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1 Introduction

There is a remarkable link between the (classical) integrability of 2d σ-models and their
stability under RG flow, i.e. their renormalizability with finitely many running couplings
(see, e.g., [1–5] and refs. there). For example, the classically integrable η-deformed [6, 7] and
λ-deformed [8, 9] models are stable under the 1-loop RG flow with only the overall scale
and the deformation parameter running [10–13]. However, it remains rather mysterious
how the (classical) integrability translates into simple (quantum) RG behaviour.

In this paper we present a new and different link between classical integrability and
the RG flow. Consider a familiar example of an integrable σ-model, the 2d principal chiral
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model (PCM). Suppose we formally replace its overall coupling h by a function of 2d time
τ , obtaining the Lagrangian1

L̂ = −1
2h(τ)Tr[J+J−] . (1.1)

The resulting time-dependent theory is not Lorentz invariant but one may wonder if some
notion of classical integrability still applies even for a non-constant h(τ). As we shall see
below, this is indeed the case provided the function h(τ) is special: the same as the solution
of the 1-loop RG equation of the standard PCM, i.e. h(τ) ∼ τ .

More generally, starting with a Lorentz-invariant 2d theory that is classically inte-
grable (i.e. admitting a Lax connection), one may formally promote its coupling constants
hα to functions hα(τ) depending on 2d time. We address the question of which functions
hα(τ) allow the integrability to survive in the resulting time-dependent theory, in the sense
that the resulting equations of motion still admit a Lax representation. We shall suggest a
certain natural ansatz for the corresponding Lax connection generalizing that of the time-
independent theory and will find that the unique functions hα(τ) preserving the integrabil-
ity under this ansatz are the ones solving the 1-loop RG equations of the original theory,

∂τhα = βα(h) , (1.2)

with 2d time τ playing the role of RG time t = log µ. We observe this new ‘integrability-RG
flow’ connection in a number of non-trivial examples but will not give a general proof of it.

One may wonder how such time-dependent models (where, e.g., energy is no longer
conserved) can be integrable. In fact, integrable examples of time-dependent 1d mechanical
models are known (see, e.g., [14–16] and refs. there). Our present interest in such 2d models
is motivated by the desire to find new solvable examples of conformal σ-models representing
consistent string backgrounds with Minkowski signature. For example, consider a conformal
σ-model with the (D+2)-dimensional target space metric ds2 = Gµν(x)dxµdxν = −2dudv+
K(u, x)du2 + dxidxi (xµ = (u, v, xi), i = 1, . . . , D), admitting a covariantly constant null
Killing vector. In the light-cone (l.c.) gauge u = τ one then gets a 2d model with a time-
dependent potential K(τ, x), which is formally solvable in some cases if K is quadratic in
xi (see, e.g., [17, 18] and refs. there).2

A remarkable class of string σ-models with the metric ds2 = −2dudv+Gij(u, x)dxidxj ,
also admitting a covariantly constant null Killing vector, but with a curved transverse part
and also a non-trivial dilaton, was considered in [24–26]. The corresponding classical string

1We use 2d Minkowski space with metric ηab = (−1, 1) and coordinates (x0, x1) = (τ, σ). The 2d light-
cone (l.c.) coordinates are ξ± = 1

2 (τ ± σ) and the corresponding l.c. derivatives are ∂± = ∂τ ± ∂σ. We
follow the notation of [4, 5], i.e. the current Ja is given by Ja = g−1∂ag, g ∈ G and Tr[J+J−] = Jn+J

n
− =

−2∂+x
n∂−x

n + . . . for g = ei
√

2xnTn . The action is defined as S = 1
4π

∫
dτdσL and we set α′ = 1. Let us

note that the model (1.1) is not equivalent to the standard PCM in a particular curved 2d metric: since
any 2d σ-model is classically Weyl invariant, there is always a choice of coordinates (“conformal gauge” in
a string context) in which its action takes the standard flat-space form.

2Another solvable example obtained as a certain Yang-Baxter deformation of flat 4d Minkowski space
was found in [19, 20]. Examples with K not depending on τ corresponding to integrable l.c.-gauge theories
(sine-Gordon, Liouville, etc.) were discussed, e.g., in [21–23].
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Lagrangian is

L = −2∂+u∂−v +Gij(u, x)∂+x
i∂−x

j , (1.3)

and the dilaton term is Lφ = R(2)φ(v, u, x). The central observation is that this model is
Weyl-invariant, i.e. β̄µν = Rµν + 2DµDνφ+ . . . = 0, provided φ is linear in the null coordi-
nate v and Gij(u, x) depends on u according to the RG equation of the time-independent
‘transverse’ σ-model L = Gij(x)∂+x

i∂−x
j ,3

∂uGij = β̄ij(G) = βij + 2DiDjφ̄ , βij = Rij + . . . , (1.4)
φ = v + φ̄(u, x) . (1.5)

The ‘first-order’ equation (1.4) comes from the contribution of the connection in the DµDνφ

term in the Weyl-invariance condition due to the null Killing form of the metric and the
v-term in the dilaton.4

An example of such a conformal background with a sphere SD as the transverse space
is ds2 = −2dudv+u dΩ2

D, φ = v+ 1
8D log u (to 1-loop order and after a rescaling of u and

v). If the transverse part is an N = (2, 2) supersymmetric σ-model on an Einstein-Kähler
manifold, the β-function is given just by the 1-loop term and thus such a solution may be
argued to be exact [26].

Starting with the classical string model (1.3) in conformal gauge and fixing the residual
conformal symmetry by the l.c. gauge condition u = τ , we get a time-dependent theory for
the transverse coordinates5

Ll.c. = Gij(τ, x)∂+x
i∂−x

j , ∂τGij = βij(G) . (1.6)

If we now assume that the ‘transverse’ σ-model L = Gij(x)∂+x
i∂−x

j is classically inte-
grable, then the fact that Gij(τ, x) in (1.6) is subject to the RG equation suggests, in view
of the above ‘integrability-RG flow’ connection, that the l.c. gauge theory (1.6) is classically
integrable (admits a flat Lax connection) and thus may potentially be solvable.

Let us note that a special class of σ-models (1.3) with Gij(u, x) = uGij(x) may be
viewed as a gauge-fixed version of a dilaton gravity (with metric gab) coupled to a σ-
model [24, 25] with Gij(x) as the target space metric

L =
√
−g u

[
R(2) + Gij(x)∂axi∂axj

]
. (1.7)

3Let us note that the most general metric with a covariantly constant null Killing metric has the
Brinkmann-Walker form ds2 = −2dudv + K(u, x)du2 + Ai(u, x)dudxi + Gij(u, x)dxidxj where K and
Ai terms may be absorbed into the Gij(u, x) term by a coordinate transformation once one relaxes the
assumption that Gij is flat. The model (1.3) admits a natural generalization to the case of non-zero ‘trans-
verse’ antisymmetric tensor coupling Bij(u, x): the resulting (D+2)-dimensional σ-model is Weyl invariant
provided ∂u(Gij +Bij) = β̄ij(G,B) where β̄ij is the corresponding Weyl anomaly coefficient (see [24–26] for
details). In the first-order equation (1.4) we ignore an additional diffeomorphism term D(iWj) that appears
only at higher loop orders.

4The exact RG evolution equation (1.4) in the l.c. direction u may be compared to an approximate
RG equation (see, e.g., [27]) appearing in the case of a ‘cosmological’ metric and a time-dependent dilaton
which provides a ‘friction’ term in the string generalization of the Einstein equations.

5Here we ignore the ‘diffeomorphism vector’ term that will also contribute to the time dependence of
the metric; however, this term can be eliminated or modified as desired by an appropriate field redefinition
in (1.6) depending on time, xi → yi(x, τ), see also footnote 7.
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Here u appears as the ‘dilaton’ factor and v plays the role of the conformal factor
of the metric upon fixing the conformal gauge ds2 = gabdσ

adσb = e−2vηabdσ
adσb,√

−g R(2) = 2∂+∂−v. Particular 2d models of the type (1.7), with Gij(x) corresponding to a
specific symmetric space, appear upon dimensional reduction (in 2 Killing vector directions)
of 4d Einstein gravity [28–34]. After solving ∂+∂−u = 0 (the equation of motion of the 2d
conformal factor v) to obtain u(τ, σ) = f+(ξ+) + f−(ξ−), the resulting ‘local’ σ-model,

L = u(τ, σ) Gij(x)∂+x
i∂−x

j , u(τ, σ) = f+(ξ+) + f−(ξ−) , (1.8)

was shown, in some special cases [28–31] and for general symmetric spaces [32] (see
also [33, 34]), to be integrable in the sense of admitting a Lax pair. The spectral param-
eter is now replaced by a function of τ, σ expressed in terms of f+(ξ+), f−(ξ−) and an
integration constant w (which may be viewed as a new spectral parameter — see below).

Here will go beyond this related earlier work in two important ways: (i) showing
that there are other integrable local σ-models (e.g., related to integrable deformations of
symmetric space σ-models) for which the dependence of Gij(u, x) on u(τ, σ) is not simply
through an overall factor as in (1.8); (ii) establishing the link between the dependence on u
required for integrability and the RG evolution of couplings in the original σ-model defined
by the metric Gij(u, x)

∣∣
u=const.

This paper is organized as follows. In section 2 we will show that, starting from a
classically integrable σ-model admitting a Lax pair, it is possible to find a Lax pair for
the corresponding time-dependent theory obtained from the original one by replacing the
couplings by functions of τ satisfying the 1-loop RG equations. We will explicitly discuss
the case of the PCM but a similar statement is also true for several classes of σ-models
(PCM with WZ term, coset model, η-model, λ-models) presented in table 1.

In section 3 we will demonstrate that the converse is also true: demanding the existence
of a Lax pair for the time-dependent model implies that the couplings must solve the 1-
loop RG equations of the original theory. Details of the derivation of the RG flow will be
presented in appendix A.

In section 4 we will discuss how the monodromy matrix associated with the Lax con-
nection can be used to construct, at least in principle, non-local conserved charges for
time-dependent models. We will concentrate on the PCM example with comments on
other models relegated to appendix B. To shed light on the notion of integrability in the
time-dependent case we will also consider consistent 1d reductions of some simple 2d σ-
models demonstrating their solvability. In appendix C we will further discuss a particular
linear 1d model which is a special case of a time-dependent harmonic oscillator.

In section 5 we consider the PCM with a local (σ-dependent) coupling, which, like the
time-dependent model, admits a Lax connection. We work in the Hamiltonian formalism
to investigate the existence of an infinite tower of local conserved charges in involution.
A naive generalization of the standard method used for constant couplings does not yield
such charges. However, in the case of the ‘chiral’ model, i.e. with the coupling depending
on the l.c. variable ξ− = 1

2(τ − σ), we find that with a slight modification it can be made
to work. In appendix D we show that such ‘chiral’ models correspondingly admit local
holomorphic higher-spin currents.
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Section 6 contains a discussion of the results and possible extensions. In particular,
we will mention that the relation between integrability of the time-dependent theory and
the RG flow should extend to models with potentials, illustrating this on the example of
the sine-Gordon model (see also appendix E).

2 Lax connection for time-dependent generalization of integrable
σ-models

Below we shall discuss how, starting from a classically integrable model (with Lagrangian
L) admitting a Lax pair L±, it is possible to find also a Lax pair L̂± for the corresponding
time-dependent theory L̂ obtained from the original one by replacing the couplings hα by
functions hα(τ) depending on τ according to the 1-loop RG equation (1.2),6

hα → hα(τ) , d

dτ
hα(τ) = βα(h(τ)) , (2.1)

L(hα)→ L̂ = L(hα(τ)) . (2.2)

The Lax connection must be modified to account for ‘extra’ terms in the equations of
motion following from (2.2) that are proportional to the derivatives ∂τhα of the couplings.
We propose a very simple ansatz for this modification: the extra terms can be effectively
‘absorbed’ into the spectral parameter z with the structure of the Lax connection remaining
the same, i.e.

L±(hα, z)→ L̂± = L±(hα(τ), z(w; τ, σ)) , (2.3)
z → z = z(w; τ, σ) , hα → hα(τ) . (2.4)

While z was regarded as constant in the original Lax connection, it is now promoted to
a particular function z(w; τ, σ) of the 2d coordinates. Here w is an arbitrary (complex)
constant playing the role of a new spectral parameter. As we shall see below, the explicit
form of the function z(w; τ, σ) will be model-dependent.

Let us note that if the original theory is a σ-model on flat 2d Minkowski space, which is
classically invariant under the 2d conformal transformations ξ± → f±(ξ±) (cf. footnote 1),
then the Lagrangian of the corresponding time-dependent theory (2.2) changes under such
transformations as

L̂ = L(hα(τ)) → L(hα(τ ′)) , τ = ξ+ + ξ− → τ ′ = f+(ξ+) + f−(ξ−) . (2.5)

In the case of the string σ-model (1.3), (1.6), this is equivalent to replacing the l.c.
gauge u = τ with a more general one given by the solution u = f+(ξ+) + f−(ξ−) of
the equation of motion ∂+∂−u = 0. One special choice is u = ξ− for which we get
L̂ch = L(hα(ξ−)). We may formally consider this theory, which only fixes one ‘half’ of the
conformal reparametrizations, as an extreme limit (f+(ξ+), f−(ξ−)) = (0, ξ−) of (2.5). We

6Here and below for simplicity we are only indicating the dependence of the Lagrangian on the couplings,
suppressing dependence on fields.
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shall discuss such chiral theories further in section 5 and appendix D, showing that they
admit higher-spin conserved charges and holomorphic higher-spin local currents.

To provide evidence for the above proposal, we have considered six examples of inte-
grable σ-models with the results summarized in table 1 below. There, for each model, we
give the original Lagrangian, original Lax pair, 1-loop RG equation and its solution, and
the expression for the function z(w; τ, σ) that generalizes the original spectral parameter
in such a way that (2.3) gives a Lax pair for the time-dependent theory (2.2).7

All of our examples are built on either a group G or a symmetric space G/H. We use
the notation J± = g−1∂±g, where g ∈ G is scalar field. PCMk stands for the principal
chiral model plus a Wess-Zumino (B-field) term with coefficient k (the special case h = ±k
is the conformal WZW model). The group space η-model is an integrable deformation of
the PCM while the group space and symmetric space λ-models are integrable deformations
of the WZW and gauged WZW models (we use the same definitions as in [4, 5]).

In this section we shall explicitly consider only the basic PCM example, postponing
a more general discussion to section 3, where we shall also explain that the existence of
the spectral function z(w; τ, σ) is a highly non-trivial feature, depending on specifically
choosing the coupling functions hα(τ) to solve the 1-loop RG equation.

For the PCM corresponding to a simple Lie group G

L = −1
2hTr[J+J−] , J = g−1dg , g ∈ G , (2.6)

the global G×G symmetry implies that only the overall coupling h runs under the 1-loop
RG,8

d

dt
h = c , h(t) = c t , c ≡ cG . (2.7)

The corresponding time-dependent theory (2.2) is then given by

L̂ = −1
2c τ Tr[J+J−] . (2.8)

As explained in the Introduction, this theory arises naturally in the l.c. gauge u = τ from
the conformal string σ-model (cf. (1.3), (1.6))

L = −2∂+u∂−v −
1
2c uTr[J+J−] , (2.9)

where the constant c can be eliminated by a rescaling (u, v)→ (c−1u, c v).
7The classically integrable σ-models considered in this paper are 1-loop renormalizable, i.e. only finitely

many couplings run under the 1-loop RG flow assuming a particular choice of ‘renormalizable’ diffeomor-
phism vector. This means that the insertion of time dependence according to the RG flow in (2.1), (2.2) will
only apply to a finite set of couplings. As discussed in the Introduction, a time-dependent σ-model arises
in the light-cone gauge from a conformal string σ-model. There the time dependence is governed by the
RG flow with a specific diffeomorphism vector (generally different from the renormalizable one) following
from the (D + 2)-dimensional dilaton solving the Weyl-invariance condition. However, these two patterns
of time dependence (according to the RG flow with different diffeomorphism vectors) are related by a time-
dependent field redefinition in (2.2); such a redefinition preserves the existence of a Lax representation.

8The dual Coxeter number cG is defined by fmnkfmnl = 2cGδkl, where [Tm, Tn] = ifmn
kTk and the

generators are normalized as Tr(TmTn) = δmn.
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PCM PCMk

Lagrangian L = −1
2hTr[J+J−] L = −1

2hTr[J+J−] + kLWZ

Lax connection L± = 1
2(1 + z±1)J± L± = 1

2(1 + z±1)(1± k
h)J±

1-loop RG equation
and its solution

d
dth = c

h(t) = c t

d
dth = c (1− k2

h2 ), d
dtk = 0

h(t)− k tanh−1 (h(t)
k

)
= c t

Spectral parameter
function

z =
√

w+σ−τ
w+σ+τ

c (w + σ − τ) + 2zh(τ) k+z(k+h(τ))
k(1+z)2+h(τ)(z2−1)

+k log
( (1+z)(k−h(τ))

(k−h(τ))+z(k+h(τ))
)

= 0

Group space η-model Group space λ-model

Lagrangian L=−1
2hTr[J+

1
1−ηRJ−]

L= k
[
LG/G(g,A)
−(λ−1−1)Tr(A+A−)

]
Lax connection

L±= 1
2(1+z±1)C±

C±=−(1+η2)Adg 1
1±ηRJ±

L±= 1
2(1+z±1) 2

1+λA±

A± takes on-shell value

1-loop RG equation
and its solution

d
dth= c(1+η2)2, d

dt(ηh
−1) = 0

ν≡ η(t)h(t)−1 = const
tan−1 η(t)+ η(t)

1+η(t)2 = 2cνt

d
dtλ= 2c

k
λ2

(1+λ)2 ,
d
dtk= 0,

2logλ(t)+λ(t)−λ(t)−1 = 2c
k t

Spectral parameter
function

2cν(w+σ)− 1−z
1+z

η(τ)
1+η(τ)2

+tan−1 ( 1
η(τ)

1−z
1+z

)
= 0

2c
k (w+σ)− 1−z

1+z [λ(τ)−λ(τ)−1]
+2log

( zλ(τ)−1
z−λ(τ)

)
= 0

Symmetric space σ-model Symmetric space λ-model

Lagrangian L=−1
2hTr[J+PG/HJ−]

L= k
[
LG/G(g,A)
−Tr

[
A+(λ−1PG/H−1)A−

]

Lax connection
L±= JH± +z±1J

G/H
±

JH± =PHJ±, J
G/H
± =PG/HJ±

L±=AH±+z±1 1√
λ
A
G/H
±

AH± =PHA±, A
G/H
± =PG/HA±

A± takes on-shell value

1-loop RG equation
and its solution

d
dth= 2c
h(t) = 2ct

d
dtλ= c

kλ

λ(t) = exp( ck t)

Spectral parameter
function

z=
√

w+σ−τ
w+σ+τ z= exp( c2kτ)

√
1+exp( c

k
[w+σ−τ ])

1+exp( c
k

[w+σ+τ ])

Table 1. Examples of integrable σ-models and their time-dependent generalizations. t is the RG
time which is replaced by the 2d time τ in the couplings entering the Lagrangian L̂ in (2.2).
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The equations of motion for the model (2.8) written in first-order form are

∂+(τJ−) + ∂−(τJ+) = 0 , (2.10)
F+−(J) ≡ ∂+J− − ∂−J+ + [J+, J−] = 0 . (2.11)

Starting from the Lax connection of the original PCM (2.6)

L± = 1
2(1 + z±1)J± , (2.12)

and making the replacement z →
√

w+σ−τ
w+σ+τ where w is a constant spectral parameter (see

table 1), we obtain the following expression for the Lax connection (2.3) of the time-
dependent theory

L̂± = 1
2
(
1 + z ±1)J± , z =

√
w + σ − τ
w + σ + τ

. (2.13)

Indeed, its curvature is

F+−(L̂) ≡ ∂+L̂− − ∂−L̂+ + [L̂+, L̂−] (2.14)

= z

2(w + σ − τ)
[
∂+(τJ−) + ∂−(τJ+)

]
+ 1

4(1 + z)(1 + z −1) F+−(J) ,

so that, at any (τ, σ), its vanishing for all w implies the equations of motion (2.10), (2.11)
of the time-dependent theory.

A surprising feature (shared also by the other examples in table 1) is that, despite
the Lagrangian (2.8) explicitly involving only τ , the Lax connection (2.13) also depends
on the 2d spatial coordinate σ. The spatial coordinate σ and the spectral parameter w
appear only through the combination w + σ. Since w is a complex constant, it cannot
be eliminated by a shift of real σ. Moreover, what is important is the existence of a Lax
connection depending on w, which can in principle be used to construct conserved charges,
etc. Indeed, we can instead interpret the formal possibility to shift σ as the freedom to
introduce a spectral parameter in the first place.

Another unusual property (shared by all the examples) is that the Lax connection has
branch cuts in the spectral w-plane (e.g., for the PCM the branch cuts end at w = −σ±τ).
Normally, one could simply remove square roots by redefining the spectral parameter (or
more formally moving to an appropriate Riemann surface on which the Lax connection is
meromorphic). However, this is not possible since the positions of the branch cuts depend
on (τ, σ) and one cannot redefine the spectral parameter in a way depending on (τ, σ)
without changing the equations of motion encoded in the zero curvature condition.

In each case in table 1, one can freely choose any branch of the function z(w; τ, σ)
(in the w-plane) while still encoding the correct equations of motion in the zero-curvature
equation. For example, in the PCM case, one may choose either sign of the square root
z = ±

√
w+σ−τ
w+σ+τ in the Lax connection (2.13). All similar square roots in the spectral

functions below have the same branch ambiguity, corresponding to the option to reverse
their sign.
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Applying a general conformal transformation to the action corresponding to (2.8),
(2.13) we get (cf. (2.5))

L̂ = −1
2c
(
f+(ξ+) + f−(ξ−)

)
Tr[J+J−] , (2.15)

L̂± = 1
2
(

1 + z±1)J± , z =
√
w − 2f−(ξ−)
w + 2f+(ξ+) . (2.16)

This theory may equivalently be obtained from the string σ-model (2.9) by picking up a
generalized l.c. gauge u = τ ′ = f+(ξ+) + f−(ξ−).9 We note that the theory (2.15) is a
special case of (1.8) where Gij is the group-space metric. Indeed, an equivalent expression
for the Lax connection of this ‘local’ PCM (or symmetric space σ-model, see table 1) was
originally found in [32] where the dependence of the analog of the spectral parameter on
the functions f+(ξ+) and f−(ξ−) was discovered.10

3 RG flow from condition of integrability of time-dependent theory

As we have found above on several examples, if the couplings of an integrable σ-model
are promoted to functions of time that solve the 1-loop RG equations, hα → hα(τ),
∂τhα = βα(h), then the Lax connection of the original model L(hα) admits a natural gen-
eralization to a classical Lax connection for the time-dependent model L(hα(τ)). Here we
shall argue that the converse is also true: demanding the existence of a Lax pair for the
time-dependent theory implies that hα(τ) must solve the 1-loop RG equations.

It is useful to start with a more general theory with local couplings11 hα(τ, σ) depending
on both τ and σ, i.e.

L̂ = L(hα(τ, σ)) , (3.1)

and demand the existence of a Lax representation for this theory. For the examples in
table 1, the original Lax connection takes a particular form (which is generic to many
integrable σ-models built on groups G or symmetric spaces G/H):

G : L± = 1
2(1 + z±1)A± , (3.2)

G/H : L± = B± + z±1P± . (3.3)

Here the connection components A± ∈ Lie(G), B± ∈ Lie(H), P± ∈ Lie(G)/Lie(H) depend
implicitly on the fields and their derivatives and the couplings hα (e.g. for PCM, A± = J±,

9In the special case of u = a+ bτ , the limit a→ 1, b→ 0 eliminates the explicit τ -dependence and gives
back the original PCM (2.6), with (2.15) becoming the original Lax connection in (2.12) with a redefined
spectral parameter z →

√
w−2a−
w+2a+

, where a± are constants satisfying a+ + a− = 1.
10The spectral function depends separately on u and its dual field ũ = f+(ξ+)− f−(ξ−), du = ∗dũ, and

thus separately on f+ and f− [32–34]. In the derivation of the Lax pair for general u, ũ = f+(ξ+)±f−(ξ−)
it is clear that w appears as a constant of integration.

11We generally expect integrable models to have a finite number of couplings hα. A natural way to
identify these couplings is as the parameters that run under the RG flow.
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cf. (2.12)), while the dependence on the spectral parameter z is indicated explicitly. Let
us now take the following natural ansatz for the Lax connection L̂± corresponding to the
(τ, σ)-dependent theory (3.1)

G : L̂± = p±(w; τ, σ)A± , (3.4)
G/H : L̂± = q±(w; τ, σ)B± + r±(w; τ, σ)P± , (3.5)

where p±, q±, r± are some functions, and A±, B±, P± are assumed to take the same form
as in (3.2), (3.3), but with the couplings they depend on now being the functions hα(τ, σ),
i.e. A± = A±(x, ∂x;hα(τ, σ)), etc.

Demanding that the flatness of the connection (3.4), (3.5) gives the equations of motion
of the generalized theory (3.1), we first prove that it is sufficient to use just a single function
z(w; τ, σ) so that (3.4), (3.5) become the same as (3.2), (3.3) with z → z(w; τ, σ) as in (2.3),

L̂± = L±
(
hα(τ, σ), z(w; τ, σ)

)
. (3.6)

Indeed, the equations of motion for the theory (3.1) contain new terms proportional to the
space-time derivatives of the couplings hα as well as the original terms not depending on
∂±hα. To get the latter terms from the flatness of L̂± one needs to impose the following
conditions on p±, q±, r± (see appendix A.1 for details)

G : p−1
+ + p−1

− = 2 , (3.7)
G/H : q± = 1 , r+r− = 1 . (3.8)

Setting z(w; τ, σ) = 2p+ − 1 (for models on G) and z(w; τ, σ) = 2r+ (for models on G/H)
we conclude that the Lax ansatze (3.4), (3.5) become the same as the original expres-
sions (3.2), (3.3) with z → z(w; τ, σ).

All of our examples are single-coupling theories12 except for the group η-model. Here
we shall specialize to the simplest case with one coupling h(τ, σ) but the same result will
also be true for the group η-model (see appendix A.3). To reproduce the derivative ∂±h
terms in the equations of motion for (3.1) from the flatness condition for the generalized Lax
connection (3.6), one needs to additionally impose certain constraints on both h(τ, σ) and
z(w; τ, σ). For the models in table 1 this leads to the following two first-order differential
equations for the function z(w; τ, σ) (here h = h(τ, σ))

∂τz = Vτ (z, h) , ∂σz = Vσ(z, h) , (3.9)

where Vτ,σ(z, h) are model-dependent functions. For all five single-coupling examples in
table 1, the consistency condition (∂τVσ−∂σVτ = 0) for the system (3.9) takes the remark-
able form

∂+∂−h−
β′(h)
β(h) ∂+h∂−h = 0 , (3.10)

12We do not promote the WZ level k in PCMk or λ-models to a function of (τ, σ) since the resulting model
would not be well-defined: starting with the 3d representation of the WZ term and replacing kH → k(τ, σ)H
would no longer give a local 2d action while kB → k(τ, σ)B in the 2d action would not be consistent with
global symmetry (invariance of the 2d action under gauge transformations of B requires dropping total
derivatives).
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where β(h) is precisely the 1-loop β-function for the coupling h in the original model. In
addition to the appearance (in this purely classical context) of the 1-loop β-functions, a
remarkable feature of (3.10) that it does not depend on z (which completely factors out of
the consistency condition).

The condition (3.10) may be written simply as ∂−( ∂+h
β(h)) = 0 or ∂+( ∂−hβ(h)) = 0 and thus

leads to two first-order equations

∂+h

β(h) = s+(ξ+) , ∂−h

β(h) = s−(ξ−) , (3.11)

where s±(ξ±) are arbitrary functions of ξ± = 1
2(τ ± σ). By applying a conformal transfor-

mation (i.e. redefining τ and σ), one can absorb s± into ∂±, i.e. replace s± → 1, so that
in terms of the redefined coordinates the first-order equations (3.11) take the form of the
1-loop RG equation in τ

∂τh = β(h) , ∂σh = 0 . (3.12)

Thus, modulo a conformal transformation, the 1-loop RG solution is the only choice of
local coupling h(τ, σ) for which the Lax connection can be uplifted to the (τ, σ)-dependent
theory according to (3.6). This argument (in eqs. (3.9)–(3.12)) is demonstrated explicitly
for the example of the PCM in appendix A.2.

The same conclusion is reached of course if one starts directly with the theory where
the couplings hα depend only on time: using the same ansatz for the Lax connection
implies that the only functions hα(τ) that are consistent with preserving integrability are
the solutions of the 1-loop RG flow (in this case in eqs. (3.10), (3.11) we have ∂± → ∂τ and
s+ = s− = const).13

To finish the construction of the generalized Lax pair let us now explain how to ob-
tain the explicit form of the spectral parameter function z(w; τ, σ) in (3.6). Starting with
h = h(τ) that satisfies the 1-loop RG equation in (3.12) (so that the consistency condi-
tions (3.11) of (3.9) are satisfied) one can solve the second equation in (3.9) as

∂σz = Vσ(z, h(τ)) →
∫

dz

Vσ(z, hα(τ)) = σ + `(τ) . (3.13)

The function `(τ) is then fixed by substituting this solution into the first equation in (3.9).
The solution for `(τ) leaves one free integration constant, which we call w. Finally, eq. (3.13)
becomes an algebraic equation for z(w; τ, σ) that can be explicitly solved in some simple
cases (see table 1). Note that since the parameter w appears as an integration constant in
the function `(τ), it always appears in the combination w+ σ with the spatial coordinate,
implying that constant shifts of σ can be compensated by shifts of w.

Although we do not have a proof that the 1-loop RG flow always follows from requiring
integrability of the time-dependent generalizations of integrable models, the examples in

13This is true modulo a rescaling of time, i.e. the part of the conformal group that does not introduce
spatial dependence. Note that the freedom of performing a classical conformal transformation means that
instead of assigning a preferred role to τ we could have chosen the couplings to depend only on σ; in this
case the RG equation (3.12) will hold with τ → σ.
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table 1 reveal a highly non-trivial pattern suggesting that this may be true for a more
general class of theories (see also section 6).14

4 Conserved charges in time-dependent integrable models

We have shown in the previous sections that certain well-known examples of classically
integrable σ-models admit generalizations of their Lax connections to models with time-
dependent couplings under the condition that the latter solve the 1-loop RG equation in
τ . However, one may question the usefulness of the resulting Lax connections since they
have several unusual properties: they depend on τ and σ explicitly; the spectral parameter
only enters as a ‘constant piece’ of the spatial coordinate σ; they have branch cuts in the
spectral plane (whose positions depend on τ and σ).

In this section we shall argue that, nevertheless, the Lax connections can still be used
to construct the ‘non-local’ charges typical of integrable models. However, the space-time
dependence of the Lax connection renders these charges difficult to compute explicitly. We
shall focus in this section on the case of the PCM, while the other examples from table 1
are discussed in appendix B.

4.1 Non-local charges

Let us start by reviewing the standard construction of non-local charges using a Lax con-
nection. On a given spatial domain a < σ < b the monodromy matrix is defined by

M(τ) ≡ P exp
∫ b

a
dσ Lσ(τ, σ) , (4.1)

M−1∂bM = Lσ(b) , M
∣∣
b=a = I , Lτ,σ(b) ≡ Lτ,σ(τ, σ)

∣∣
σ=b . (4.2)

Using the flatness of the Lax connection, ∂σLτ − ∂τLσ + [Lσ, Lτ ] = 0, it easy to check that

∂τM =MLτ (b)− Lτ (a)M . (4.3)

Thus, if we assume the periodicity condition

Lτ (b) = Lτ (a) , (4.4)

we obtain

∂τM = [M, Lτ (a)] . (4.5)

Hence it follows that ∂τTr[Mn] = 0 for all n, or, equivalently, the eigenvalues of M are
conserved in time.

14Notice, in particular, that some of the 1-loop RG equations in table 1 are quite non-trivial, not admitting
simple closed form solutions.
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We shall focus on the theory on an infinite spatial interval (a, b) = (−∞,∞).15 Picking
the ‘negative’ branch16 of the square root, then the spectral function z(w; τ, σ) in (2.13)
has the finite limit z =

√
w+σ+τ
w+σ−τ → z∞ = −1 at σ → ±∞. Hence, assuming J± is bounded

for large |σ|, the Lax connection L̂± = 1
2(1 + z±1)J± vanishes at spatial infinity. The

periodicity condition (4.4) is then satisfied so it follows from (4.5) that the eigenvalues of
M are conserved. Furthermore, since L̂τ actually vanishes at spatial infinity, it follows
from (4.3) that all the components ofM are conserved.

The boundary condition (that J± is bounded), needed above for the conservation ofM,
is quite weak. A further, more stringent boundary condition comes from the requirement
thatM converges as (a, b)→ (−∞,+∞) to produce well-defined charges.

Although the monodromy is conserved, it is only defined implicitly by the first-order
ordinary differential equation (4.2), i.e.

M−1∂σM= L̂σ = 1
4

(
1+
[
w+σ−τ
w+σ+τ

]1/2
)
J+−

1
4

(
1+
[
w+σ−τ
w+σ+τ

]−1/2
)
J− , M

∣∣
σ=−∞= I .

(4.6)

Such an equation generally admits a solution but it is hard to find its explicit form. One
possible approach is to develop an expansion in the spectral parameter around a point
where L̂σ vanishes (and thus the monodromy is trivial,M = I).

In the usual time-independent PCM case (obtained by replacing
√

w+σ−τ
w+σ+τ by a constant

z in (4.6)), such an expansion around z = −1 yields the conserved ‘multi-local’ Yangian
charges,

M = I + 1
2(z + 1)

∫ b

a
dσ Jτ (4.7)

+ 1
4(z + 1)2

[∫
a<σ1<σ2<b

dσ1dσ2 Jτ (σ1)Jτ (σ2) +
∫ b

a
dσ (Jτ − Jσ)

]
+O

(
(z + 1)3) .

Each term in the expansion (4.7) is individually conserved because each term in the corre-
sponding expansion of Lτ (and hence the right hand side of (4.3)) vanishes at spatial infinity.

For the time-dependent theory, the only zero around which to expand L̂σ in (4.6) is
w = ∞ (again taking the negative branch of the square root). But, due to its explicit
spatial dependence, the corresponding expansion of the Lax connection is a sum of terms
w−nPn−1, where Pn−1 is a polynomial of degree n − 1 in σ. Then for any (polynomial)
decaying boundary conditions on the fields at spatial infinity, the periodicity condition (4.4)
on L̂τ will be broken at sufficiently higher order in this expansion.

15It seems much harder to satisfy the periodicity condition (4.4) on a spatial circle due to the explicit
non-periodic σ dependence in the Lax connections for the time-dependent models.

16We note that it is consistent to ‘pick a branch’ here: e.g., by assuming that w has an imaginary part,
it then follows that the sign of the square root does not change from σ = −∞ to σ = ∞. The choice of
a branch is arbitrary but this negative choice is more useful for satisfying the periodicity condition and
constructing conserved charges. Also, for the group η-model and PCMk, which are deformations of PCM,
the function z is single-valued at σ = ±∞, with z∞ ≡ z

∣∣
σ=∞

= −1. It is then natural to obtain z∞ = −1
for the PCM as a limit of these models.
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Hence, while we have shown the formal existence of conserved non-local charges defined
implicitly by (4.2), it appears to be hard to compute the monodromy matrixM explicitly:
due to the explicit σ dependence in the Lax connection, the usual expansion trick (4.7) does
not work. It is not clear at the moment how to verify if the resulting conserved charges
are infinite in number (and independent) as they should be for an integrable 2d theory.

4.2 1d reductions

One useful test of 2d integrability is to check the integrability of various 1d mechanical
theories obtained as consistent reductions of the 2d equations of motion.

Assuming an ansatz for a classical solution of an integrable 2d model yielding a 1d
system of equations (say with τ as the remaining variable), one may expect the resulting
1d system also to be integrable in the sense of admitting a Lax pair, d

dτA = [B,A]. One
should further demand that the conserved charges are in involution.

In general, if the solution satisfies the periodicity condition (4.4), the flatness of the 2d
Lax connection leads to a 1d Lax pair given by (A,B) = (M,−Lτ (∞)) in (4.5), evaluated
on the reduction ansatz.17

Trivial reduction. In the simplest ‘trivial’ 1d reduction one assumes that the fields do
not depend on σ, which is a consistent truncation of the above time-dependent models. For
example, in the PCM case setting g = g(τ) in (2.8) gives the 1d action for geodesic motion
on a group space with a time-dependent radius. The solvability of geodesics in this model
is obvious since the explicit time dependence may be eliminated by a redefinition of τ

S1 ∼
∫
dτ τ Tr

[
(g−1∂τg)2] =

∫
dτ ′ Tr

[
(g−1∂τ ′g)2] , τ ′ = log τ . (4.8)

The resulting equation of motion ∂τ ′(g−1∂τ ′g) = 0 is solved by

g = g0 e
τ ′u0 = g0 τ

u0 , g0 = const ∈ G , u0 = const ∈ Lie(G) . (4.9)

The same argument equally applies for any case where the time dependence only appears
as an overall factor rescaling the Lagrangian — which will follow if there are enough global
symmetries that only the overall ‘radius’ can run under the RG flow (e.g. also in the
symmetric space σ-model case).

In general, the global symmetry charges may be found from the monodromyM. For-
mally, the monodromy on an infinite line does not converge upon the trivial reduction
since Jτ = g−1∂τg does not decay at spatial infinity (as it is now independent of σ). On
a finite space interval, the periodicity condition (4.4) is not satisfied so charges will not
be conserved. However, making an expansion around the zero of the Lax connection at

17In [35] such a reduction was performed for a certain ‘spinning string’ ansatz in AdS5 × S5, resulting in
an integrable 1d Neumann-Rosochatius model. There (reversing the roles of τ and σ from that paper to
relate to the above discussion) the σ dependence of the ansatz was simple and it was possible to remove
the σ dependence from the Lax connection using a gauge transformation — which is essentially the same
problem as computing the monodromy matrix. In our case, with explicit σ-dependence already in the Lax
connection, the problem of removing the σ dependence using gauge transformations appears to be much
more non-trivial.
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w = ∞ (cf. (4.7)), the global symmetry is reflected in the σ independence of the leading
O(w−1) term in L̂τ ,

L̂τ = 1
4

(
1+

[
w+σ−τ
w+σ+τ

]1/2
)
J+ + 1

4

(
1+

[
w+σ−τ
w+σ+τ

]−1/2
)
J− = 1

2τJσw
−1 +O(w−2) .

(4.10)

This puts the leading term on the right hand side of (4.3) in the commutator form (4.5).
Since the monodromy matrix is the identity at the leading order, the right hand side of (4.3)
is of O(w−2). It then follows that the O(w−1) term in the monodromy matrix, which is
the global GR Noether charge, is still conserved18

M = 1 + 1
2w
−1QR +O(w−2) , ∂τQR = 0 , QR =

∫
dσ τJτ . (4.11)

Non-trivial reduction. Now let us consider a non-trivial 1d reduction when the 2d
fields do depend on σ, but in a particular prescribed way. Such a reduction will lead to a
non-trivial 1d model, giving a more stringent test of the integrability of the time-dependent
2d model.

Starting from the time-dependent SU(2) PCM (2.8) parametrized as

L̂=− c2 τ Tr[J+J−] = cτ
[
∂+θ∂−θ+sin2 θ(∂+φ∂−φ+sin2φ∂+ψ∂−ψ)

]
, (4.12)

g=naσa , σa = (I,σi) , i= 1,2,3 ,
n0n0−nini = 1 , na = (cosθ, isinθ cosφ, isinθ sinφcosψ, isinθ sinφsinψ) ,

let us consider, e.g., the following ansatz for a classical solution

θ = θ(τ) , φ = mσ , ψ = 0 . (4.13)

This leads to a consistent reduction of the 2d theory: the φ and ψ equations are both
satisfied, while the equation for θ(τ) follows from the 1d Lagrangian (θ̇ ≡ ∂τθ)

L1 = c τ
(
θ̇2 −m2 sin2 θ

)
. (4.14)

Thus the effective 1d model is a time-dependent analog of the ‘sine-Gordon’ mechanics.
Let us assume the σ-direction is an infinite line, still using the ansatz (4.13) (e.g. by

taking m to be a continuous parameter and formally decompactifying φ). Then one can
check that J± is oscillating but bounded at spatial infinity. Hence, as discussed above, the
right hand side of (4.3) vanishes and the entries of the monodromy matrix are conserved.
While again it is not easy to compute the monodromy explicitly in terms of θ and θ̇, it can
be done in the small field expansion (θ, θ̇) → ε(θ, θ̇), ε � 1 since the Lax component L̂σ
vanishes as (θ, θ̇)→ 0. In this expansion the Lagrangian (4.14) becomes (after rescaling it
by a factor of c−1ε−2)

L′1 = τ
[
θ̇2 −m2ε−2 sin2 (εθ)

]
= Llin + 1

3ε
2m2 θ4 +O(ε4) , (4.15)

Llin = τ
[
θ̇2 −m2θ2] . (4.16)

18The Noether charge for GL symmetry is obtained similarly after a gauge transformation of the Lax
connection and choosing instead the positive branch of the square root.
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The leading (‘linearized’) Lagrangian (4.16) describes (after the same redefinition τ = eτ
′ as

in (4.8)) a harmonic oscillator with time-dependent frequency m2e2τ ′ . The corresponding
O(ε) terms in the monodromy matrix lead to the conserved charge

Q̇lin = 0 , Qlin = τ
[
α(τ ;w) θ̇ − α̇(τ ;w) θ

]
, (4.17)

α(τ ;w) =
∫ +∞

−∞
dσ e−imσ

i

2s+s−
, s± ≡

√
w + σ ± τ . (4.18)

In appendix C we use this conserved charge to construct the general solution of the lin-
earized equation of motion (with θ = α being a particular solution).

Computing the perturbative corrections to the monodromy, one then finds for the
conserved charge of the non-linear theory (4.15)

Q̇= 0 , Q=Qlin+ε2
[∫

dσq(1)+
∫
σ1<σ2

dσ1dσ2 q
(2)+

∫
σ1<σ2<σ3

dσ1dσ2dσ3 q
(3)
]
+O(ε4) ,

q(1) =−me−imσ

3s+s−
(s+s−−w−σ)θ3 , (4.19)

q(2) = im

4s1
+s

1
−s

2
+s

2
−

[
e−imσ2(s1

+s
1
−−w−σ1)

[
m(s2

+s
2
−−w−σ2)θ+iτ θ̇

]
−(σ1↔σ2)

]
θ2 ,

q(3) = e−im(σ1−σ2+σ3)

8s1
+s

1
−s

2
+s

2
−s

3
+s

3
−

[
m(s1

+s
1
−−w−σ1)+iτ θ̇

]
×
[
−m(s2

+s
2
−−w−σ2)+iτ θ̇

][
m(s3

+s
3
−−w−σ3)+iτ θ̇

]
, sn±≡

√
w+σn±τ .

This perturbative procedure of constructing the conserved charge can be extended to higher
orders, computing more and more σ integrals at each step.

Let us mention that the time-dependent SL(2,R) PCM (cf. (4.12))

L̂ = −c τ
[
∂+ρ∂−ρ+ 1

2e
−2ρ (∂+x

+∂−x
− + ∂−x

+∂+x
−)
]
, (4.20)

admits a ‘non-trivial’ reduction that is manifestly integrable. Indeed, if we set x+ = aσ,
x− = bσ, ρ = ρ(τ) then the x± equations are solved and the equation for ρ(τ) follows from
the 1d action (cf. (4.14))

S1 = −c
∫
dτ τ

[
(∂τρ)2 − ab e−2ρ] . (4.21)

Here the explicit time dependence can be eliminated by redefining τ = eτ
′ and ρ = ρ′+τ ′ so

that we end up with the standard 1d Liouville mechanics with the energy being a conserved
charge.

5 Hamiltonian formulation and local conserved charges

While the Lax connection is suggestive of integrability, we would like to establish the exis-
tence, or otherwise, of an infinite tower of local conserved charges in involution (cf. [36–39])
to put the status of the models with local couplings on a firmer footing. Here we inves-
tigate this question using the Hamiltonian formulation for the PCM with local couplings.
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While we will only be able to construct such conserved charges for the ‘chiral’ theories,
where the coupling depends on a l.c. coordinate ξ− (see also appendix D), the resulting
Lax matrix algebra is suggestive of an underlying algebraic structure that remains to be
understood further.

We start by considering the PCM with only space-dependent coupling

L̂ = −1
2(1 + b σ) Tr[J+J−] , (5.1)

which corresponds to choosing f±(ξ±) = 1
2 ± b ξ

± in the general Lagrangian (2.15) (we
ignore the overall constant, setting c = 1). The standard PCM is recovered for b = 0. This
choice has the advantage that the Hamiltonian governing the time evolution of the model
is a conserved charge. We will again focus on the theory on an infinite spatial interval
σ ∈ (−∞,∞) and assume that the boundary conditions decay sufficiently fast to neglect
boundary terms.

To develop the Hamiltonian formulation we follow [40] (see also [41] for a more mod-
ern treatment). We parametrize the group-valued field in terms of coordinates φm and
write g−1∂mg = iEm

n(φk)Tn. Recalling that in our conventions Tr[TmTn] = δmn, the
Lagrangian (5.1) in terms of the fields φm is given by

L̂ = 1
2(1 + b σ)EmnEklδnl ∂+φ

m∂−φ
k , (5.2)

where we use δmn and its inverse to lower and raise indices. The conjugate momenta are

πm = ∂L̂
∂(∂τφm) = (1 + b σ)EmnEklδnl ∂τφk , (5.3)

and the equal-time Poisson brackets take the standard form

{φm(σ1), φn(σ2)} = 0 , {πm(σ1), πn(σ2)} = 0 , {φm(σ1), πn(σ2)} = δmnδσ1σ2 , (5.4)

where δσ1σ2 = δ(σ1 − σ2).
We define

X = i(E−1)nmπmδnkTk , (5.5)

such that on (5.3) we have X = (1 + b σ)Jτ = (1 + b σ)g−1∂τg. The Poisson brackets of g
and X are19

{g1(σ1), g2(σ2)} = 0 , {X1(σ1), X2(σ2)} = [C12, X1(σ1)]δσ1σ2 ,

{g1(σ1), X2(σ2)} = −g1(σ1)C12δσ1σ2 , {X1(σ1), g2(σ2)} = g2(σ2)C12δσ1σ2 ,
(5.6)

where C12 = δmnTm ⊗ Tn is the split quadratic Casimir, which obeys

[C12, A1 +A2] = 0 . (5.7)
19The notation here is the standard one (see, e.g., [40]). To compactly write the Poisson brackets of

matrix-valued fields A and B we define A1 = A⊗1 and B2 = 1⊗B. The Poisson bracket {A1(σ1), B2(σ2)}
is {Aij(σ1), Bkl(σ2)}e(1)

ij ⊗ e
(2)
kl , where e

(1)
ij and e(2)

kl are bases for the spaces in which the respective fields
are valued.

– 17 –



J
H
E
P
1
1
(
2
0
2
0
)
0
2
0

It will also be useful to know the Poisson brackets of j ≡ Jσ = g−1∂σg with X

{j1(σ1), j2(σ2)} = 0 , {X1(σ1), X2(σ2)} = [C12, X1(σ1)]δσ1σ2 ,

{j1(σ1), X2(σ2)} = {X1(σ1), j2(σ2)} = [C12, j1(σ1)]δσ1σ2 − C12δ
′
σ1σ2 ,

(5.8)

where δ′σ1σ2 = ∂σ1δ(σ1 − σ2).
We are interested in the Poisson bracket of the Lax matrix, i.e. the spatial component

of the Lax connection, with itself. From the general form of the Lax connection in eq. (2.15)
we find that the Lax matrix, written in terms of X and j, is given by

L̂(w;σ) ≡ 1
2(L̂+− L̂−) = z + z−1 + 2

4 j + z − z−1

4(1 + b σ) X , z(w;σ) =

√
w + bτ − 1− b σ
w + bτ + 1 + b σ

.

(5.9)
Denoting zi = z(wi;σi) the Lax matrix algebra is then given by

{L̂1(w1;σ1), L̂2(w2;σ2)}= (z1−z−1
1 )(z2−z−1

2 )
16(1+bσ1)2 [C12,X1(σ1)]δσ1σ2

+ (1+z1)(1+z2)(1−z−1
1 z−1

2 )
8(1+bσ1) [C12, j1(σ1)]δσ1σ2 (5.10)

−
(

(2+z1+z−1
1 )(z2−z−1

2 )
16(1+bσ2) + (2+z2+z−1

2 )(z1−z−1
1 )

16(1+bσ1)

)
C12δ

′
σ1σ2 .

This bracket is of the type considered in [42] (although note that in [42] the dependence
on σ was understood to be through the fields of the model). We can recast eq. (5.10) into
the form

{L̂1(w1;σ1), L̂2(w2;σ2)} = [R12(w1, w2;σ1), L̂1(w1;σ1)]δσ1σ2

− [R21(w2, w1;σ2), L̂2(w2;σ2)]δσ1σ2

−
(
R12(w1, w2;σ2) +R21(w2, w1;σ1)

)
δ′σ1,σ2 ,

(5.11)

with the R-matrix given by20

R12(w1, w2;σ) = (1 + z1)(1 + z2)(2− z2 − z2
−1)

8(z1 − z2)(1 + b σ)

∣∣∣
σi=σ

C12 . (5.12)

For b = 0 the R-matrix is non-dynamical (independent of σ) and we recover the standard
result for the PCM [40] in our parametrization. In this case it is well known that R12
satisfies the classical Yang-Baxter equation (cYBE)

[R12(w1, w2;σ), R13(w1, w3;σ)] + [R12(w1, w2;σ), R23(w2, w3;σ)]
+ [R32(w3, w2;σ), R13(w1, w3;σ)] = 0 .

(5.13)

20To derive this form one can use the identity

F (σ1, σ2)δ′σ1σ2 =
(∫ σ1

0
dσ′1

[
∂σ′1F (σ′1, σ′2)

∣∣
σ′2=σ′1

]
+
∫ σ2

0
dσ′2

[
∂σ′2F (σ′1, σ′2)

∣∣
σ′1=σ′2

]
+ F (0, 0)

)
δ′σ1σ2 ,

to represent the coefficient of δ′σ1σ2 in (5.10) as a sum of two functions, one depending only σ1 and the
other only on σ2.
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For b 6= 0 the R-matrix becomes dynamical, i.e. it depends on σ. Nevertheless, since all the
R-matrices in (5.13) depend on the same σ, and the σ dependence in the R-matrix (5.12)
takes a particular form — it only comes through zi and an overall factor — it follows that
the cYBE remains satisfied. This is a sufficient condition for the Lax matrix algebra (5.10)
to satisfy the Jacobi identity [42].

For the standard PCM with constant coupling one can construct a tower of higher-
spin local conserved charges in involution [37], which is one of the hallmarks of integra-
bility. In [39] this construction was generalized to integrable systems with non-dynamical
R-matrices that can be written in a ‘twist’ form [43]

R12(u1, u2) = ϕ(u2)−1

u2 − u1
C12 . (5.14)

Indeed, for b = 0 the R-matrix (5.12) can be written in this form with the spectral param-
eters and the twist function given by

wi = −1 + u2
i

2ui
, ϕ(u) = 1− u2

u2 . (5.15)

Local conserved charges are then given by [37, 39]

Q
(n)
±1 = resu=±1

∫
dσTr

[
ϕ(u)n−1L̂(u;σ)n

]
, (5.16)

where u = ±1 are zeroes of the twist function ϕ(u).
For b 6= 0, if we allow only redefinitions of the spectral parameter that do not depend

on the 2d coordinates, then it is straightforward to see that it is no longer possible to repre-
sent (5.12) in the ‘twist’ form (5.14). Motivated by standard PCM (b = 0) case, we can come
somewhat close by introducing u(w;σ) =

√
w+bτ−1−b σ−

√
w+bτ+1+b σ√

w+bτ−1−b σ+
√
w+bτ+1+b σ and ui = u(wi;σi), in

terms of which the Lax matrix and the R-matrix are given by

L̂(w;σ) = 1
1− u2 j + 1

1 + b σ

u

1− u2X ,

R12(w1, w2;σ) = ϕ(w2;σ)−1

u2 − u1

∣∣∣
σi=σ

C12 , ϕ(w;σ) = (1 + b σ)(1− u2)
u2 .

(5.17)

Let us see what happens if we naively use the charges defined in eq. (5.16). For n = 2 we get

Q
(2)
±1 = resu=±1

∫
dσTr

[
ϕ(w;σ)L̂(w;σ)2] = ∓1

2

∫
dσTr

[
(1 + b σ)j ± 2jX + 1

1 + b σ
X2
]
.

(5.18)
We immediately see that, just as for the standard PCM (b = 0), the Hamiltonian and the
spatial momentum are given by

Ĥ = 1
2(Q(2)

+1 −Q
(2)
−1) = −1

2

∫
dσTr

[
h j2 + h−1X2] , h ≡ 1 + b σ ,

P̂ = 1
2(Q(2)

+1 +Q
(2)
−1) = −

∫
dσTr

[
jX
]
.

(5.19)
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The Hamiltonian, which governs the time evolution of the system, is conserved since it
does not have any explicit τ dependence. On the other hand, the spatial momentum is not
conserved for b 6= 0

d

dτ
P̂ = ∂τ P̂ − {Ĥ, P̂}

= −1
2

∫
dσ ∂σTr

[
(1 + b σ)j2 + 1

1 + b σ
X2
]
− b

2

∫
dσTr

[
j2 − X2

(1 + b σ)2

]
, (5.20)

reflecting the explicit dependence of the Lagrangian (5.1) on σ. Turning now to the cubic
and quartic charges, one can check that there is no linear combination of these that is
conserved for b 6= 0, and we expect this to be the case for all n > 2. Therefore, this naive
use of eq. (5.16) does not allow us to construct local conserved charges when the coupling
is space dependent.

It turns out we can do slightly better, and to discuss this we turn to the case of the
model (2.15) with the general local coupling admitting a Lax connection (setting f±(ξ±) =
1
2(1 + bf̂±(ξ±)), ξ± = 1

2(τ ± σ) and c = 1),

L̂ = −1
2 h(ξ+, ξ−) Tr[J+J−] , h ≡ 1 + 1

2b
[
f̂+(ξ+) + f̂−(ξ−)

]
. (5.21)

Defining momenta as in (5.3), we now have from (5.5) that X = h g−1∂τg and the Lax
matrix is (cf. (2.15), (5.9))

L̂(w;σ) = z + z−1 + 2
4 j + z − z−1

4h X , z(w, σ) =

√√√√w − 1 + bf̂−

w + 1 + bf̂+
. (5.22)

Once again the Lax matrix algebra can be written in the form (5.10) with the dynamical
R-matrix given by (cf. (5.12))

R12(w1, w2;σ) = (1 + z1)(1 + z2)(1− z2 − z−1
2 )

8(z1 − z2)h

∣∣∣
σi=σ

C12 , (5.23)

which again solves the cYBE (5.13). As before, introducing u(w;σ)=
√
w−1−bf̂−−

√
w+1+bf̂+√

w−1−bf̂−+
√
w+1+bf̂+

and ui = u(wi;σi), the Lax matrix and R-matrix may be written in the form

L̂(w;σ) = 1
1− u2 j + h−1 u

1− u2X ,

R12(w1, w2;σ) = ϕ(w2;σ)−1

u2 − u1

∣∣∣
σi=σ

C12 , ϕ(w;σ) = h(1− u2)
u2 .

(5.24)

Let us again naively consider the charges defined in eq. (5.16). We find that the corre-
sponding Hamiltonian Ĥ and spatial momentum P̂ are given by the same expressions as
in (5.19), now with h given in (5.21). The time evolution of Ĥ and P̂ is given by

∂τ Ĥ−{Ĥ,Ĥ}=− b8

∫
dσ (f̂+′+f̂−′)Tr

[
j2−h−2X2] ,

∂τ P̂−{Ĥ, P̂}=−1
2

∫
dσ∂σTr

[
hj2+h−1X2]− b8

∫
dσ (f̂+′−f̂−′)Tr

[
j2−h−2X2] . (5.25)

For general functions f̂±, we see that Ĥ and P̂ are not conserved. However, if there exist
constants cH and cP such that cH(f̂+′+ f̂−′)+cP(f̂+′− f̂−′) = 0, then the linear combina-
tion cHĤ+cP P̂ of quadratic charges is conserved. Recall that we consider the theory on an
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infinite spatial interval and assume decaying boundary conditions such that the boundary
term in (5.25) vanishes. There are two classes of solutions to this condition: (i) f̂±(ξ±) =
±ξ±
cH±cP , and (ii) cH = cP , f̂+(ξ+) = const or cH = −cP , f̂−(ξ−) = const. For the first class
the coupling h in (5.21) is linear in τ or σ and the conserved charge comes from the unbroken
translation symmetry. The second class gives the ‘chiral’ theories discussed in appendix D.

The cubic charges that follow from eq. (5.16) are

Ĥ(3) = 1
2(Q(3)

+1 −Q
(3)
−1) = −1

2

∫
dσTr

[
hkj3 + 3hk−2jX2] ,

P̂(3) = 1
2(Q(3)

+1 +Q
(3)
−1) = −1

2

∫
dσTr

[
3hm+2j2X + hmX3] , (5.26)

with k = 2 and m = −1. Leaving k and m arbitrary we find that their time evolution is
given by

∂τ Ĥ(3) − {Ĥ, Ĥ(3)} = −1
2

∫
dσ ∂σTr

[
3hk−1j2X + hk−3X3]

− b

8

∫
dσ
(
(f̂+′ + f̂−′)Tr

[
khk−1j3 + 3(k − 2)hk−3jX2]

− (f̂+′ − f̂−′)Tr
[
3(k − 2)hk−2j2X + khk−4X3]) ,

∂τ P̂(3) − {Ĥ, P̂(3)} = −1
2

∫
dσ ∂σTr

[
3hm+1X2j + hm+3j3]

− b

8

∫
dσ
(
(f̂+′ + f̂−′)Tr

[
3(m+ 2)hm+1j2X +mhm−1X3]

− (f̂+′ − f̂−′)Tr
[
mhm+2j3 + 3(m+ 2)hmjX2]) .

(5.27)

From these expressions we find that there is no linear combination of these charges that is
conserved for k = 2 and m = −1, i.e. the values of k and m that follow from eq. (5.16).
Nevertheless, we may ask if such a charge can be constructed by modifying the values of
k and m. One can show that this is only possible for case (ii) above, i.e. for the ‘chiral’
theories, and requires us to take k = −m = 3

2 . For these values Ĥ ± P̂ is conserved for
f̂±(ξ±) = const. It is natural to expect that for these ‘chiral’ theories a similar construc-
tion should hold for all n, with the conserved charges corresponding to the holomorphic
conserved currents derived in appendix D.21

21We can also consider more general ansatze for the quadratic and cubic charges

Q̃(n) = −1
2

∫
dσTr

[
n∑
i=0

µi,nh
n
2−ijn−iXi

]
, h = f+(ξ+) + f−(ξ−) ,

where µi,n are arbitrary functions of (τ, σ). Analysing the time evolution of Q̃(2) and demanding it is
conserved, we find that µ0,2 = µ2,2 = ν+

2 + ν−2 and 1
2µ1,2 = ν+

2 − ν
−
2 , with the functions ν±2 = ν±2 (ξ±)

subject to ν+
2 f

+′ = ν−2 f
−′. For general f±′ 6= 0 we can solve this equation to construct one conserved

charge. For n = 3 we find that µ0,3 = 1
3µ2,3 = ν+

3 + ν−3 and µ3,3 = 1
3µ1,3 = ν+

3 − ν
−
3 with ν±3 = ν±3 (ξ±)

subject to ν+
3 f

+′ = ν−3 f
−′ = 0. For f±′ 6= 0 it follows that ν±3 = 0 and we still do not find a cubic

conserved charge.
For the ‘chiral’ theories without loss of generality let us take f+′ = 0. It follows that ν−2,3 = 0 while

ν+
2,3 is a free function and we have both quadratic and cubic charges as expected. For the case of constant
coupling we have that both ν+

2,3 and ν−2,3 are free functions.
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We have seen that, even in the case of the ‘chiral’ theories, the naive application of the
standard expression (5.16) for the local charges above needs to be modified. This suggests
the need for a more systematic attempt to construct an infinite tower of local conserved
charges — and understand the underlying algebraic structures — to determine the status
of integrability in these models with local couplings.

6 Discussion

In this paper we observed a surprising new connection between classical integrability and
the RG flow in 2d theories: starting with an integrable theory and promoting its cou-
plings to time-dependent functions, its Lax pair generalizes naturally to the resulting
time-dependent theory only if the coupling functions solve the 1-loop RG equations of
the original theory. We demonstrated this on six classes of integrable σ-models.

One interesting implication is that the 1-loop β-functions, which are normally asso-
ciated with 1-loop divergences in quantum theory, can thus be obtained in these models
through the classical procedure of requiring the existence of a Lax pair in the corresponding
time-dependent theory.

As we discussed in the Introduction, such time-dependent models can be naturally
embedded into string theory by starting with a Weyl-invariant σ-model (1.3) with two extra
‘null’ directions (u, v) and fixing a l.c. gauge u = τ . If the l.c. theory (1.6) is integrable, it
is natural to expect that the corresponding string theory should be solvable.22

The Lax connections for the time-dependent theories have an unusual form (depend-
ing explicitly on τ and σ as in the special models discussed in [28–32]) but, given certain
boundary conditions, the entries or the eigenvalues of the monodromy matrix on an infinite
spatial line are conserved. Due to the explicit σ dependence in the Lax connection, it is
hard to evaluate the monodromy and find the conserved charges explicitly. We considered
some consistent reductions of the 2d equations of motion to time-dependent 1d systems.
The ‘trivial’ (σ-independent) reduction of the PCM is clearly integrable due to the re-
maining global symmetry. For the ‘non-trivial’ reduction in section 4.2 we evaluated the
monodromy, and hence constructed a conserved charge (4.19), in perturbation theory in
the small field expansion. The perturbative existence of this conserved charge (following
from the existence of a Lax connection) is a non-trivial property, suggesting that the 1d
theory (4.14) may be interpreted as integrable.23

22The classical solvability of the l.c. theory (1.6) should be equivalent to solvability of the full theory (1.3)
since one may move from u = τ to any other solution of the u-equation ∂+∂−u = 0 by a conformal
transformation. The v-equations ∂±v = 1

2Gij(τ, x) ∂±xi∂±xj (following from the conformal constraints)
are linear and so are also readily solvable. It is not immediately clear, however, if integrability in the sense
of admitting a Lax representation should similarly lift up to the (D + 2)-dimensional string σ-model.

23The time-dependent 1d theory (4.14) is certainly not integrable in the Liouville sense as it would fail
the Kovacic algorithm test used in [44, 45]. Here we are suggesting a broader notion of integrability relating
it to the explicit solvability of the equations of motion. Note that, adding a generic (time-dependent)
potential to the linearized theory (4.16), we would not expect the linearized conserved charge (4.17) to
admit an extension to a conserved charge of a non-linear theory.

– 22 –



J
H
E
P
1
1
(
2
0
2
0
)
0
2
0

One way to fully establish the classical integrability of the σ-models with local cou-
plings would be to construct an infinite tower of local conserved charges in involution, in
the spirit of [36–39]. In section 5 we attempted this for the PCM in the Hamiltonian formu-
lation. A naive application of the method used for constant couplings does not yield such
charges, except in the case of the ‘chiral’ theories where it works with a slight modifica-
tion. Nevertheless, the form of the Lax matrix and R-matrix is suggestive of an underlying
algebraic structure. Understanding it may provide additional insights into the question of
integrability.

While we considered time-dependent models at the classical level only, one may
wonder if they themselves are renormalizable, i.e. stable under RG flow. Renormal-
ization of generalized σ-models with target-space metric depending on 2d coordinates
was considered in [46]. In the case we discussed (cf. (1.6)) when Gij depends only on
τ , i.e. L = Gij(τ, x)∂+x

i∂−x
j , the 1-loop logarithmic counterterm is proportional to

K1 = GmlG
jk∂τx

m ∂τΓljk + 1
4∂τG

ij∂τGij , where Γljk is the Christoffel connection of Gij .
Thus in general one needs to add also counterterms with one and no derivatives, i.e.
Vm(x)∂τxm + T (x). However, in the ‘factorized’ case when Gij(τ, x) = f(τ)Gij(x), like
in the time-dependent PCM (2.8), the above counterterm becomes an x-independent func-
tion, K1 ∼ (∂τf)2. Furthermore, if f is linear in τ as in (2.8) then this K1 is just a constant
and thus such a model is renormalizable. This suggests that at least some time-dependent
integrable models discussed in this paper may have well-defined quantum generalizations.

In this paper we only studied 2-derivative σ-models but we expect the connection
between the requirement of integrability of the time-dependent theory and RG flow to
be more general and to apply also to models with potentials. Indeed, one also finds this
remarkable connection in the case of the sine-Gordon model,

S = 1
4π

∫
dτdσ

1
g2

[1
2∂+x∂−x+m2 cosx

]
. (6.1)

Replacing the couplings (g,m) by functions24 of τ one can show that, for the resulting
theory to be integrable (assuming a natural ansatz for a generalization of the Lax connection
to the time-dependent theory — see appendix E), the functions (g(τ),m(τ)) should be
solutions of the 1-loop RG flow equation for (6.1), i.e. should be given by

m2(τ) = eβ(g) τ m2
0 , g(τ) = g , β(g) = −2 + g2 . (6.2)

The time-dependent theory,

Ŝ = 1
4π

∫
dτdσ

1
g2

[1
2∂+x∂−x+ eβ(g) τ m2

0 cosx
]
, (6.3)

is indeed classically integrable since the explicit τ -dependence in (6.3) can be removed by
a 2d conformal transformation getting back to (6.1): under ξ± → f±(ξ±) the action (6.1)
retains its form with m2 → f+′(ξ+) f−′(ξ−)m2. Note that the non-trivial 1d reduction of
the SU(2) PCM in eq. (4.14) is also obtained as the ‘trivial’ reduction x = x(τ) of (6.3)

24For a discussion of sine-Gordon model with a particular ‘non-integrable’ local coupling m = m(σ)
see [47] and references there.
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after a redefinition τ → log τ , supporting the expectation that (4.14) is an integrable
1d theory. It would be interesting to explore whether this time-dependent integrability-
RG flow connection applies also to other examples of integrable massive theories, such as
complex sine-Gordon and Toda models.

One of the features of our construction of the Lax connection for time-dependent theo-
ries is that the constant spectral parameter of the original theory is replaced by a function
z → z(w; τ, σ) of a new spectral parameter w and the 2d coordinates (cf. (2.12), (2.13)).
This puts the spectral parameter and 2d space-time coordinates on a more equal footing,
suggesting a possible interpretation from the point of view of the construction [48, 49] of
many integrable 2d theories from a 4d Chern-Simons theory, with the two extra directions
related to the complex spectral parameter (see also [50] and refs. there). In that context
the redefinition of z is like changing the differential structure of the 4d space, i.e. replacing
∂τ,σz = 0 with ∂τ,σz = Vτ,σ(z; τ, σ) (cf. (3.9)). It would be interesting to see if the time-
dependent models considered above can indeed be reproduced from the 4d Chern-Simons
construction.
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A Details of derivation of RG flow from existence of Lax connection

Here we shall provide some further details of the derivation of the RG flow from the
consistency of the Lax representation for the (τ, σ)-dependent model in section 3.

A.1 Derivation of the equations (3.7), (3.8)

To derive (3.7), (3.8), we shall ignore terms proportional to the derivatives of the couplings
∂±hα and match the other terms between the flatness condition of the Lax connection and
the equation of motion. The algebraic equations (3.7), (3.8) follow essentially because these
‘non-derivative’ terms do not change upon the introduction of space-time dependence of
the couplings.

Let us consider the cases of models associated to a group and to a symmetric space
separately. For the group space case, the original equations of motion following from the
flatness of Lax in (3.2) are the flatness and the conservation of the current A±. In the
(τ, σ)-dependent model (3.1), these equations may only be modified by O(∂h) terms

F+−(A) = O(∂h) , ∂+A− + ∂−A+ = O(∂h) . (A.1)

They should follow from the flatness of the Lax connection ansatz (3.4),

F+−(L̂) = p+p−F+−(A) +
[
p−(1− p+)∂+A− − p+(1− p−)∂−A+

]
+O(∂p) . (A.2)
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Comparing first the terms with ∂±A and A2, i.e. neglecting the O(∂h) and O(∂p) terms
in (A.1), (A.2), the matching of (A.1) and (A.2) then implies

p−(1− p+) = −p+(1− p−) . (A.3)

This leads to the algebraic equation (3.7).
For the symmetric space case, the original equations of motion following from the

vanishing of the curvature of (3.3) are the flatness condition for (B+P)± and the equations
DB±P∓ = 0, where DBa is the covariant derivative with respect to the connection Ba in the
subalgebra Lie(H). In the (τ, σ)-dependent model (3.1) these equations are modified, as
in (A.1),

F+−(B + P) = O(∂h) , DB±P∓ = O(∂h) . (A.4)

These should follow from the flatness of the ansatz for the Lax pair in (3.5)

F+−(L̂) = q+q−F+−(B + P) + (r− − q+q−)DB+P− − (r+ − q+q−)DB−P+

+ q−(1− q+)∂+B− − q+(1− q−)∂−B+ + (r+r− − q+q−)[P+,P−]
+ r−(q+ − 1)[B+,P−]− r+(q− − 1)[B−,P+] +O(∂q, ∂r) . (A.5)

Comparing the terms in (A.4) and (A.5) that contain ∂B, ∂P, B2, P2 and BP , i.e. neglecting
the O(∂h) terms in (A.4) and O(∂q, ∂r) terms in (A.5), we conclude in particular that the
coefficients of the extra ∂B, [B,P] and [P,P] terms in (A.5) must vanish. Assuming q±, r±
are not all zero (so that the Lax connection (3.5) is not identically zero) the only solution
is q+ = q− = 1 and r+r− = 1, i.e. the conditions in (3.8).

A.2 RG flow in PCM case

The matching of the O(∂h) terms then forces the coupling functions to solve the RG flow
equations. The general structure of this argument is explained in eqs. (3.9)–(3.12), but
here we shall run through it explicitly for the simplest PCM example.

Together, (3.4) and (3.7) lead to the following ansatz for the Lax connection (cf. (2.13))

L̂± = 1
2
(
1 + [z(τ, σ)]±1

)
J± , (A.6)

whose curvature is (F+−(J) = 0 since J = g−1dg)

F+−(L̂) = 1− z2

4z (∂+J− + ∂−J+)− ∂+z

2z2 J− −
∂−z

2 J+ . (A.7)

The equation of motion for the PCM with coupling h(τ, σ) is (generalizing (2.10))

h(∂+J− + ∂−J+) + ∂+hJ− + ∂−hJ+ = 0 . (A.8)

For this to be equivalent to the vanishing of the curvature (A.7) the ratios of the different
coefficients should match. This leads to the equations of the form (3.9), i.e.

∂+z = −z2(1− z)2 ∂+h

h
, ∂−z = − 1

2z (1− z)2 ∂−h

h
. (A.9)
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The consistency condition ∂+(∂−z)− ∂−(∂+z) = 0 gives
(1− z2)2

2hz ∂+∂−h = 0 . (A.10)

It is remarkable that the z dependence has totally factored out (a term proportional to
∂+h∂−h is absent due to a special cancellation). Excluding the trivial cases z(τ, σ) = ±1,
which would not encode the correct equation of motion, we find that the Lax connec-
tion (A.6) only matches the correct equation of motion if ∂+∂−h = 0, i.e. if h = f+(ξ+) +
f−(ξ−). Any such solution is related to the 1-loop RG flow h = c τ by a 2d conformal
transformation.

A.3 RG flow for theories with multiple couplings

In section 3 (see eqs. (3.9)–(3.12)) we explained the derivation of the RG flow focussing
on the case with only one coupling. The same conclusion also holds for the group space
η-model with two couplings h and η (see table 1), and more generally is expected to be
true for multi-coupling theories.

There are multiple independent structures in the equation of motion (for the η-model
these involve different powers of the R-matrix) and correspondingly in the flatness of the
Lax connection. Matching the coefficients of these structures in the η-model case yields
two pairs of equations (cf. (3.9)),

∂τz = Uτ (z;h, η) , ∂σz = Uσ(z;h, η) , (A.11)
∂τz = Vτ (z;h, η) , ∂σz = Vσ(z;h, η) . (A.12)

In general, for an N -coupling theory we would expect to find N pairs of equations.
As a system of equations for z, (A.11), (A.12) is clearly overdetermined. In two com-

binations of these equations the z dependence cancels to give relations between h(τ, σ)
and η(τ, σ)

∂τ (ηh−1) = ∂σ(ηh−1) = 0 . (A.13)

Eq. (A.13) implies that ν ≡ ηh−1 is a constant; this coincides precisely with the 1-loop RG
invariant of the η-model (see table 1). For an N -coupling theory, we may expect to obtain
(N − 1) RG invariants νr in this way.

Then the system (A.11), (A.12) reduces to just two equations — effectively return-
ing to the single-coupling case of equations (3.9). Again, the consistency condition for
the two remaining equations takes the remarkable form (3.10), where the beta function
β(h) ≡ βh(h, ν) is understood as a function of the coupling h and the RG invariant. As in
eqs. (3.11), (3.12) it then follows (modulo a conformal transformation) that h(τ, σ) depends
only on τ and follows the 1-loop RG flow. The same should generalize to the N -coupling
case with (N − 1) independent RG invariants νr that can be chosen as constants.

B On non-local charges in time-dependent symmetric space λ-model

In section 4 we discussed the construction of non-local charges in the time-dependent PCM.
Here we shall comment on the other models in table 1, and, in particular, on the symmetric
space λ-model.
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The construction of the conserved monodromy matrix (4.1), (4.2) works similarly, al-
though for the models built on symmetric spaces (symmetric space σ-model and symmetric
space λ-model), it is only the eigenvalues of the monodromy matrix that are conserved. A
sufficient boundary condition in all cases is that g(τ, σ) → g0 at spatial infinity and that
(g− g0) decays sufficiently fast so that the monodromy converges at spatial infinity. As in
the PCM example it is hard to evaluate the conserved charges explicitly and thus to verify
that they are infinite in number (i.e. depend non-trivially on the spectral parameter w).

Except for the symmetric space λ-model, all the other models have global symmetries.
As for the PCM in (4.11), the associated charges can be obtained by expanding the mon-
odromy around w =∞.25 In the remainder of this appendix, we shall consider the trivial
reduction of the time-dependent symmetric space λ-model, which has no manifest global
symmetries. In general, the eigenvalues of the monodromy matrix would be conserved on
an infinite spatial line; however, in the trivial reduction the monodromy matrix does not
converge at spatial infinity since Lσ does not vanish there. Below we will try to shed some
light on this issue.

Let us first recall what happens for geodesics in the usual time-independent case,
where the Lax connection is L± = AH± + z±1 1√

λ
A
G/H
± . In the trivial reduction we have

A± = A±(g(τ)) so the periodicity condition (4.4) is satisfied and the eigenvalues of the
monodromy conserved even on a finite interval of length a. The path-ordered exponential
trivializes to giveM = exp (aLσ) and hence, equivalently, the eigenvalues of Lσ = 1

2(AH+ −
AH− + z√

λ
A
G/H
+ − z−1

√
λ
A
G/H
− ) are conserved. For example, let us consider the simplest

SO(3)/SO(2) λ-model (with the subgroup SO(2) generated by σ1), parametrized after
gauge fixing as

g = eiασ3eiβσ1 , cosα =
√
p2 + q2 , cosα cosβ = p , (B.1)

L = k

1− λ2
(1 + λ)2(∂p)2 + (1− λ)2(∂q)2

1− p2 − q2 . (B.2)

There is only one independent eigenvalue l of Lσ since it is a traceless 2 × 2 matrix. Its
expansion around, e.g., z = 1 gives (at least) two independent conserved charges for the
geodesic motion

Q̇1 = Q̇2 = 0 , l = 1
2(λ2 − 1)

√
Q1 + (z − 1)2 λ

λ2 − 1
Q2√
Q1

+ . . . , (B.3)

Q1 = (1 + λ)2[4λ(p2 − 1)− (λ− 1)2q2]ṗ2 + 2(λ2 − 1)2pqṗq̇ − (λ− 1)4p2q̇2

(1− p2 − q2)2 , (B.4)

Q2 = (1 + λ)2ṗ2 + (1− λ)2q̇2

1− p2 − q2 , (B.5)

with Q2 proportional to the Hamiltonian.

25This applies also for the symmetric space σ-model after applying the gauge transformation L± →
gL±g

−1 − ∂±gg
−1 to the Lax connection L = JH± + z±1J

G/H
± , obtaining the alternate Lax connection

L± = 1
2 (1−z±1)(−2gJG/H± g−1) of the ‘group space’ form (3.2), instead of (3.3) (modulo sign reversal of z).
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Returning to the time-dependent case, the monodromy is not defined on an infinite
line, and on any finite interval the periodicity condition is not satisfied due to the explicit
σ dependence of the Lax connection for generic values of w. However, at certain special
values of w satisfying exp ( ckw) = ±∞, the σ dependence disappears to give flat connections[

∂+ +AH+ + 1
λ(τ)A

G/H
+ , ∂− +AH− +A

G/H
−

]
= 0 , (B.6)[

∂+ +AH+ +A
G/H
+ , ∂− +AH− + 1

λ(τ)A
G/H
−

]
= 0 , λ(τ) = exp

(
c

k
τ

)
, (B.7)

generalizing the same expressions from the time-independent case (λ(τ) → λ). At these
values the periodicity condition is satisfied on any finite interval. The monodromy trivial-
izes as in the time-independent case to give M = exp (aLσ), so the eigenvalues of Lσ are
again conserved.

In fact, the two flat connections (B.6), (B.7) are related by a gauge transformation, so
their conserved charges are the same. Hence, the maximum number of independent charges
obtained from the flat connections (B.6), (B.7) is r = rank(G) for a symmetric space G/H.
This number is generally less than the number of fields, dimG/H = dimG − dimH (e.g.
for SO(n+1)/SO(n) we get r = n−1 < dim SO(n+ 1)/SO(n) = n), so this is not sufficient
for integrability.

For example, in the SO(3)/SO(2) case (B.2), where there are 2 fields, we only obtain
r = 1 conserved charge

Q = [λ(τ) + 1]4(p2 − 1)ṗ2 + 2[λ(τ)2 − 1]2pqṗq̇ + [λ(τ)− 1]4(q2 − 1)q̇2

[λ(τ)2 − 1]2(1− p2 − q2)2 . (B.8)

In the time-independent limit λ(τ) → λ (obtained, e.g., by shifting τ → k
c log λ + bτ and

taking b→ 0), this charge becomes a particular combination of the charges (B.4), (B.5) in
the time-independent theory,

Q→ Q1 − (λ− 1)2Q2 . (B.9)

Having restricted consideration to special values of w, we do not find enough charges for
the integrability of the geodesics. Since the construction of charges is subtle, depending on
boundary conditions and the choice of the spatial domain (the periodicity condition (4.4)
must be satisfied and, if the interval is infinite, the monodromy must converge at infinity),
it is possible that the monodromy constructed on some special domain would yield further
conserved charges, but this remains to be clarified.

C Time-dependent 1d harmonic oscillator and conserved charge

In section 4 we came across a particular time-dependent linear model (4.16). Starting with
a general time-dependent linear 1d action26

S =
∫
dτ
[
h(τ) θ̇2 − k(τ) θ2] , θ̇ ≡ ∂τθ , (C.1)

26We do not include the term f(τ)θθ̇ as it can be put in the form k(τ)θ2 by adding a total derivative.
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one may redefine τ as τ → t(τ), ṫ(τ) = h−1(τ) to put all time dependence in the harmonic
potential term

S =
∫
dt
[
θ′

2 −m2(t) θ2] , m2(t) = k(τ(t))h(τ(t)) , θ′ ≡ ∂tθ . (C.2)

The corresponding equation of motion is

θ′′ +m2(t) θ = 0 . (C.3)

It is easy to see that for a given function θ0(t), the quantity

Q = θ0 θ
′ − θ′0 θ , (C.4)

is conserved on-shell if and only if θ0 is a particular solution of the equation of motion (C.3).
Furthermore, such a conserved charge provides a first integral for (C.3)

Q = θ0 θ
′ − θ′0 θ = C1 = const →

(
θ

θ0

)′
= C1
θ2

0
. (C.5)

Integrating this first-order equation yields the general solution of (C.3) (C2 = const)

θ(t) = C1 θ0(t)
∫

dt

θ2
0(t)

+ C2 θ0(t) , (C.6)

with θ = θ0 being, of course, a special case. Thus (C.3) is solvable if a particular solution
θ0 can be constructed explicitly.

Changing back to the original parametrization (C.1) (t → τ), the conserved
charge (C.5) takes the form

Q = h(τ)
[
θ0 θ̇ − θ̇0 θ

]
, (C.7)

where θ0 = θ0(τ) is a particular solution of (C.1), while (C.6) becomes

θ(τ) = C1 θ0(τ)
∫

dτ

h(τ) θ2
0(τ)

+ C2 θ0(τ) . (C.8)

The linearized theory (4.16) corresponds to (C.1) with h(τ) = k(τ) = τ . The conserved
charge in (4.17), (4.18) is indeed of the form (C.7). From the monodromy matrix one finds
that Q = τ [γ(τ) θ + α(τ) θ̇] where

γ(τ) =
∫ +∞

−∞
dσe−imσ

m(s+s−−w−σ)
2τs+s−

, α(τ) =
∫ +∞

−∞
dσ e−imσ

i

2s+s−
, s±≡

√
w+σ±τ .

(C.9)
Here γ = −α̇ as required. Indeed, the term proportional to θ̇ in the leading O(ε) expansion
of the flatness equation ∂τLσ − ∂σLτ + [Lτ , Lσ] = 0 tells us that the integrands in (C.9)
satisfy ∂τ [ e−imσi2s+s−

] + e−imσm(s+s−−w−σ)
2τs+s−

= ∂σ [ e
−imσ i(s+s−−w−σ)

2τs+s−
]. Integrating over σ and

noting that e−imσ i(s+s−−w−σ)
2τs+s−

vanishes at σ = ±∞,27 we conclude that γ + α̇ = 0.
Since the charge in (4.17) is conserved on-shell (from the monodromy matrix construc-

tion), it follows that α(τ) is a particular solution, and thus the general solution (C.8) is in
this case given by

θ = C1 α(τ)
∫

dτ

τ α2(τ) + C2 α(τ) . (C.10)
27This follows from the periodicity condition (4.4) since it is the coefficient of θ̇ in a component of the

leading O(ε) term in Lτ .
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D Local currents in ‘chiral’ theory

Apart from non-local conserved charges, integrable σ-models typically have conserved
charges associated to local higher-spin currents (see, e.g., [36–38]). Below we show that a
class of similar local currents exists in generalized σ-models where the couplings depend
not on τ but on the l.c. variable ξ− = 1

2(τ − σ),

L̂ch = Gij(ξ−, x) ∂+x
i∂−x

j . (D.1)

The classical action is then still invariant under ‘half’ of the conformal transformations
ξ+ → f(ξ+). Note that such models can be obtained from the time-dependent models (2.2)
by rescaling ξ+ → bξ+ and taking the limit b→ 0.

In the ordinary (time-independent) integrable models in table 1 one can construct
special conserved higher-spin local currents as follows (we follow the notation in (3.2), (3.3))

∂±J (n)
∓ = 0 , J (n)

± =

da1···anA
a1
± · · · Aan± (group G)

da1···anP
a1
± · · · Pan± (symmetric space G/H)

(D.2)

da1...an = d(a1...an) , fab(cda1···an−1)a = 0 . (D.3)

The conservation of the currents (D.2) follows from the equations of motion

G : ∂+A− + ∂−A+ = 0 , F+−(A) = 0 , (D.4)
G/H : DB+P− +DB−P+ = 0 , F+−(B + P) = 0 , (D.5)

since these may be re-written as

G : ∂±A∓ = 1
2[A∓, A±] , (D.6)

G/H : ∂±P∓ = [P∓, B±] , F+−(B) + [P+,P−] = 0 . (D.7)

Such higher-spin currents were systematically studied in the group [37] and symmetric
space [38] cases. One natural choice for the invariant tensor da1···an is given by the sym-
metrized trace of the generators, da1···an = Tr[T(a1 · · ·Tan)].

Suppose we now promote the corresponding couplings to functions of the space-time
coordinates, hα → hα(τ, σ), specially chosen so that the resulting model still admits a
Lax connection as in (3.4), (3.5), (3.6). It follows from the Lax representation that the
equations of motion must now take the form (cf. appendix A)

G : ∂+A− + ∂−A+ = aα∂−hαA+ + bα∂+hαA− , (D.8)
F+−(A) = cα∂−hαA+ + dα∂+hαA− , (D.9)

G/H : DB+P− +DB−P+ = aα∂−hα P+ + bα∂+hα P− , (D.10)
F+−(B + P) = cα∂−hα P+ + dα∂+hα P− , (D.11)

where aα, bα, cα, dα are particular functions of hα and (τ, σ). In general, these modified
equations do not admit a form like (D.6), (D.7). However, in the ‘chiral’ case where
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hα = hα(ξ−), we may set bα = dα = 0 and then it follows that

G : ∂−A+ = 1
2[A+,A−] + 1

2(aα − cα)∂−hαA+ , (D.12)

G/H : ∂−P+ = [P+,B−] + 1
2(aα − cα)∂−hα P+ . (D.13)

Thus, while the currents (D.2) are not conserved, the ‘holomorphic’ half of them J (n)
+ satisfy

∂−J (n)
+ = n

2 (aα − cα)∂−hα J (n)
+ . (D.14)

This leads to the following modified holomorphic conservation law

∂−Ĵ (n)
+ = 0 , Ĵ (n)

+ ≡ e−
n
2

∫
dx−(aα−cα)∂−hαJ (n)

+ . (D.15)

E Lax pair in time-dependent sine-Gordon model

As discussed in section 6, the sine-Gordon model,

L = 1
g2

[1
2∂+x∂−x+m2 cosx

]
, (E.1)

displays the same pattern as the σ-models considered above: upon promoting the couplings
(g,m) to functions of 2d time τ , the Lax connection naturally generalizes to the resulting
time-dependent model only if the time dependence is given by the 1-loop RG flow of the
original model

m2(τ) = eβ(g) τm2
0 , g(τ) = g , β(g) = −2 + g2 . (E.2)

Below we shall justify this claim in more detail.
As was noted in section 6, the time-dependent theory obtained from (E.2)

L̂ = 1
g2

[1
2∂+x∂−x+ eβ(g) τ m2

0 cosx
]
, (E.3)

is clearly integrable since the explicit τ -dependence in (E.3) can be removed by a 2d
conformal transformation getting back to (E.1). Indeed, starting with the Lax pair [51] for
the original sine-Gordon model (E.1) (σi are Pauli matrices)

L± = ± i4∂±x σ3 + i

2z
±1m cos x2 σ1 ±

i

2z
±1m sin x2 σ2 , (E.4)

and applying a conformal transformation ξ± → f±(ξ±), one obtains a Lax connection for
the time-dependent theory (E.3),28

L̂± = ± i4∂±x σ3 + i

2z
±1 eβ(g) ξ±m0 cos x2 σ1 ±

i

2z
±1 eβ(g) ξ±m0 sin x2 σ2 . (E.5)

28Note that, as for the σ-models discussed above, the dependence on the spectral parameter z in (E.5) is
again correlated with a constant shift of σ.
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Note that this Lax connection follows the same ansatz (2.3) as in the σ-model case: it is
obtained from the original Lax connection (E.4) by the replacements z → ẑ = e

1
2β(g)σz and

m0 → m(τ) = e
1
2β(g)τm0.

Conversely, suppose we replace the couplings (g,m) in (E.1) with general functions of
(τ, σ) and then demand that the resulting theory (cf. (3.1))

L̂ = 1
g2(τ, σ)

[1
2∂+x∂−x+m2(τ, σ) cosx

]
(E.6)

admits a Lax representation. Motivated by (E.4), we shall assume the following ansatz for
the Lax connection (cf. (3.4), (3.5))

L̂± = f±(τ, σ) i

4∂±xσ3 + v±(τ, σ) i

2 cos x2 σ1 + w±(τ, σ) i

2 sin x2 σ2 . (E.7)

Then matching coefficients of various terms in the zero-curvature condition for (E.7) and
in the equation of motion corresponding to (E.6) leads to the following constraints on the
coefficient functions in (E.7) and the coupling functions,

f± = ±1 , w± = ±v± , ∂∓v± = 0 , (E.8)
g(τ, σ) = g = const , v+v− = m2(τ, σ) . (E.9)

It follows from (E.8), (E.9) that v± = ±w± = v±(ξ±), m2(τ, σ) = v+(ξ+) v−(ξ−). Finally,
applying a conformal transformation to (E.7), we may set, e.g., v±(ξ±)→ z±1 eβ(g) ξ±m0,
m2(τ, σ)→ eβ(g) τ m2

0, thus bringing the Lagrangian (E.6) and the Lax connection (E.7) to
the form (E.3) and (E.5) where the time dependence is given by the 1-loop RG flow (E.2)
of the standard sine-Gordon model.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] V.A. Fateev, E. Onofri and A.B. Zamolodchikov, Integrable deformations of the O(3)
σ-model. The sausage model, Nucl. Phys. B 406 (1993) 521 [INSPIRE].

[2] V. Fateev, Classical and Quantum Integrable σ-models. Ricci Flow, “Nice Duality” and
Perturbed Rational Conformal Field Theories, J. Exp. Theor. Phys. 129 (2019) 566
[arXiv:1902.02811] [INSPIRE].

[3] S.L. Lukyanov, The integrable harmonic map problem versus Ricci flow, Nucl. Phys. B 865
(2012) 308 [arXiv:1205.3201] [INSPIRE].

[4] B. Hoare, N. Levine and A.A. Tseytlin, Integrable 2d σ-models: quantum corrections to
geometry from RG flow, Nucl. Phys. B 949 (2019) 114798 [arXiv:1907.04737] [INSPIRE].

[5] B. Hoare, N. Levine and A.A. Tseytlin, Integrable σ-models and 2-loop RG flow, JHEP 12
(2019) 146 [arXiv:1910.00397] [INSPIRE].

[6] C. Klimčík, Yang-Baxter σ-models and dS/AdS T duality, JHEP 12 (2002) 051
[hep-th/0210095] [INSPIRE].

– 32 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0550-3213(93)90001-6
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB406%2C521%22
https://doi.org/10.1134/S1063776119100042
https://arxiv.org/abs/1902.02811
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.02811
https://doi.org/10.1016/j.nuclphysb.2012.08.002
https://doi.org/10.1016/j.nuclphysb.2012.08.002
https://arxiv.org/abs/1205.3201
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1205.3201
https://doi.org/10.1016/j.nuclphysb.2019.114798
https://arxiv.org/abs/1907.04737
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.04737
https://doi.org/10.1007/JHEP12(2019)146
https://doi.org/10.1007/JHEP12(2019)146
https://arxiv.org/abs/1910.00397
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.00397
https://doi.org/10.1088/1126-6708/2002/12/051
https://arxiv.org/abs/hep-th/0210095
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0210095


J
H
E
P
1
1
(
2
0
2
0
)
0
2
0

[7] F. Delduc, M. Magro and B. Vicedo, On classical q-deformations of integrable σ-models,
JHEP 11 (2013) 192 [arXiv:1308.3581] [INSPIRE].

[8] K. Sfetsos, Integrable interpolations: From exact CFTs to non-Abelian T-duals, Nucl. Phys.
B 880 (2014) 225 [arXiv:1312.4560] [INSPIRE].

[9] T.J. Hollowood, J.L. Miramontes and D.M. Schmidtt, Integrable Deformations of Strings on
Symmetric Spaces, JHEP 11 (2014) 009 [arXiv:1407.2840] [INSPIRE].

[10] G. Valent, C. Klimčík and R. Squellari, One loop renormalizability of the Poisson-Lie
σ-models, Phys. Lett. B 678 (2009) 143 [arXiv:0902.1459] [INSPIRE].

[11] G. Itsios, K. Sfetsos and K. Siampos, The all-loop non-Abelian Thirring model and its RG
flow, Phys. Lett. B 733 (2014) 265 [arXiv:1404.3748] [INSPIRE].

[12] K. Sfetsos and K. Siampos, Gauged WZW-type theories and the all-loop anisotropic
non-Abelian Thirring model, Nucl. Phys. B 885 (2014) 583 [arXiv:1405.7803] [INSPIRE].

[13] C. Appadu and T.J. Hollowood, β-function of k deformed AdS5 × S5 string theory, JHEP 11
(2015) 095 [arXiv:1507.05420] [INSPIRE].

[14] S. Bouquet and A. Bourdier, Notion of integrability for time-dependent Hamiltonian systems:
Illustrations from the relativistic motion of a charged particle, Phys. Rev. E 57 (1998) 1273.

[15] M.V. Bartuccelli and G. Gentile, On a class of integrable time-dependent dynamical systems,
Phys. Lett. A 307 (2003) 274.

[16] R.M. Angelo, E.I. Duzzioni and A.D. Ribeiro, Integrability in time-dependent systems with
one degree of freedom, J. Phys. A 45 (2012) 5 [arXiv:1106.6034].

[17] G. Papadopoulos, J.G. Russo and A.A. Tseytlin, Solvable model of strings in a time
dependent plane wave background, Class. Quant. Grav. 20 (2003) 969 [hep-th/0211289]
[INSPIRE].

[18] M. Blau, M. O’Loughlin, G. Papadopoulos and A.A. Tseytlin, Solvable models of strings in
homogeneous plane wave backgrounds, Nucl. Phys. B 673 (2003) 57 [hep-th/0304198]
[INSPIRE].

[19] A. Borowiec, H. Kyono, J. Lukierski, J.-i. Sakamoto and K. Yoshida, Yang-Baxter σ-models
and Lax pairs arising from κ-Poincaré r-matrices, JHEP 04 (2016) 079 [arXiv:1510.03083]
[INSPIRE].

[20] H. Kyono, J.-i. Sakamoto and K. Yoshida, Lax pairs for deformed Minkowski spacetimes,
JHEP 01 (2016) 143 [arXiv:1512.00208] [INSPIRE].

[21] J.M. Maldacena and L. Maoz, Strings on pp waves and massive two-dimensional field
theories, JHEP 12 (2002) 046 [hep-th/0207284] [INSPIRE].

[22] J.G. Russo and A.A. Tseytlin, A Class of exact pp wave string models with interacting light
cone gauge actions, JHEP 09 (2002) 035 [hep-th/0208114] [INSPIRE].

[23] I. Bakas and J. Sonnenschein, On Integrable models from pp wave string backgrounds, JHEP
12 (2002) 049 [hep-th/0211257] [INSPIRE].

[24] A.A. Tseytlin, String vacuum backgrounds with covariantly constant null Killing vector and
2-D quantum gravity, Nucl. Phys. B 390 (1993) 153 [hep-th/9209023] [INSPIRE].

[25] A.A. Tseytlin, A Class of finite two-dimensional σ-models and string vacua, Phys. Lett. B
288 (1992) 279 [hep-th/9205058] [INSPIRE].

– 33 –

https://doi.org/10.1007/JHEP11(2013)192
https://arxiv.org/abs/1308.3581
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1308.3581
https://doi.org/10.1016/j.nuclphysb.2014.01.004
https://doi.org/10.1016/j.nuclphysb.2014.01.004
https://arxiv.org/abs/1312.4560
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1312.4560
https://doi.org/10.1007/JHEP11(2014)009
https://arxiv.org/abs/1407.2840
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1407.2840
https://doi.org/10.1016/j.physletb.2009.06.001
https://arxiv.org/abs/0902.1459
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0902.1459
https://doi.org/10.1016/j.physletb.2014.04.061
https://arxiv.org/abs/1404.3748
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1404.3748
https://doi.org/10.1016/j.nuclphysb.2014.06.012
https://arxiv.org/abs/1405.7803
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1405.7803
https://doi.org/10.1007/JHEP11(2015)095
https://doi.org/10.1007/JHEP11(2015)095
https://arxiv.org/abs/1507.05420
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.05420
http://doi.org/10.1103/PhysRevE.57.1273
http://doi.org/10.1016/S0375-9601(02)01731-0
http://doi.org/10.1088/1751-8113/45/5/055101
https://arxiv.org/abs/1106.6034
https://doi.org/10.1088/0264-9381/20/5/313
https://arxiv.org/abs/hep-th/0211289
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0211289
https://doi.org/10.1016/j.nuclphysb.2003.09.018
https://arxiv.org/abs/hep-th/0304198
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0304198
https://doi.org/10.1007/JHEP04(2016)079
https://arxiv.org/abs/1510.03083
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1510.03083
https://doi.org/10.1007/JHEP01(2016)143
https://arxiv.org/abs/1512.00208
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.00208
https://doi.org/10.1088/1126-6708/2002/12/046
https://arxiv.org/abs/hep-th/0207284
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0207284
https://doi.org/10.1088/1126-6708/2002/09/035
https://arxiv.org/abs/hep-th/0208114
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0208114
https://doi.org/10.1088/1126-6708/2002/12/049
https://doi.org/10.1088/1126-6708/2002/12/049
https://arxiv.org/abs/hep-th/0211257
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0211257
https://doi.org/10.1016/0550-3213(93)90389-7
https://arxiv.org/abs/hep-th/9209023
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9209023
https://doi.org/10.1016/0370-2693(92)91104-H
https://doi.org/10.1016/0370-2693(92)91104-H
https://arxiv.org/abs/hep-th/9205058
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9205058


J
H
E
P
1
1
(
2
0
2
0
)
0
2
0

[26] A.A. Tseytlin, Finite σ-models and exact string solutions with Minkowski signature metric,
Phys. Rev. D 47 (1993) 3421 [hep-th/9211061] [INSPIRE].

[27] C. Schmidhuber and A.A. Tseytlin, On string cosmology and the RG flow in 2-D field theory,
Nucl. Phys. B 426 (1994) 187 [hep-th/9404180] [INSPIRE].

[28] V.A. Belinsky and V.E. Zakharov, Integration of the Einstein Equations by the Inverse
Scattering Problem Technique and the Calculation of the Exact Soliton Solutions, Sov. Phys.
JETP 48 (1978) 985 [INSPIRE].

[29] V.A. Belinsky and V.E. Sakharov, Stationary Gravitational Solitons with Axial Symmetry,
Sov. Phys. JETP 50 (1979) 1 [INSPIRE].

[30] D. Maison, Are the stationary, axially symmetric Einstein equations completely integrable?,
Phys. Rev. Lett. 41 (1978) 521 [INSPIRE].

[31] D. Maison, Stationary, Axially Symmetric Einstein Spaces: A Completely Integrable
Hamiltonian System?, J. Math. Phys. 20 (1979) 871 [INSPIRE].

[32] P. Breitenlohner and D. Maison, On the Geroch Group, Ann. Inst. H. Poincare Phys. Theor.
46 (1987) 215 [INSPIRE].

[33] H. Nicolai, Two-dimensional gravities and supergravities as integrable system, Lect. Notes
Phys. 396 (1991) 231 [INSPIRE].

[34] H. Nicolai, D. Korotkin and H. Samtleben, Integrable classical and quantum gravity, in
NATO Advanced Study Institute on Quantum Fields and Quantum Space Time, pp. 203–243
(1996) [hep-th/9612065] [INSPIRE].

[35] G. Arutyunov, J. Russo and A.A. Tseytlin, Spinning strings in AdS5 × S5: New integrable
system relations, Phys. Rev. D 69 (2004) 086009 [hep-th/0311004] [INSPIRE].

[36] Y.Y. Goldschmidt and E. Witten, Conservation Laws in Some Two-dimensional Models,
Phys. Lett. B 91 (1980) 392 [INSPIRE].

[37] J.M. Evans, M. Hassan, N.J. MacKay and A.J. Mountain, Local conserved charges in
principal chiral models, Nucl. Phys. B 561 (1999) 385 [hep-th/9902008] [INSPIRE].

[38] J.M. Evans and A.J. Mountain, Commuting charges and symmetric spaces, Phys. Lett. B
483 (2000) 290 [hep-th/0003264] [INSPIRE].

[39] S. Lacroix, M. Magro and B. Vicedo, Local charges in involution and hierarchies in integrable
σ-models, JHEP 09 (2017) 117 [arXiv:1703.01951] [INSPIRE].

[40] L.D. Faddeev and N. Reshetikhin, Integrability of the Principal Chiral Field Model in
(1+1)-dimension, Annals Phys. 167 (1986) 227 [INSPIRE].

[41] F. Delduc, S. Lacroix, M. Magro and B. Vicedo, Assembling integrable σ-models as affine
Gaudin models, JHEP 06 (2019) 017 [arXiv:1903.00368] [INSPIRE].

[42] J.M. Maillet, New Integrable Canonical Structures in Two-dimensional Models, Nucl. Phys.
B 269 (1986) 54 [INSPIRE].

[43] A. Sevostyanov, The Classical R matrix method for nonlinear σ-model, Int. J. Mod. Phys. A
11 (1996) 4241 [hep-th/9509030] [INSPIRE].

[44] P. Basu and L.A. Pando Zayas, Analytic Non-integrability in String Theory, Phys. Rev. D 84
(2011) 046006 [arXiv:1105.2540] [INSPIRE].

– 34 –

https://doi.org/10.1103/PhysRevD.47.3421
https://arxiv.org/abs/hep-th/9211061
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9211061
https://doi.org/10.1016/0550-3213(94)90131-7
https://arxiv.org/abs/hep-th/9404180
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9404180
https://inspirehep.net/search?p=find+J%20%22Sov.Phys.JETP%2C48%2C985%22
https://inspirehep.net/search?p=find+J%20%22Sov.Phys.JETP%2C50%2C1%22
https://doi.org/10.1103/PhysRevLett.41.521
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C41%2C521%22
https://doi.org/10.1063/1.524134
https://inspirehep.net/search?p=find+J%20%22J.Math.Phys.%2C20%2C871%22
http://inspirehep.net/record/
https://doi.org/10.1007/3-540-54978-1_12
https://doi.org/10.1007/3-540-54978-1_12
https://inspirehep.net/search?p=find+J%20%22Lect.Notes%20Phys.%2C396%2C231%22
https://arxiv.org/abs/hep-th/9612065
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9612065
https://doi.org/10.1103/PhysRevD.69.086009
https://arxiv.org/abs/hep-th/0311004
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0311004
https://doi.org/10.1016/0370-2693(80)91004-7
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB91%2C392%22
https://doi.org/10.1016/S0550-3213(99)00489-7
https://arxiv.org/abs/hep-th/9902008
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9902008
https://doi.org/10.1016/S0370-2693(00)00566-9
https://doi.org/10.1016/S0370-2693(00)00566-9
https://arxiv.org/abs/hep-th/0003264
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0003264
https://doi.org/10.1007/JHEP09(2017)117
https://arxiv.org/abs/1703.01951
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.01951
https://doi.org/10.1016/0003-4916(86)90201-0
https://inspirehep.net/search?p=find+J%20%22Annals%20Phys.%2C167%2C227%22
https://doi.org/10.1007/JHEP06(2019)017
https://arxiv.org/abs/1903.00368
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.00368
https://doi.org/10.1016/0550-3213(86)90365-2
https://doi.org/10.1016/0550-3213(86)90365-2
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB269%2C54%22
https://doi.org/10.1142/S0217751X96001978
https://doi.org/10.1142/S0217751X96001978
https://arxiv.org/abs/hep-th/9509030
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9509030
https://doi.org/10.1103/PhysRevD.84.046006
https://doi.org/10.1103/PhysRevD.84.046006
https://arxiv.org/abs/1105.2540
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1105.2540


J
H
E
P
1
1
(
2
0
2
0
)
0
2
0

[45] A. Stepanchuk and A.A. Tseytlin, On (non)integrability of classical strings in p-brane
backgrounds, J. Phys. A 46 (2013) 125401 [arXiv:1211.3727] [INSPIRE].

[46] H. Osborn, Renormalization and Composite Operators in Nonlinear σ Models, Nucl. Phys. B
294 (1987) 595 [INSPIRE].

[47] D.G. Levkov, V.E. Maslov and E. Nugaev, Chaotic solitons in driven sine-Gordon model,
Chaos Solitons Fractals 139 (2020) 110079 [arXiv:2004.13052] [INSPIRE].

[48] K. Costello, E. Witten and M. Yamazaki, Gauge Theory and Integrability, I,
arXiv:1709.09993 [INSPIRE].

[49] K. Costello and M. Yamazaki, Gauge Theory And Integrability, III, arXiv:1908.02289
[INSPIRE].

[50] F. Delduc, S. Lacroix, M. Magro and B. Vicedo, A unifying 2d action for integrable σ-models
from 4d Chern-Simons theory, arXiv:1909.13824 [INSPIRE].

[51] L.D. Faddeev and L.A. Takhtajan, Hamiltonian Methods In The Theory Of Solitons, Berlin,
Springer (1987) [INSPIRE].

– 35 –

https://doi.org/10.1088/1751-8113/46/12/125401
https://arxiv.org/abs/1211.3727
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1211.3727
https://doi.org/10.1016/0550-3213(87)90599-2
https://doi.org/10.1016/0550-3213(87)90599-2
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB294%2C595%22
https://doi.org/10.1016/j.chaos.2020.110079
https://arxiv.org/abs/2004.13052
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.13052
https://arxiv.org/abs/1709.09993
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.09993
https://arxiv.org/abs/1908.02289
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.02289
https://arxiv.org/abs/1909.13824
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.13824
http://inspirehep.net/record/257360

	Introduction
	Lax connection for time-dependent generalization of integrable sigma-models
	RG flow from condition of integrability of time-dependent theory
	Conserved charges in time-dependent integrable models
	Non-local charges
	1d reductions

	Hamiltonian formulation and local conserved charges
	Discussion
	Details of derivation of RG flow from existence of Lax connection
	Derivation of the equations (3.7), (3.8)
	RG flow in PCM case
	RG flow for theories with multiple couplings

	On non-local charges in time-dependent symmetric space lambda-model
	Time-dependent 1d harmonic oscillator and conserved charge
	Local currents in `chiral' theory
	Lax pair in time-dependent sine-Gordon model

