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Abstract We propose the Positive Resampler to solve the
problem associated with event samples from state-of-the-art
predictions for scattering processes at hadron colliders typi-
cally involving a sizeable number of events contributing with
negative weight. The proposed method guarantees positive
weights for all physical distributions, and a correct descrip-
tion of all observables. A desirable side product of the method
is the possibility to reduce the size of event samples pro-
duced by General Purpose Event Generators, thus lowering
the resource demands for subsequent computing-intensive
event processing steps. We demonstrate the viability and effi-
ciency of our approach by considering its application to a
next-to-leading order + parton shower merged prediction for
the production of a W boson in association with multiple jets.

1 Introduction

General Purpose Event Generators [1–3] form a crucial com-
ponent of studies in high-energy physics, since they produce
detailed predictions used for the design and calibration of
detectors, interpretations of the measurements as well as the
investigations of theoretical models. More often than not it
is necessary to take into account the effects from the pertur-
bative showering and the hadronisation models implemented
in these generators, in order to achieve an accurate predic-
tion for the cuts and observables chosen for experimental
measurements.

High-accuracy perturbative event generator predictions
can be obtained by first matching each jet multiplicity to next-
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to-leading order (NLO) using the methods of e.g. MC@NLO
[4] or POWHEG [5], followed by a merging of these exclu-
sive samples using approaches such as MEPS@NLO [6] or
UNLOPS [7,8]. The increased accuracy comes at a signifi-
cant cost in additional computing resources, and these calcu-
lations increasingly contribute to the LHC computing foot-
print. The result of these merged NLO-accurate event gener-
ator simulations are event samples containing events of both
positive and negative weights, meaning that the correspon-
dence between the number of events in a bin of a distribution
and the cross section in that bin is lost.1 Even when the event
samples are unweighted to constitute events with weights of
±1, the number of negative weighted events can be signif-
icant. This reduces the statistical significance of the sample
compared to one with the same number of all positive weight
events.

The outcome of event generation is often processed
through time-consuming detector simulation – which cur-
rently constitutes the major part of the LHC computing bud-
get. Since both positive and negative weight events are after-
wards processed at a significant cost, it is beneficial to reduce
the cancellation of events of negative and positive weight.
This can be done by reducing the occurrence of negative
weight events in the event generation, see e.g. [9] for an
approach in MC@NLO.

We report here on an alternative and NLO-matching-
independent approach to completely remove all negative
weights from any already generated sample, and re-introducing
the correspondence between the number of events in a bin
and the local contribution to the cross section. This posi-
tive resampling will be achieved in a two-stage process: (1)

1 The fraction of negative weights can vary wildly between different
matching or merging schemes, but in general will be non-negligible for
processes containing multiple light jets. This is illustrated on Figs. 1
and 2.
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modify the weights of events to be all positive and possibly
smaller in magnitude, and (2) apply a standard unweight-
ing. The second step should be taken only if the number of
events is sought to be reduced. Reducing the event sample
can significantly lower the computing budget for the steps in
the analysis following the event generation, both in terms of
CPU and disk.2

It may seem counter intuitive to allow for or even seek
a reduction in the number of events, since traditionally the
statistical significance of a sample, or the variance, is linked
to the number of events, and reducing the number of events
would therefore reduce the statistical significance of the sam-
ple. However, when the sample contains events with both pos-
itive and negative weights, the number of events can indeed
be reduced without impacting the statistical significance: The
effective cross section is given by σ = σp − σn , where
σp is the contribution from events with positive weights,
and σn the absolute value of the negative-weight contribu-
tion. The Monte Carlo variance associated with the sample
is s2

p/Np + s2
n/Nn , where s2

p, s
2
n is the variance of the inte-

grand. If we replace the sample with one that has Ns pos-
itively weighted events, the variance of this new sample is
s2
s /Ns . If therefore Ns/(Np+Nn) is similar to ss/sp or ss/sn ,

the variance can be unchanged. This is achieved with thePos-
itive Resampler, a simplified description of which transforms
the weight of each event to its absolute value and multiplies
by (σp − σn)/(σp + σn). If there is a large cancellation, then
the weight of each event is much reduced, leading also to a
reduction in the Monte Carlo estimate of the variance. Hence
fewer events are needed for the same statistical certainty. The
Positive Resampler is introduced in Sects. 3 and 4 showcases
results obtained based on samples of W+0, 1, 2 jets at NLO
fixed-order accuracy merged with UNLOPS.

2 Weights in UNLOPS merging

High-precision predictions are important ingredients to LHC
data analysis. If the analysis is sensitive to the effect of yet
higher jet multiplicities, high precision is obtained by “merg-
ing” several distinct calculations. NLO merged calculations
provide the state-of-the-art for LHC phenomenology, and
contribute significantly to the overall computing resource
usage. At the same time, increased precision almost always
comes at the cost of having to rely more heavily on weighted
event generation. Typically, issues due to a reduction in sta-

2 Note that within the specific field of sequential Monte Carlo methods
[10], the term “resampling” has a more constrained meaning than in
statistics more widely. “Resampling” in this more constrained meaning
has been employed for parton-shower simulations in [11]. The latter has
very little overlap with our method, or the goals of the current article.

tistical convergence worsen with every additional NLO cal-
culation included in the merging.

NLO merging schemes aim to produce inclusive event
samples that both comply with NLO fixed-order accuracy
for several multi-jet processes, and ensure that the accuracy
of parton showering is preserved. Various methods have been
developed to this effect [6,7,12–16], all differing slightly in
the concrete goals and the definition of the target accuracy.
Each NLO merging method suffers from various sources of
negative weights. Predictions based on unitarised merging
schemes [7] are the only predictions that not only comply
with both of the above criteria, but also guarantee that, for
an arbitrary base process and arbitrary parton multiplicity,
inclusive n-jet cross sections are preserved exactly, without
introducing sub-dominant contributions due to the merging.3

This desirable feature comes at the price of introducing new
sources of counter-events and/or event weights compared to
other methods such as [6].

Hence, unitarised NLO merging provides a very non-
trivial test of unweighting methods. In the following, we will
employ the NLO merging as implemented in the Dire plu-
gin to the Pythia event generator as a test case. This NLO
merging implementation is based on UNLOPS [7], includes
QCD, QED and electroweak vector boson emissions, and
thus allows merging of calculations with multiple hard jets,
photons/leptons or electroweak vector bosons. In particular,
the “EW-improved” merging of [19] is extended to NLO
QCD. Unordered configurations (i.e. for which no history of
ordered emissions can be reconstructed for an input event)
are treated according to the MOPS+unordered prescription
of [20]. The latter means that the merging also heavily relies
on matrix elements extracted from MadGraph5_aMC@NLO
[21]. Within this NLO merging framework, several sources
of event weights arise:

• The input NLO QCD short-distance cross sections (gen-
erated with MadGraph5_aMC@NLO for this study) can
contain positive and negative weights. The input events
are typically unweighted to ±w, where w is a unit weight.

• The procedure of assigning a parton shower history to
a high-multiplicity input event can necessitate weights.
The history is chosen among all possible shower his-
tories according to the shower probability, which may
contain non-positive definite splitting functions in Dire.
This leads to a corrective (positive or negative) weight.

• The merging procedure enforces a consistent renormal-
isation and factorisation scale setting by introducing
weights. These weights are almost entirely positive and
tend to fluctuate only mildly. The merging scheme fur-

3 It should however be noted that calculations that are valid for specific
processes [14,17], or up to a maximal multiplicity [13,18] also fulfill
similar consistency criteria.
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ther removes overlap between different input samples by
including no-emission probabilities. These factors are
essentially in [0, 1], but can, in rare cases (e.g. due to
negative NLO parton distribution functions or splitting
functions), lead to negative weights.

• The O(αs) expansion of the weight discussed in the pre-
vious point – which is necessary to guarantee the NLO
accuracy of the method – is often negative, thus introduc-
ing a non-negligible source of weights.

• The accuracy of inclusive cross sections is enforced by
explicit unitarisation [7,8]. This means that a large frac-
tion of events will be employed as “counter-events” with
negative weight.

• Independently of NLO merging, the subsequent shower-
ing may also generate event positive or negative weights
if the splitting functions are not positive-definite.

The regions of phase space where negatively weighted
events contribute most depends on the source of weights,
and thus also on the merging setup. An overall larger frac-
tion of negative weights can be expected when merging more
NLO calculations. This is best illustrated with an example.
Consider a precise background prediction for a vector-boson
+ jets measurement. If only the inclusive zero-jet prediction
is NLO accurate, then the predominant source of negative
weights is the unitarisation of reweighted one-jet LO con-
figurations. This will lead to a moderate amount of nega-
tively weighted events, which produce a relatively flat nega-
tive contribution to the vector boson rapidity spectrum. The
same events will induce larger negative weight fraction at
small boson p⊥V than at high p⊥V , since showering from
counter-events is constrained to the soft/collinear regions.
Negative weights will have a negligible impact on observ-
ables that require one, two or more jets. If the calculation is
extended by also including an NLO calculation for the inclu-
sive V+one-jet rate, then p⊥V will also exhibit negative-
weight contributions at high values, since new sources of neg-
ative weights (O(αs) expansions, unitarisation of the two-jet
LO sample) arise. Observables that depend on two jets will
now acquire a negative component at small jet separation due
to the mechanism of unitarisation. This effect is illustrated
in Fig. 1.

3 A positive resampler

Our main goal is to restore the connection seen when gener-
ating all positive weight events between the number of events
in the neighbourhood of any phase space point (e.g. the bin in
any histogram) and the local contribution to the cross section.
This will require a modification of the weight of all events in
the neighbourhood of events with negative weights. The idea
is simply stated to (1) calculate the cross section σi from the

Ni positive and negative weight events in a neighbourhood,
(2) change each weight to be positive and rescale all weights
to preserve σi . One can then proceed with a unweighting
procedure over all the neighbourhoods i to restore the con-
nection between the number of events and the cross section
from each neighbourhood.

In Monte Carlo event generation, the cross sections are
generated exclusively in all momenta. We will demonstrate
first the method for the idealised situation where the cross
section is stored differentially in all momenta relevant for the
later event analysis – this could be e.g. momenta of the jets,
leptons etc. We will then demonstrate how it works also in the
case of using simple binned observables for the unweighting.

3.1 Multi-dimensional resampling

We begin by considering the idealistic case (i.e. the limit of
infinitely narrow bin widths) where a differential distribu-
tion in the observable O1 is calculated with both positive
and negative weight events in a f -body phase space region
� f . The differential distribution in the observable O1 is then
constructed as

dσ

dO1
= dσ

d� f

d� f

d�n

d�n

dO1
, (1)

where

dσ
d� f

signifies the cross section calculated in terms of the
final state momenta.

d� f
d�n

encodes e.g. the jet clustering and is the Jacobian for
the f -body phase space into the n-body phase space
(n < f ) that the observable depends on.

d�n
dO1

is traditionally included in the calculations by the bin-
ning of the n-body phase space in terms of O1.

Equation (1) just constitutes the chain rule of differentiation.
Histogrammed distributions are obtained by simple integra-
tions of this relation. It is therefore not surprising that if
the events of positive and negative weights arising in the
generation (represented by dσ

d� f
) can be turned into events

of all positive weights, then the distribution in any O1 can
be calculated with these events (since the calculation of the
other factors in Eq. (1) are unchanged). Of course the f -
body phase space can have a very high dimension and it
may seem impractical to perform the clustering of events in
bins in all the dimensions of � f followed by the reweighting
procedure outlined above. One could of course perform the
reweighting in the lower-dimensional �n , the phase space
of all objects (jets etc.) entering observables. It is clear here
that the reweighting works for any observable O1. What is
perhaps surprising is that if the reweighting is performed in
neighbourhoods (bins after integration) in O1 then dσ

dO2
for
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any other observable O2 can still be constructed: We have

dσ

dO2
= d� f

dO2

{(
dσ

d� f

d� f

d�n

d�n

dO1

)
dO1

d� f

}
. (2)

All reference to the cross section σ is within the brackets
(· · · ), so the cancellation of positive and negative weight
events can be implemented here in terms of reweighting as
above to the distribution in O1. The effect of dO1/d� f is
taken into account by calculating the value (or bin) of O1

starting from the phase space points in � f . The spectrum
for the observable O2 is then calculated by constructing the
quantities

d� f
dO2

by binning the contribution from the phase space points
in O f in terms of the observable O2

{· · · } by finding all � f resulting in O1, and multiply by the
differential distribution in O1.

So, in terms of truly differential distributions, it would not
matter which observable Oi one would start from. The dis-
tribution in O j can be obtained by the procedure above. This
is correct up to effects in the binning in O1, which we will
later show are modest indeed, and can be reduced further
by decreasing the bin widths used in the Positive Resam-
pler. Indeed, in the situation where the impact of the negative
weight events in phase space � f mapped into the equivalent
bins inO1 andO2 is identical, then the result forO2 using the
Positive Resampler in O1 is exact. We will see in Sect. 4.1
how convergence can be achieved by resampling in multiple
dimensions.

3.2 Resampling the total cross section

The extreme opposite of resampling in all n dimensions of
the momenta of constructs used in the analysis, such as jets
and leptons, is resampling just the cross section – effectively
using just one bin. This approach may be considered too
coarse in practice, but we include the discussion here since
it provides a simple example of the algorithms used. For
clarity, we choose to illustrate the method in terms of bins
and weights, obtained as integrals and MC sampling of the
distributions discussed in Sect. 3.1.

Let us start by considering the total cross section

σ =
N∑
i=1

wi , (3)

obtained from N events with weights wi . Introducing a con-
venient factor of one, we can write

σ =
N∑
i=1

wi =
(∑N

i=1 |wi |
) (∑N

i=1 wi

)
∑N

i=1 |wi |
≡ P

N∑
i=1

|wi | ,

(4)

where 0 ≤ P =
∑

i wi∑
i |wi | ≤ 1. Effectively, this amounts to

replacing each event weight wi by P|wi |. The total cross
section is preserved by construction, but what is the effect on
binned distributions?

To answer this question, let us select an arbitrary distri-
bution dσ

dO and an arbitrary bin B ranging from OB to OB+1

and containing M � 1 events. Without loss of generality we
can assume that the bin contains the events i = 1, . . . , M .
The height of the bin is given by

σO,B ≡ dσ

dO (OB+1 − OB) =
M∑
i=1

wi =
∑N

i=1 |wi |∑N
i=1 |wi |

M∑
i=1

wi ,

(5)

where we have introduced the same factor of one as previ-
ously. In the simplified case with a uniform distribution of
negative weights,4

∑M
i=1 wi∑M
i=1 |wi |

≈
∑N

i=1 wi∑N
i=1 |wi |

, (6)

we can effectively swap the summation limits in the numer-
ator of the Eq. (5) for the bin height:

σO,B =
M∑
i=1

wi =
∑N

i=1 |wi |∑N
i=1 |wi |

M∑
i=1

wi ≈
∑N

i=1 wi∑N
i=1 |wi |

M∑
i=1

|wi | = P
M∑
i=1

|wi | . (7)

This tells us that simply replacing each event weight wi by
P|wi | preserves the total cross section exactly and also all
bin heights in each distribution in the limit of large statis-
tics, i.e. within statistical fluctuations for finite statistics. In
practice, negative weights will not necessarily be distributed
uniformly. In such a case, we expect to introduce a system-
atic error that grows with the gradient of the negative-weight
contribution. We will analyse the real-world performance for
the example of W + jets production in Sect. 4.

4 This follows directly from the law of large numbers 1
N

∑N
i=1 xi ≈

1
M

∑M
i=1 xi for random variables xi ∈ {wi , |wi |}, but also holds more

generally. For example, generating larger event samples in specific
regions of phase space introduces a bias in the event weights but does
not affect the following conclusions.
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3.3 Resampling a distribution

For one-dimensional sampling in terms of an observable O,
the method can be adapted to preserve exactly the distribution
inO. The accuracy in other distribution will be determined by
the variation in the impact of negative weight events for the
phase space � f mapped into each bin in the two distributions.
In analogy to Eq. (4) we introduce separate rescaling factors
PO,B for each bin B containing the events i = iB, . . . , iB+1:

σO,B =
iB+1∑
i=iB

wi =
∑iB+1

i=iB
|wi |∑iB+1

i=iB
|wi |

iB+1∑
i=iB

wi ≡ PO,B

iB+1∑
i=iB

|wi | .

(8)

This preserves all bin heights exactly and therefore the full
distribution in O. The total cross section is just the sum over
all bins, which also remains unchanged. In cases where the
systematic variation in the distribution of negative weights is
negligible, Eq. (6) guarantees that all rescaling factors PO′,B′
for all observablesO′ and bins B ′ converge to the same value.
This implies that all other distributions remain correct in the
limit of large statistics.

It is straightforward to generalise the argument to multi-
differential distributions. For instance, if we resample bins
in a double-differential distribution in O and O′ then also
the respective single-differential distributions in O and O′
as well as the total cross section are preserved exactly. The
most extreme case is a differential distribution in all final-
state momenta. In the limit of infinitesimal bin widths we
recover the idealised scenario already described in Sect. 3.1.
The convergence to the correct result can be achieved by
appropriately increasing the dimensions used in the Positive
Resampler.

Consider now the situation where two observables O and
O′ should be described simultaneously. The correct result
for both observables would be obtained if the P-factors were
calculated separately for each set of events in the overlaps of
the bins of O and O′. The i’th bin in the distribution of O′
would then be found as

σO′,i =
∑
j

PO, j∩O′,i
∑

k∈O, j∩O′,i
|wk |. (9)

This method can be straightforwardly generalised to more
observables, and will be simpler than reverting to binning
the full phase space �n .

Consider now the situation where a one-dimensional
observable O and distribution is used for the resampling,
and the result is then binned in another observable O′. The
dependence of P on the bins i in O′ in each bin j of O is
then not known, and instead of Eq. (9) one can at best obtain

the approximation

σO′,i ≈
∑
j

PO, j

∑
k∈O, j∩O′,i

|wk |. (10)

The error made in going from Eq. (9) to Eq. (10) is pro-
portional to the variation in P for sub-division of the bin j .
Narrower bin widths in j will improve the situation, espe-
cially if there is any correlation between the observables O
and O′. We will later (see Fig. 3) investigate the outcome
of resampling in the transverse momentum of the leading
jet, and then bin in the rapidity of this jet. This is a “worst-
case” scenario, where there is little correlation between the
observables.

4 Results from the positive resampler

To demonstrate the practical performance of the algorithm
outlined in Sect. 3 we consider an αs-driven NLO-merged
description of the W -boson + jets process, as an example
of a resource-intense calculation. We focus on results for
proton-proton collisions at 14 TeV centre-of-mass energy.
The inclusive event sample merging NLO QCD calcula-
tions for 0, 1 and 2 additional jets is generated by using
MadGraph5_aMC@NLO5 merged and showered by Dire.
Multiparton interactions, hadronisation and beam remnants
are handled byPythia. The outputs are analysed usingRivet
[22], which provides the input distributions to the Posi-
tive Resampler, and performs the analysis and plotting. We
present results for the standard Rivet analyses MC_WINC and
MC_WJETS in order to illustrate the performance of the Pos-
itive Resampler on analyses already in use by the community
for testing the description of the production of a W -boson.

We then apply a series of resampling steps to each gener-
ated weighted event sample. Since the events in each sample
are based on fixed-order input with a uniform number of
observable final state particles, the resampling will be auto-
matically differential in this quantity. In addition, we choose
a further target (binned) distribution which we aim to pre-
serve exactly during the procedure. We are free to pick an
arbitrary distribution for this purpose. In the present work,
we consider first the following one-dimensional examples.

5 NLO inputs are generated with aMC@NLO, with loose cuts and
employing Pythia shower subtractions, and post-processed by per-
forming a single Pythia evolution step using the settings recommended
in the MadGraph5_aMC@NLO documentation. The results after post-
processing are stored and used as input for Dire. LO events are also
generated with loose cuts. Tighter merging scale cuts on LO and NLO
samples are applied by Dire. Table 1 lists the number of events after
the merging scale cut.
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a) W boson transverse momentum. We preserve dσ
dpW⊥ , in

bins with a width of 5 GeV each. In the peak region
pW⊥ < 125 GeV this coincides with a histogram from
the MC_WINC Rivet analysis.

b) Parton shower evolution variable t1. This unmeasurable
parameter is defined as the Dire parton shower order-
ing variable [23] at which a zero-parton state transi-
tions to a one-parton state. For events with more than
zero partons before showering, we use the t-value of the
first node in the reconstructed parton-shower history that
is employed when calculating no-emission probabilities
within UNLOPS. If no transition from a zero- to a one-
parton state exists (e.g. if the shower did not perform an
emission, or if the history favoured electroweak cluster-
ings), we set t1 = −1. For t1 > 0, we consider dσ

d log t1

in
√
N bins, where N is the number of events in each

sample. We add one more bin for events with t1 < 0.

Our aim here is to demonstrate the viability of positive
resampling independently of the concrete analysis. For this
reason we consider distributions for the complete event sam-
ples and refrain from applying any analysis cuts at this stage
when using the resampling prescription (b). In contrast to
this, option (a) relies on the Rivet analysis for identifying
the momentum of the W boson and analysis cuts have to be
applied before resampling.

In the next step, we apply the following procedure to each
bin in the chosen distribution. These are the same steps later
applied in each bin of multi-dimensional sampling.

1. Change weights. We turn negative-weight into positive-
weight events as described in Sect. 3. This preserves the
height of each bin exactly.

2. Partial unweighting. We choose a target weight Wt and
apply standard unweighting to all events with weights
wt < Wt , i.e. we keep the event with probability p = wt

Wt
and then adjust the event weight to Wt . We choose Wt in
such a way that approximately 10% of the original events
are kept. This number can straightforwardly be adjusted.

3. Bin restoration. We rescale the weights of all events in
the bin such that the original bin height is restored. If the
stochastic unweighting in the previous step resulted in
an empty bin, we first pick a random discarded event and
add it back to the bin prior to restoring the height. The
probability to recover a discarded event is chosen to be
proportional to its weight.

We also compare our approach to more traditional unweight-
ing, where the signs of the event weights are unchanged,
and the modulus of the event weight is used when deciding
whether an event should be kept.

As is illustrated on Fig. 1, the results obtained using both
traditional unweighting and the Positive Resampler are con-
sistent with the result using all events, well within the sta-
tistical fluctuation of that largest sample. It is also clear that
the statistical uncertainty associated with the distributions
obtained with the Positive Resampler is similar to that of the
input weighted distribution. The central values and associ-
ated uncertainty is for both calculated by Rivet.

To some degree, the power of the method is in the reduc-
tion of events necessary to achieve a certain statistical accu-
racy.

Table 1 lists the number of events in each sample; the input
test sample to the Positive Resampler contains 5.3M events,
of which 195k pass the cuts of the analysis. Of these, 3.2M
and 121k respectively have positive weights. The simple
unweighting procedure leaves 1.5M (52k passing cuts of the
analysis). The Positive Resampler according to t1 reduces this
to 659k and 25k respectively. The Positive Resampler(pW⊥ )
by construction accepts events only if they pass the cuts of
the analysis, which with this resampling is 33k. The true
power of the positive resampling is in the reduction from
52k to 25k or 33k of events. This reduction in the number of
events is brought about by the cancellation between positive
and negative contributions, illustrated in Fig. 1 by the con-
tribution of “positive only”. The fact that this contribution is
roughly twice the cross section at the peak of the distribution
(most easily checked for yw) leads directly to the reduction in
the number of events obtained with the Positive Resampler.
The increasing ratio of the “positive only” to the “weighted”
result at large pW⊥ and pl⊥ is a result of the increasing can-
cellations taking place within the input sample as discussed
in Sect. 2. It is these cancellations that the Positive Resam-
pler implements effectively by reducing the event count. The
number of events left after the resampling can be adjusted
and tuned – the largest possible number of events per unit of
cross section is given by the number of events (positive and
negative) in the bin with the least cancellation, divided by
the cross section in this bin. The distributions expose large
cancellations in some regions of phase space, indicating that
many more events are required to obtain statistically mean-
ingful spectra. Improvements of the example NLO-merging
implementation used – to reduce the amount of cancellation
already at the “weighted” stage – would clearly be beneficial
[9].

4.1 Positive resampling in higher dimensions

The distributions studied in the previous section all relate
to the momenta of the W and its decay products. Figure 2
presents results for the transverse momentum distribution of
the three hardest jets produced in association with the W .
Following the discussion in Sect. 3.1 on multi-dimensional
resampling for processes with many final state momenta of
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Fig. 1 The distributions of pW⊥ , yW and pl⊥ obtained using the various samples. The sample of “positive only” events is included to illustrate the
scale of the contribution from negative weight events

Table 1 The number of events
generated in the sample of
W + 0 j, 1 j, 2 j@NLO merged
with UNLOPS (weighted), and
the number of events arising
from these by using the
algorithms discussed in the
paper

Sample Total number of events Events included in analysis

Weighted 5.3M 195k

Positive only 3.2M 121k

Unweighted 1.5M 52k

Positive Resampler(t1) 659k 25k

Positive Resampler(pW⊥ ) 33k 33k
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Fig. 2 The transverse momentum of the hardest jet (p j1
⊥ ), second hardest jet (p j2

⊥ ), and third hardest jet (p j3
⊥ ). The lower right plot shows the

convergence of the result of the Positive Resampler for an increasing number of dimensions using the shower evolution variable of up to three
emissions

leptons and jets , it is unsurprising that a good description of
the transverse momentum of the third jet requires sampling in
more than just one dimension. Perhaps the surprising result
is how few extra dimensions are required for a good descrip-
tion. The lower right pane on Fig. 2 shows the description of
p j3
⊥ when the Positive Resampler is applied in an increasing

number of dimensions from 1 to 3, using the shower evolu-
tion variable for the first, second and third hardest emission.
The result converges to the weighted result (the input to the
resampler) as the number of dimensions used in the resam-

pling is increased, and using three dimensions it is already
well within the statistical fluctuations of the sample (some
statistical fluctuation is obviously expected from the stochas-
tical process of unweighting).

The result for the transverse momentum spectrum for the
leading, subleading and the third leading jet is presented on
the three remaining plots of Fig. 2. The result for the Posi-
tive Resampler in pW⊥ uses just one-dimensional resampling,
whereas that of Positive Resampler(t1, t2, t3) uses the three-
dimensional resampling in the shower evolution variable.
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Fig. 3 The transverse momentum of the hardest jet in three rapidity
slices. See text for discussion

The curve for positive only illustrates again the significance
of the negative weight events in the sample, and the por-
tion of the events that can be removed. Resampling in three
scalar dimensions is sufficient for the description of all the
momenta.

As discussed in Sect. 3.3, the method can also be applied
for multi-differential distributions. As an example, we show
the distribution of the leading transverse jet momentum dif-
ferentially in rapidity in Fig. 3. In spite of large fluctua-
tions in the negative-weight contribution, the distributions
agree in all bins with the original distribution obtained from
weighted events (within the statistical variation introduced
by the unweighting) .

5 Conclusions

We presented the Positive Resampler, a method for modi-
fying the weights of events drawn from a sample with both
positive and negative weights, such that all events enter with
positive weights, while kinematic distributions and observ-
ables are preserved exactly or within the statistical varia-
tions in the sample. The method was demonstrated using

reweighting in three different distributions and the impact on
6 independent observables studied. Since weight cancella-
tions are handled explicitly, the reweighting can be imple-
mented through a reduction of the number of events, thus
allowing to significantly lower the cost and time associated
with post-processing the event sample with subsequent anal-
ysis and modelling. The implementation of the reweighter
used in this study will be publicly available after publication
of this manuscript.
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