these data sets, we

train the associate emulators from our approach Bayesian treed co-kriging (BTCK), and Bayesian co-kriging

(BCK). BCK differs from BTCK in that it does not involve the binary treed partitioning mechanism.

In Figure S1 , we plot the produced predictive means from the approaches under comparison trained

against data set (n1 = 50, n2 = 20), as well as the real function f2(x). We observe that the predictive mean

produced from BTCK is much closer to the real f2(x) than that of BCK. In this particular example, we can

hardly eyeball any discontinuity in the predictive mean of the BTCK; this is possibly due to the Bayesian

model averaging effect which mitigates artificially imposed discontinuities due to partitioning. When the

sample size is smaller than 20, we observe small discontinuities. In these cases, we can further improve the

smoothness of the prediction results with at least three different ways: (a) use better basis functions such as

b-spline, (b) more informative priors (c) tree with smoother transitions as proposed in Konomi et al. [2013].

However, these extensions are out of the scope of the paper.

In Table S.1 , we present the MSPE produced from the BCK, and BTCK approaches where their predictive

means were used as surrogates. We observe that the MSPEs produced from BTCK are substantially smaller

that those produced from BCK for all the training data set sizes. This indicates that the consideration of

the binary treed partitioning mechanism in our approach is able to result in substantial improvements in

prediction.

n2 15 20 25

BCK 0.0782 0.0420 0.0121
BTCK 0.0401 0.0093 0.0022

Table S.1 : The MSPE produced from the Bayesian Co-kriging (BCK), and the Bayesian Treed Co-kriging
(BTCK) approaches.
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Figure S1 : 1-D Toy example: blue dots represent the low-fidelity simulations, red stars represents the high-
fidelity simulation, red line represents the exact high-fidelity function, the black line represents the predictive
mean of the multi-fidelity Bayesian co-kriging model, and the green line represents the predictive mean of
the multi-fidelity Bayesian treed co-kriging model.
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S.4 Graphical representation of input dimensions in Section 4.
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Figure S2 : Design plot for 25× 25km

7



-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

2

2.5

3

3.5

4

4.5

5

-1 -0.5 0 0.5 1
2

4

6

8

10

12

2

2.5

3

3.5

4

4.5

5

-1 -0.5 0 0.5 1
50

100

150

200

250

300

350

2

2.5

3

3.5

4

4.5

5

-1 -0.5 0 0.5 1
0

2000

4000

6000

8000

2

2.5

3

3.5

4

4.5

5

-1 -0.5 0 0.5 1
2

4

6

8

10

12

2

2.5

3

3.5

4

4.5

5

-1 -0.5 0 0.5 1
50

100

150

200

250

300

350

2

2.5

3

3.5

4

4.5

5

-1 -0.5 0 0.5 1
0

2000

4000

6000

8000

2

2.5

3

3.5

4

4.5

5

2 4 6 8 10 12
50

100

150

200

250

300

350

2

2.5

3

3.5

4

4.5

5

Figure S3 : Design plot for 50× 50km

8



S.5 Codes and data set information

The MATLAB codes and the data-sets used to produced the simulations in the case studies in Section , and

the application in Section 4 are available from GitHub repository https://github.com/georgios-stats/

ABTCK.

Description

MATLAB scripts implementing our proposed Bayesian procedure,’Augmented Bayesian treed co-kriging’.

This procedure can be used for the statistical analysis of computer models when the available simulations

are in multiple fidelity, they are not necessarily based on hierarchically nested experimental designs, and

they may present local features, non-stationarities, or discontinuities.

This is a MATLAB code has been used to produce the numerical results and the statistical analysis

reported in the paper "Bayesian analysis of multifidelity computer models with local features and non-

nested experimental designs: Application to the WRF model", by Alex Konomi and Georgios Karagiannis;

submitted in Technometrics for publication.

Requirements

MATLAB compiler (R2017a or later)

Files

• cov functions: Covariance functions necessary for the GP

• function fold: Functions used in the simulation study .

• Multi GP operations: MCMC operations for the co-kriging Gaussian process hyperparamter updates.

• Multi prediction: Functions used for prediction.

• ABCK M: Functions used for imputation and predictions.

• Multi tree nested: MCMC treed update of the model when the design is nested. All the necessary

RJ-MCMC steps in the nested case including split, merge, change, swap and rotate.

• Multi tree NON nestedB: MCMC treed update of the model when the design is nested. All the neces-

sary RJ-MCMC steps in the non-nested case: split, merge, change, swap and rotate.

• Random var: Various algorithms for generating data from distributions necessary in the BTC
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• help tree operations: Operations that help to define the treed form

• FirstSimulationStudy: Contain the example 1 of the paper (section 3.1). It also contain different

variations of that example. The user can choose to change the function. This is not a fixed example --

you generate every time new data and check the performance of the algorithm. The performance may

depend also on the simulated data.

• SecondSinulationStudy: Contain the example 2 of the paper (section 3.2). Here the user can also

change the function and the setting

• Online ExampleP: Contain the example in the supplementary material S.3 of the paper.

• Application WRF2: Contain the application to WRF dataset in the paper (section 4). The user can

change the settings for testing/training datasets.
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