
This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1

Optimal unstirred state of a passive scalar

L. Chen 1 A. R. Yeates 1†, and A. J. B. Russell 2

1Department of Mathematical Sciences, Durham University, Durham, DH1 3LE, UK
2Division of Mathematics, University of Dundee, Dundee, DD1 4HN, UK

(Received xx; revised xx; accepted xx)

Given a passive tracer distribution f(x, y), what is the simplest unstirred pattern that
may be reached under incompressible advection? This question is partially motivated
by recent studies of 3D magnetic reconnection, in which the patterns of a topological
invariant called the field line helicity greatly simplify until reaching a relaxed state. We
test two approaches: a variational method with minimal constraints, and a magnetic
relaxation scheme where the velocity is determined explicitly by the pattern of f .
Both methods achieve similar convergence for simple test cases. However, the magnetic
relaxation method guarantees a monotonic decrease in the Dirichlet seminorm of f ,
and is numerically more robust. We therefore apply the latter method to two complex
mixed patterns modelled on the field line helicity of 3D magnetic braids. The unstirring
separates f into a small number of large-scale regions, determined by the initial topology
which is well preserved during the computation. Interestingly, the velocity field is found
to have the same large-scale topology as f . Similarity with the simplification found
empirically in 3D magnetic reconnection simulations supports the idea that advection is
an important principle for field line helicity evolution.

Key words:

1. Introduction

Non-diffusive transport occurs when there is a conserved quantity that can be re-
arranged in the system but not destroyed (Del-Castillo-Negrete 2010). One practical
example is the transport of potential vorticity in the quasi-geostrophic model, which has a
wide range of applications in oceanography and atmospheric science (Nigam & DeWeaver
2015). When the horizontal scales are dominant, this system is analogously described by
2D incompressible Euler equations in the vorticity form, for which the conserved vertical
component of the vorticity behaves as a passive scalar (Majda & Tabak 1996).

We ask a simple question: given some highly complex two-dimensional distribution of
a scalar field f0(x, y), what is the simplest distribution fT (x, y) that can be obtained
by transport with an arbitrary velocity field? We quantify “simplest” by the desire
to minimise gradients in fT , so that we seek to minimise a measure like the Dirichlet
seminorm,

U(fT ) =

∫
(∇fT ,∇fT ) dS. (1.1)

Arnold & Khesin (1998) investigated possible minimal states under U(fT ), but for
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complex initial conditions f0, the minimal state fT is not immediately known and must
be computed numerically.

Perhaps surprisingly, our particular motivation comes from an attempt to understand
the turbulent relaxation of three-dimensional magnetic fields in plasmas. In these 3D
resistive magnetohydrodynamic (MHD) simulations (Yeates et al. 2010; Pontin et al.
2011; Pontin et al. 2016), an initially braided magnetic field is allowed to evolve without
a driving force until it reaches a quasi-steady state. The relaxed state is usually simple,
and made of nearly uniformly twisted flux tubes. For example, the T = 2 model from
Yeates et al. (2010) is shown in Figure 1 a)-c). To appreciate the relevance of two-
dimensional advection, note that the topological structure of braided magnetic fields
may be completely characterised by a single invariant number attached to each magnetic
field line. This is called the field line helicity (FLH) (Yeates & Hornig 2013, 2014), denoted
by

A(C) =

∫
C
A · dl, (1.2)

where A(x, y, z, t) is a suitable vector potential for the magnetic field B = ∇×A and C
is a magnetic field line (Russell et al. 2015; Yeates & Page 2018). FLH has the physical
interpretation of the net magnetic flux around the given field line (Yeates & Hornig 2011),
and in braided magnetic fields may be viewed as a two-dimensional scalar distribution on
any cross-sectional surface. It is observed in these simulations that magnetic relaxation
simplifies the cross-sectional FLH pattern as if it is being “unstirred” by an effective flow
w, see Figure 1 d)-f) for the case of the T = 2 model.

The evolution equation for the FLH, which was obtained by Russell et al. (2015),
throws further light on the role of advection. First, note that the electric field E can be
decomposed into perpendicular and parallel components as E = −w ×B +∇ψ, where
ψ(x, y, t) =

∫ x

x−
ηj · dl is a voltage that gives the parallel electric field, η is the electrical

resistivity and j = ∇×B is the current. From the analysis shown in Russell et al. (2015)
(see also Yeates (2020)), the evolution equation of FLH is then

∂A
∂t

+ (w · ∇)A = [w ·A− ψ]
+
− , (1.3)

where the superscript + and subscript − signify evaluation at the points where the field
line exits and enters the domain (c.f. Eq. (12) in Russell et al. (2015)). In practice,
ψ can be chosen so that the terms on the right hand side are non-zero only at one
boundary, and if the FLH is inspected on that boundary, then (1.3) reduces to a 2D
problem governing A(x, y, t). The left hand side of (1.3) signifies advection of FLH with
the field line flow w (generally distinct from the plasma motion), which mathematically
establishes the relevance of advection to this problem. Advection is not the only relevant
process, due to (non-diffusive) terms on the right hand side of (1.3). However, Russell
et al. (2015) showed that the ψ terms are relatively small in complex magnetic fields,
and that the w ·A terms integrate to (nearly) zero over myriad small regions containing
opposite polarity (paired increases and decreases of w · A). This leaves the advection
term as the only non-negligible term of a fundamentally global nature, consistent with
the intuition drawn from simulations that 2D advection is the process from which to
begin understanding the observed simplification of FLH during 3D turbulent magnetic
relaxation. It is therefore of interest to determine the simplest contour pattern of A
consistent with a given initial distribution, so as to test whether passive advection is
playing a controlling role in the turbulent relaxation, and help identify any significant
effects attributable to the other terms in (1.3).
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Figure 1. Magnetic reconnection of an initially braided magnetic field (T = 2 model, more
details see Yeates et al. (2010)). a)-c): blue and orange magnetic field lines are traced from
distinct disks on the bottom plane at z = −24, these field lines are highly mixed at t = 0,
but magnetic reconnection separates them into a pair of separate oppositely-twisted flux tubes.
Red/blue volumes in a)-b) represent the iso-surfaces of the positive/negative current density.
d)-f): the corresponding FLH on the boundary cross-section z = 24. Time is measured in units
of Alfvén time.

The actual computation to search for the minimal “unstirred” state is independent
of the motivating magnetic braid problem, and has more in common with the well-
studied problem of transport and mixing of passive tracers in engineering (Warhaft
2000). Usually the objective is to find a velocity field that mixes f0 as efficiently as
possible and maximises U(fT ), but the inverse problem is essentially analogous owing
to the reversibility of the advection equation. To better quantify the homogenisation of
the passive tracer, several other norms have also been used in the literature, including
a class of “mix-norms” (Thiffeault 2012; Mathew et al. 2005). This type of norm has
recently been applied to the optimisation problems of mixing in two-dimensional plane
Poiseuille flow (Foures et al. 2014) and stratified plane Poiseuille flow (Marcotte &
Caulfield 2018) using variational methods. From this perspective, our unstirring problem
may be considered as an interesting test of the state-of-the-art of the methods used in
this branch of fluid dynamics.

In this paper, the constraint that the final state must be reachable by passive advection
makes the minimization a non-trivial computational task. We consider two approaches
to identify suitable unstirring velocity fields u. One is a variational approach where we
test both the Dirichlet seminorm and a mix-norm as measures of the homogenisation.
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Inspiration for how to implement the constraint of passive advection comes from work
with adjoint-based methods both in pipe flow (identifying the seed to chaos; Kerswell
et al. 2014) and in kinematic dynamo theory (finding the magnetic instability; Willis
2012). The variational approach allows in principle for any possible (incompressible)
velocity field, although we might expect that the obtained velocity field will in practice
be constrained by the structure of f0 in some way. Studies of mixing have found that the
topological structure of the final, mixed, state can be related directly to the properties
of the velocity field that produced it. For example, in Ottino (1990), the islands or holes
among chaotic fluid regions are linked to periodic points created by a sequence of stirring
motions.

The second approach to unstirring that we consider is rather different, in that the
velocity field is prescribed in a pre-defined way based on the pattern of f . It is chosen
to guarantee simplification of the pattern at any instant, using the magnetic relaxation
method (Moffatt 1990; Linardatos 1993; Moffatt & Dormy 2019). This works because the
magnetic field lines in a two-dimensional ideal-magnetohydrodynamic flow are material
lines. These field lines are contours of a scalar flux function, which is analogous to the
scalar field f in our unstirring problem, and a corresponding MHD solution is used for
the velocity field u. Thus it is no longer a variational calculation but a single well-defined
evolution from f0 to fT , during which the Dirichlet seminorm — which is analogous to
the magnetic energy — is minimised. The resulting patterns of fT have been studied
by Linardatos (1993) for simple f0 distributions with either a single maximum or a pair
of local maxima with a saddle point between. The system minimises the length of the
contours while preserving the area enclosed, making them circular where this is not
prevented by other considerations such as the domain boundary. An interesting feature
is that the saddle point collapses to a thin current sheet in the relaxed state, and Moffatt
& Dormy (2019) conjecture that every saddle point in f0 will collapse to a finite-length
current sheet in fT (see also Arnold & Khesin 1998). This suggests what kind of patterns
might be expected in the unstirred state.

The remainder of this paper is organised as follows. We define the problem in Section
2, including the equations solved in both the variational (Section 2.1) and magnetic
relaxation (Section 2.2) approaches. The numerical methods are described in Section 2.3,
before comparing them for simple test cases in Section 2.4. In Section 3, we present the
results for more complex initial distributions using the magnetic relaxation method. A
summary and discussion of the results are presented in Section 4.

2. Problem setup and methods

Given a density function f(x, y, t) in a domain D ∈ R2, with initial distribution
f(x, y, 0) = f0(x, y), we define a time-dependent energy by the Dirichlet seminorm of
f ,

E(t) = 〈|∇f |2〉, (2.1)

where 〈· · · 〉 =
∫∫
D
· · · dS is the surface integral over D. For the final state fT = f(x, y, T ),

this energy is (1.1). We search for the minimum-energy state fT reachable under the
advection equation,

∂f

∂t
+ u · ∇f = 0, (2.2)

in a fixed time interval [0, T ]. The velocity field is constrained to be incompressible,

∇ · u = 0, (2.3)



5

so that the area inside any closed material curve is conserved. We assume f obeys periodic
boundary conditions or ∇f

∣∣
∂D

= 0. Having formally defined the problem in this way,
we can derive structural constraints on the final state, fT . For example, consider a small
deformation which under (2.2) and (2.3) takes the form δf = −ξ · ∇f where ξ = ∇ ×
ζ(x, y)ẑ = ∇ζ(x, y) × ẑ, and ξ · n

∣∣
∂D

= 0. Using either type of boundary conditions
mentioned above,

1

2
δE =

∫
D

∇f · ∇δf dS = −
∫
D

∇f · ∇(ξ · ∇f) dS

=−
∮
∂D

(ξ · ∇f)∇f · n dS +

∫
D

(ξ · ∇f)∇2f dS =

∫
D

∇ζ · (ẑ ×∇f)∇2f dS

=

∮
∂D

ζ∇2f(ẑ ×∇f) · ndS −
∫
D

ζ∇ ·
(
(ẑ ×∇f)∇2f

)
dS

=−
∫
D

ζẑ · ∇f ×∇(∇2f) dS. (2.4)

A state fT that minimises E(t) under (2.2) and (2.3) must therefore satisfy

∇fT ×∇
(
∇2fT

)
= 0, (2.5)

so that ∇2fT is constant along the contours of fT . In addition, the structure of fT is
related to that of f0 because the evolution preserves the topology of the contours of f .
Specifically, for f(x, y) = fc (where fc 6= 0), the enclosed area is invariant, which we can
represent with a signature function (Moffatt 1990; Arnold & Khesin 1998),

S(fc) =

{∫∫
f(x,y)>fc

dS, if fc > 0∫∫
f(x,y)6fc

dS, if fc < 0.
(2.6)

We now give two complementary approaches to find a suitable u: (i) the variational
method imposes fewer restrictions on u but has no guarantee of convergence; (ii) the
magnetic relaxation method uses a specific MHD solution for u to guarantee monoton-
ically decreasing E(t), as we will show in Section 2.2. It turns out that both methods
can find the expected minimal energy state of fT for simple initial states f0, but for
complicated cases only the second method is numerically stable. We will describe each
method in more detail below.

2.1. Variational method

Given the initial distribution f0 = f(x, y, 0) of a passive scalar field f , the variational
method searches for the optimal velocity field u with respect to an augmented Lagrangian
L. In fluid mixing and transport studies, the Lagrangian is commonly defined by a
measure of homogenisation and other constraints, such as the Navier-Stokes equation and
the normalization condition of a seed perturbation field. Although it would be intuitive
to use the Dirichlet seminorm to quantify homogenisation, a “mix-norm” 〈|∇−1fT |2〉
has been shown to be numerically robust and efficient (Thiffeault 2012; Marcotte &
Caulfield 2018). We therefore define a generic Lagrangian applicable to two measures of
homogenisation as

L = 〈|∇θfT |2〉+ θ〈Π∇ · u〉+ θ

∫ T

0

〈
Γ

(
∂f

∂t
+ u · ∇f

)〉
dt, (2.7)

where θ = 1 represents the Dirichlet seminorm and θ = −1 represents a mix-norm, and
fT = f(x, y, T ) is the final unstirred state. When f becomes less mixed, the Dirichlet
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seminorm goes down while this mix-norm goes up. Thus, we minimize the Lagrangian
when θ = 1, and maximize the Lagrangian when θ = −1. Meanwhile, Γ (x, y, t) and
Π(x, y) are Lagrange multipliers which impose constraints (2.2) and (2.3) respectively,
and u(x, y) is a time-independent velocity field. We can also formulate (2.7) with a general
time-dependent field ũ(x, y, t), in which case we also need a time-dependent Lagrange

multiplier Π̃(x, y, t). With time-dependent ũ, we found the numerical error tends to
accumulate at each time step, so in this paper we present the variational method results
only with a steady velocity field. Unlike similar models where the flow scale u∗ carries
important physical meaning (Pringle et al. 2012; Chen et al. 2015), in our case, the
velocity field can always be rescaled with arbitrary time and length scale as u∗ ∼ L∗/t∗,
while still giving the same final state of f . Since we are mostly interested in the spatial
distribution of u, there is then no need to impose the normalization of u as a separate
constraint in (2.7).

Each of the variational derivatives of L has to vanish separately for the optimal
solution, since

δL =

〈
δL
δfT

δfT

〉
+

〈
δL
δΠ

δΠ

〉
+

〈
δL
δu
· δu

〉
+

∫ T

0

〈
δΓ

δL
δΓ

〉
dt+

∫ T

0

〈
δf
δL
δf

〉
dt. (2.8)

These variational derivatives are derived explicitly in Appendix A. Note that, in (2.8),
we have already taken into account that the boundary terms vanish when u and f
either: both satisfy periodic boundary conditions; or satisfy u · n = 0 and ∇f

∣∣
∂D

= 0
respectively. By setting all variational derivatives to zero except that of the unknown
optimal velocity field u, we obtain a coupled system of Euler-Lagrange equations. We
solve these iteratively by adapting the adjoint method (see the review by Luchini &
Bottaro 2014), which has typically been applied to the full Navier-Stokes equations rather
than the advection equation alone. Specifically, we iterate the following four steps until
the variational derivative δL/δu also converges to zero:

(i) Calculate f forward in time from t = 0 to t = T using the advection equation (2.2),
which is equivalent to solving δL/δΓ = 0 for t : 0→ T .

(ii) Apply the terminal condition δL/δfT = 0, so that

ΓT = 2θ∇2θfT , (2.9)

where the usual Laplacian operator corresponds to θ = 1 (minimizing the Dirichlet
seminorm), and the inverse Laplacian operator corresponds to θ = −1 (maximizing one
type of mix-norms).

(iii) Calculate Γ backward in time from t = T to t = 0 using the adjoint advection
equation

∂Γ

∂t
+ u · ∇Γ = 0, (2.10)

which is equivalent to enforcing δL/δf = 0 with the incompressible condition (2.3) for
t : T → 0.

(iv) Finally, the update scheme for u is

u := u− θ∆u
δL
δu
, (2.11)

where ∆u > 0 is a step size that we adjust, and the gradient is given by

δL
δu

= θ

(
−∇Π +

∫ T

0

Γ
(
∇f
)

dt

)
. (2.12)
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This method will in principle reach a local minimum with consecutive steps, however
the convergence is not guaranteed should the search algorithm (iv) become trapped or
encounter numerical instabilities.

Section 2.3.1 provides numerical details of both cases (θ = ±1), while convergence of
all methods is compared in Section 2.4.

2.2. Magnetic relaxation method

The magnetic relaxation method relates the reduction of Dirichlet seminorm E(t) to
the relaxation process of a 2D magnetic field in ideal magnetohydrodynamics (see Section
1 for the background information). To achieve this, we define a fictitious magnetic field
B(x, y, t) on D whose field lines at any time are the contours of the function f , given by

B = ∇× f(x, y, t)ẑ. (2.13)

The energy of this magnetic field is proportional to our energy measure (2.1), since

〈B2〉 = 〈|∇f |2〉 = E(t). (2.14)

Any momentum equation that lowers the magnetic energy ideally, i.e., preserving the
iso-contours of f , can therefore be used to reduce E(t). We choose to use a magnetic
relaxation scheme of the form

µ∇2u+ (∇×B)×B −∇P = 0, (2.15)

which describes the balance of fluid viscosity, Lorentz force and pressure. The first term
in (2.15) represents viscous dissipation where µ is an artificial viscosity; the second term
represents the Lorentz force by taking the current as J = ∇×B. We include the pressure
P (x, y, t) here so that u(x, y, t) may be chosen to satisfy the incompressibility condition
(2.3). Using a viscous term rather than a frictional term µu (like, for example, Linardatos
1993) avoids some limitations of the frictional approach such as the inability of B = 0
points to move (Low 2013). We also set µ = 1 so that the typical evolution time is of
the order t∗ ∼ (l∗/f∗)2, which is estimated by substituting (2.13) into (2.15). As the
homogenisation of f increases, the length scale l∗ increases so the relaxation is expected
to slow down proportionally. If we rewrite the Lorentz force term in (2.15) as

(∇×B)×B = −∇2f ẑ × (∇f × ẑ) = −∇2f(∇f), (2.16)

we see clearly that both∇2f and the gradient∇f (including its magnitude and direction)
play a role in determining the velocity field u. By writing

u = ∇× ψ(x, y, t)ẑ, (2.17)

and taking the curl of (2.15), we can calculate u at a given time by solving the biharmonic
equation

µ∇4ψ = ẑ · ∇f ×∇(∇2f). (2.18)

For this approach, we either assume periodic boundary conditions for ψ or we set

ψ
∣∣
∂D

= ∇2ψ
∣∣
∂D

= 0, (2.19)

which implies the velocity field satisfies not quite the no-slip condition but rather

u · n|∂D = 0, ∇× u|∂D = 0. (2.20)
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Combining (2.2), (2.15), (2.16) and (2.20), we find

1

2

∂E(t)

∂t
=

∫
D

∇f · ∂(∇f)

∂t
dS = −

∫
D

∇2f
∂f

∂t
dS +

∮
∂D

∂f

∂t
(∇f · n) dl

=

∫
D

∇2f(u · ∇f) dS =

∫
D

u · (µ∇2u) dS −
∫
D

u · ∇P dS

=− µ
∫
D

|∇ × u|2 dS +

∮
∂D

u · [(∇× u)× n] dl −
∮
∂D

P (u · n) dl

=− µ
∫
D

|∇ × u|2 dS 6 0. (2.21)

This shows that the Dirichlet seminorm E(t) will decrease monotonically, in direct
proportion to the enstrophy

ε(t) = 〈|∇ × u|2〉. (2.22)

If it converges then the final minimal energy state will obey ∇ × u = 0. Since this
corresponds to ∇2ψ ≡ 0, (2.18) shows that such a state fT must satisfy

∇fT ×∇(∇2fT ) = 0, (2.23)

which is consistent with (2.5). A similar derivation that shows (2.23) but with the
frictional term in place of the viscous term is discussed in Moffatt & Dormy (2019). Note
that the boundary conditions (2.19) also imply that u = 0 for such a state; alternatively,
periodic boundaries would allow for a uniform velocity.

2.3. Numerical schemes

In this section we discuss the numerical implementation of the two methods mentioned
above.

2.3.1. Variational method

As described in section 2.1, we iterate four steps to search for the optimal velocity field
u: (i) compute forward advection for f , (ii) apply the terminal condition, (iii) compute
backward (adjoint) advection for Γ , and (iv) update u. Steps (i) and (iii) are discretized
in space using a pseudo-spectral method, which is also used to evaluate the derivative in
the terminal condition (ii). We also tested with a finite difference method to solve the
advection equation, but the accuracy of the unstirred state fT was not sufficient for this
iterative process, i.e., any small deviation in fT will feed back into the update step (iv).
The time discretization uses a fourth order Runge-Kutta method, with adaptive time
step chosen as

∆t =
as d

max{|ui,j |}
, (2.24)

where as = 0.1 is a safety factor, d = ∆x = ∆y is the grid spacing, and ui,j are the
values of u at the grid points.

To compute the variational derivative δL/δu in step (iv) as given by (2.12), we first

compute h =
∫ T
0

(∇f)Γ dt using the trapezium rule, then use this to find Π (and hence
∇Π) by solving the Poisson problem

∇2Π = ∇ · h, (2.25)

using a Fourier finite difference method since the pseudo-spectral method is sensitive to
numerical noise. We then use the Barzilai-Borwein method to update u. The step size in
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(2.11) is set to

∆u =

〈
gn ·

(
δL
δun
− δL

δun−1

)〉
〈∣∣∣ δLδun

− δL
δun−1

∣∣∣2〉 , (2.26)

where gn denotes the update un+1 = un+gn for n > 2, computed from (2.12). We apply
the standard 2/3 rule for de-aliasing when calulcating u. The initial velocity is u = 0.
The first two iterations have fixed ∆u = 10−3. The time step ∆t is halved (effectively
as := 0.5as) when the energy increases En(T ) > En−1(T ) to reduce numerical errors.
We stop the iteration when 〈g2〉 < 10−6.

2.3.2. Magnetic relaxation method

To implement this method, we discretize the advection equation (2.2) in time with the
velocity u at each time step derived from f by solving the biharmonic equation (2.18)
for the stream function ψ in (2.17).

The advection equation is solved using LeVeque’s scheme as described in Durran (2010)
with the Van Leer flux limiter. This method limits the gradient of neighbouring grid
points to computationally realistic values, hence it is particularly suitable for dealing with
complex patterns in f . The time step is adaptive as in (2.24). To solve the biharmonic
equation, we first use a second order finite difference method to calculate the right-hand
side, denoted by g. Next we solve two Poisson problems to get the solution for ψ using
a Fourier finite difference method,

∇2ψ = g̃, ∇2g̃ = g. (2.27)

The algorithm that calculates ψ uses either Fourier transforms with periodic boundary
conditions, or sine transforms for the boundary condition (2.19). The velocity field u
is calculated from ψ using a fourth order finite difference method. Then we solve the
advection equation for the next time step. We compute E(t) at each time step to monitor
the homogenisation of f . We stop the computation if E(t) is found to increase.

2.4. Test cases

To facilitate the discussion of the two different approaches, from now on we will refer
to the variational method as VM and the magnetic relaxation method as MR. In this
section we compare the performance of the methods for simple test examples, which have
periodic boundary conditions.

Our tests consider how well the methods unstir a sheared pattern towards a known
minimal energy state. We create an initial state

f0 = sin [π (2x− α cos (kyπy))] sin (πy) , (2.28)

where ky is the wavenumber of the shearing, and α is a parameter controlling the amount
of shearing. The expected minimal energy state is

fT = sin (2πx) sin (πy) , (2.29)

with energy E(T ) = 5π2, which would be reached by advection with a steady velocity
field

ũ = (− cos (kyπy) , 0) , (2.30)

precisely at time α = T . For MR, T is determined by the evolution. In the examples
presented, we choose ky = 7 so as to create non-trivial patterns. We then vary the value
of α to see if the algorithms can still identify u when f0 contains sharper gradients.
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Figure 2. Initial conditions f0 with increasing complexity from left to right, where α is the
initial shearing strength.

Figure 2 shows the three initial conditions tested with increasing complexity from left
to right. For VM in particular, we also test the two formulations which use either the
Dirichlet seminorm (θ = 1) or a mix-norm (θ = −1).

The results for VM (θ = ±1) and MR are shown in Table 1. For the simplest f0 with
α = 0.1, VM (θ = 1) is not numerically stable: it does not converge with increased
resolution N . In contrast, both VM (θ = −1) and MR are able to reach the expected
minimal energy with the correct final state. In Figure 3, we plot a few snapshots to show
how fT evolves iteratively with VM (θ = −1), and how f0 has been unstirred with MR.
For VM (θ = −1), the shape of the recovered velocity field – as shown in Figure 6 – is
quite close to the expected solution, but differs in that (i) it picks up some y component,
and (ii) ux is not evolving much with each iteration in places where f is zero (e.g., along
the line y = 0). These differences do not change the energy substantially, and indeed
multiple velocity fields can reach the same fT pattern, e.g. two velocity fields that differ
in their component along the f contours will have the same u · ∇f .

In terms of performance, for α = 0.1, VM (θ = −1) finds a slightly more accurate fT
than MR, but the error is also more localized, see Figure 4. The largest error of fT occurs
where the expected value f̃T ≈ 0. VM is unable to prevent these discontinuities from
forming. This proves to be problematic when the initial distribution contains sharper
gradients, because the pseudo-spectral method that was needed for accuracy is unable to
resolve the corresponding variational derivative δL/δu for the update. For α > 0.3, VM
(θ = −1) struggles to converge while MR finds a minimal energy that is close (< 2%)
to the expected value. Note that for α = 0.3 case, even though the test run with VM
(θ = −1) has met the convergence criterion, the number of time steps taken is huge and
the minimal energy is not as low as we expect. In addition, with VM the optimisation
may go in the wrong direction before it eventually converges, whereas with MR the
convergence is gradual and smooth in terms of the change in E(t)— see Figure 5 for
comparison. The MR method remains numerically stable for all α.

Based on the test runs, we find these two approaches each have their own benefits
and limitations for finding the optimal fT . On the one hand, VM (θ = −1) gives a more
accurate result for simple initial conditions, but the lack of diffusion or any additional
“smoothing” constraint in the Lagrangian means little control over the sharpness of
gradient ∇f in regions where the expected value f̃T ≈ 0. On the other hand, MR has
restricted the form of the velocity field so the search for the minimal energy state is
not necessarily optimal, but the obtained unstirred state fT appears to be smoother for
simple initial conditions, see Figure 4; also it is the most robust method for general initial
conditions. Therefore, we move on to analyse complex patterns using only MR.
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Figure 3. Selected snapshots during unstirring. Test run N = 512, α = 0.1. Left column: VM
(θ = −1). Right column: MR. Both exhibit a reduction in shearing.

Figure 4. The difference between fT and the expected solution f̃T = sin(2πx) sin(πy). Test run
N = 512, α = 0.1. Left: VM (θ = −1), the actual maximal magnitude of error for VM is 0.014.
Right: MR, where the maximum magnitude is 0.025.
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VM

α 0.1 0.1 0.1 0.1 0.3 0.5
norm type θ 1 1 -1 -1 -1 -1

N 512 1024 512 1024 512 512
iterations 9 4∗ 22 22 24 15∗

total time steps 3412 978∗ 8636 17200 157096 74932∗

E(0) 73.194 73.208 73.194 73.208 263.897 644.887
E(T ) 51.873 53.209∗ 49.301 49.308 53.907 75.926∗

∆E(T ) 2.525 3.861 -0.047 -0.040 4.559 26.578

MR

α 0.1 0.1 0.3 0.3 0.5 0.5
N 512 1024 512 1024 512 1024
T 0.67 0.43 1.77 1.01 2.48 1.64

total time steps 231 424 886 1560 1641 3034
E(0) 73.194 73.208 263.897 264.076 644.887 645.706
E(T ) 49.509 49.631 49.677 50.126 49.789 50.267
∆E(T ) 0.161 0.283 0.329 0.778 0.441 0.919

Table 1. Test results. T is the total time for advection. ∆E(T ) is the difference between the
obtained E(T ) and the expected minimal energy 5π2 ≈ 49.348. ∗: best value achieved without
meeting the convergence criterion.

Figure 5. Comparison of convergence. Left: VM (θ = −1), showing E(T ) as a function of
iteration number. For α = 0.1 the results with N = 512, 1024 coincide, and for α = 0.5, the
lowest E(T ) did not meet the convergence criterion, hence it is excluded from this plot. Right:
MR, showing E(t) as a function of time step during the relaxation.

3. Results for complex patterns

Our original motivation for this study was to determine the unstirred pattern of a
passive scalar field, namely the field line helicity (FLH), extracted on 2D cross-sections
of 3D simulations. For this purpose, we consider two initial FLH patterns from the
T = 2 case and T = 3 case studied by Yeates et al. (2010). The number T refers to
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Figure 6. Comparison between obtained velocity field u using VM (θ = −1) and the expected
velocity field ũ. Test run N = 512, α = 0.1. Left: the expected x-component of the velocity field
ũx = − cos(7πy) (the expected y-component is ũy = 0). Middle: pseudocolor plot of ux. Right:
pseudocolor plot of uy.

the topological degree of the underlying (3D) field line mapping, which is preserved in
the 3D simulation and controls the number of large scale regions of FLH in the relaxed
state (see also Yeates et al. 2015) – effectively the number of large-scale magnetic flux
tubes in the relaxed state. Specific details of the construction are given in Appendix
B. We show contour plots of the initial states f0 in the top row of Figure 7. These
initial patterns are much more complicated than our test cases in Section 2.4. Due to
regions with negative and positive values being in close proximity to one another, they are
numerically challenging to unstir since the gradient of f can be large. The computational
domain D : [−20, 20] × [−20, 20] is chosen to be large enough so that ∇f ≈ 0 at the
boundary. The grid resolution is 6000× 6000.

We apply MR and show the time evolution of f for both cases by the subsequent rows
in Figure 7. Only the central region [−6, 6] × [−6, 6] is shown for clarity. We see that
the MR algorithm successfully separates the tangled patterns of f0 into separate regions,
and multiple extrema exist within each region. The density distribution around each local
extremum becomes more circular in the relaxed solution. For the T = 3 case, the saddle
point between the two negative regions in f has collapsed to a line, also seen for simpler
initial conditions by Linardatos (1993).

When it comes to large scale features, for the T = 2 case, there are two main regions in
the final state fT (positive and negative), but for the T = 3 case, there are three regions
(the positive region is split into two disconnected parts). We see that T not only controls
the number of regions in FLH but also the final state fT in our MR calculations. This
is a direct consequence of perserving the topological structure of f0. The fact that an
analogous evolution happens in the 3D simulations of Yeates et al. (2010) supports the
idea that the FLH in the 3D simulation evolves primarily by simplifying under advection
(Russell et al. 2015; Pontin et al. 2016). For the T = 2 case, we can also directly compare
Figure 1 d-f and 7.

During the unstirring, the velocity field u determined by the MR algorithm adapts
to the patterns of f at every time step. This is illustrated by the vector plots in Figure
(8) with the contours of f in the background. The unstirring occurs mostly in regions
where f is “folded” and is less relevant around the edges of the domain. Interestingly,
we observe that u has the same topology as f , in the following sense. We can assign a
topological degree to u as the number of vortex centres (O-points) minus the number of
stagnation points (X-points). This number is observed to match the equivalent number
computed from the critical points of the scalar field f , which for these simulations is T .

Next we show some diagnostics of the MR process. The energy E(t) = 〈|∇f |2〉 and
the enstrophy ε(t) = 〈|∇ × u|2〉 as functions of time are shown in Figure 9. In both test
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Figure 7. Pseudo-color plot of f with four contour levels. Left column: T = 2 case. Right
column: T = 3 case. From top to bottom: (1) initial density distribution f0 = A(x, y, 0), (2)
contours of f become less elongated, (3) positive and negative regions separate, (4) the final
unstirred scalar field fT . Animated versions of the two columns of this figure are available in
the supplementary material, see E3f, T3f.
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Figure 8. The obtained velocity field u at different times superimposed on isocontours of f .
Two contours with positive values are represented by red solid lines, and two contours with
negative values are represented by dashed blue lines. As time goes by, u gradually unfolds f . An
animated version of this figure is available in the supplementary material, see E3u, T3u. Left
column: T = 2 case. Right column: T = 3 case.
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Figure 9. Energy E(t) = 〈|∇f(x, y, t)|2〉 and enstrophy ε(t) = 〈|∇ × u(x, y, t)|2〉 as a function
of time.

Figure 10. Comparison of signature function S(fc) for non-zero values of f0 and fT .

Figure 11. Comparison of histogram of f0 and fT sampled from the same plot windows as in
Figure 7.
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cases, the energy converges to an asymptotic value. The enstrophy is expected to converge
towards zero from (2.21). Numerically we find aO(105) magnitude drop. Additionally, the
signature function S(fc) and the histogram of f values at each grid point for f0 and fT are
well conserved, shown in Figures 10 and 11. For the signature function, the isocontours
fc are taken at 200 equally spaced points in the range [fmin, fmax]. The histogram is
sampled in the same reduced domain as in Figure 7. Together, these measures show that
the topology of f is well preserved during MR.

4. Conclusion

In this study, we sought to determine the simplest final state fT of a passive scalar
field that could be obtained by incompressible advection. Two types of method were
tested: an adjoint-based variational method (VM) that either minimizes the Dirichlet
seminorm E(t) = 〈|∇f |2〉 directly (parametrized by θ = 1), or maximizes a mix-norm
measured by 〈|∇−1f |2〉 (parametrized by θ = −1); and a 2D magnetic relaxation method
(MR) driven by a fictitious force −∇2f(∇f), which guarantees a monotonic decrease in
E(t). VM has the theoretical advantage of imposing fewer a priori restrictions on the
unstirring velocity field, and VM (θ = −1) is numerically more stable compared to VM
(θ = 1). This is consistent with previous studies using mix-norms (Thiffeault 2012; Foures
et al. 2014; Marcotte & Caulfield 2018). VM is also adaptable in ways that MR is not: for
example, if one were to consider a more restricted problem requiring that the velocity field
satisfies the Navier-Stokes equations. However, VM (θ = −1) becomes computationally
expensive, and struggles to converge when f0 gets complex. Hence, we found MR to be
the preferred method for general initial conditions, since it is numerically more robust
and scalable than VM.

Having identified our preferred method for complex initial conditions, we applied it to
the field line helicity patterns of 3D magnetic braids. Our main objective in doing so was
to probe the governing principles of the 3D simulations; specifically, could simplifying
the pattern of FLH under passive advection determine the final magnetic field produced
by 3D turbulent magnetic reconnection? The results in this paper agree with the 3D
simulations, in that f separates into a small number of large-scale regions with positive
or negative FLH, with the same topological degree as the initial configuration (cf. Yeates
et al. 2015). This finding supports the idea that the dominant evolution of FLH, at least
at large scales, is pure advection.

An interesting difference between the optimal unstirred states found in this work and
the field line helicity distributions produced by 3D magnetic reconnection is that the
large-scale regions produced by pure advection still contain topological substructure
in the contours of f (for example in Figure 7, bottom left). There are several local
maxima/minima within the main positive and negative regions, because the topology of
contours and critical points is preserved under advection. Previously published 3D mag-
netic reconnection simulations — like in Figure 1 f) — have not shown this substructure
in the final FLH (Yeates et al. 2010; Pontin et al. 2016). The evolution equation (1.3) for
FLH derived by Russell et al. (2015) contains other terms in addition to the advection
term. In principle, these terms allow for further simplification of the substructure. The
w · A term is especially interesting from this point of view, and our findings motivate
and support future investigations of its role. At the same time, it is also possible that
this substructure is not seen in the 3D simulations because the numerically accessible
resistivity causes it to diffuse.

A natural question that arises from this study is how the MR method could be
generalised to three-dimensional fluids. One idea is to choose the unstirring velocity to
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be a volume-preserving mean curvature flow (Huisken 1987). Such a flow has already
been used to model the deformation of droplets (Thürey et al. 2010), though care
would be needed at singularities (Mayer 2001). By contrast, the VM method generalises
naturally to three dimensions, though its numerical implementation would be a significant
challenge.

To conclude, our study shows that magnetic relaxation (MR) provides a powerful
method for unstirring a scalar field, even if the original scalar has nothing to do with
magnetic fields. We have shown that the method can work well for configurations
much more complex than the pioneering numerical studies of Linardatos (1993), while
reproducing the expected tendencies of contours to become “simpler” and of saddle points
to degenerate into Y-type line singularities (Linardatos 1993; Arnold & Khesin 1998). The
most obvious example of the latter is between the negative regions at the end of the T = 3
simulation (Figure 7). The strength of MR lies in its prescription of a specific velocity
field that is guaranteed to efficiently unstir f , in the sense that the Dirichlet seminorm is
monotonically decreasing. While such a velocity field may be challenging to generate in
real fluids, it could in principle be imposed in a conducting fluid by appropriate control
of the electric current density. It could be used more readily as an unstirring method in
computational studies.
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Hornig and P. Wyper for useful discussions during this research, as well as the anonymous
referees for significantly improving the paper.
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Appendix A. Variations of the Lagrangian

Here we show explicitly the variational derivatives of the Lagrangian L given by
(2.7). We assume either periodic boundary conditions on f and u, or ∇f

∣∣
∂D

= 0 and

impermeable boundary conditions on u (u·n
∣∣
∂D

= 0). For clarity, we take the case θ = 1.
Firstly, to derive the variations with respect to f and fT , we rewrite the Lagrangian as

L =− 〈fT∇2fT 〉+

∮
∂D

fT n · ∇fT dl + 〈Π∇ · u〉

−
∫ T

0

〈(
∂Γ

∂t
+ u · ∇Γ + Γ (∇ · u)

)
f

〉
dt+ 〈Γf〉

∣∣T
0

+

∫ T

0

∮
∂D

Γ (u · n)f dl dt

=− 〈fT∇2fT 〉+ 〈Π∇ · u〉 −
∫ T

0

〈(
∂Γ

∂t
+ (u · ∇)Γ + Γ (∇ · u)

)
f

〉
dt

+ 〈ΓT fT − Γ0f0〉, (A 1)

where the contour integral along the boundary vanishes because of the boundary condi-
tions on f and u mentioned above. Similarly, since

−〈fT∇2δfT 〉 = 〈∇fT · ∇δfT 〉 −
∮
∂D

fT n · ∇δfT dl

=− 〈∇2fT δfT 〉+

∮
∂D

∇fT n · ∇δfT dl −
∮
∂D

fT n · ∇δfT dl

=− 〈δfT∇2fT 〉, (A 2)
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the variational derivatives with respect to fT and f are

δL
δfT

= −2∇2fT + ΓT , (A 3)

δL
δf

= −
(
∂Γ

∂t
+ (u · ∇)Γ + Γ (∇ · u)

)
. (A 4)

To get the variation with respect to u, we need to rewrite the Lagrangian as follows:

L =〈|∇fT |2〉 − 〈∇Π · u〉+

∮
∂D

Π(n · u) dl +

∫ T

0

〈
Γ
∂f

∂t
+ Γ (u · ∇)f

〉
dt

=〈|∇fT |2〉 − 〈∇Π · u〉+

∫ T

0

〈
Γ
∂f

∂t
+ Γ (u · ∇)f

〉
dt. (A 5)

The velocity field is steady so we can take it out of the integral, then (A 5) becomes

L = 〈|∇fT |2〉 − 〈∇Π · u〉+

∫ T

0

〈
Γ
∂f

∂t

〉
dt+

〈
u ·
∫ T

0

(∇f)Γ dt

〉
. (A 6)

Hence the variational derivative with respect to u is

δL
δu

= −∇Π +

∫ T

0

(∇f)Γ dt. (A 7)

The two trivial variational derivatives give back the constraints we impose:

δL
δΠ

= ∇ · u, (A 8)

δL
δΓ

=
∂f

∂t
+ (u · ∇)f. (A 9)

The derivation for the mix-norm (θ = −1) is similar. If we write ∇2φ = fT , then
φ = ∇−2fT , so we get ∇φ = ∇∇−2fT = ∇−1fT , as in Foures et al. (2014); Marcotte &
Caulfield (2018). The objective functional can then be rewritten as

〈|∇−1fT |2〉 = 〈|∇φ|2〉 = −〈φ∇2φ〉+

∮
∂D

φn · ∇φdl = −〈(∇−2fT )fT 〉, (A 10)

where we assumed periodic boundary conditions for φ, and the variational derivatives
for fT and f are

δL
δfT

= −2∇−2fT − ΓT , (A 11)

δL
δf

=
∂Γ

∂t
+ (u · ∇)Γ + Γ (∇ · u). (A 12)

Appendix B. Initial patterns for Section 3

Our initial f0 patterns are based on the T = 2 and T = 3 configurations simulated in
3D by Yeates et al. (2010). Those initial configurations were braided magnetic fields in
a 3D Cartesian domain with the general form,

B0(x, y, z) = ẑ +

n∑
i=1

2ki√
2

[−(y − yi)x̂+ (x− xi)ŷ]

· exp

[
− (x− xi)2 + (y − yi)2

2
− (z − zi)2

4

]
. (B 1)
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The case with topological degree T = 2, also called the E3 braid, has pa-
rameters n = 6, ki = xi = [1,−1, 1,−1, 1,−1], yi = [0, 0, 0, 0, 0, 0] and zi =
[−20,−12,−4, 4, 12, 20]. The case with topological degree T = 3 has parameters
n = 8, ki = [1, 1,−1,−1, 1, 1,−1,−1], xi = 1.27[1,−1, 0, 0, 1,−1, 0, 0], yi =
1.27[0, 0, 1,−1, 0, 0, 1,−1], and zi = [−18,−18,−6,−6, 6, 6, 18, 18].

We set our initial 2D scalar field f0 to the field line helicity (FLH) pattern of the
corresponding magnetic field, as defined in (1.2). Since each field line connects from the
lower boundary z = −24 to the upper boundary z = 24, we can view A as a scalar
function on any cross section – here we take the lower boundary z = −24, and set
f0(x, y) = A(x, y, 0). The resulting patterns are shown in the top row of Figure 7.
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