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Abstract
In petroleum well test analysis, deconvolution is used to
obtain information about reservoir systems, for example
the presence of heterogeneities and boundaries. This
information is contained in the response function,
which can be estimated by solving an inverse problem in
the pressure and flow rate measurements. Our Bayesian
approach to this problem is based upon a paramet-
ric physical model of reservoir behaviour, derived from
the solution for fluid flow in a general class of reser-
voirs. This permits joint parametric Bayesian inference
for both the reservoir parameters and the true pres-
sure and rate values, which is essential due to the
typical observational error levels. Using sets of flexi-
ble priors for the reservoir parameters to restrict the
solution space to physical behaviours, samples from
the posterior are generated using Markov Chain Monte
Carlo. Summaries and visualisations of the posterior,
response, and true pressure and rate values can be
produced, interpreted, and model selection can be per-
formed. The method is validated through a synthetic
application, and applied to a field data set. The results
are comparable to the state of the art solution, but
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952 BOTSAS et al.

through our method we gain access to system parame-
ters, we can incorporate prior knowledge, and we can
quantify parameter uncertainty.

K E Y W O R D S

Bayesian modelling, deconvolution, MCMC, well test analysis

1 INTRODUCTION

Within petroleum engineering, well test analysis encompasses a set of methodologies for the
planning, conducting, and interpretation of the results of controlled experiments on a well in a
petroleum reservoir. The well test experiment controls the flow rate of fluid from the reservoir and
observes the pressure at the bottom of the well (the ‘bottomhole pressure’), producing a pair of
time series. The goal of well test analysis is then to identify and interpret the relationship between
pressure and rate, and use this to make inferences about reservoir parameters, properties, geology
and geometry (Bourdet, 2002).

A variety of technical tools have been developed in order to analyse the data from well
tests (Gringarten, 2008), such as straight-line analyses (Horner, 1951), type curve matching
(Gringarten et al., 1979), and derivative curve analysis (Bourdet et al., 1983). However, these
standard methods are typically restricted to the analysis of periods of constant-rate data, due to
the corresponding simplification of the pressure-rate relationship under such conditions. Hence,
variable rate data have to be treated as a collection of smaller independent data sets, resulting in
inconsistencies in the analysis arising from the obvious dependency induced by the cumulative
effect of production over time.

Deconvolution emerged as a major milestone in well test analysis (von Schroeter et al., 2004)
due to its ability to deal with variable rate tests in their entirety, enabling the consistent analysis
of larger and richer data than was previously accessible. The ability to deconvolve entire pressure
and rate histories enables a coherent analysis of longer-term behaviour, providing greater insights
into the flow behaviour of the reservoir and more distant geological features. Deconvolution is
considered state-of-the-art and is the most widely used methodology for well testing.

The key relationship for this inference comes from Duhamel’s principle (von Schroeter et al.,
2004), according to which, the bottomhole pressure, p̃, and the flow rate, q̃, written as functions
of time t, are accurately related by:

Δp̃(t) = p̃0 − p̃(t) = ∫
∞

0
g(t − t′)q̃(t′) dt′ = ∫

∞

0
q̃(t − t′)g(t′) dt′, (1)

where Δp̃ is the pressure drop from an initial equilibrium pressure p̃0 at t = 0, and use has been
made of the fact that g(t) = q̃(t) = 0 for t < 0, by causality and by definition respectively. The reser-
voir response function g is the object of primary interest, because it encapsulates all relevant well-
and reservoir-specific information in a single function, and thus provides an effective summary
and signature for the behaviour of a particular well in response to production. The value g(Δt)
describes the effect on the pressure at t of the rate at t −Δt; it is also the derivative of the pressure
drop at time Δt induced by a unit flow from t = 0.
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BOTSAS et al. 953

For visualization, it is better to plot z(𝜏) = 𝜏 + ln g(e𝜏), where 𝜏 = lnt (Bourdet et al., 1983);
Figure 1 shows an example. This greatly facilitates human interpretation of the response func-
tion, with features of the plot being directly associated with particular flow regimes and reservoir
features. These features may be categorized by the times at which they appear, where time is
effectively a surrogate for distance from the wellbore.

• Early-time (a few seconds or minutes) is dominated by the wellbore and its immediate sur-
roundings. The response usually begins with a unit slope straight line, representing the effect
of fluid filling the uniform wellbore, typically followed by a characteristic ‘bump’, which
represents the impedance caused by localized damage due to drilling, known as the ‘skin’.

• Middle-time (a few hours or days) usually shows stabilization as the well draws fluid from
the relatively homogeneous region beyond the damaged skin, where a ‘radial flow’ regime is
established in which fluid moves towards the well from all directions.

• Late-time (weeks or months) indicates features of the reservoir far from the wellbore, such as
impermeable boundaries or other heterogeneities.

Figure 2 shows some common response shapes. Note that a specific shape may not uniquely
identify a reservoir feature (e.g. the fault response can also be achieved by appropriate changes in
mobility) and that sequential features may mask each other.
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F I G U R E 1 The deconvolution of the bottomhole pressure, p̃ (left), the flow rate, q̃ (middle) and the
transformation z (right) of the reservoir response function g [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 2 Top view of indicative reservoir configurations (left subfigures) and resulting response
functions (right subfigures) [Colour figure can be viewed at wileyonlinelibrary.com]
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Of course, we do not observe entire pressure and rate functions: we only observe values at
a finite set of times. Furthermore, these observations do not give values of p̃ or q̃ directly, but
rather values subject to measurement error and other uncertainties. von Schroeter et al. (2004)
introduced the first deconvolution method that took these issues into account using a form of
penalized total least squares (TLS) regression, with the response z represented as a piecewise
linear function. The method has a number of limitations. First, it requires, and is highly sensitive
to, the specification of multiple hyperparameters; second, regularization is required to produce a
smooth response function; third, the flexibility of the linear spline representation means that the
resulting response functions are not guaranteed to be physically possible; and fourth, it lacks a
coherent approach to uncertainty analysis.

1.1 Problem formulation

To address these limitations, we propose a Bayesian approach, based on a different representa-
tion of the response function. First, we replace the linear spline by a parametric model based
on an explicit yet sufficiently general solution to the diffusion equation, thus avoiding the need
for regularization while restricting attention to physically sensible responses. Second, the afore-
mentioned hyperparameters are treated as nuisance parameters and integrated out. Finally, the
Bayesian approach inherently provides a coherent uncertainty analysis.

We first establish some notation. The well pressure, p̃, is observed at times t = {ti}, idealized
as point measurements, giving pressure data p = {pi}, for i = 1, … , m. We have a single obser-
vation, p0, for the initial reservoir pressure p̃0. The rate is modelled as periods of constant flow,
q̃ = {q̃j}, defined over known time intervals T = {[Tj,Tj+1]}, which are observed as q = {qj}, for
j = 1, … , N. We denote the piecewise constant function given by T and q̃ as q̃.

We are interested in the probability P(g, q̃, p̃0 |p,q, p0, 𝜅), where 𝜅 represents any other prior
knowledge e.g. T. Bearing in mind Equation (1) and the Bayes’ rule, we have

P(g, q̃, p̃0 |p,q, p0, 𝜅) ∝ P(p | p̃0, g ∗ q̃, 𝜅)P(q | q̃, 𝜅)
× P(p0 | p̃0, 𝜅)P(g | 𝜅)P(q̃ | 𝜅)P(p̃0 | 𝜅), (2)

where the first and second term of the right-hand side respectively are the likelihood and prior,
* indicates convolution, and we have used various independences to be described later. As stated,
g will be given by a parametric model based on an explicit solution to the diffusion equation, with
parameters 𝜙, so that the distributions on g will in fact be on 𝜙. In the next section, we describe
this model in detail.

2 THE RESPONSE MODEL

One of the main challenges for a Bayesian approach, in the context of well test analysis, is
to identify an appropriate prior distribution for the response function. The model should be
flexible enough to capture the shapes encountered in practice, restrictive enough to prohibit
non-physical results and computationally tractable. In addition, a model expressed in terms of
well and reservoir properties would support more detailed interpretation than is possible with
a generic representation such as a spline, permitting comparison to the results of other well
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(b) Multi-region radial composite model.

F I G U R E 3 The radial composite reservoir models represent the reservoir as two (left) or more (right)
concentric circular regions, each with different, constant mobility and diffusivity values, in the centre of which
lies the wellbore [Colour figure can be viewed at wileyonlinelibrary.com]

test analyses; providing constraints on, and a physical interpretation for, the prior; and perhaps
providing direct information about physical aspects of the system.

Here we use a variation of the ‘multi-region radial composite reservoir model’ (Acosta &
Ambastha, 1994; Zhang et al., 2010) to satisfy these desiderata. First, through appropriate choice
of parameter values, the response function can be made to resemble the majority of plausible
response shapes. Second, since the model is derived as a solution to the diffusion equation rep-
resenting the physical fluid flow problem, it is restricted to physically sensible forms. Third,
the finite-dimensional nature of the model makes it far more computationally tractable than a
description of an arbitrary reservoir. Finally, the model itself is parameterized in a way that can
be associated with the flow behaviour in the reservoir (Bourdet, 2002).

The multi-region radial composite model is based on the simple radial composite model with
an infinite outer region (Satman et al., 1980). This model represents the reservoir as two concen-
tric circular regions (the second region tends to infinity), at the centre of which lies the wellbore,
as shown in Figure 3a. The model has six parameters: three correspond to a well in a homogeneous
reservoir (Bourdet et al., 1983), and affect early-time behaviour and global scales; the remaining
three characterize the transition at the boundary of the inner region, and primarily affect the mid-
to late-time behaviour. These parameters are sufficient to derive the response function. They are
summarized in Table 1.

The parameters can be written as functions of the physical properties of the wellbore and reser-
voir: the wellbore radius rw, the wellbore storage coefficient C, the wellbore skin S (dimensionless
parameter associated with the zone of reduced permeability around a wellbore), the formation
thickness h, the total system compressibility ct, the viscosity of the fluid 𝜇, the permeability k and
the porosity 𝜙 of the medium, and the transition radius r1. The relationships between the derived
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956 BOTSAS et al.

T A B L E 1 Parameters of the radial composite reservoir model

Parameter Name Scope Description Definition

P Pressure match Global Pressure scale P = log (2𝜋h(k∕𝜇)1)

T Time match Global Time scale T = log
(

2𝜋h(k∕𝜇)1
C

)

W Wellbore storage
coefficient

Early time Early time shape W = log
(

Ce2S

2𝜋𝜙ct hr2
w

)

R Radius parameter Transition Dimensionless distance to
transition

R = log
(

r1
rwe−S

)

M Mobility ratio Transition Ratio of mobility between
regions

M = log
(
(k∕𝜇)1
(k∕𝜇)2

)

𝜂 Diffusivity ratio Transition Ratio of diffusivity
between regions

𝜂 = log
(
(k∕𝜇𝜙ct)1
(k∕𝜇𝜙ct)2

)

−3 −2 −1 0 1 2
log Time

z
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(f) η

F I G U R E 4 Response function sensitivity to changes in the parameters 𝜙 [Colour figure can be viewed at
wileyonlinelibrary.com]

model parameters and these fundamental parameters are given in the final column of Table 1. The
parameters k, 𝜇, 𝜙, and ct are piecewise constant over the regions of the radial model. Changes in
their values at the transition boundaries represent reservoir features such as faults and changes
in rock properties; due to the resulting changes in the six derived parameters, these then manifest
themselves as identifiable features in the response function. However, the fundamental param-
eters are not readily identifiable (Bourdet, 2002), and in the absence of strong prior information
about their values, we will work here with the six derived parameters 𝜙 = (P, T, W , R, M, 𝜂).

Figure 4 shows the effects on the features of the response function of changes in the parame-
ters 𝜙. The parameters T and P define time and pressure scales, and represent the responsiveness
of the well and reservoir to production. The parameter W governs the impedance to flow due to
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BOTSAS et al. 957

the skin effect surrounding the well. Parameter R corresponds to the distance from the wellbore
to the inter-region transition, and so affects the time at which the impact of that transition is per-
ceived. Finally, M and 𝜂 describe the relative changes in reservoir properties at the transition,
resulting in a shift in the response function stabilization level, or a localized deviation from that
level. In view of the multiplicative nature of the parameters T, P, W , M and 𝜂, logarithms are taken
(base 10 because this is the industry standard, in which values are most easily interpretable). The
radius parameter R determines the time at which features appear in the response function. In
view of the similar spacing between response features when plotted on a log time scale, and of the
relationship between time and distance from wellbore, the radius parameter is also treated on a
log scale, and parameterized in such a way that is always positive and incremental.

The simple radial model can be extended to the multi-region case (Acosta & Ambastha, 1994;
Zhang et al., 2010) by introducing additional concentric radial regions around the model, resulting
in a model of n regions and n−1 transitions as shown in Figure 3b. The multi-region model adds to
the parameters of the simple radial model an additional radius increment Ri = log

(
ri−ri−1
rwe−S

)

, mobil-

ity ratio Mi = log
(

(k∕𝜇)i
(k∕𝜇)i+1

)

, and diffusivity ratio 𝜂i = log
(
(k∕𝜇𝜙ct)1
(k∕𝜇𝜙ct)i+1

)

for each transition beyond
the first. This gives a total of 3n parameters: 𝜙 = (P,T,W , {Ri,Mi, 𝜂i}), with i = 1, … , (n − 1).
The extra regions and their parameters mean that the model can now describe complex combina-
tions of the features shown in Figure 4: for example, a shift of the stabilization level, followed by
a localized deviation from that level, requires at least two transitions, where, in the former there
is a change in mobility, and in the latter, in diffusivity. However, it also raises the question of how
many regions to use, which is addressed in Section 5.

3 THE BAYESIAN MODEL

Having described the model for the response function g, we now describe the various components
of Equation (2).

3.1 The data model

We first consider P(p | p̃0, g ∗ q̃, 𝜅) = P(p | p̃0, 𝜙, q̃, 𝜅), which represents the observational error
in the pressure data. We introduce a variance parameter 𝜎2

p , and use a multivariate Gaussian
distribution for the observed pressures when 𝜎2

p is known in addition to the other parameters:

p |𝜙, ỹ, 𝜎2
p , 𝜅 ∼ N

(

p̃(𝜙, ỹ), I
𝜎

2
p

)

, (3)

where Ix denotes the diagonal matrix with x on the main diagonal, ỹ = (q̃, p̃0), p̃ = p̃0 − c(g(𝜙) ∗
q̃), and c samples any continuous function of t at the points t. The piecewise constant nature of q̃
means that we can go further, and write c(g(𝜙) ∗ q̃) = C(𝜙)q̃, where C (𝜙) is an (m × N) matrix;
this makes the convolution computation particularly tractable. We note in passing that the time
points t are not equally spaced, so that the obvious Fourier transform method for computing the
convolution is not available.

The magnitude of 𝜎2
p is informed by the performance of the pressure gauges, which is

well-documented in the literature (Cumming et al., 2013a). For a typical well test, the accuracy is
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958 BOTSAS et al.

estimated to be within±5 psi, which we represent by 𝜎p ∼ U(0, 5). For the generation of synthetic
data, we take 𝜎p = 5.

We now consider P(q | q̃, 𝜅). Again, we introduce a variance parameter, and use a multivariate
Gaussian model:

q | q̃, 𝜎2
q , 𝜅 ∼ N

(

q̃, I
𝜎

2
q

)

. (4)

Expert judgement (Cumming et al., 2013a) suggests an associated uncertainty in measured rates
of up to 10% of their magnitude. We keep the value fixed to a constant 𝜎q = 0.05qm, where qm =
maxj({qj}).

Turning to P(p0 | p̃0, 𝜅), we again introduce a variance parameter 𝜎2
p0

and a Gaussian model:

p0 | p̃0, 𝜎
2
p0
, 𝜅 ∼ N(p̃0, 𝜎

2
p0
). (5)

The standard deviation is usually fixed to 𝜎p0 = 10, again informed by expert judgement
(Cumming et al., 2013a).

3.2 The prior

We now turn to the distributions P(𝜙 | 𝜅), P(q̃ | 𝜅), and P(p̃0 | 𝜅). The independence between these
quantities arises from their distinct physical meanings and the available prior knowledge.

3.2.1 Prior for model parameters 𝜙

Absent other information, we assume independence for each of the reservoir and system param-
eters in 𝜙, producing a distribution of the following form:

P(𝜙 | 𝜅) = P(P | 𝜅)P(T | 𝜅)P(W | 𝜅)
n−1∏

i=1
P(Ri | 𝜅)P(Mi | 𝜅)P(𝜂i | 𝜅)

for a multi-region radial composite model with n regions. For each component of 𝜙, we approach
prior specification from the perspective of eliminating non-physical and implausible values as
robustly as possible. Where possible, choices for priors are derived from information in geologi-
cal and geophysical studies of the corresponding parameters, supplemented by expert knowledge
from petroleum engineers. Alternatively, when the parameters of our model do not equate to
quantities of particular geological interest, we rely instead on a synthesis of expert judgement,
inspection of results from the analysis of other well tests in the literature, and knowledge of the
sensitivity of the response function to the parameters as seen in Figure 4. Based on these con-
siderations, we use Gaussian priors T ∼ N(2, 0.22) and P ∼ N(1.5, 0.22), thereby spanning around
two orders of magnitude in the (non-logarithmic) time and pressure scales; while for W , we use
W ∼ Ga(1, 0.2), thereby spanning many orders of magnitude in the wellbore storage coefficient.

The Ri represent positive increments in distance from the previous boundary. In order to
replicate our prior expectation of homogeneous behaviour in the early stages of the test, but
also the assumption that there is reasonable distance between the different transitions, we use
Ri ∼ N(2, 1). This means that the expectation of the width of the ith region is 100 times the
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BOTSAS et al. 959

‘effective wellbore radius’ rwe−S, while the variance means that the width varies between 0.1 and
105 times the effective wellbore radius (up to three standard deviations).

For {Mi} and {𝜂i}, we adopt a prior mean value of 0, corresponding to no change between
regions, and a symmetric distribution, representing an absence of prior knowledge about whether
these quantities will increase or decrease at a transition. To avoid degenerate solutions in which
the ratio values grow exceptionally large, we restrict ourselves to a relatively modest variance,
and use Mi ∼ N(0, 1) and 𝜂i ∼ N(0, 1), corresponding roughly to a factor of 103 variation in each
direction.

3.2.2 Prior for data parameters

The individual true rate values are independent P(q̃ | 𝜅) =
∏N

j=1P(q̃j | 𝜅). We use uniform
improper priors on R≥0 for the components: negative rates represent an injection of fluid into the
well, which does not occur in our data. Taking the sign of the rates into account is important,
since it might result to changes in the shape of the posterior response function. We use the same
prior for p̃0.

3.3 Posterior sampling

There is no closed-form expression for P(𝜙, ỹ,𝝈 |p,q, p0, 𝜅), where ỹ = (q̃, p̃0) as before, and
𝝈 = (𝜎p, 𝜎q, 𝜎p0), due to the complex form of the response as a function of 𝜙. Consequently,
a sampling-based method such as Markov Chain Monte Carlo (MCMC) is needed to extract
information from the posterior.

We can simplify things somewhat, however, by factorizing the posterior: P(𝜙, ỹ,𝝈 | x) =
P(ỹ |𝜙,𝝈, x)P(𝜙,𝝈 | x), where x = (p,q, p0, 𝜅). We find a Gaussian conditional posterior for ỹ:

P(ỹ |𝜙,𝝈, x) ∼ N(A−1b,A−1), (6)

where A and b are given by

A =

[
m𝜎−2

p + 𝜎−2
p0

−1T
mI

𝜎

−2
p

C(𝜙)
−C(𝜙)TI

𝜎

−2
q

1m I
𝜎

−2
q
+ C(𝜙)TI

𝜎

−2
p

C(𝜙)

]

,

b =

( m∑

i=1
p𝜎−2

p + p0𝜎
−2
p0
,qTI

𝜎

−2
q
− pTI

𝜎

−2
p

C(𝜙)

)T

,

where 1a is the a-dimensional vector with all elements equal to 1. The marginal posterior for 𝜙
and 𝝈 is:

P(𝜙,𝝈 | x) ∝ exp
{

ln | 2𝜋A |
1
2 −m ln(𝜎2

p) − N ln(𝜎2
q) − ln(𝜎2

p0
)

−1
2

(

pTI
𝜎

−2
p

p + qTI
𝜎

−2
q

q + p2
0𝜎

−2
p0

)

+ tr(bTA−1b)
}

.

Using this factorization, sampling from the posterior can be performed by sampling from the
marginal posterior for 𝜙 and 𝝈, and then sampling from the Gaussian for ỹ. This has two
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960 BOTSAS et al.

advantages: first, that the dimensionality of the space for which MCMC is required is greatly
reduced (in our examples, from around 200 to around 10); second, that this dimensionality no
longer depends on the length of the time series of measurements, which is critical for the scala-
bility of the method. Even for modest sample sizes, the result is a significant reduction in the time
needed to generate a given number of samples of (𝜙,𝝈, ỹ); in the case that one is interested only
in 𝜙, the reduction is even more significant.

Sampling from P(𝜙, 𝝈 | x) requires a careful choice of MCMC algorithm. First, we expect
strong correlations between the posterior parameters: Gibbs-type samplers are unsuitable and all
parameters need to be updated simultaneously. Second, the covariance structure is not known a
priori: the algorithm needs to be adaptive in order to discover the covariance structure as samples
accumulate. Finally, different combinations of parameter values can yield similar response func-
tions, and each of these combinations could correspond to a different posterior mode. Therefore,
the algorithm needs to be able to detect the presence of multiple modes and jump between them.

To tackle these challenges, we use the Differential Evolution Markov Chain with snooker
updater and fewer chains algorithm (DEzs), as described by ter Braak and Vrugt (2008). The
premise is to construct an adaptive random walk Metropolis MCMC using the concept of dif-
ferential evolution (DE) (Storn & Price, 1997). The MCMC analogue to DE is the Differential
Evolution Markov Chain (DEMC) (ter Braak, 2006), where the candidate solutions in DE cor-
respond to N parallel chains. The proposal for each chain is derived from the remaining N − 1
chains, which generate the transition probability in each step by updating scale and orientation
and, therefore, the covariance structure. DEzs is an extension of DEMC, based on two changes.
The first is applied in a randomly selected 90% of the iterations of the chain: in these iterations, the
difference vectors may be sampled from the past of the chains, not just the present. The second is
applied in the remaining 10% of iterations: the proposal is constructed using a ‘snooker’ update.
The advantage of the snooker update is that it jumps relatively easily between modes, thus facili-
tating sampling from a multi-modal posterior. We use an implementation of the DEzs algorithm
from the R package Bayesian Tools (Hartig et al., 2019).

4 EXAMPLE: SYNTHETIC CHANNEL

In this section, we evaluate the method by application to a synthetic reservoir with a known
response function with channel behaviour (Figure 5b). We generate a data set (Figure 5a) corre-
sponding to a well test of length 320 hours, comprising three periods of production at constant
but different rate values, and a total of 272 pressure measurements generated by convolution
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F I G U R E 5 Synthetic channel data [Colour figure can be viewed at wileyonlinelibrary.com]
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BOTSAS et al. 961

of the rate with the known response. To represent potential observational error, the pressure
measurements include additive random noise with known variance 𝜎2

p = 25.
Our primary focus with this analysis is verify that our methods are able to capture the reservoir

response behaviour, even though a channel is not a radially composite reservoir, and to determine
how precisely the parameter values can be obtained from the data given only weakly informative
priors. Consequently, we treat the true rate values and initial pressure as known, and equal to
their measured values, leaving 𝜙 as the parameter of interest, and we choose vaguer priors for
𝜙 than those recommended in Section 3.2: a Gamma prior for W and broad uniform priors for
the remaining parameters. The DEzs algorithm was run with three parallel chains for 666,667
iterations. A thinning of 50 and a burn-in of 1000 were applied, leaving 37,002 iterations to be
used for inference.

The resulting response function posterior samples are shown in Figure 6a, as light blue curves;
the MAP (Maximum a posteriori probability estimate) response is shown in dark blue and the
true channel response is overlaid in red. All samples are very close with each other and show
the characteristic limiting half-unit slope expected of a channel reservoir, thereby validating the
response shape. Figure 6b shows the residuals between the posterior samples of reservoir pressure
and the true values from the underlying synthetic model. Most of the samples lie within ±3 psi
of the true pressures, which is well within usual tolerances for such analyses.

(a) Posterior response functions (b) Posterior pressure residuals

(c) Scatterplots (d) Extended response functions

F I G U R E 6 Posterior response functions, pressure residuals, marginal distributions, and extended response
functions for the synthetic channel model [Colour figure can be viewed at wileyonlinelibrary.com]
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962 BOTSAS et al.

Figure 6c shows summaries of the posterior MCMC samples of the response parameters giving
rise to the response curves in Figure 6a. The marginal posteriors for T, P, W , and R have substan-
tially smaller variances than their priors, indicating that the data identifies these quantities quite
precisely. In contrast, the marginal posteriors for M and 𝜂 are generally close to their prior forms,
indicating an inability to identify specific values for these transition parameters. This picture is
refined by the joint posterior marginals, shown as scatterplots in Figure 6c. First, we see that there
is a strong positive correlation between P and W , and weaker positive correlations between both
those parameters and T. These can be explained by the fact that small changes in the early-time
shape (W) can be replicated by small shifts in the response (T and P), e.g. larger P values shift the
response curve downwards, while larger W values make the ‘bump’ steeper; these effects cancel
each other over a narrow range.

The late-time parameters (R, M, 𝜂) also show interesting behaviour. The (M, 𝜂) plot shows that,
unlike T, P, W , and R, these parameters cannot be well identified individually, i.e. cannot be con-
strained to a quasi-0-dimensional subset, but they can be constrained to a quasi-1-dimensional
subset, and in fact, the relationship is essentially affine. However, there are two separate regimes.
For smaller R, where the bulk of the probability lies, M and 𝜂 can take on a large range of val-
ues (although themselves still linearly related); for larger R, M and 𝜂 are essentially determined
as a function of R. There is a clear physical explanation for these two regimes, best explained
by reference to Figure 6d. This shows the posterior response function samples from Figure 6a
plotted over an extended range; the red curves correspond to the first regime, the blue to the
second. In the first, the limiting slope is indeed present. Its time of onset (essentially R) is quite
well specified, but provided the change in rock properties passes some threshold, the exact val-
ues of M and 𝜂 do not matter. In the second, the limiting slope is an illusion produced by the
window of observation; in reality, there is a jump in the response function to a constant higher
level. In this regime, the time of onset and the values of M and 𝜂 are tightly coupled: the smaller
the jump, the later must be the onset to push it out of the observation window. These results
reveal that the standard industry interpretation of the half-unit slope as exclusively indicative
of a channel is too definitive: a range of other reservoir configurations are consistent with this
behaviour.

5 EXAMPLE: FIELD DATA FROM AN OIL RESERVOIR

In this section, we analyse the results of a real oil field dataset of 2273 pressure observations and 22
production rates over approximately 150 hours, shown in Figure 7. We consider radial composite
models with 1–4 transitions (2–5 regions). The true rates and initial pressure are unknown, so
that in addition to using the DEzs algorithm for 𝜙 and 𝜎p, we sample from the Gaussian for q̃ and
p̃0, as described in Section 3.3. We ran three parallel chains in the DEzs algorithm for 1,666,667
iterations each, which, after thinning of 50 and burn-in of 10,000 were applied, resulted in 70,002
samples for inference.

For the following discussion, we focus on the 3-transition model. The posterior response and
rate samples are shown in Figure 8. The response shows a very early feature, at around 𝜏 = −2.5,
suggesting that the wellbore is very close to an inhomogeneity. The rate samples in Figure 8b show
significant deviation from the measured values, although the general structure remains. This is
consistent with the known scale of errors in these measurements.

The one- and two-dimensional marginals are shown in Figure 9 as smooth density estimates
and scatterplots respectively. The marginals for T, P, and W tend to high values relative to their
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F I G U R E 7 Field oil data rate and pressure measurements [Colour figure can be viewed at
wileyonlinelibrary.com]

(a) Posterior response functions (b) Posterior rates

F I G U R E 8 Posterior response and rate samples for the 3-transition model [Colour figure can be viewed at
wileyonlinelibrary.com]

priors, but although their posterior variances are larger than in the synthetic case, as one might
expect, they are still small relative to the priors. The radii parameters are reasonably far apart,
suggesting that there is no degeneracy arising from a trivial region. The p̃0 marginal suggests
that the true initial pressure is larger than the corresponding measurement, but the difference,
around 2psi, is not unreasonable. The variance 𝜎p lies in the range [2, 2.5], which is certainly a
reasonable pressure measurement error for an oil field reservoir. The posterior variances of the
late-time posterior parameters are small, with the exception of the ratio parameters for the third
transition, which cover a significant portion of their prior ranges. This is behaviour analogous to
that found in the synthetic case; we discuss it further presently.

The scatterplots show a more complicated correlation structure than the synthetic results.
The strong positive correlation for the early-time parameters extends to T, which implies that the
horizontal shift of the response has a more significant role in compensating for the effects of P
and W . Specifically, larger values of T shift the curve to the left, causing the skin ‘bump’ to appear
earlier, which, in consequence, causes W to increase.

There are also numerous late-time parameter correlations, some of which are reasonably inter-
pretable. For example, we detect negative correlations between M2 and the parameters M1 and
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964 BOTSAS et al.

F I G U R E 9 Scatterplots for the response parameters [Colour figure can be viewed at
wileyonlinelibrary.com]

R2, indicating that larger first transitions correspond to smaller second transitions. In terms of the
response, this says that the earlier the effect of the second transition arrives, the larger the size of
the transition needs to be to produce similar results.

5.1 Additional visualizations

Figure 10 shows an alternative representation of the posterior for the reservoir parameters, show-
ing how mobility and diffusivity change with radial distance from the wellbore. Specifically,
defining 𝜌i = log

∑i
j=1eRj = log

(
ri

rwe−S

)

and mi =
∑i−1

j=1Mj = log
(
(k∕𝜇)1
(k∕𝜇)i

)

, we plot the piecewise
constant functions taking [𝜌i−1, 𝜌i) to mi and 𝜂i−1 respectively. In these plots, a solid line indicates
the posterior mean, while the coloured bands depict the posterior sample range (dark blue), 99%
credible posterior intervals (middle blue), and 95% credible posterior intervals. In general terms,
the step changes in these parameters correspond to the features in the response function after the
early-time skin effect.

The first change in parameter values consists of a small decrease in 𝜂 and an increase in m:
this produces the increase in the response curve at around 𝜏 = −2 in Figure 8b. The subsequent
increase in the response function corresponds to the second, larger change in m and the switch
to positive values for 𝜂. Finally, the late-time unit slope observed in the response function corre-
sponds to the third, more substantial positive shift in m, and the wide range of possible values of
𝜂. These changes are indicative of an impermeable boundary to the reservoir, and this is indeed
the standard interpretation of a late-time unit slope.
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F I G U R E 10 Uncertainty step-plots for the 3 transition model applied to the oil field dataset [Colour figure
can be viewed at wileyonlinelibrary.com]

(a) 1 transition model (b) 2 transition model

(c) 3 transition model (d) 4 transition model

F I G U R E 11 Response uncertainty for 1, 2, 3 and 4 transitions respectively including the TLS result (as a
single black curve) [Colour figure can be viewed at wileyonlinelibrary.com]

5.2 Model comparison

In Figure 11 we plot the posterior response function samples for models with 1–4 transitions. Each
plot includes a black curve showing the TLS result, the current state-of-the-art. The 1-transition
result looks somewhat different to and flatter than the other results, probably indicating an
under-parameterization giving an over-smoothed result. The 2-transition result is closest to the
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T A B L E 2 Information criteria and marginal likelihoods for results from models with 1–4 transitions. Bold
indicates the smallest value for each criterion

Criterion 1 2 3 4

AIC 12,781.58 10,559.51 10,454.77 10,457.10

BIC 12,832.06 10,631.62 10,548.51 10,572.47

DIC 12,781.36 10,559.41 10,453.53 10,459.58

Neg log marginal likelihood 6405.793 5299.607 5246.078 5249.384

TLS result, with slight deviations in early times, again probably from the relative rigidity of
the model. The 3- and 4-transition results are very similar to each other, suggesting that the
4-transition model is over-parameterized and that the 3-transition model is an adequate descrip-
tion. The 3- and 4-transition results show a qualitatively new feature, occurring after the initial
skin ‘bump’, as compared to the 2-transition and the TLS results. This feature could be indicative
of hemiradial flow, which occurs when a boundary is detected close to the wellbore. Note that the
TLS method has smoothed over this feature.

In terms of computational cost, there is a significant difference between the TLS and our
method, with the former taking usually a few minutes and the latter a few hours, depending on
the dataset. However, this trade-off comes with some important inferential advantages; namely
the uncertainty quantification, the exclusion of non-physical results, and the access to meaningful
parameters.

In Table 2, we tabulate the AIC (Akaike, 1998), BIC (Schwarz, 1978), DIC (Spiegelhalter et al.,
2002), and marginal likelihood (Chib & Jeliazkov, 2001) values for all four models. All criteria
agree in preferring the 3-transition model, although the 4-transition models is a close second.
The results for the 3- and 4-transition results corroborate the idea that the 4-transition model is
over-parameterized, and that three transitions are sufficient to explain the data in this case.

It is worth noting that alternative algorithms, such as the reversible jump MCMC in Green
(1995) can potentially facilitate model selection, by overcoming the requirement of running mul-
tiple chains and the subsequent step of using information criteria and Bayes factors, as well as
provide uncertainty quantification in the choice of model.

6 CONCLUDING REMARKS

We have presented a new method for the deconvolution of reservoir well test data, using a param-
eterized, physical model for the response function, embedded in a fully Bayesian context in order
to deal with observational error and other uncertainties. We applied the method to synthetic and
field data sets, making inferences about the response function and other quantities of interest. We
examined the effect of different numbers of regions on the same data set and the contribution of
the parameters to the variation of the system. Finally, we used various forms of visualization for
the posterior parameters and their uncertainties.

The proposed method has a number of advantages over the current state-of-the-art TLS
method: the parameters can be linked to the flow behaviour of the reservoir, and thus can
either confirm results found with other well testing methods, or provide further information
for expert interpretation; the use of full distributions for the parameters of interest provides a
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BOTSAS et al. 967

principled way of evaluating joint uncertainty; and the method guarantees physically sensible
results.

We note that the methods described here can also be applied to gas reservoir data, after
performing a change of units to ‘pseudo-pressure’ in order to take into account the variable com-
pressibility and viscosity of gas, which also produces corresponding changes in the priors for T
and P.

Next steps include developing faster methods to compute the response and, more substan-
tially, the extension to the multi-well case (Cumming et al., 2013b).
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