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ABSTRACT

Supply chains (SCs) are exposed to multiple risks and vulnerable to disruption propagation (i.e. the
ripple effect). Despite established literature, quantitative analysis of the ripple effect in SCs consider-
ing simultaneous, long-term disruptions (i.e. induced by the COVID-19 pandemic) remains limited.
This study defines, applies and demonstrates the capability of system dynamics modelling to recog-
nise and visualise the ripple effect subject to supply, demand, and logistics disruptions as well as
a combined, simultaneous disruption of supply, demand and logistics. Simulation results for these
four risk scenarios indicate that disruption propagation and its impacts vary based on risk type,
combination of risks and the impacting node. The bi-directional, increasing effect is significant for
disruptions of longer duration. Retailers and manufacturers are most fragile to multiple disruptions
due to broader risk exposure points. In generalised terms, systems theory-based study provides
insights into the complex behaviour of simultaneous risks and associated disruptions occurring at
a node and across the SC. The outcomes derived can help practitioners visualise and recognise the
dynamic nature of the ripple effect cascading across the SC network. In addition, some novel insights
on the systemic nature and delayed impact of disruption propagations are uncovered and discussed.
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1. Introduction . .
For some years, such scenarios have been considered

Supply chains (SCs) are exposed to different risks, includ-
ing operational, environmental and human-made risks
(Rao and Goldsby 2009; Ho et al. 2015). The disruptions
caused by different risks adversely affect the SC network
(Heckmann, Comes, and Nickel 2015). One difficulty in
managing SC disruption is that they cascade through
a wider network, causing a ripple effect, devastating
an organisation’s financial and operational performance
(Dolgui, Ivanov, and Sokolov 2018; Hosseini and Ivanov
2020). The ‘ripple effect’ also called ‘risk/disruption prop-
agation’ is defined as cascading impact of a risk disrupt-
ing not just a single SC node but further propagating
across the supply, production and distribution nodes in
SC network (Ghadge, Dani, and Kalawsky 2012; Ivanov,
Sokolov, and Dolgui 2014).

Despite the remarkable progress in the ripple effect
research (Dolgui and Ivanov 2021), little is known
about disruption propagation under long-term disrup-
tions when demand, supply and logistics are disrupted
sequentially and simultaneously at different SC echelons.

rather unlikely. However, the example of COVID-19 pan-
demic demonstrates such environments highlighting the
scope and scale of the disruption propagation across the
global SC network (Paul and Chowdhury 2020; El Baz
and Ruel 2021; Nagurney 2021; Sodhi, Tang, and Willen-
son 2021). In early 2020, Haren and Simch-Levi (2020)
observed a ripple effect immediately after the COVID-19
epidemic outbreak in China at Fiat Chrysler Automo-
biles and Hyundai. Over the same year, the ripple effect
scale grew substantially, adversely affecting almost all the
industries and services worldwide (Singh et al. 2020; Ruel
et al. 2021). Due to the global nature of disruption over
a relatively long period, it provides an excellent opportu-
nity to study independent and simultaneous risks over a
long-term horizon.

SC literature on the ripple effect focuses on conceptu-
alising (Dolgui, Ivanov, and Sokolov 2018) or establishing
the impact of risk type on a specific SC node (Kinra et al.
2020). Episodically, studies attempt to quantify the rip-
ple effect of risk on SC network (e.g. Sokolov et al. 2016;
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Ojha et al. 2018); however, there is a lack of understand-
ing of the cascading disruptive effects of simultaneous
(combination of) risks on different SC nodes (Llaguno,
Mula, and Campuzano-Bolarin 2021). This is critical for
today’s global SCs, as they are faced with multiple, simul-
taneous risks to their daily operations repeatedly. The
combined disruptive impact of these risks is difficult to
predict and visualise holistically due to the inherent com-
plexity and interconnectedness of different SCs and risk
variables. Thus, this study attempts to model and capture
the impact of disruption propagation of both individual
and multiple simultaneous risks on different SC nodes.
To this end, the study aims to visualise the ripple effect in
SCs characterised by severe disruptions due to demand,
supply and logistics risk, which may happen sequen-
tially or simultaneously in the case of pandemic-like
crises.

An integrative perspective is essential for modelling
disruption propagation across the SC networks; how-
ever, most current models are dominated by optimisation
approaches (Dolgui, Ivanov, and Sokolov 2018), while
lacking visualised models to imitate (simulate) differ-
ent scenarios to assess the disruption propagation phe-
nomenon from a multifaceted and micro perspective
(Pavlov et al. 2019; Llaguno, Mula, and Campuzano-
Bolarin 2021). Thus, following system dynamics (SD)
approach, this study develops and tests a simulation
model to capture the impact of long-term, simultane-
ous disruptions. Four disruptions scenarios are induced
by demand, supply and logistics risk independently and
simultaneously to address the evident research gap. Sec-
ondary data made available by a leading aerospace and
defence company based in the UK was used for the study.
The data comprised multiple human-made, and natural
SC risks the company faced within their global business
operations over the last five years.

The remainder of the paper is structured as follows.
Section 2 provides a brief background of the ripple effect
in SCs. Section 3 summarises the research methodology
and Section 4 presents the proposed SD model. Section 5
discusses the results of simulation modelling. In Section
6, the key findings are discussed and related to novel
theoretical and managerial implications. The concluding
Section 7 summarises our study’s key results and outlines
its limitations and future research opportunities.

2. Background

The research interest on the ripple effect has grown sig-
nificantly over the past decade due to increased risk
events and awareness within academia and industry. The
term ‘ripple effect’ refers to disruption propagation from
a node to other parts of the SC network (Dolgui, Ivanov,

and Sokolov 2018; Chauhan, Perera, and Brintrup 2021;
Gholami-Zanjani et al. 2021). Once a disruption occurs
at one specific node, the whole SC may be impacted
due to SC functions’ interconnectivity and interdepen-
dency (Deng et al. 2019; Goldbeck, Angeloudis, and
Ochieng 2020). Several other terminologies are inter-
changeably used for a ripple effect in the SC literature,
namely ‘risk diffusion’ (Basole and Bellamy 2014), ‘snow-
ball or domino effect’ (Swierczek 2016) and ‘cascading
effect’ (Heckmann, Comes, and Nickel 2015) to name
a few. This phenomenon has also been referred to as
‘risk propagation’ (Ghadge, Dani, and Kalawsky 2012;
Ojha et al. 2018; Li et al. 2020) or ‘disruption propaga-
tion’ (Wu, Blackhurst, and O’Grady 2007; Bueno-Solano
and Cedillo-Campos 2014; Scheibe and Blackhurst 2018;
Ivanov and Dolgui 2020). Despite different terminolo-
gies existing in SC literature, the fundamental concept
remains the same.

Conceptualising, modelling and capturing disruption
propagation impact is critical for understanding SC net-
work vulnerability and building resilient SC structures
(Ghadge et al. 2013). However, a limited amount of
research specifies the ripple effect caused by disruptions
with low frequency and high impact (such as supplier
unavailability, transport disruption and production dis-
ruption) (Dolgui, Ivanov, and Sokolov 2018). Specific
research attempting to quantify the ripple effect con-
sidering singular and combined disruptions in demand,
capacity and supply dynamics is not found in the extant
literature.

Similar insights generated through modelling of dis-
ruption propagation are being utilised for improving
SC performance and resilience. However, few studies
demonstrate that simulation models can help analyse
multi-echelon SCs’ behaviour with multiple and long-
term risks to understand disruption propagation triggers
and mechanisms (Wilson 2007; Macdonald et al. 2018;
Llaguno, Mula, and Campuzano-Bolarin 2021). Exist-
ing simulation models usually capture a limited num-
ber of SC nodes and time intervals (Bueno-Solano and
Cedillo-Campos 2014; Kinra et al. 2020). The significant
advantage of SD comes from its ability to visualise
and quantify intricate and dynamic systems by cap-
turing causal relationships between different variables,
risk factors and their consequential behaviours (Wil-
son 2007). Compared with other mathematical mod-
els, which require sophisticated algorithms and struc-
tures with various limitations, it has been acknowledged
in previous studies that the SD model can address the
non-linear and linear behaviours of a complex system
in a realistic, relatively simplified manner (Er Kara,
Ghadge, and Bititci 2020). Furthermore, SD enables
different scenario-based sensitivity analysis. Sensitivity



analysis helps assess and interpret the potential conse-
quences of risk propagation under different risk sce-
narios to provide deeper insights and make informed
decisions.

Despite the broad application of simulation for mod-
elling the ripple effect in SCs, little is known about its
potential to visualise and recognise the ripple effect’s
dynamic nature under such multiple and simultaneous
risks. Studying global disasters such as the COVID-
19 pandemic (2020) helps holistically assess disruption
propagation across the entire SC network (Ivanov 2020).
Our study aims to close this research gap.

3. Research methodology

In this study, we model disruption propagation within a
four-echelon SC faced with multiple (independent and
simultaneous) risks. For modelling such a phenomenon,
we consider multiple SC risks and associated variables
interacting with each other. These interactions result in
complexity due to the interdependence of many fac-
tors/variables and multiple feedback loops (Mingers and
White 2010). For assessing such complex interactions,
systems thinking/dynamics is the most suitable approach
(Foerster 1968; Sterman 2010). Furthermore, systems
thinking helps build an SD model to simulate intercon-
nected environments (Kamath and Roy 2007; Mula et al.
2013). Past research shows that SD simulation is a power-
ful technique to model complexity, multidimensionality
and interrelations of a real-world SC system (e.g. Ghadge
et al. 2013; Ivanov 2017; Scheibe and Blackhurst 2018;
Er Kara, Ghadge, and Bititci 2020; Rathore, Thakkar, and
Tha 2020).

For SCrisk assessment, different simulation modelling
approaches have been utilised to capture credible rep-
resentations of real systems. Apart from SD modelling,
agent-based modelling (ABM), discrete event simulation
(DES), Monte-Carlo simulation are commonly used for
modelling real systems (Janssen, Sharpanskykh, and Cur-
ran 2019; Rathore, Thakkar, and Jha 2020). Each of these
methods has its advantages and disadvantages. ABM sim-
ulates actions and interactions of autonomous decision-
making entities (agents) that act according to their own
goals (Nilsson and Darley 2006). While SD modelling
focuses on the flows, feedbacks and cumulative longitudi-
nal effects (Foerster 1968), and ABM considers the spatial
interactions rather than feedback effects of the factors
(Ding et al. 2018). DES models a series of discrete events
and considers networks of queues. While DES models are
stochastic and focus more on numerical results, SD mod-
els generally show deterministic behaviour and focus on
the events that lead to changes in the system (Tako and
Robinson 2009).

INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 6175

The SD approach was found to be appropriate to
model dynamic SC systems for apprehending disrup-
tion propagation within SC nodes. The global impact of
the COVID-19 pandemic has shown the importance of
building simulation-based systems for disruption map-
ping and risk modelling (Choi, Rogers, and Vakil 2020;
Currie et al. 2020; Ivanov and Dolgui 2020). Such sim-
ulation models help companies develop proactive risk
management frameworks and identify efficient recovery
policies.

The research design in this study is as follows. First,
the key variables and interrelationships within the SC
system were defined. Then, the causal loop and stock
and flow diagram were developed. These diagrams pro-
vide a rough representation of a system to capture the
dynamics of different influential variables. The accuracy
of these diagrams is confirmed by validating whether the
interventions have the desired impact. Later, the model
was simulated for different scenarios to draw inferences.
Finally, a classical four-echelon SC model, including sup-
plier, manufacturer, distributor and retailer, was con-
sidered to analyse the propagation of risks along the
entire SC.

To develop a causal loop diagram (CLD), causalities
of variables and parameters were depicted. The CLD was
then converted into a stock and flow diagram, which
allows quantitative analysis of the system using SD com-
puter software-Vensim PLE . For simulation purposes,
supplier capacity, transport capacity and market demand
were assumed to be exposed to varying risks. Variations
in different SC variables were examined to understand
the impact of such risks and their disruption propagation
along the SC. These variations were captured by measur-
ing the ‘vulnerability index” at each time interval for SC
nodes.

Different conditions were simulated by changing input
risk parameters for two severity levels; moderate and high
disruption cases. The risk scenarios comprise demand
risk, logistics risk, supply risk and multiple parallel
risks during a specific time interval. Parametric val-
ues utilised in the simulation model were based on
the secondary data of a leading aerospace and defence
company based in the UK. This data set provides the
researcher with more in-depth insights about SC under
different risks/disruptions at different locations/nodes
and their relative impact in the broader aerospace
industry.

4. Model development

To build the SD model, key SC variables and influen-
tial risk factors were identified based on the literature
review and authors’ experience within SCRM. Typically,
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Figure 1. Causal loop diagram.

there may be numerous risk factors related to each SC
entity interacting with the entire system, constituting an
accumulated vulnerability exposure. Key risks consid-
ered in the model refer to supply, logistics and demand
risk. Actual inventory levels of the supplier, manufac-
turer and distributor, shipping capacity of the manufac-
turer and market demand were considered for capturing
the disruption effect. Figure 1 shows the CLD of the
model developed following the identification of the key
SC variables, risk factors and feedback loops between
variables revealing the cascading phenomenon. The fol-
lowing steps were applied to capture a holistic as well as
reliable model; (i) the model was refined iteratively by
exploring the usefulness of the model via multiple discus-
sions with industry experts and authors. Here, we utilised
production and SC professionals and authors expertise
in SCRM for refinement of the CLD model. (ii) Mul-
tiple settings were tried to capture different scenarios
based on the real working environment of the practition-
ers. Finally, the CLD was developed by selecting multiple
variables, flows and interrelationships.

The accuracy of developed CLD was validated by
performing several tests (refer to Appendix2) to check
whether the interventions have the desired impact.

The CLD demonstrates the numerical variations of
multiple influential variables. The direction of one

quantity

+
Retailer actual

T
Customer related risk
received quantlty—\—————/’//'

Retailer
quantity

variable to another is represented with ‘+’ and ‘- signs
in the CLD. For example, supplier capacity positively
impacts the supplier’s actual inventory, i.e. an increase in
supplier capacity can improve a supplier’s actual inven-
tory (Liicker, Chopra, and Seifert 2020). As observed in
Figure 1, four negative feedback loops exist in this sys-
tem, comprising relationships between output quantity
and actual inventory level at each SC entity. Since the
number of loops is even, this SC system is recognised to
be stable.

Variations and discrepancies in SC variables were cap-
tured as vulnerabilities, disrupting the SC system. For
example, the difference between a supply quantity from a
vendor and the actual quantity received at a manufacturer
represents a supplier-related risk inducing inventory risk
or transport risk in the model. Identification of other SC
entity-related risks follows the same rationale mentioned
above. Differences between manufacturer-received quan-
tity from supplier and distributor and actual received
quantity present the manufacturer-related risk, includ-
ing inventory, transport and production-related risks.
Apart from key variables, the CLD also considers sev-
eral relevant auxiliary variables such as planned quantity
and shipping capacity at each node of the SC, which
connects every node and constitutes the holistic SC
system.
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Figure 2. Stock and flow diagram.

To simplify the model and run the simulation, the
following assumptions were made:

e The causes of variations and discrepancies among the
variables only consider major risk, i.e. inventory and
transport risk at every SC node.

e The expected inventory level, initial inventory level,
capacity and transport capacity at each SC node is
based on the secondary data.

Figure 2 shows the stock and flow diagram developed
from the CLD by carefully filtering key influential (direct
and indirect) variables into ‘stocks’ and ‘flows’. The stock
and flow diagram was then fed with the input data (ini-
tial value, rate of flows, etc.). This SD model was tested
for relevance, consistency, sensitivity and extreme con-
dition test (Martis 2006). The model was found to be
feasible and valid for the intended purpose of capturing

tailer shipping<«————— Vehicle

\Retailer vehicle
volume

Retailer vehicle volume
. actual Z
inventory

0
Retailer
inventory risk

Retailer expected
inventory

Retailer
sales risk

capacity 4 Retailer risk

disruption propagation. The proposed SD model was
simulated for 156 weeks, and the SC was exposed to
demand, transportation and supply risks within 72-110
weeks to analyse disruption propagation across the SC.
Numerical settings and main equations of the SD model
may be found in Appendix 1.

5. Simulation results

The developed simulation model was run using the Ven-
sim PLE platform. Each scenario-based simulation was
run once, each run comprising of minimum 200 itera-
tions before obtaining results. Supplier risk was calcu-
lated based on inventory and transportation risk vari-
ables identified at the supplier node available in the sec-
ondary data. Similarly, manufacturer risk was measured
based on a manufacturer’s inventory, production and
transportation risk. The specific risk exposure level at
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Figure 3. Supply chain disruption propagation due to demand risk.

distributor and retailer nodes showed a relatively stable
level within the available data. Four different risk sce-
narios were designed by considering selected risks (mar-
ket demand, transport capacity shortages, supply-related
issues) occurring at each SC node to understand the
degree of vulnerability of each SC node due to cascading
impact of disruption propagation. According to Svens-
son (2002a, p. 65), ‘vulnerability is a condition that is
caused by time and relationship dependencies in a com-
pany’s business activities in supply chains. The degree
of vulnerability may be interpreted as proportional to
the degree of time and relationship dependencies, and
the negative consequence of these dependencies, in a
company’s business activities towards suppliers and cus-
tomers’. According to the above definition, the construct
of vulnerability consists of two components: disturbance
and the negative consequence of disturbance. A distur-
bance is a random deviation from what is normal or
expected. A negative consequence of disturbance refers to
adeteriorated goal accomplishment in terms of economic
costs, increased cycle times and downtimes (Svensson
2002b). Adopting this concept of ‘vulnerability’ in the
study, we attempt to depict variation in vulnerability
at each SC node due to impacting risk and their cas-
cading disruption to other SC nodes over a selected
time horizon. This variation in vulnerability is calcu-
lated using the ‘vulnerability index’ (adopted from Wag-
ner and Neshat 2010) and varied between 0 and 1. The
vulnerability index is a numerical value that measures
exposure to risks/hazards and is calculated by combin-
ing quantitative weighted risk scores to get a cumula-
tive value. Vulnerability logic diagrams and event trees
are frequently used to estimate vulnerability accurately
(Janssen, Sharpanskykh, and Curran 2019). Under nor-
mal operational circumstances, it is assumed that each
node will have a certain level of default vulnerability
to risk.

5.1. Disruption due to demand risk

Under a volatile market environment, demand risk may
be triggered by various external factors varying from new

72 96
Time (Week)
Regular market demand
%25 reduction in market demand
%50 reduction in market demand

72 96 120 144
Time (Week)
Regular market demand
%25 reduction in market demand
%50 reduction in market demand

120 144 0

competitors, natural disasters or emerging disruptive
technologies in the market (Shen and Li 2017; Ojha et al.
2018). For example, in 2019, warmer weather continuing
into autumn adversely affected fashion retail demand in
the UK, leading to an 80-million-pound loss every week
(Met Office UK & British Retail Consortium 2019). In
the context of COVID-19, Agricultural SCs faced a sud-
den fall in demand (post-panic-buying events) for their
produce due to pandemic-related lockdowns (UK Par-
liament 2020). Based on Beccue et al’s (2018) work,
two states, one with a 25% reduction and a 50% reduc-
tion in market demand during weeks 72 and 110, were
hypothesised for this disruption scenario. These states
can best reflect real-world situations during lockdowns
forarestricted period in a selected three-year (156 weeks)
time horizon. Figure 3 shows the impact of 25 and 50%
reduction in market demand on manufacturer, distribu-
tor and retailer nodes.

It is observed that a reduction in the market demand
does not impact the retailer node in the immediate term.
However, the severity of the variation in demand is felt
later as the disruption propagates along the SC. As the
closest entity to the market demand, the retailer node
tends to be little impacted on its overall vulnerability
index, with the setting time to form the expectation
(three weeks in this model). However, it is observed that
this cascades into increased inventory levels at the dis-
tributor as the average network demand decreases. Under
this situation, the distributor has to deal with a higher
vulnerability index in terms of obsolete or backlogged
inventory.

Due to the ripple effect, disruption caused by demand
risk further propagates upstream to the manufacturer
and beyond in the SC. Interestingly, the impact of dis-
ruption is also delayed compared to the previous down-
stream node, owing to the delay in forming demand
expectations between each node. According to Dolgui,
Ivanov, and Sokolov (2018), a phenomenon called ‘dis-
tortion information of market demand variation’ exists.
As the initial node of the SC system, the supplier tends
to fail to respond to risk with timely remedies, increasing
the inability to meet the manufacturer’s demand. Reasons



why this phenomenon occurs can be attributed to uncer-
tain factors during disruption propagation, such as delay
and distortion of information.

5.2. Disruption due to logistics risk

Sufficient transport capacity is vital at each SC entity,
which ensures product movement and on-time delivery.
In the wake of the COVID-19 pandemic, a critical short-
age of containers drove up shipping costs (up to 300%)
and delayed deliveries for goods purchased from China
and other Asian regions (Tan 2021). This section simu-
lates a situation associated with transportation capacity
problems at the manufacturer node and its effects on
various risk factors at different SC levels. Under these sce-
narios, the cause of disruption on transport capacity can
be associated with driver strikes, vehicle damage or other
contingencies (Qazi et al. 2018). An example of logis-
tics disruption is the UK-EU border chaos during the
spread of a new variant of COVID-19 combined with the
confusion associated with ‘Brexit’ (The Economist 2020).

To provide a similar opportunity for comparing the
previous scenario, we considered 25 and 50% decrease
in the transport capacity between weeks 72 and 110.
Figure 4 illustrates that the manufacturer shipping capac-
ity decreases with increasing transport disruption with
changes in different risk parameters. It is observed that
the disruption tends to cause an impact on the entire SC,
impacting the retailer to the highest extent (considering
percentage change in vulnerability index), with delay or
shortages in stock for meeting end customers’ demands.
Figure 4 also illustrates the influence of the disruption
impact on the distributor.

Transport capacity risk derived from the manufacturer
propagates to the distributor by affecting its inventory
level. Shipping capacity decrease leads to an increase
in the inventory levels; however, this disruption is not
felt immediately or in the short term by the manufac-
turer. It is rather observed to be affecting distributor and
retailer significantly due to lack of inventory replenish-
ments from the manufacturer. The results also show that
the disruption impacts the retailer node slower than the
distributor node, illustrating the cascading characteristic
of the ripple effect.

5.3. Disruption due to supply risk

As the starting upstream node of the SC system, vari-
ations in supplier operations tend to influence the SC
holistically by affecting various factors attached to the
subsequent echelons of the network. The stability of the
supplier’s supply level can directly or indirectly impact
the key SC indicators such as inventory level, transport
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capacity, production and sales level. This section sim-
ulates a scenario with 25 and 50% reduction in supply
quantity between weeks 72 and 110, typically caused
by operational risks of labour, machines or damage to
inventory from fires or natural disasters faced by the
supplier. For example, during early COVID-19, multiple
agri-food producers/suppliers could not harvest the food
(e.g. fruits) primarily due to labour shortages in the UK,
leading to huge food loss and waste (The Guardian 2020).

Predictably, the effect of disruption will first propa-
gate to the manufacturer in the SC. For example, Figure 5
illustrates that the manufacturer (processor) faces inven-
tory shortages and cannot achieve the planned pro-
duction quantity due to disruption cascaded from the
supplier. For distributor and retailer nodes, there is a
marginal disruption impact caused due to 25 and 50%
supply reduction.

Simulation results demonstrate that the ripple effect
propagates simultaneously further downstream nodes of
the SC. Since both distributor and retailer tend to suf-
fer inventory shortages almost concurrently, resulting in
unanticipated and adverse impact in terms of lost sales
and decreased customer satisfaction. Eventually, this can
result in a loss of profit and even customer loyalty, neg-
atively affecting the entire SC performance. It is antici-
pated that the risk exposure level at each node is likely
to vary owing to the different degree of risk-resistant
competencies owned by an individual node.

5.4. Disruption due to simultaneous risks

This scenario simulates the situation with three risks
(supply quantity, transport capacity and market demand)
occurring simultaneously. This risk scenario is particu-
larly important, as it helps to understand and compare the
ripple effect caused by individual and multiple disrup-
tion scenarios. For example, automotive and electronics
industries have experienced an unprecedented shortage
of semiconductors in the first quarter of 2021, leading
to production halts and delivery delays through the rip-
ple effect (Shead 2021). The reasons for these shortages
were an unexpected increase in demand at automotive
firms that recovered after the pandemic shock in 2020.
However, the semiconductor suppliers have re-allocated
their capacities to other SCs to benefit from their increas-
ing demand for semiconductors and substitute the miss-
ing demand from the automotive industry. This example
illustrates interconnections between different SC risks
(e.g. natural resource shortage risks, demand risks, pro-
cess risks and supply risks) along with the ripple effect
(i.e. propagation of a local disruption through a global
network), bullwhip effect (i.e. amplification of variations
in production and order quantities across the SC induced
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Figure 6. Supply chain disruption propagation due to multiple, simultaneous risks.

by insufficient demand transparency) and intertwining of
supply networks.

Through the variable-controlling approach (Wu,
Blackhurst, and O’Grady 2007), the basic settings are the
same as described in earlier sections. Three conditions,
i.e. normal vulnerability, moderate vulnerability (Multi-
ple scenario-1) and high vulnerability (Multiple scenario-
2), were considered. By simulating this unique scenario,
we can observe that multiple risk-driven disruptions
cause a larger cascading impact on every SC node than a
stand-alone disruption (Figure 6). For the manufacturers,
as they receive less raw material from the suppliers, their
production and inventory risk tend to increase, entail-
ing some degree of transport risk and leading to further
escalation of inventory/production risk. Similar observa-
tions are made at the retailer in terms of the vulnerability
index. Inventory and sales risk increases at the retailer,
as it receives insufficient quantities from the distributor,

resulting from the supply shortages disruption and dis-
ruption in transport capacity and manufacturer produc-
tion quantity at upstream SC nodes. Finally, this com-
bined ripple effect of multiple disruptions on a multi-
echelon SC propagates to the end customers in terms of
unfulfilled demand and reduced service level.

The results observed in Figure 6 also show that, com-
pared with the distributor, the retailer and manufacturer
tend to be more fragile in the SC because of multiple
SC activities occurring at these two specific nodes, rep-
resenting a higher vulnerability index. This observation
provides strong evidence for inconsistent behaviour of
disruption propagation within the SC network. How-
ever, it is difficult to generalise this insight as it may
vary depending on SC nodes’ characteristics and the
kind of disruption scenarios considered. Additionally,
due to the cascading effect of multiple risks acting simul-
taneously, the standard deviation of the vulnerability



index increases significantly in these scenarios, creating a
highly vulnerable environment for the breakdown of the
entire SC network.

6. Discussion

In this study, we examined the ripple effect in SCs under
different scenarios of long-term, simultaneous disrup-
tions induced by the COVID-19 pandemic. Our main
aim was to uncover the value of the SD approach for
the ripple effect recognition and visualisation, along with
the analysis of dynamic production-supply behaviours
at different SC echelons. We studied four disruptions
scenarios induced by demand risk, logistics risk, supply
risk and multiple simultaneous risks. To close the identi-
fied research gap, we analysed an understudied dynamic
problem setting when disruptions occur in demand, sup-
ply and transport capacity individually and simultane-
ously over a longer time horizon. We developed an SD
model and simulated the ripple effect in SCs, considering
the multi-echelon system faced with varying disruptions
felt across the SC. It has been observed that, without
considering risk mitigation policies in the simulation
model, the risk exposure level tends to accumulate over
time as disruption propagates along the SC. The disrup-
tion scenario results with demand risk confirm that risk
propagation starts downstream in the SC and propagates
upstream.

Transport risk-driven disruption originating from the
manufacturer tends to impact retailers to the greatest
extent and is faced with the utmost inventory risk expo-
sure level. The impact of this risk tends to accumulate
across the SC, as it propagates further upstream. Compar-
ing four risk scenarios, disruption propagation follows
the bi-directional flow-upstream and downstream direc-
tion of the SC. The ripple effect of reduced inventory
level leads to inventory risk at each node, as it cascades
through the SC, finally resulting in decreased lost sales
and poor customer satisfaction.

Simultaneous, multiple disruptions generate larger
ripples across the SC compared to individual disruptions.
Being exposed to more complex SC activities, the retailer
and manufacturer tend to be more fragile under multiple
disruptions in this simulation model. Furthermore, dis-
ruption propagation impact is significantly higher at each
SC node for simultaneous risks over a longer time hori-
zon. This is aligned with the general understanding that
the ripple effect cascades with increasing eftect across the
SC network (Ojha et al. 2018).

Our SD simulation model enabled quantification and
visualisation of the ripple effect in the SC. This dynamic
modelling approach can help companies foresee risk
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exposure levels at the node and across the SC net-
work. Our study results indicate that disruption prop-
agation impact varies based on risk type, combina-
tion of risks and impacting node. It was also observed
that longer duration disruptions typically suffer a larger
overall impact on the wider SC. The ripple effect of any
disruption is felt immediately but continues to impact
over a longer duration unless the system attempts to
recover from it. The impact of any disruption typically
follows ‘disruption curve’ as described by Sheffi and Rice
Jr (2005), where the extent of disruption impact and
recovery is driven by several factors, such as time dura-
tion, type of risk, the inherent resilience of the node, mit-
igation actions, etc. Interestingly, in the case of pandemic
risk (COVID-19), this disruption curve was observed to
be following a ‘recurring wave’ pattern due to multiple
lockdowns (i.e. opening and closure of SC nodes) impact-
ing SC operations with a varying set of disruptions.

7. Conclusion and future research
7.1. Contribution to practice

Our study provides strong implications for practice. Fol-
lowing a structured research design, this study defined,
applied and demonstrated the capability of SD modelling
for visualising the behaviour of disruption propagation.
Quantification of the ripple effect is crucial for under-
standing the complex behaviour of risks/disruptions in
SCs (Dolgui, Ivanov, and Sokolov 2018; Zobel et al. 2021).
However, the scenario-based simulation analysis con-
ducted in this paper provides the opportunity to pic-
ture the SC disruption propagation phenomenon from
macro-and micro-level perspectives. It is evident from
the analysis that the ripple effect is influenced by several
factors ranging from market-supply-demand-logistics
characteristics, combination of disruptions and points
of failure within the SC. Generated evidence-based
information on influential variables and vulnerability
index can better manage SC networks during future
disruptions.

The developed simulation model for disruption prop-
agation is robust and realistic to support the managers
with the identification and recognition of weak nodes by
identifying potential vulnerabilities across the network
following a ‘system-wide view’. The visual representation
of the ripple effect provided in this study is beneficial
for building digital SC network models. Such simula-
tion models can support in building a ‘digital twin’ of
global SC networks for holistic assessment and miti-
gation (Ivanov and Dolgui 2020; Frazzon, Freitag, and
Ivanov 2021). The analysis of possible risk-driven disrup-
tion scenarios is expected to help practitioners re-design
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risk-resistant SC structures and develop effective risk
mitigation policies.

7.2. Contribution to theory

This study makes some useful contributions to the the-
ory. This study contributes to the SCRM literature by
examining the ripple effect in SCs under different sce-
narios of long-term, simultaneous disruptions induced
by the COVID-19 pandemic. The ripple effect in the
SC has attained well-established understanding; how-
ever, to the best of the author’s knowledge, modelling
this phenomenon following an SD approach and in the
setting of long-term, simultaneous disruptions (e.g. like
those induced by the COVID-10 pandemic) is the first
of its kind. Although disruption scenarios have been
considered in the literature using simulation modelling
approach (e.g. Olivares-Aguila and EIMaraghy 2020), the
SD simulation model developed to quantify and visualise
the multi-layered effect due to disruption propagation
on the SC network provides a unique methodological
contribution, showcasing the potential of SD modelling
for simulating a complex, dynamic phenomenon in an
SC environment. Established bi-directional, increasing
impact of disruption propagation across SC nodes is
valuable insight and is expected to encourage SCRM
researchers to explore further the behavioural dynamics
of risks and associated cascading disruptions across SC
networks.

7.3. Limitations and future research

Limitations exist, as with any other study. Secondary data
were used to provide a general picture of the common
risks occurring along an SC. The lack of primary data
and subjectivity in some model parameters limit com-
prehensive quantification of the ripple effect. Another
limitation resides in excluding cost factors and consid-
eration of risk mitigation activities to recover from the
disruption(s). Each scenario-based simulation was run
only once with the limited number of iterations, thus it is
difficult to generalise the findings. Growing globalisation,
increasing collaboration and technology development (as
part of Digitalisation and Industry 4.0) will lead to the
emergence of new risks such as counterfeits, cyberse-
curity, systemic risk, etc. (Ghadge et al. 2020). There-
fore, it is evident that the SC risk/disruption propagation
research area will receive increased attention from both
the academic community and the business environment
post-COVID-19 pandemic.

Our study did not consider the conventional SC
risk assessment (probability versus impact) approach.

Instead, we used a vulnerability index to capture the dis-
ruption propagation phenomenon. This is believed to be
an appropriate approach for ‘Black swam’ events (e.g.
COVID-19 pandemic, Brexit and other natural and geo-
political events), where conventional SCRM principles
for risk assessment may not necessarily apply. Further
study in this direction may provide additional clarity.
Another research extension may consider information
flow in the SC, exploring how the ripple effect influences
the bullwhip effect (Dolgui, Ivanov, and Rozhkov 2020a).
Ripple effect analysis in viable SC designs (Ivanov 2020)
and reconfigurable SCs (Dolgui, Ivanov, and Sokolov
2020b) can shed light on some new and understudied
mechanisms of the disruption propagation. It may also
be interesting to investigate the propagation of risks in
multi-channel SC networks and intertwined supply net-
works.
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Appendices
Appendix 1

Numerical settings for simulation

Start week = 0, final week = 156, time interval = 1 week (Units:
week).

Average market demand = 50 thousand units/week, changing
with 70-130% variation, which starts from week 4.

Time to form demand expectations at each SC entity = 3
weeks.

The weight of supplier risk: inventory risk=0.6, transport
risk=10.4.

The weight of manufacturer risk: production risk =0.5, inven-
tory risk = 0.3, transport risk =0.2.

The weight of distributor risk: inventory risk = 0.6, transport
risk=10.4.

The weight of retailer risk: sales risk = 0.5, inventory risk = 0.3,
transport risk =0.2.

Initial inventory level for each SC entity = 20 thousand units.
Expected inventory level at each SC entity = 55 thousand units.
The supply/production/distribute/sales capacity at each spe-
cific SC entity: Range [30, 60 (upper limit)] (unit: thousand
units).

Vehicle capacity (same for all SC entities) = 2.5 thousand
units/car (To distinguish, vehicle capacity constant variables
at each node are named with 1,2,3,4 in the stock and flow
diagram).

Vehicle volume at each SC entity: Range [15,25] (unit: car).
Inventory adjustment

= Time ([(0,0) —(156,10)], (0,0), (20,0), (30,0), (40,0), (50,0.35),
(60,0), (100,0), (156,0))

0.35 represents the inventory adjustment will take effect on
week 50 with 35% inventory volume decreased.

Vehicle volume adjustment

=Time ([(0,0) -(156,10)], (0,0), (20,0), (30,0), (40,0), (50,0.35),
(60,0), (100,0), (156,0))
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0.35 represents the vehicle volume adjustment will take effect
on week 50 with 35% vehicle volume decreased.

Equations used in SD model

Supplier actual inventory = Supplier supply quantity — Supplier
capacity

Manufacturer actual inventory = Manufacturer supply quan-
tity — production quantity

Distributor actual inventory = Distributor distribute quan-
tity — Distributor capacity

Retailer actual inventory = Retailer sales quantity — Retailer
sales capacity

Shipping capacity = Vehicle capacity x Vehicle volume (Same
for all nodes)

If actual inventory = expected inventory, then inventory
risk = 0; Else, inventory risk = Absolute value of (actual inven-
tory — expected inventory) / expected inventory (Same for all
nodes)

If actual output quantity < =shipping capacity, transport
risk=0; Else, transport risk= (Actual output quantity-
shipping capacity) / Output quantity (Same for all nodes)

If production quantity > = planned production quantity, pro-
duction risk = 0; Else, production risk = (Planned production
quantity - production quantity) / Planned production quantity
If sales quantity > = Planned sales quantity, sales risk = 0; Else,
sales risk = (Planned sales quantity - sales quantity) / Planned
sales quantity

Vulnerability index = 0.6 x Inventory risk + 0.4 x Transport
risk (Applicable for supplier and distributor node in SC)
Vulnerability index = 0.5 x Production (or) Sales risk + 0.3 x
Inventory + 0.2 x Transport risk (Applicable for manufacturer
and retailer node in SC)

Appendix 2

Validation tests for SD models

e Relevance test: This is a simple test to check the influencing
variables are correctly linked to capture potential impact in
the SD model. This was manually checked.

e Consistency test: This test is important as it checks that the
computer model correctly replicates the behaviour of a real
SC system. Although no benchmarking system was used to
validate the SD model, we used authors knowledge in SC to
confirm this.

e Sensitivity test: Parameter and structural consistency tests
were conducted to test the behaviour of the SD model to rea-
sonable variations in parameter values (by changing individ-
ual factor) and minor structural changes. This is extensively
conducted in the study.

e Extreme condition test: This test is different from the sen-
sitivity test, and checks if equations developed for the SD
model (presented in Appendix 1) make sense and are log-
ical. It also checks whether the model performs well to the
extreme, but possible parametric values. This was done with
the help of SD modelling expert.
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