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1 Introduction

M-theory compactified on a Calabi-Yau (CY) fourfold X has h1,3(X) complex structure
moduli, which can be thought of as variations of the holomorphic top form Ω. In such
models, one can include four-form fluxes G4 as part of the background, which preserve the
Calabi-Yau metric up to warping [1]. Such fluxes give a potential to the complex structure
moduli at tree level, which can be expressed in the resulting three-dimensional N = 2
theory in terms of the Gukov-Vafa-Witten (GVW) superpotential [2]

WGVW =
∫
X
G4 ∧ Ω . (1.1)
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The minima of the induced scalar potential are solutions of the F-term equations DIW = 0,
I = 1, . . . , h1,3(X). They are supersymmetric Minkowski vacua if furthermore WGVW = 0.
This implies that the complex structure must be such that G4 ∈ H2,2(X). It is commonly
believed that a typical G4 flux fixes all of the complex structure moduli. The argument
for this is simple: there are as many constraints as there are complex structure moduli.
The implicit assumption which enters this argument is that each of the F-term equations
is linearly independent, which is expected to hold for a ‘generic’ choice of G4.

As a consequence of flux quantization [3], which says that G4 + c2(X)
2 ∈ H4(X,Z),

sensible choices of G4 form a lattice, which begs the questions what precisely is meant by
a ‘generic’ choice of flux in this context. Complicating matters even more, there is the
consistency condition commonly refereed to as M2-tadpole cancellation [1], which bounds
the length squared of possible flux choices from above. Although it is always possible
to find lattice vectors such that all F-term equations become linearly independent, this
might require to pick lattice sites which are far away from the origin and hence too long to
satisfy the bound imposed by the M2-tadpole.1 The relevant question is hence: ‘is there a
choice of flux such that all F-term equations are independent and the bound imposed by
M2-tadpole cancellation is satisfied ?’.

This is a difficult question to study in general, and it may well be that the tadpole
constraint has a strong selective power. This observation becomes particularly interesting
when the fourfold X is elliptically fibered and used as an F-theory background. In such
compactifications, the four-dimensional gauge sector is engineered by appropriate singu-
larities of X, and (part of) the complex structure moduli space of X corresponds e.g. to
adjoint Higgs fields. Complex structure moduli that do not receive a potential from (1.1)
hence give rise to flat directions in the gauge sector, and the inability to stabilize all com-
plex structure moduli corresponds to such flat directions inevitably being present.2 On the
other hand, loci of enhanced gauge symmetry are typically at very high codimension in
the moduli space [5–7] and it would be a fascinating scenario if the consistency conditions
only allowed fluxes that would select such loci for us [5, 8].

The difficulty in working through explicit examples to shed light on the issues sketched
above is mainly a technical one. Among the (known) Calabi-Yau fourfolds, a typical number
of complex structure moduli is of the order of 1000s. Evaluating (1.1) then requires to solve
Picard-Fuchs equations of a ridiculously high degree. Furthermore, it is in general highly
non-trivial to identify which elements of H4(X) are integral, so that they can be used to
define an appropriately quantized flux. One method to find such a basis is given by mirror
symmetry [9].

The main motivation of the present work is to further explore an alternative approach.
The crucial idea underlying this approach is as follows: at supersymmetric Minkowski
vacua, the properly quantized flux must be an element of H2,2(X)∩H4(X,Z) up to a shift
1
2c2(X). The group H2,2(X) ∩ H4(X,Z) ≡ HHodge(X) of Hodge cycles is not constant

1There is also the possibility that the F-term equations have no solutions, as explained in [4] for M-theory
compactifications on K3×K3.

2Some of the open string moduli may sit in matter multiplets that must be massless at the classical level
to be consistent with some phenomenological requirements.
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throughout complex structure moduli space, but may be enhanced at specific loci, called
Hodge loci. This is analogous to the enhancement of the Picard lattice of K3 surfaces at
Noether-Lefschetz loci. If we identify such a locus and switch on a flux which is proportional
to one of the Hodge cycles appearing there, the model cannot be deformed away from this
locus, as the flux is only of type (2, 2) on the Hodge locus, so that the associated F-term
equations are necessarily violated away from it. Instead of picking a flux in H4(X) and
asking where it drives the model, the strategy we want to use is to identify loci in the
moduli space where supersymmetric fluxes are possible, and then ask if we can find a flux
that traps it there. See [10, 11] for a beautiful exposition of this idea.

For K3 surfaces, the Torelli theorem implies that demanding for a single lattice vector
in H2(K3,Z) to be in H1,1(K3) fixes one complex structure modulus. This is not true
for fourfolds, where the number of complex structure moduli we need to tune for a single
element η in H4(X,Z) to be in H2,2(X) depends on both X and η. Fixing all complex
structure moduli then corresponds to finding a so-called ‘general’ Hodge cycles for which
the associated Hodge locus is just a point in the complex structure moduli space of X. If
such a cycle furthermore satisfies the M2-tadpole constraint (after adding the piece c2(X)

2 ),
there is a G4-flux that stabilizes all complex structure moduli.

In order to identify Hodge cycles and their Hodge loci, we will make use of algebraic
cycles of complex dimension two. These are Poincaré dual to forms of Hodge type (2, 2) and
it is not hard to find instances which only appear at special loci in the moduli space. Such
an approach was followed in [12], and we will extend this work in several aspects. In [12],
the number of stabilized moduli was simply counted by working out how many polynomial
deformations are frozen by the existence of a given algebraic cycle. As this tacitly assumes
the validity of a version of the Hodge conjecture, such a method is insufficient for a reliably
counting. This point which was adressed in [12] by using the relationship of complex
structure moduli of F-Theory compactifications to open string moduli in IIB orientifolds,
a way of reasoning that is not available for general M-Theory backgrounds on Calabi-Yau
fourfolds. Furthermore, one may consider fluxes which are Poincaré dual to some linear
combination of algebraic cycles. In this instance, studying polynomial deformations is
simply not powerful enough to detect all flat directions.

Working with the sextic fourfold X6 at the Fermat point as a simple example, we show
how to address both of these issues by directly evaluating the rank of the matrix

GIJ ≡
∫
X
G4 ∧DIDJΩ , (1.2)

which counts the number of fixed complex structure moduli. The crucial ingredient needed
to evaluate these integrals are the periods of variations of Ω over algebraic cycles, which
have been computed for the sextic fourfold at the Fermat point in [13, 14]. For the simplest
class of algebraic cycle we show how to recover the periods (up to overall normalization) by
exploiting the automorphism group of X6, and construct fluxes that stabilize all complex
structure moduli. These fluxes, however, significantly overshoot the tadpole constraint
originating from the cancellation of M2-brane charge. Although a computation that con-
firms this in some form of generality is computationally too demanding to be within the
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scope of the present work, we take this as evidence for the tension between the M2 tadpole
cancellation constraint and the desire to stabilize all complex structure moduli.

As a further application we consider the interplay between fluxes and symmetries.
In [15, 16] it was suggested to use fluxes respecting some symmetries of the complex struc-
ture moduli space, in order to stabilize all moduli. The trick is that one needs to solve
only the F-term equations of the invariant moduli, as the (many) F-terms of non-invariant
complex structure deformations automatically vanish at a symmetric point. However, the
argument does not take into account possible flat directions. In fact, we show that such
flat directions are typically present in such setups. We give an example for the Fermat
sextic fourfold. This shows that caution has to be taken in using the trick of turning on
symmetric fluxes to claim full complex structure moduli stabilization.

After reviewing some aspects of flux compactification in M-Theory on Calabi-Yau four-
folds in section 2, we discuss algebraic cycles at the Fermat point of the sextic fourfold in
section 3. In section 4, we describe the middle cohomology of X, the span of algebraic
cycles, and variations of the holomorphic top-form Ω using residues of holomorphic forms
with poles on P5. Some technical background on residues and rational forms are contained
in an appendix. After introducing expressions for periods of residue forms on algebraic
cycles, we apply these to several examples in section 5, and give some estimates that quan-
tify the tension between complete moduli stabilization and tadpole cancellation. Moduli
stabilization in the presence of fluxes respecting a symmetry is disussed in section 6. We
close with a discussion of open issues and future directions.

2 Fluxes and moduli stabilization

In this paper we consider M-theory compactified on a CY fourfold X. The resulting low
energy theory is a three dimensional (3d) N = 2 supergravity, i.e. a theory with four
supercharges. The metric deformations preserving the Calabi-Yau condition are called
metric moduli and become massless scalars in the 3d theory. For CY fourfolds X, the
metric moduli are encoded in the h1,1(X) periods of the Kähler form J and the h1,3(X)
independent deformations of the holomorphic (4, 0)-form Ω. These moduli are called Kähler
moduli and complex structure moduli, respectively. There are also h1,1(X) axionic moduli
that come from the dimensional reduction of the eleven-dimensional (11d) sugra six-form
C6 (the dual of C3), which complexify the Kähler moduli.

The dynamics of the moduli is determined by the Kähler potential

K = Kc.s. +KK , (2.1)

with

Kc.s. = − ln
(∫

X
Ω ∧ Ω̄

)
and KK = −3 ln

( 1
4!

∫
X
J ∧ J ∧ J ∧ J

)
. (2.2)

One can switch on a non-zero vev for the four-form flux G4 = dC3, that is quantized
according to

G4 + c2(X)
2 ∈ H4(X,Z) . (2.3)

where c2(X) is the second Chern class of the tangent bundle of X.
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A non zero flux along internal directions generates a potential for the metric moduli
after compactification [17]. This can be understood from the 11d C3 kinetic term

∫
G4∧∗G4,

which depends on the metric through the Hodge star operator ∗). The minima of the
supergravity scalar potential are given by the solutions of the following equations

DIW = 0 I = 1, . . . , h3,1

DkW̃ = 0 k = 1, . . . , h1,1

(2.4)

where
W =

∫
X
G4 ∧ Ω and W̃ =

∫
X
G4 ∧ J ∧ J . (2.5)

Here W is the GVW superpotential [2] and (DI , Dk) = (∂I + ∂IK, ∂k + ∂kK), with K the
Kähler potential (2.1). The index I runs over the complex structure moduli, and the index
k runs over the Kähler moduli.

These minima are at zero cosmological constant (i.e. they are Minkowski vacua). They
are furthermore supersymmetric if the vevs of W and W̃ vanish, i.e. W |min = 0 and
W̃ |min = 0. This condition together with (2.4) can be rephrased by saying that the four-
form flux must lie in H2,2

prim(X), i.e. G4 must be a primitive four-form of Hodge type (2, 2).
We now explain this. The same can be done in the dual type IIB compactification on CY
orientifolds [18], see also [19] for an overview over the classic literature on the subject.

We first explain why G4 is of Hodge type (2, 2):

• The condition W = 0 means ∫
X
G4 ∧ Ω = 0;

this implies that the (0, 4) component of G4 vanishes. Since G4 is real, also its (4, 0)
component is zero.

• The condition DIW = 0 means∫
X
G4 ∧DIΩ = 0 ∀I;

since the forms DIΩ give a basis of H3,1(X) [20, 21], the (1, 3) and (3, 1) components
of G4 vanish.

We then see that only the (2, 2) part of G4 survives.
As regarding the primitivity condition, expand first the Kähler form J in a basis of

harmonic (1, 1)-forms ωk: J = tkωk. tk are the h1,1(X) Kähler moduli. After imposing
W̃ = 0, the second condition in (2.4) becomes ∂kW̃ = 0, that means∫

X
G4 ∧ J ∧ ωk = 0 ∀k (2.6)

that implies G4 ∧ J = 0, i.e. G4 is a primitive form.

– 5 –



J
H
E
P
0
1
(
2
0
2
1
)
2
0
7

When the flux, as required, belongs to H2,2
prim(X), then it is also self-dual, i.e. ∗G4 = G4.

This, in particular, implies that the contribution of G4 to the M2-charge, i.e.

Qflux
M2 = 1

2

∫
X
G4 ∧G4 , (2.7)

is positive definite. In order to be possible to satisfy the M2-tadpole cancellation condition,

Qflux
M2 +NM2 = χ(X)

24 (2.8)

without introducing anti-branes, Qflux
M2 must be smaller than the contribution coming from

the geometry, i.e. Qflux
M2 ≤

χ(X)
24 .3

Let us now concentrate on the complex structure moduli. We choose a point in the
complex structure moduli space that satisfies DIW = 0 and W = 0. We take coordinates
sI such that this point is at s = (s0, s1, s2, . . .) = 0. The holomorphic (4, 0)-form at a
generic point is Ω(s) and W (s) =

∫
X G4 ∧ Ω(s). We then have

DIW (s)|s=0 = 0 . (2.9)

A flat direction of the potential is a curve s(t) in the moduli space passing through s = 0
at t = 0 that satisfies the minimum condition for all t in a neighborhood of t = 0, i.e.

DIW (s(t)) = 0 ∀t . (2.10)

Expanding around t = 0 and keeping the leading term at small t, one finds the infinitesimal
expression for (2.10), i.e.

ṡJ(0)∂JDIW (0) = 0 . (2.11)

Notice that ∂JDIW (0) = DJDIW (0), since the two expressions differ by (∂JK)DIW (0)
which vanishes because of (2.9).4 The vectors ṡJ(0) solving (2.11) give the flat directions.

We hence conclude that in order to have no flat directions at s = 0, a sufficient
condition is that the matrix

GIJ := DJDIW (s)|s=0 (2.12)

has maximal rank. In general, one may ask how many flat directions remain in the presence
of G4. This is called the dimension of the Hodge locus of G4 in the math literature,
see [22, 23] for a review. In the example that we treat in detail in this work, the Fermat locus
of the sextic fourfold, the rank of GIJ equals the (complex) codimension of the Hodge locus.5

The Poincaré dual of an algebraic four-cycle is a four-form of type (2, 2). When the
fourfold is at a specific point in the complex structure moduli space, one may be able to

3Introducing anti-M2 branes may introduce a bad instability related to the explicit breaking of super-
symmetry in the four-dimensional effective theory.

4In general DIW is not holomorphic, as there is the term (∂IK)W with ∂IK non-holomorphic in the
complex structure moduli chiral superfields. Hence one may expect in (2.11) a term involving ∂̄JDIW .
However the extra term is (∂I∂J̄K)W , which vanishes at s = 0 because of the W = 0 condition.

5Note that strictly speaking, we are only analysing this problem for linear deformations of the F-terms,
and there might be terms of higher order in s. This doesn’t happen for the sextic fourfold at the Fermat
point [23].
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construct explicit algebraic cycles, as we will do for the sextic fourfold. One can then use
them to define a choice of properly quantized flux that is a primitive (2, 2)-form at that
specific point. The question we want to address here, is how many moduli are stabilized
once such a flux is introduced: any deformation that originates in a G4 flux not purely of
type (2, 2) is lifted by the flux potential.

Let us come back to the GVW superpotential that generates the minima condition
for the complex structure moduli. The part of the flux G4 that contributes to the super-
potential, the F-term conditions and the stability condition is the one that has non-zero
intersection with Ω(s) and its derivatives. Here by ‘intersection’ we mean the product given
by the inner form a1 ·a2 ≡

∫
X a1∧a2. The holomorphic four-form and its derivatives do not

span the full middle cohomology H4(X), but only the primary horizontal subspace [20, 21].
In contrast, forms of Hodge type (2, 2) defined by intersections of divisors lie in the primary
vertical subspace, which is perpendicular to the primary horizontal subspace.6 To study
stabilization of complex structure moduli we hence need to consider G4 fluxes that lie in
the horizontal subspace of H4(X) (apart from the piece 1

2c2(X) that is forced on us by
quantization). The algebraic cycles we consider here are exactly of this type [12].

3 Fermat sextic fourfold and algebraic cycles

The manifold of interest to us in this paper is the sextic fourfold. A sextic fourfold at a
generic point in its moduli space is defined by the vanishing of a homogeneous polynomial
of degree 6 in P5:

X6 : x6
0 + x6

1 + x6
2 + x6

3 + x6
4 + x6

5 +
∑

a
ca
∏

xaii = 0 (3.1)

where a = (a1, · · · , a5) are integers such that ∑ ai = 6 and the ca are complex coefficients
that can be thought of as deformations of the complex structure. The topological numbers
of X6 are

h1,1(X6) = 1 h2,1(X6) = 0 h3,1(X6) = 426 h2,2(X6) = 1752 . (3.2)

It follows that χ(X6) = 2610 and b4+(X6) = 1754, b4−(X6) = 852.
The single class in h1,1(X6) is generated by the restriction of the hyperplane class H

of P5, and any Kähler form on X6 is necessarily proportional to H. There is a unique
generator of the primary vertical subspace H2,2

V (X6) which is given by H · H ≡ H2 and
which is always proportional to the square of the Kähler form.

The orthogonal directions to H2 in H4(X6) are hence all primitive, i.e. h2,2
prim(X6) =

1751, and can be shown7 to all belong to the primary horizontal subspace H4
H(X6), which

has dimension 1751. The second Chern character of X6 is

c2(X6) = 15H2 . (3.3)
6In general, there can be directions in H2,2(X) which do not lie in either subspace [5].
7We will see this explicitly in section 4.4. This can also be shown by computing that the dimension of the

primary vertical subspace of the mirror, h2,2
V (X∨) = 1751 and using that primary vertical and horizontal

subspaces are swapped by the mirror map.
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The term 1
2c2(X6) is hence not integral, so that flux quantization forces us to include a

half-integral flux proportional to H2.
For a typical choice of the ca, the only algebraic cycles contained in X6 are complete

intersections of X6 with multiples of the hyperplane divisor in P5. On X6 the classes of these
are proportional to H2, so that the rank of H2,2(X6)∩H4(X6,Z)prim is zero. As H2 is never
primitive, there are furthermore no supersymmetric fluxes along this direction.8 If we tune
the ca to special values, the situation changes and the rank of H2,2(X6) ∩ H4(X6,Z)prim
becomes non-zero.

Let us hence make a specific choice and set all ca = 0, which puts us on the Fermat
point9 of the moduli space of the sextic. We will denote the sextic fourfold at the Fermat
point by:

X6 : x6
0 + x6

1 + x6
2 + x6

3 + x6
4 + x6

5 = 0 . (3.4)

As the above equation describes a smooth submanifold of P5, the topological numbers of
the Fermat sextic are the same as those of X6. Only the group H2,2(X6) ∩H4(X6)prim is
different from the case of a generic sextic fourfold: it has the maximal possible rank of 1751.

3.1 Algebraic cycles at the Fermat point

It is not hard to find the simplest type of algebraic cycle sitting inside X6. Take e.g.
x0 = αx1, x2 = βx3 and x4 = γx5 for α6 = β6 = γ6 = −1. In this case, these three
equations imply (3.4), so that they define a subvariety of complex codimension 3 inside P5,
which is complex codimension 2 in X6.

Using the large group of automorphisms of X6, we can immediately write down the
general form of such cycles as

C `
σ : xσ(0) = eiπ/6eiπ`0/3xσ(1) xσ(2) = eiπ/6eiπ`1/3xσ(3) xσ(4) = eiπ/6eiπ`2/3xσ(5)

(3.5)
Here the `i ∈ {0, 1, 2, 3, 4, 5} specify which sixth root of unity we are using and σ is a
permutation of {0, 1, 2, 3, 4, 5} which specifies which coordinates are paired to form C `

σ .
The existence of such algebraic cycles can also be inferred by writing the defining

equation of X6 (3.4) in the following ‘factorized’ form

5∏
`0=0

(
xσ(0) − eiπ/6eiπ`0/3xσ(1)

)
+

5∏
`1=0

(
xσ(2) − eiπ/6eiπ`1/3xσ(3)

)

+
5∏

`2=0

(
xσ(4) − eiπ/6eiπ`2/3xσ(5)

)
= 0 .

(3.6)

8A similar observation regarding hypersurfaces in P2 × P1 × P1 × P1 has been made in [24].
9This is also called the Gepner point (if one thinks in terms of the worldsheet CFT of strings propagating

on X6) or the Brieskorn-Pham point (if one things in terms of singularity theory).
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This gives a hint of how other instances of algebraic cycles can be found. Another factor-
ization of the defining equation for X6 is:

0 =
(
x3

0 + eiπkx3
1 + ix3

2

) (
x3

0 + eiπkx3
1 − ix3

2

)
+

2∏
m=0

(
x2

3 − 21/3eiπke
2πim

3 x0x1
)

+
6∏
`=0

(
x4 − eiπ/4eiπ`/2x5

)
(3.7)

up to permutation of the four coordinates and for k = 0, 1. One then realizes the existence
of the algebraic cycles

Ckjm`σ :

x3
σ(0) + eiπkx3

σ(1) + ieiπjx3
σ(2) = 0

x2
σ(3) − 21/3eiπke

2πim
3 xσ(0)xσ(1) = 0

xσ(4) − eiπ/6eiπ`/3xσ(5) = 0

(3.8)

for k, j ∈ Z/2Z, m ∈ Z/3Z and ` ∈ Z/6Z. Note that xσ(4) and xσ(5) are paired in a similar
way as before, whereas a more complicated factorization is used for the remaining four
coordinates. These cycles are a lift of the cycles that were used to construct the Néron-
Severi group of Fermat sextic surfaces in [25], where famously using only lines is no longer
sufficient [26].

An example of a completely non-linear factorization of (3.4) is given by

0 =
2∏
s=0

(
x2

0 + e
2πi
3 (k1+s)x2

1 + e
2πi
3 (k2+2s)x2

2

)
+

2∏
s=0

(
x2

3 + e
2πi
3 (k4+s)x2

4 + e
2πi
3 (k5+2s)x2

5

)

+ 3
1∏

n=0

(
i eiπne

iπ
3 (k1+k2)x0x1x2 + e

iπ
3 (k4+k5)x3x4x5

)
(3.9)

for some k1, k2, k4, k5 ∈ Z/3Z. We then find that the Fermat sextic fourfold contains the
algebraic cycles

Ck1k2k4k5n
σ :

x2
σ(0) + e

2πi
3 k1x2

σ(1) + e
2πi
3 k2x2

σ(2) = 0

x2
σ(3) + e

2πi
3 k4x2

σ(4) + e
2πi
3 k5x2

σ(5) = 0

i eiπne
iπ
3 (k1+k2)xσ(0)xσ(1)xσ(2) + e

iπ
3 (k4+k5)xσ(3)xσ(4)xσ(5) = 0

, (3.10)

with ki ∈ Z/3Z and n ∈ Z/2Z.
There are further algebraic cycles of the form f0 = f1 = f2 = 0 contained in X6 which

can be seen by constructing other factorizations of the form

X6 : f0P0 + f1P1 + f2P2 = 0 , (3.11)

see [27] and [23] for a more systematic treatment. Note also that all of the examples of alge-
braic cycles we have given are complete intersections inside the ambient P5, which points to
another direction of generalization: algebraic cycles which are not complete intersections.
Over Q, it is known, however, that all of H2,2

prim(X6) is generated by the above algebraic
cycles [25, 27, 28].
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3.2 Some properties of algebraic cycles

Having introduced some algebraic cycles on the Fermat sextic, let us study some of their
properties. We will limit our discussion mostly to the ‘linear’ algebraic cycles C `

σ .
As each of the C `

σ is given by three linear equations inside P5, each such cycle has the
topology of P2. To compute intersection numbers, we can use the following trick. Consider
a complete intersection of X6 with x0 − αx1 = 0 for α6 = −1 and x2 − βx3 = 0 for
α6 = β6 = −1. The resulting cycle on X6 is in the class H2 restricted to X6. Using (3.4),
however, we see that this cycle is reducible into a sum of six of the C `

σ . We may hence write

H2 =
5∑

`0=0
C `
σ (3.12)

for any choice of σ and every `1 and `2. As H2 ·H2 = 6 on X6 and H2 · C `
σ is the same

for every C `
σ by symmetry, it follows that

H2 · C `
σ = 1 . (3.13)

Using the observation that C `
σ ·C `′

σ = 0 if ` and `′ differ in all three components (together
with a similar rule when intersection algebraic cycles employing different permutations σ),
the above can be iterated to find that the intersection numbers follow the pattern

dim(C `
σ ∩ C `′

σ′ ) C `
σ · C `′

σ′

2 21
1 −4
0 1
∅ 0

. (3.14)

i.e. the dimension of the intersection of two algebraic cycles in P5 determines the intersec-
tion number between the associated homology classes.10 For any pair of permutations σ
and σ′, the intersection numbers can also be expressed in terms of relations on the `i and `′j .

Although one can work out the details using the same approach, such a simple pattern
is not obeyed by the other algebraic cycles introduced in the last section. Self-intersections
of any algebraic cycle Cf0,f1,f2 of complete intersection type given by f0 = f1 = f2 = 0 can
however be worked out using adjunction, and the result is [23]

Cf0,f1,f2 · Cf0,f1,f2 = d0d1d2(36− 6(d0 + d1 + d2) + d0d1 + d0d2 + d1d2) (3.15)

where di are the degrees of the polynomials fi.

10If two algebraic cycles do not intersect transversely, there is always a pair of homologous (typically
non-holomorphic) cycles that do intersect transversely.
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3.3 Algebraic cycles and their Hodge loci

Let us now try to see how many moduli we expect to be stabilized by demanding that any of
the cycles C `

σ remains of type (2, 2).11 We can work out the number of polynomial deforma-
tions which are obstructed by demanding that C `

σ is an algebraic cycle as follows. First one
observes that it does not matter which C `

σ we are talking about as they are all equivalent
modulo automorphisms of the Fermat sextic. For α6 = −1, let us hence consider the cycle

C : x0 − αx1 = 0 , x2 − αx3 = 0 , x4 − αx5 = 0 . (3.16)

We can introduce a new set of coordinates:

(y0, y1, y2, y3, y4, y5) = (x0−αx1, x0 +αx1, x2−αx3, x2 +αx3, x4−αx5, x4 +αx5) , (3.17)

in terms of which the Fermat sextic equation (3.4) becomes

y0y1(3y4
0 + 10y2

0y
2
1 + 3y4

1) +y2y3(3y4
2 + 10y2

2y
2
3 + 3y4

3) +y4y5(3y4
4 + 10y2

4y
2
5 + 3y4

5) = 0 (3.18)

Polynomial deformations are counted by counting monomials of degree 6 modulo the Jacobi
ideal.12 There are

(11
6
)

= 462 possible monomials of degree 6 in 6 variables. The Jacobi
ideal is generated by

(3y5
2κ+1+30y3

2κ+1y
2
2κ+15y2κ+1y

4
2κ, 3y5

2κ+30y3
2κy

2
2κ+1+15y2κy

4
2κ+1) with κ = 0, 1, 2. (3.19)

We can use the Jacobi ideal to eliminate all monomials proportional to y5
i , and there are

36 such monomials. Hence the number of complex structure moduli is 426, which equals
h3,1(X) as expected.

We now demand the cycle C`σ to persist as an algebraic cycle. This is the case only if
the deformed fourfold is of the form

y0P5(y0, . . . , y5) + y2Q5(y0, . . . , y5) + y4R5(y0, . . . , y5) = 0 (3.20)

where P,Q,R are homogeneous polynomial of degree 5. This means that we can use
only the monomials that have a factor of y0, y2 or y4 to deform the Fermat sextic. The
obstructed deformations are then monomials of degree 6 in the three coordinates y1, y3, y5.
This gives

(8
6
)

= 28 deformations. We have to subtract the 3 × 3 = 9 monomials that are
in the Jacobi ideal. We then obtain that 19 moduli are fixed by demanding that any of the
C`σ persists as an algebraic cycle.

Again, there is a general version of this method that can be applied to any cycle
Cf0,f1,f2 . The result only depends on the degrees of the polynomials fi and can be found
in [23].

11Straightforwardly using C `
σ as a flux is at odds with primitivity and flux quantization. To achieve a

primitive flux, we would need to choose G4 = C `
σ − 1

6H
2. This is at odds with flux quantization, which

requires G4 to be integral up to a piece 1
2H

2. One would hence need to consider G4 = 3C `
σ− 1

2H
2. Any piece

proportional to H2 does however not influence complex structure deformations, and the number of stabilized
moduli is the same for C`σ and 3C`σ, so that we prefer to simply ask about the ‘Hodge Locus’ of C `

σ here.
12This way of counting deformations is explained in some more detail in section 4. It gives the same

result as counting monomials modulo automorphism of P5, but is more convenient here.
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The main issue with this approach which requires us to work harder is that we are
interested in stabilizing all complex structure moduli, which forces us to consider linear
combinations of algebraic cycles. Demanding that a single cycle C `

σ be algebraic only fixes
some, but not all of the moduli. Similar results are obtained for other cycles Cf0,f1,f2 , so
that we are led to consider linear combinations of (the Poincaré duals of) algebraic cycles.
Merely counting polynomial deformations then becomes useless and we need a method to
evaluate (2.12) in order to treat such situations.

A further issue that deserves some discussion concerns the Hodge conjecture. While
the Hodge conjecture over Q has been proven for the Fermat sextic [27, 28] (see section 4
for more details), we do not know if it is true in general. This means for other points in the
moduli space of the sextic or for other fourfolds, the number of polynomial deformations
that are fixed by demanding a cycle stays algebraic may not equal the number of complex
structure deformations that are fixed by demanding that the dual integral (2, 2) form stays
of type (2, 2). Of course every algebraic cycle must be dual to an integral form of type
(2, 2), but it is not clear that every integral form of type (2, 2) can be represented by a
linear combination of algebraic cycles. In our context this implies that there might be extra
flat directions that cannot be detected from polynomial deformations. Again, being able
to evaluate (2.12) settles this issue.

4 Residues of rational forms and complex structure deformations

In this section we will use the techniques of rational forms to explicitly describe the middle
cohomology of X, some background on these techniques is given in appendix A. This is
then used to describe complex structure deformations and moduli stabilization for fluxes
defined by (sums of) algebraic cycles. Throughout this section, X is the Fermat sextic
fourfold (3.4).

4.1 Middle cohomology from residues of rational forms

As reviewed in appendix A, primitive forms of Hodge type (p, 4− p) on the Fermat sextic
are described as residues of rational forms

ϕ = P (x)
Q(x)5−pΩ0 , (4.1)

on P5. Here Q = 0 is the hypersurface equation defining the Fermat sextic fourfold X, Ω0 is
a fixed differential form on P5 that is completely antisymmetric in the homogeneous coordi-
nates xi, and P is a homogeneous polynomial of degree 6(4−p). The residue map is linear,
maps surjectively to the primitive forms in the middle cohomology of X, and becomes in-
jective when restricting to polynomials P which are not contained in the Jacobi ideal of Q.

Let us apply these statements to reproduce the Hodge numbers of the sextic. To work
out the dimensions of the rings we are going to consider, it is beneficial to know that there
are

#(degree l in m variables) =
(
l +m− 1

l

)
(4.2)

terms in a homogeneous polynomial of degree l in m variables.
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The existence of a unique (4, 0)-form up to scaling follows from the fact that for p = 4,
P is just a number. To find classes of (3, 1)-forms, we hence need to consider the case
p = 3, i.e. homogeneous polynomials of degree 6 modulo the Jacobi ideal of Q:

H3,1
prim(X) = C[x0, · · · , x5]6

〈∂iQ〉
= C[x0, · · · , x5]6
〈x5

0, · · · , x5
5〉

. (4.3)

The ring of homogeneous polynomials of degree 6 in 6 variables has dimension 462. At the
Fermat point, the Jacobi ideal is generated by the polynomials x5

i for all i, so that 6 ·6 = 36
generators of C[x0, · · · , x5]6 are contained in the Jacobi ideal of Q. We hence recover the
familiar number h3,1

prim(X) = h3,1(X) = 426. Finally, for H2,2
prim(X) we have p = 2, so that

we need to count polynomials of degree 12 modulo the Jacobi ideal:

H2,2
prim(X) = C[x0, · · · , x5]12

〈x5
0, · · · , x5

5〉
. (4.4)

We can work this out by noting that for each variable, the number of terms in
C[x0, · · · , x5]12 which are in the ideal x5

i is given by a homogeneous polynomial of de-
gree 7. Using this we need to take into account that for each pair of variables xi and xj
there are terms x5

ix
5
jP2(x) for a polynomial P2(x) of degree 2, which are in both the ideal

generated by x5
i and x5

j . Hence∣∣∣∣C[x0, · · · , x5]12
〈x5

0, · · · , x5
5〉

∣∣∣∣ =
(

17
12

)
− 6 ·

(
12
7

)
+ 15 ·

(
7
2

)
= 1751 = h2,2

prim(X) . (4.5)

4.2 Group actions and residues

The content of the last subsection can be rephrased by considering the natural group action
of G = µ6/µ for µ = Z/6Z by coordinatewise multiplication:

(x0, · · · , x5)→ (ζ0x0, · · · , ζ5x5) (4.6)

for ζ6
i = 1 an 6-th root of unity. The quotient arises because elements of µ6 for which all

ζi are equal are inside the C∗ acting on the homogeneous coordinates of P5.13

Let us consider the character group A of G, which is the group of representations by
complex valued functions of G:

A = {a = (a0, · · · , a5) | ai ∈ Z/6Z and
∑
i

ai = 0 mod 6} . (4.7)

The elements of A are functionals on G that associate to an element g ∈ G the phase

a(g) =
∏
i

ζaii . (4.8)

Note that the condition ∑
i ai = 0 mod 6 guarantees that the unit element of G (i.e.

ζ0 = . . . = ζ5) is mapped to 1, i.e. that this is indeed a group homomorphism.
13Note that this group is larger than the group µ4 which is used in the Green-Plesser mirror construction:

as we do not have a term proportional to
∏
i
xi there is no need to impose

∏
i
ζi = 1.
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The action of G on X induces an action on the middle cohomology H4(X,C). One
can use the character group A to describe such an action. G is an abelian group, so its
elements can be diagonalized simultaneously. The elements a play the role of ‘eigenvalues’.
We may define ‘eigencycles’ relative to a ∈ A to be those classes η for which

g∗η = a(g)η ∀g ∈ G . (4.9)

For a given a, we denote the span of the cycles which satisfy the above relation by V (a).
The spaces V (a) have the nice property that any pair V (a) and V (a′) is orthogonal

except when a = −a′. To see this, take ηa in V (a) and ηa′ in V (a′). The inner form (given
by the integral of their wedge product) then transforms as∫

X
ηa ∧ ηa′ →

∫
X
ηa ∧ ηa′

∏
i

ζ
ai+a′

i
i ∀g ∈ G . (4.10)

However, as the inner form is merely a number which hence must be invariant under the
action of G, it follows that a = −a′ is a necessary condition for the integral to be non-zero.

To see the relation between the forms realized as residues and the eigenspaces under
the character group, let us use a monomial basis for the polynomials P in (4.1). For b =
(b1, · · · , b5), there is an associated monomial µb = xb00 · · ·x

b5
5 with∑i bi = degP = 6(4−p).

To such a monomial, we can associate a differential form

ϕa = µb
Q(x)5−p Ω0 . (4.11)

where a = (1, 1, 1, 1, 1, 1) + b. Under the group action (4.6), ϕa has the simple transfor-
mation behavior

ϕa → a(g)ϕa (4.12)

which follows from the fact that the Fermat polynomial Q of degree n is invariant and Ω0
transforms as

Ω0 →
(∏

i

ζi

)
Ω0 . (4.13)

As degP = k · deg Q− 6 = 6k − 6, we hence have that

|a| ≡ 1
6
∑
i

ai = 1
6 (6 + deg P ) = k = 5− p . (4.14)

As long as bi < 5, we can furthermore associate µb with a generator of
C[x0, · · · , x5]|b|/〈∂iQ〉. When this is satisfied we have ai < 6, so that we conclude that

ϕa ∈ Hp,4−p(X) . (4.15)

This recovers the following result of [28–31], which can be phrased in the present
context as follows: let A∗ be the subset of the character group for which all of the ai 6= 0.
Then (Theorem 1 of [28]):

a) dimCV (a) = 1 if and only if a ∈ A∗; dimCV (a) = 0 otherwise.
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b) The Hodge type of V (a) is given by

(p, q) = (5− |a|, |a| − 1) (4.16)

and the canonical representative with 1 ≤ ai ≤ 5 should be chosen for each ai in the
above formula. Note that |a| is always an integer as ∑ ai = 0 modulo 6. Together
with a), the above implies that for ηa ∈ V (a), η̄a is proportional to η−a .

It is not hard to use this description to simply enumerate primitive forms by counting
appropriate tuples a, one finds

|a| # elements in A∗

1 1
2 426
3 1751
4 426
5 1

(4.17)

4.3 Eigencycles and algebraic cycles

Elements of V (a) can not only be realized in terms of ϕa but also by forming appropriate
linear combinations of algebraic cycles, which links the two descriptions of elements of
H2,2(X). Furthermore, this allows us to work out the span of the algebraic cycles. Finally,
finding representatives for all V (a) with |a| = 3 in terms of algebraic cycles proves the
Hodge conjecture (over Q) for the Fermat sextic, see [25, 27, 28, 31] for more details and
generalizations to other Fermat varieties.

The description of forms ηa ∈ V (a) in terms of algebraic cycles works by putting
restrictions on the tuples a ∈ A∗. We call an element a ∈ A∗ n-decomposable if the
elements of a can be decomposed into pairs such that maximally n of them satisfy

ai + aj = 0 (4.18)

modulo 6. For the Fermat sextic, a ∈ A∗ with |a| = 3, so that it corresponds to a (2, 2)-
form, can be 3-decomposable, 1-decomposable, or indecomposable.14 Using a computer
makes it easy to enumerate them, the resulting numbers and their general forms (up to
permutations and taking the inverse) are given below

type number standard form
3− decomposable 1001 (r, 6− r, s, 6− s, t, 6− t)
1− decomposable 720 (t, 6− t, 1, 3, 4, 4)
indecomposable 30 (1, 1, 4, 4, 4, 4)

(4.19)

As they should, these sum up to the total 1751 primitive classes in H2,2(X).
14As

∑
ai = 0 mod 6, 2-decomposable implies 3-decomposable.
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Let us consider 3-decomposable elements of A∗. We can write a general 3-decomposable
a as

aσ(0) + aσ(1) = 0 aσ(2) + aσ(3) = 0 aσ(4) + aσ(5) = 0 , (4.20)

for some permutation σ. The corresponding element of V (a) is

ηa =
∑
`0`1`2

e−
iπ
3 (aσ(1)`0+aσ(3)`1+aσ(5)`2)C `

σ , (4.21)

where C `
σ are the linear algebraic cycles defined in (3.5). Using the transformation behavior

of the C `
σ it is not hard to see that it is crucial for the defining relation (4.9) of eigencycles

to hold that we are only talking about 3-decomposable a here.
This result can be immediately used to constrain the possible intersections between

the C `
σ and the residues of the forms ϕa, and we shall see how these are in fact fixed up

to normalization later. A second application concerns the linear relations between the C `
σ .

We have already seen that they obey the ‘sum rule’ (3.12) using elementary methods. This
is insufficient to work out the dimensionality of span of all of the C `

σ , however. The above
proves that its dimension is 1001 and shows how further linear relations arise: whenever a
is 3-decomposable in more than one way, we can write down ηa in two independent ways
in terms of the C `

σ using different permutations. As V (a) is complex one-dimensional, this
implies that the two expressions must be proportional.

Following the formulae in [27], it is possible to write down similar expressions for eigen-
cycles for 1- or in-decomposable a using the non-linear algebraic cycles (3.8) and (3.10).

4.4 Complex structure moduli

Having explained how to capture the middle cohomology in terms of residues and sketched
the relationship to algebraic cycles, let us now discuss complex structure deformations
in this language. We focus again on the Fermat sextic hypersurface in P5 and consider
deforming away from the Fermat locus. We may parametrize a general deformation as

Q(x; s) =
∑
i

x6
i +

∑
bI

sI µbI (4.22)

for complex parameters sI and monomials

µbI = x
(bI)0
0 · · ·x(bI)5

5 (4.23)

which are such that |bI | = 1 and (bI)i < 5.
This corresponds to complex structure deformations, which may be represented by

deformations of the holomorpic top-form Ω, which in turn can be written as a residue

Ω(s) = Res
[ Ω0
Q(x; s)

]
= Res [ϕ1] (4.24)

throughout the moduli space. Setting s = 0 in the above, we recover the holomorphic
top-form at the Fermat locus.
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The variation of Hodge structure is described by choosing a topological basis γk of
H4(X) and studying the variation of the integrals∫

γk

ϕ =
∫
γk

Res
[

P

Q(x; s)5−pΩ0

]
. (4.25)

as we vary Q. This defines the Hodge bundle and we may locally choose a trivialization
by identifying the topological cycles γk in nearby sextics. There is a flat connection ∇I on
this bundle, called the Gauss-Manin connection, which acts on residues as

∇Iϕ = Res
[
∂I

P

Q(x; s)5−pΩ0

]
. (4.26)

The flatness of this connection simply follows from the commutativity of the differential
operators.

An infinitesimal deformation of

Ω = Res [ϕ1] = Res
[ 1
Q(x; s)Ω0

]
(4.27)

at the Fermat point can hence be written as

ϕ = ϕ1|s=0 +
∑
I

sI ∂sIϕ1|s=0 . (4.28)

Note that
∂Iϕ1|s=0 = − µbI

Q(x; 0)2 Ω0 = −ϕaI , (4.29)

which gives a (3, 1)-form upon taking the residue at the Fermat point as we have restricted
to bi < 5 in (4.22). We hence recover that deformations of the complex structure are given
by (3, 1)-forms.

One could also include terms in the sum in (4.22) for which µbI is in the Jacobi ideal
of Q. Deforming by such terms again adds a term to Ω which is given by the residue of
a rational form, but now the pole order of this rational form can be reduced to 1 (see
appendix A). This implies that the residue does not produce a (3, 1) form, but a (4, 0)
form. Such deformations would hence only rescale Ω.

In physics, one is usually interested in the covariant derivative DI = ∇I + ∂IK, which
by definition maps

D : Hp,4−p → Hp−1,4−p+1 . (4.30)

When working at the Fermat point and acting on H4,0, we have just seen that we must
have ∂IK = 0|s=0 as ∇I alone already has the property of mapping purely to H3,1 when
using the basis of monomials bI with (bI)i < 5 to define local coordinates on the complex
structure moduli space.15 In the monomial basis we have chosen, the action of covariant
derivatives is hence particularly simple.

15Note that this does not imply that ∂IK = 0 holds for any choice of coordinates on complex structure
moduli space, as such coordinate changes can give Kähler transformation that map K(s, s̄) → K(s, s̄) +
f(s) + f̄(s̄) for a holomorphic function f(s).
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This structure becomes slightly more complicated when considering second derivatives
of Ω

∂I∂Jϕ1(s)|s=0 = 2 µbI+bJ
Q3 Ω0

∣∣∣∣
s=0

= 2 ϕ1+bI+bJ |s=0 . (4.31)

As long as all components of bI + bJ are smaller than 5, this form is of pure type (2, 2).
Whenever this is not the case, however, µbI+bJ is in the Jacobi ideal of Q and we may
reduce the pole order leading to a form of degree (3, 1). To define a covariant derivative
acting on (3, 1)-forms, we need to subtract the (3, 1)-pieces of the derivatives. This means
we need to set the derivative to zero whenever it produces a form for which µbI+bJ is in
the Jacobi ideal of Q.

In summary, the covariant derivative acts on forms as

DI : Res [ϕa]→ Res [ϕa+bI ] (4.32)

as long as (a + bI)i < 6 for all i and it sends them to zero otherwise.
We need to evaluate the rank of the matrix (2.12) in order to find the (co)-dimension

of the Hodge locus and hence the number of stabilized moduli. From the above it follows
that it can be simply written as

GIJ = DIDJ

∫
X
G4 ∧ Ω = 2

∫
X
G4 ∧ Res

[
µbI+bJ
Q3 Ω0

]
(4.33)

evaluated at the Fermat point. Note that we might as well have written partial derivatives
as the integral automatically picks out the (2, 2) piece of the derivatives acting on Ω. In a
similar vein, any term for which one of the (bI + bJ)i ≥ 5 vanishes. See [22, 23, 32–34] for
an in-depth discussion of the above result.

4.5 Period integrals

In order to evaluate the integral in (4.33), we need to know the period integrals of algebraic
cycles, i.e. for an algebraic cycle C, we need to know∫

C
Res

[
µbI+bJ
Q3 Ω0

]
. (4.34)

The periods of forms such as (4.31) over the linear algebraic cycles C `
σ have been

computed in [13, 14] using results of [32]. The upshot is that for |b| = 2, we have that

1
(2πi)2

∫
C `
σ

µb
Q3 Ω0 =


sgn(σ)
632! e

iπ
6

(∑2
e=0(bσ(2e)+1)(2`e+1)

)
if bσ(2e−2) + bσ(2e−1) = 4

0 otherwise.
(4.35)

Up to the overall normalization, this can also be derived by using the automorphism group
(Z/6Z)6/(Z/6Z) o S6 of the sextic. One must have that

σ ◦ g
(∫

C `
σ

µb
Q3 Ω0

)
=
∫
C `
σ

µb
Q3 Ω0 g ∈ (Z/6Z)6/(Z/6Z) , σ ∈ S6 , (4.36)
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with σ ◦ g
(∫
C `
σ

µb
Q3 Ω0

)
≡
∫
(C `

σ)′
µ′

b
Q3 Ω′0, where the prime quantities are the ones transformed

by g and σ.
Let us first consider permutations. After acting with any permutation σ, we may

simply relabel the coordinates xi in the r.h.s. of (4.36) to undo the permutation again. This
produces the same expression we started from, except for Ω0, which produces a sign sgn(σ)
as it is completely antisymmetric in the xi. This explains the corresponding factor in (4.35).

Now consider the action by g ∈ G = (Z/6Z)6/(Z/6Z). This will both act on the
differential form under the integral, as well as the cycle C `

σ . We can write

g

(∫
C `
σ

µb
Q3 Ω0

)
=
∫
(C `

σ)′

µ′b
Q3 Ω0 = a(g)

∫
C `′
σ

µb
Q3 Ω0 (4.37)

for some `′, where a is the element of the character group associated with a = b +
(1, 1, 1, 1, 1, 1). To check if this makes (4.36) consistent with (4.35), it is enough to con-
sider one of the generators of G, all other cases can be found by analogous computations
or repeated application of this action. As we have already understood the action of per-
mutations, let us furthermore choose σ as the trivial permutation σ = id and investigate
integrals over the cycles C δ

id. Consider the map ζ0 : x0 → eiπ/3x0, which generates one of
the (Z/6Z) ⊂ G. ζ0 maps C `

σ to C `′
σ where δ′0 = δ0 − 1. We can hence write

a(ζ0)
∫
C δ′

id

µb
Q3 Ω0 = e

iπ
3 a0

∫
C δ′

id

µb
Q3 Ω0

= e
iπ
3 (b0+1) 1

632!e
iπ
6 [(b0+1)(2`′0+1)+(b2+1)(2`′1+1)+(b4+1)(2`′2+1)]

= e
iπ
3 (b0+1) 1

632!e
iπ
6 [(b0+1)(2`0−1)+(b2+1)(2`1+1)+(b4+1)(2`2+1)]

= 1
632!e

iπ
6 [(b0+1)(2`0+1)+(b2+1)(2`1+1)+(b4+1)(2`2+1)]

=
∫
C δ

id

µb
Q3 Ω0 (4.38)

that is exactly what (4.36) says.
We then need to know the integral of ϕa on a single cycle C`σ to compute the integrals

of ϕa over all the cycles C`′
σ in the same orbit. One simply uses∫

C`′σ

ϕa = a(g)−1
∫
C`σ

ϕa . (4.39)

that is derived by (4.36). This shows that in fact all relative coefficients of (4.35) are fixed
by G o S6, as it acts transitively on the C `

σ . It is not true, however, that G o S6 acts
transitively on a basis of algebraic cycles for H2,2(X) ∩ H4(X,Q). If we want to study
periods of such a basis up to a global normalization, we hence need more than the relative
factors between periods of the C `

σ .
Note that the condition bσ(2e−2) + bσ(2e−1) = 4 for all e ∈ {0, 1, 2} implies that the

intersections of C `
σ with the eigenspace V (a) is non-zero only if a is 3-decomposable. This

is not unexpected, as we have seen, V (a) for a 3-decomposable can be constructed from
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the C `
σ , whereas eigenspaces for a 1-decomposable or indecomposable are constructed from

other algebraic cycles. The vanishing statement hence strengthens the observation that
V (a) and V (a′) are orthogonal except a′ = ā. This can also be seen directly as follows.
Let us consider the case where σ is the trivial permutation. The action of ζk0 ζk1 on C`σ is
trivial in this case. It follows that∫

C `
σ

µb
Q3 Ω0 = ζk0 ζ

k
1

∫
C `
σ

µb
Q3 Ω0 = e

iπ
3 ·k(b0+b1+2)

∫
C `
σ

µb
Q3 Ω0 (4.40)

so that the integral can only be non-zero when a0 + a1 = 0 mod 6. We can make the
same argument for the other two pairs x2, x3 and x4, x5. The same argument applies
(with different pairings) for other permutations, and implies that a = b + 1 must be
3-decomposable for the integral to be non-zero.

The above can be generalized to arbitrary algebraic cycles of complete intersection
type [14], i.e. cycles of the type f0 = f1 = f2 = 0 inside a hypersurface (3.11). The result is

1
(2πi)2

∫
Z

µb
Q3 Ω0 = c · 56

2 , (4.41)

where c is the unique number which satisfies

µb det(∂iHj) = c det (Hess(Q)) mod 〈∂iQ〉 , (4.42)

the vector H is given by H = (f0, P0, f1, P1, f2, P2) and Hess denotes the Hessian matrix.
For the linear cycles C`σ, this reproduces the normalization of (4.35) from the general
formula (4.41).

5 Algebraic fluxes and stabilization of complex structure moduli

With the tools we have collected in the previous section, we are now ready to directly
address how algebraic cycles can be used as fluxes and how many moduli they stabilize.
All one needs to do after defining a flux which is appropriately quantized and primitive, is
to evaluate the period integrals (4.34) needed to compute the rank of the 426× 426 matrix
GIJ (4.33).

5.1 One linear algebraic cycle

As a first example, let us revisit the case of using a single linear algebraic cycle C `
σ (3.5)

as a G4 flux.16 Using the period integrals (4.35) we find

rkGIJ
(
C `
σ

)
= 19 , (5.1)

which is precisely the same number we obtained by analyzing obstructed polynomial de-
formations.

In fact, this is the lowest possible value GIJ can have for any algebraic cycle. This is
not surprising as linear algebraic cycles are the simplest type that can exist for the Fermat
sextic (see Proposition 7 ‘Olympiad problem’ of [34]).

16The same issues as discussed in footnote 11 apply.
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5.2 A sum of two linear algebraic cycles

With the material we have collected, it is straightforward to work out what happens when
we add two different linear algebraic cycles C `

σ +C `′

σ′ . A direct computation (in combination
with the automorphism group) shows that the rank of GIJ only depends on the mutual
intersection between the two, and we can make the following table

C `
σ · C `′

σ′ rk GIJ
(
C `
σ + C `′

σ′

)
21 19
−4 32
1 38
0 38

. (5.2)

The first row corresponds to the case C `
σ = C `′

σ′ . As the number of flat directions for a
linear combination of two cycles is at least equal to the number of flat directions common
to both of them, the rank of the matrix GIJ must be subadditive:

rk GIJ
(
C `
σ

)
+ rk GIJ

(
C `′

σ′

)
≥ rk GIJ

(
C `
σ + C `′

σ′

)
, (5.3)

which is indeed the case for the numbers we find.

5.3 Fluxes respecting group actions

The sextic moduli space has the symmetry group G = µ6/µ for µ = Z/6Z, that we discussed
in section 4.2. Consider the Greene-Plesser subgroup GPG = (Z/6Z)4 [35]. It is generated
by α6

i = 1 for i = 1, 2, 3, 4 with action

(x0, x1, x2, x3, x4, x5)→ ((α1α2α3α4)−1x0, α1x1, α2x2, α3x3, α4x4, x5) (5.4)

on the homogeneous coordinates of X6. Famously, only a single complex structure defor-
mation, corresponding to the monomial ∏i xi, i.e. b = (1, 1, 1, 1, 1, 1), is symmetric under
the action of this group, while all others are projected out. The obvious way to construct a
flux that is even under the action of GPG is to start with the orbit of any of the linear cycles
C `
σ under GPG. It turns out that this is not the minimal choice and one can repeatedly

use the sum rule (3.12) to show that∑
g∈GGP

g(C `
σ ) = 4Ceee (5.5)

where
Ceee =

∑
`0,`1,`2∈(0,2,4)

C `
σ . (5.6)

Using (3.12) and the intersection numbers (3.14) one can also show directly that Ceee is
even under GPG and that Ceee · Ceee = 35. As there are 33 terms in the sum, we have
Ceee ·H2 = 27. A symmetric flux that is primitive and properly quantized is

Gsym4 = Ceee − 9/2H2 , (5.7)

and the induced tadpole is hence 243/4, which is well within the allowed range.
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Directly evaluating GIJ(Ceee) using (4.35) we find that indeed

rk GIJ (Gsym4 ) = 141 . (5.8)

In particular, there is a single entry that obstructs the unique deformation that is symmetric
under GPG. Hence the symmetric flux fixes the invariant modulus; this corresponds to
solving DsiW = 0 explicitly (see at the end of section 2 for notation) and finding that
the solution sits at the Fermat point. Our computation goes further: it is true that the
Fermat point (that belongs to the fixed point set of GPG) is a solution of Dsni

a
W = 0 (with

a = 1, . . . , 425), but only 140 out of the 425 non-symmetric deformations under GPG are
fixed by Gsym4 , the other 285 ones are flat directions.

Finally, one may wonder about using a flux that is symmetric under the entire au-
tomorphism group (Z/6Z)6/(Z/6Z) o S6 of the sextic at the Fermat point. As all of the
forms ϕa with |a| = 3 have non-trivial transformations already under the scaling part, it
follows that the matrix GIJ can only contain zeros in such a case. The same can be seen
by noting that (Z/6Z)6/(Z/6Z)oS6 acts transitively on the C `

σ . Using the sum rule (3.12)
one can argue that summing over an orbit results in a cycle proportional to H2 (the only
invariant cycle), so that GIJ vanishes for all I, J . This implies that there are no invariant
fluxes that are primitive for this group.

5.4 Stabilizing all moduli using linear algebraic cycles

Let us now see if we can find a flux stabilizing all moduli employing only linear algebraic
cycles. From the subadditivity (5.3), it follows that we need to consider a linear combination
of at least 23 of the C `

σ . As we have seen in sections 4.2 and 4.3, only a subspace of
dimension 1001 within H2,2

prim(X) is spanned by the linear algebraic cycles, and this subspace
precisely corresponds to 3-decomposable tuples a. By a simple scan over all possibilities,
one can find that for every bI with |bI | = 1, there is a bJ with |bJ | = 1 such that

aIJ = (1, 1, 1, 1, 1, 1) + bI + bJ (5.9)

is 3-decomposable. In other words, linear cycles in principle allow us to constrain all
complex structure deformations.

Due to the large number of linear algebraic cycles, there are 63 · 15 = 3240 of them,
a simple scan is computationally much too expensive. Besides randomly sampling choices,
the following (semi-)systematic method can be used. It is an experimental fact that the
inequality (5.3) becomes an equality if we consider sums of linear algebraic cycles such that
all of them are mutually orthogonal, i.e.

rk GIJ
(∑
i∈I

C `i
σi

)
= |I| · 19 if C `i

σi · C
`j
σj = 0 (5.10)

for all i 6= j ∈ I. Correspondingly, the maximal size of a set with this property is 22, one
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possible choice being

Imax = { [[0, 0, 0] , [0, 1, 2, 3, 4, 5]] , [[0, 0, 0] , [0, 2, 1, 5, 3, 4]] , [[0, 0, 1] , [0, 3, 1, 2, 4, 5]] ,
[[0, 0, 1] , [0, 5, 1, 3, 2, 4]] , [[0, 1, 0] , [0, 4, 1, 2, 3, 5]] , [[1, 0, 1] , [0, 1, 2, 5, 3, 4]] ,
[[1, 0, 2] , [0, 3, 1, 4, 2, 5]] , [[1, 1, 1] , [0, 2, 1, 4, 3, 5]] , [[1, 1, 4] , [0, 4, 1, 3, 2, 5]] ,
[[1, 2, 2] , [0, 5, 1, 2, 3, 4]] , [[2, 0, 5] , [0, 1, 2, 4, 3, 5]] , [[2, 1, 4] , [0, 3, 1, 5, 2, 4]] ,
[[2, 2, 2] , [0, 2, 1, 4, 3, 5]] , [[2, 3, 1] , [0, 4, 1, 3, 2, 5]] , [[3, 2, 3] , [0, 1, 2, 4, 3, 5]] ,
[[3, 2, 5] , [0, 4, 1, 3, 2, 5]] , [[3, 3, 2] , [0, 5, 1, 4, 2, 3]] , [[3, 4, 3] , [0, 2, 1, 5, 3, 4]] ,
[[3, 5, 5] , [0, 3, 1, 2, 4, 5]] , [[4, 3, 4] , [0, 4, 1, 2, 3, 5]] , [[5, 3, 3] , [0, 4, 1, 5, 2, 3]] ,
[[5, 5, 4] , [0, 2, 1, 5, 3, 4]] }

, (5.11)

where each entry is of the form [`i, σi]. Consistent with (5.10), a sum of the associated
linear algebraic cycles gives a matrix GIJ of rank 418.

We can use this as a starting point to construct a flux stabilizing all moduli by adding
a further linear algebraic cycle. We are looking for a Ce such that for

C =
∑

i∈Imax

C `i
σi + Ce (5.12)

the flux
G4 = C + nH2 (5.13)

is primitive and appropriately quantized. Quantization requires n to be half-integer, n =
m/2 for m odd, and primitivity requires

3m = 22 + Ce ·H2 , (5.14)

so that we can choose Ce = −C `e
σe , which gives m = 7. The tadpole of such a configuration

is given by

ND3 = 1
2

 ∑
i∈Imax

C `i
σi − C

`e
σe −

7
2H

2

2

= 1
2


 ∑
i∈Imax

C `i
σi − C

`e
σe

2

− 672

4

 (5.15)

which is minimal if we choose C `e
σe ·
∑
i∈Imax C

`i
σi to be as large as possible. There is a unique

such C `e
σe which has C `e

σe ·
∑
i∈Imax C

`i
σi = 11, it is given by

[σe, `e] = [[2, 5, 3], [0, 2, 1, 4, 3, 5]] . (5.16)

Working out GIJ(C) = GIJ(G4) one finds that it has maximal rank, 426. The resulting
tadpole is computed to be

ND3 = 1
2G4 ∧G4 = 775

4 . (5.17)

Although such a flux would stabilize all complex structure moduli at the Fermat point, it
significantly overshoots the available tadpole

χ(X)/24 = 435/4 . (5.18)
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5.5 Tadpole issues

The result of the last section is at the same time encouraging and disappointing: while it
is not hard to find a primitive flux with proper quantization that stabilizes all moduli, it
generates a tadpole that is almost twice the maximal allowed value. Scanning over random
linear combinations of linear algebraic cycles gives many more examples with the same
properties. This result can already be anticipated from rough estimates.

Consider stabilizing all moduli by a combination of linear algebraic fluxes

C =
∑
i∈I

fiC
`i
σi (5.19)

and let ∑ fi = 3m for an odd integer m. We can then find a primitive properly quantized
flux by setting

G4 = C − m

2 H
2 . (5.20)

The induced tadpole is then
1
2G

2
4 = 1

2

(
C2 − 3

2m
2
)
. (5.21)

Ignoring the contribution17 from C `i
σi · C

`j
σj to C2, and assuming that all fi = 1, we can

write this as
1
2G

2
4 = 1

2

(
63m− 3

2m
2
)
. (5.22)

As every C `
σ stabilizes at most 19 moduli, we need to have 3m > 426/19. This roughly

reproduces (5.17) for the minimal choice of m.
The negative contribution in (5.22) points at a potential way out by letting m become

sufficiently large. As we have seen, there are at most 22 mutually orthogonal linear algebraic
cycles and we need to let 3m be significantly larger to bring the tadpole down sufficiently.
It turns out that ignoring mutual intersections between the terms in C become increasingly
unjustified, so that the tadpole contribution of such fluxes is again far too large to give a
viable model.

Until now, we have completely ignored non-linear algebraic cycles. Performing a similar
rough estimate gives a comparable result to what we have found for the linear algebraic
cycles. There, the crucial ratio was that of the number of moduli that could be fixed with
a single linear algebraic cycle 19, to the square of such a cycle, 21. These ratios can also
be computed for non-linear algebraic cycles, the result is that for a complete intersection
algebraic cycle Cf0f1f2 given by f0 = f1 = f2 = 0 for homogeneous polynomials with

17Mutual intersections between the C `
σ can be negative, so one may hope that this helps in lowering

the tadpole contribution. However, the savings in the tadpole are counter-weighted by the decrease in
stabilized moduli for linear combinations of cycles with negative intersections, see table 5.2. Nonetheless,
we have made some scans trying to exploit mutual negative intersections, with the result that the decrease
in stabilized moduli becomes even more significant the more cycles are added.
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degrees di [36]
(d0, d1, d2) C2

f0f1f2
rk GIJ (Cf0f1f2)

(1, 1, 1) 21 19
(1, 1, 2) 34 32
(1, 1, 3) 39 37
(1, 2, 2) 56 54
(1, 2, 3) 66 62
(1, 3, 3) 81 71
(2, 2, 2) 96 92
(2, 2, 3) 120 106
(2, 3, 3) 162 122
(3, 3, 3) 243 141

. (5.23)

As the ratio of these two numbes stays roughly the same, we can anticipate to find similar
results using non-linear algebraic cycles. As the maximal allowed tadpole of the flux is
χ(X)/24 = 435/4 = 1

2C
2, but we need to stabilize 426 moduli, the ratio between C2 and

rk GIJ(C) should be roughly 1
2 rather than the ratio of ∼ 1 (and larger) observed above.

The above results do not imply that there cannot be a properly quantized and primitive
flux stabilizing all moduli that also satisfies the tadpole constraint. Much more work is
needed to make such a claim. What we can say (at least for the sextic fourfold we studied),
however, is that it is not completely straightforward to construct such a flux.

6 Moduli stabilization and symmetry actions

In this section we address the problem of moduli stabilization in cases with symmetry in
some more generality. In particular, we explain why fluxes that are invariant under some
group actions typically leave some flat directions in the effective potential. This will give
a conceptual way of understanding the result found in section 5.3.

Let Xp be a Calabi-Yau fourfold at a point p in its complex structure moduli space, and
G any subgroup of the automorphism group of Xp. Although what we are going to say can
be put in slightly more general terms, let us assume for simplicity that Xp is a hypersurface
in a toric variety T for which we can represent all forms in the middle cohomology of Xp as
residues. Let us furthermore assume that G acts by rescaling the homogeneous coordinates
xi of the ambient space by roots of unity and preserves the holomorphic top form ΩX |p at
p (as well as the Kähler form of Xp).

We can write a family in the vicinity of p as

X : Q = Q0 +
∑
N

sNµN +
∑
Φ
tΦνΦ = 0 (6.1)

where Xp is given by s = t = 0, the monomials µN are invariant under the action of G,
and the monomials νΦ are not, but transform as

νΦ → αΦ(g)νΦ (no summation). (6.2)

– 25 –



J
H
E
P
0
1
(
2
0
2
1
)
2
0
7

By assumption we can write

ΩX |p = Res
[ 1
Q0

ΩT

]
, (6.3)

for some fixed holomorphic form ΩT on the ambient space T . As both ΩX at p and Q0 are
invariant under the action of G, it follows that ΩT must be preserved by G as well.

Let us now consider switching on a flux G4 which is invariant under the action of G.
This implies that the GVW superpotential (1.1) is invariant under G as well. The F-terms
in the non-invariant directions tΦ at p transform as

FΦ =
∫
Xp
G4 ∧ DΦΩX |p = −

∫
Xp
G4 ∧ Res

[
νΦ
Q2

0
ΩT

]
→ αΦ(g)FΦ. (6.4)

However, the above integral at p simply yields a number that cannot change under any auto-
morphism, so that it follows that FΦ = 0 for all Φ. This argument was used in [15, 16, 37, 38]
to argue that18 the F-term equations in the non-invariant directions are automatically sat-
isfied and one only needs to take care of the invariant directions.

As we have seen in the example in section 5.3, this does not imply that there are no
flat directions along the non-invariant directions tΦ in complex structure moduli space. We
can repeat a similar argument as above for the matrix GIJ to see why. Let us first consider
the mixed terms GNΦ between invariant and non-invariant directions. They transform as

GNΦ =
∫
Xp
G4 ∧ Res

[
µnνj
Q3

0
ΩT

]
→ αΦ(g)GNΦ . (6.5)

As these have a non-trivial scaling they must vanish, so that GIJ is block-diagonal among
invariant and non-invariant directions. For the matrix elements between two non-invariant
directions we find

GΦΞ =
∫
Xp
G4 ∧ Res

[
νΦνΞ
Q3

0
ΩT

]
→ αΦ(g)αΞ(g)GΦΞ . (6.6)

These can hence only be non-vanishing if αΦ(g)αΞ(g) = 1 for all g ∈ G. This is a strong
condition, and for many νΦ there is no νΞ such that it holds, which implies that both tΦ
and tΞ are flat directions.

Let us now come back to the example discussed in section (5.3), where Xp is the sextic
fourfold at the Fermat point and G is the Greene-Plesser group GGP . In this case there
is only a single invariant monomial µN = ∏

i xi. All other monomials νΦ correspond to
non-invariant directions. In order to have a non-zero matrix elements GΦΞ we need that

νΦνΞ =
∏
i

x2
i , (6.7)

as this is the only monomial of appropriate degree that is invariant under GGP . The only
non-invariant complex structure deformations that have non-zero elements in GIJ hence

18These papers deal with Calabi-Yau threefolds. However their arguments and their conclusions directly
apply to fourfolds as well.
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correspond to pairs of tuples bΦ and bΞ different from (1, 1, 1, 1, 1, 1) with ∑i(bΦ)i = 6
and ∑i(bΞ)i = 6 such that

bΦ + bΞ = (2, 2, 2, 2, 2, 2) . (6.8)

It turns out that there are precisely 70 such pairs, so that the rank of GIJ can be at most
141 for any flux that is symmetric under GGP , i.e. there are at least 285 flat directions in
this case. For the example we have chosen in section 5.3, this is precisely what was found
by explicitly evaluating GIJ .

7 Conclusions and future directions

In this work we have begun to explore how to use algebraic cycles as fluxes on Calabi-Yau
fourfolds. We have reviewed methods which allow us to compute the number of stabilized
moduli and the induced tadpole for fluxes proportional to linear combinations of algebraic
cycles. We have analyzed in detail the sextic fourfold. We have found fluxes that stabilize
all the complex structure moduli at a specific point in the complex structure moduli space,
without the need of dealing with Picard-Fuchs equations of (very) high rank. What is
striking about this analysis is that it appears very hard to find a flux that satisfies all
consistency constraints and stabilizes all of the complex structure moduli. In particular,
in the example we have considered, we have noticed tension between tadpole cancellation
and the desire to stabilize all complex structure moduli.

The above is far from a complete analysis, and there are several crucial points that need
to be addressed for a complete picture. First of all, it is in principle straightforward (but
tedious) to work out rk GIJ(CΣ), C2

Σ, and H · CΣ for any linear combination of algebraic
cycles CΣ. Having access to all fluxes defined via algebraic cycles is not sufficient, as the
integral Hodge conjecture for the Fermat sextic is presently unanswered. It has been shown
to be correct, however, for the quartic and quintic Fermat fourfolds in [39], and it is possible
to extend their methods to the sextic. With a proof of the integral Hodge conjecture for
the Fermat sextic, it is then possible to compute rk GIJ(G4) for all fluxes satisfying the
tadpole constraint. This naively seems like a task that is computationally too demanding
to be undertaken, but a clever exploitation of the large automorphism group of the sextic
might make it feasible. We intend to attack this problem in future work.

Thinking even further ahead, it is highly desirable to extend the methods we have
reviewed to other points in the moduli space of the sextic with maximal H2,2(Z)∩H4(X,Z),
and even to other Calabi-Yau fourfolds. In particular, it would be exciting to find criteria
which can distinguish which points in the moduli space can and which cannot be stabilized
using fluxes that satisfy the tadpole constraint. Such criteria would have far reaching
implications for the existence and structure of the string landscape.

Finally, let us note that the Fermat sextic we considered in this paper is known to be
modular [40]. In recent work, it was conjectured that in fact all flux vacua correspond to
modular varieties [41], although the converse to this statement is not true [42]. A similar
statement holds for attractive K3 surfaces [43], which appear in the study of flux vacua on
the ‘toy’ fourfoldK3×K3 [11] (see also [8]), as well as the closely related attractor points on
Calabi-Yau manifolds [44]. At its core, modularity is concerned with Galois representations,
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which are again related to algebraic cycles according to the Tate conjecture. It should be
fascinating to explore this relationship further.
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A Rational forms, residues, and cohomology of hypersurfaces

In this section we review some classic material concerning rational differential forms on Pn,
i.e. forms with poles, and their residues. This is based on [45, 46], a beautiful exposition
of which can be found in [23, 47–49].

The basic idea of residues of forms is to extend the residue formula
1

2πi

∫
γ

dz

z
= 1 , (A.1)

for γ a closed curve encircling the origin, to integrals of differential forms, i.e.

1
2πi

∫
γ

dz ∧ α
z

= α , (A.2)

for a smooth differential form α. In this way, rational differential forms on Cn with poles
along z = 0 are naturally identified with smooth forms on the locus z = 0. The following
essentially deals with properly formulating this idea for hypersurfaces X of Pd+1. The
upshot is that we can write differential forms on X as differential forms with poles on Pd+1.

The setting we will be interested concerns differential forms with poles (‘rational
forms’) on complex projective space. By a result of [45], rational d + 1-forms on Pd+1

can always be written in terms of the unique holomorphic d+ 1-form Ω0

ϕ = P (x)
R(x)Ω0 (A.3)

for homogeneous polynomials P (x) and R(x) with deg R = deg P + (d+ 2). The form Ω0
is given by

Ω0 =
d+1∑
j=0

(−1)j xj dx0 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxd+1 , (A.4)

where our notation is supposed to indicate that d̂xj is omitted from the ∧ product of dxj .
There are similar expression for n-forms with n < d + 1. The constraint on the degrees
of P and R hence guarantees that ϕ is invariant under the C∗ acting on the homogeneous
coordinates xi.

Depending on the choice of the denominator, ϕ can have poles of various orders along
a hypersurface X ⊂ Pd+1. Working modulo exact forms, the pole order can sometimes be
reduced, as summarized in the following statements [45, 46].
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a) For any rational d+ 1-form ϕ there exists a η such that ϕ+ dη has pole order d+ 1.

b) If a rational d+ 1-form ϕ has pole order k along X and there exists and η such that
ϕ+ dη has pole order k − 1, we can choose η to have pole order k − 1.

c) If X is given by Q(x) = 0 and ϕ has pole order k we can write

ϕ = P (x)
Q(x)k Ω0 . (A.5)

There exists an η such that ϕ+dη has pole order k−1 if and only if P (x) is contained
in the Jacobi ideal of Q(x), i.e. the ideal generated by the polynomials ∂Q/∂xj .

Elements of Hd+1(Pd+1 −X) can hence be represented by forms such as (A.5). If X
is described by a polynomial Q(x) = 0 and Q(x) has degree l, then degP = kl − (d + 2).
As we always reduce the pole degree of ϕ modulo exact forms, k is at most d + 1, due to
the property a).

The residue map is defined as

Res : Hd+1(Pd+1 −X)→ Hd
prim(X) (A.6)

as follows. For any d-cycle Γ on the hypersurface X we set∫
Γ
Res(ϕ) =

∫
T (Γ)

ϕ , (A.7)

where T (Γ) is a tube, i.e. a circle bundle over Γ. It can be shown that such a tube always
exists and the definition of the residue is independent of this choice. The image of the
residue map is not all of Hd(X), but only maps to the primitive cohomology Hd

prim(X), i.e.
to those forms perpendicular to the restriction of the hyperplane class. As shown in [45]
the residue map is surjective on the primitive cohomology

im (Res) = Hd
prim(X) . (A.8)

Let us see in some more detail how this definition of the residue realizes (A.2). Consider
a rational n-form of pole order k in a small neighborhood containing Q = 0. There we can
choose coordinates such that ϕ becomes

ϕ = dQ ∧ α
Qk

+ β

Qk−1 = 1
k − 1d

(
α

Qk−1

)
+
β + 1

k−1dα

Qk−1 (A.9)

for some smooth forms α and β. Hence we may always reduce the pole order of holomorphic
forms locally. Using a partition of unity, one can show that this can in fact be done globally,
but at the expense of holomorphicity. Iterating this procedure, it follows that we may write
(up to exact forms)

ϕ = γ ∧ df
Q

+ δ (A.10)

for some smooth forms γ and δ. The residue is then simply

Res(ϕ) = γ|X . (A.11)
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This explains why the residue of a holomorphic rational form ϕ such as (A.5) on Pn is not
necessarily holomorphic, except when k = 1.

Let us now define Ad+1
k to be the additive group of rational d+ 1-forms of pole order

at most k along X. We can then form the ‘cohomology groups’

Hk(X) = Ad+1
k (X)

dAdk−1(X)
. (A.12)

The Hk(X) for different k have a filtration

H0 ⊂ H1 ⊂ · · · ⊂ Hd+1 , (A.13)

which precisely maps to the Hodge filtration of the primitive cohomology under the residue
map:

Res (Hk) = Fd+1−kHd
prim(X) , (A.14)

where
Fd+1−kHd =

⊕
i≥d+1−k

H i,d−i(X) . (A.15)

Hence the residue map takes H1(X) to Hd,0(X), while H2(X) maps to Hd,0(X) ⊕
Hd−1,1(X), etc. The forms of maximal pole order, k = d+1, are mapped to F0Hd

prim(X) =
Hd

prim(X).
We can isolate the Hodge cohomology groups of primitive forms by forming the quo-

tients
Hp,d−p

prim (X) =
FpHd

prim(X)
Fp+1Hd

prim(X) = Hd+1−p(X)
Hd−p(X) . (A.16)

where the last equality is realized by applying the residue map.
The result of the above is that we can associate Hodge cohomology groups in the

middle cohomology with polynomials P of appropriate degree modulo the Jacobi ideal of
the polynomial Q defining the hypersurface equation. Consider a rational form of pole
degree k written as (A.5). Such a form defines an element in Ad+1

k (X) and hence an
element in Hk(X). If P is contained in the Jacobi ideal of Q, there exists an η such that
ϕ+ dη has a pole of degree k − 1. This implies that ϕ is equivalent to an element of Ad+1

k−1
in Hk(X), which in turn implies that ϕ is also contained in Hk−1(X). But this means that
ϕ is zero in (A.16), so that the statement we started the paragraph with follows.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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