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Abstract

Systems of Vlasov-Poisson type are kinetic models describing dilute plasma. The structure of the
model differs according to whether it describes the electrons or positively charged ions in the plasma.
In contrast to the electron case, where the well-posedness theory for Vlasov-Poisson systems is well
established, the well-posedness theory for ion models has been investigated more recently. In this
article, we prove global well-posedness for two Vlasov-Poisson systems for ions, posed on the whole
three-dimensional Euclidean space R3, under minimal assumptions on the initial data and the confining
potential.

1 Introduction

In this article, we investigate the well-posedness theory of a kinetic model for the ions in a dilute plasma.
Plasma is an ionised gas, which forms when an electrically neutral gas is subjected to a high temperature
or a strong electromagnetic field. This causes the gas particles to dissociate: electrons split apart from
the rest of the gas particle. A plasma therefore contains two distinguished types of charged particle:
negatively charged electrons and positively charged ions.

The Vlasov-Poisson system is a well established kinetic model used to describe plasma. The version
of the system that has been most widely discussed in the mathematics literature is a model for the
electrons in the plasma, evolving against a background of ions that is presumed to have a given stationary
distribution. This model takes the following form:

(V P ) :=



∂tfe + v · ∇xfe +
qe
me

E · ∇vfe = 0,

∇x × E = 0, ε0∇x · E = qiρ[fi] + qeρ[fe],

ρ[fe](t, x) :=

∫
Rd
fe(t, x, v) dv,

fe(0, x, v) = fe,0(x, v) ≥ 0.

(1.1)

Here fe(t, x, v) represents the phase-space density of electrons, qe and qi denote respectively the charge
on each electron and each ion, me is the mass of an electron, ε0 is the vacuum permittivity, and ρ[fi](x)
denotes the spatial density of ions which is assumed to be given and independent of time. The assumption
that the ion distribution is stationary is justified by the fact that the mass of an ion is typically much
greater than the mass of an electron. It is therefore common to make the approximation that the ions
are stationary and uniformly distributed.
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In this article, we instead consider a Vlasov-Poisson type system, extensively used in physics, describing
the ions in a plasma. In analogy with the electron model (1.1), we consider a system of the form

∂tfi + v · ∇xfi +
qi
mi
E · ∇vfi = 0,

∇x × E = 0, ε0∇x · E = qiρ[fi] + qeρ[fe],

ρ[fi](t, x) :=

∫
Rd
fi(t, x, v) dv,

fi(0, x, v) = fi,0(x, v) ≥ 0.

To complete this model, it is necessary to specify the electron distribution ρ[fe]. A widely used assumption
is that the electrons are in thermal equilibrium. This is justified by the fact that the electrons are relatively
very light and so fast moving, with a significant collision frequency. Thus the equilibrium distribution is
a Maxwell-Boltzmann law of the form

ρ[fe] ∼ e−βeqeΦ,

where the ambient electrostatic potential Φ is defined to be a function such that E = −∇xΦ, while βe
denotes the inverse electron temperature.

After an appropriate rescaling, this choice of electron distribution results in the following system:

∂tf + v · ∇xf + E · ∇vf = 0,

E = −∇xU, ∆U = A(t, U) eU − ρ[f ],

ρ[f ](t, x) :=

∫
Rd
f(t, x, v) dv,

f(0, x, v) = f0(x, v) ≥ 0,

∫
R2d

f0 dx dv = 1.

(1.2)

Here A(t, U) > 0 is a scaling term in the electron distribution, which we will discuss further below.
It is natural to include a further spatial confinement of the electrons, using an external potential.

That is, we assume that the electrons are also subject to a given external potential H. Their thermal
equilibrium is then of the form

ρ[fe] ∼ e−H+U = geU ,

where the function g : Rd → [0,+∞) is defined by g := e−H . We assume throughout the paper a minimal
condition on g, namely that g is fixed and belongs to the space L1 ∩ L∞(Rd).

We consider the two most natural versions of the Vlasov-Poisson system for ions. These differ based
on the choice of the scaling A. Choosing A = 1 results in the following system:

(V PME)V :=


∂tf + v · ∇xf + E · ∇vf = 0,

E = −∇U,
∆U = geU − ρf ,

f |t=0 = f0 ≥ 0,
∫
R2d f0 dx dv = 1.

(1.3)

Note that for solutions of (1.3), the total charge is not necessarily conserved and the system therefore
may not be globally neutral at all times. An alternative choice is to enforce global neutrality. For this A
must be chosen to normalise the electron distribution, that is, A =

(∫
Rd ge

U dx
)−1, which results in the

following alternative system:

(V PME)F :=


∂tf + v · ∇xf + E · ∇vf = 0,

E = −∇U,
∆U = geU∫

Rd ge
U dx
− ρf ,

f |t=0 = f0 ≥ 0,
∫
R2d f0 dx dv = 1.

(1.4)

Both systems are usually referred to as the Vlasov-Poisson system with massless electrons, abbreviated
to VPME. This refers to the fact that these systems can be derived from a coupled system of ions and
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electrons in the limit of ‘massless electrons’, in which the ratio of the electron and ion masses, memi , tends
to zero. For example, Bardos, Golse, Nguyen and Sentis [1] discuss this limit for coupled kinetic systems
of the form 

∂tfi + v · ∇xfi + qi
mi
E · ∇vfi = 0,

∂tfe + v · ∇xfe + qe
me
E · ∇vfe = C(me)Q(fe),

∇x × E = 0, ε0∇x · E = qiρ[fi] + qeρ[fe].

In the equation above, Q represents a collision operator such as a Boltzmann or BGK operator. Under
the assumption that sufficiently regular solutions of this system exist, they identify that in the limit
the electrons indeed assume a Maxwell-Boltzmann law, leading to a model for the ions that is similar
to (1.3), but with a time-dependent electron temperature. Also, for such a model, they prove a global
well-posedness result on the torus.

Systems of the form (1.2) have been used in astrophysics literature, for example in studies of the
expansion of plasma into vacuum [13], numerical investigations of the formation of ion-acoustic shocks
[12, 16] and of the phase-space vortices that form behind these shocks [3].

In this article, we consider the well-posedness of both (1.3) and (1.4). We remark that the well-
posedness theory for Vlasov-Poisson-type systems heavily depends on the dimension d in which the prob-
lem is posed and on the boundary conditions imposed on the system. Two frequently considered boundary
conditions are the periodic case, in which the system is posed on the d-dimensional flat torus, and the
whole space case, in which the problem is posed on all of Rd with a condition that f and E decay at
infinity.

Remark 1.1. Note that for the Vlasov-Poisson system for ions on the torus, the external confining
potential H is not typically used (in other words, g ≡ 1). Moreover one may take A = 1 without loss of
generality, since changing A corresponds to adding a constant to U . On the torus, the Poisson equation

∆U = h

has a solution only if h has total integral zero; it follows that if a solution of (1.3) on the torus exists,
it must necessarily be globally neutral at all times. Thus on the torus there is no distinction between the
system (1.3) with variable total charge and the system (1.4) with fixed total charge.

In one dimension (d = 1), global well-posedness for VPME was proved by Han-Kwan and the second
author [7]. In dimension d = 3, Bouchut [4] proved that global weak solutions exist for both systems
(1.3) and (1.4) on the whole space. In a recent work [5], the authors proved global well-posedness for the
Vlasov-Poisson system for ions in dimension d = 2 and d = 3 in the periodic case, i.e. when the problem is
posed on the flat torus, with g ≡ 1. However, a similar well-posedness result was not previously available
for the whole space case. This is the goal of this work.

To make a parallel, the classical Vlasov-Poisson system for electrons is known to be globally well-posed
in dimension d ≤ 3. Global existence of classical solutions in the whole space or on the torus was shown
in, for example, [18, 15, 10, 2]. Uniqueness for solutions with bounded density was proved by Loeper [11].
For a more detailed account of the development of this theory, see for example [6].

1.1 Main Result

The main result of this paper is a global well-posedness result for the VPME systems (1.3) and (1.4)
in R3, under minimal assumptions on the initial data and the confining potential g. To state the main
theorem, we first define the energy functionals associated to each of the systems (1.3) and (1.4). Each of
these functionals is conserved by sufficiently regular solutions of the associated system. For system (1.3)
where the total charge is variable, we use the following functional:

EV [f ] :=

∫
R3×R3

|v|2f dx dv +

∫
R3

|E|2 dx+ 2

∫
R3

(U − 1)geU dx.
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For system (1.4), with fixed total charge, we use

EF [f ] :=

∫
R3×R3

|v|2f dx dv +

∫
R3

|E|2 dx+ 2

∫
R3

φgeφ dx,

where
φ = U − log

(∫
R3

geU dx

)
.

The following theorem is the main result of this article.

Theorem 1.2 (Global well-posedness). Let f0 ∈ L1 ∩ L∞(R3 × R3) be a probability density satisfying∫
R3×R3

|v|m0f0(x, v) dx dv < +∞ for some m0 > 6, f0(x, v) ≤ C

(1 + |v|)r
for some r > 3.

Assume that g ∈ L1 ∩ L∞(R3), with g ≥ 0 satisfying
∫
R3 g = 1, and that EV [f0] ≤ C (resp. EF [f0] ≤ C).

Then there exists a unique solution f ∈ L∞([0, T ];L1 ∩ L∞(R3 × R3)) of (1.3) (resp. (1.4)) with initial
datum f0 such that ρf ∈ L∞([0, T ];L∞(R3)).

Remark 1.3. We refer to the class of solutions constructed here – bounded distributional solutions f of
(1.3) and (1.4) whose density ρf is uniformly bounded – as strong solutions.

Uniqueness holds for this class of solutions, as we prove below in Theorem 3.1. Moreover, for strong
solutions the electric field has at least a log-Lipschitz regularity, and so the associated characteristic flow
is well-defined. In particular it is possible to show that, if the initial datum is additionally C1, then
the corresponding solution is also C1. Thus our global existence of strong solutions (Theorem 1.2) also
includes, as a byproduct, the global existence of classical solutions.

Remark 1.4. Instead of assuming f0(x, v) ≤ C
(1+|v|)r for some r > 3, one can replace this hypothesis with

assumption (10) in [10, Corollary 3].

Remark 1.5. Our result is essentially optimal in terms of the assumptions. Indeed, as shown in [10,
Equation 16], controlling moments of order larger than 6 is needed to guarantee that our solution is strong
(i.e., ρf ∈ L∞([0, T ];L∞(R3))). Also, the boundedness of g is needed to ensure that the electric field
enjoys at least a log-Lipschitz regularity, so that characteristics exist and are unique.

1.2 Strategy

The first step in the proof is to obtain regularity and stability estimates on the electrostatic potential U.
This is carried out in Section 2. This provides the necessary tools to complete the proof of well-posedness.
This is done in two stages. In Section 3 we prove uniqueness for solutions with bounded density. Then,
in Section 4, we show the global existence of strong solutions.

1.2.1 Analysis of the Electrostatic Potential

The analysis of the VPME systems (1.3) and (1.4) hinges on an understanding of the electrostatic potential
U .

We require two kinds of estimates. On the one hand, we prove regularity estimates that give quan-
titative bounds on U given certain Lp bounds on ρf . On the other hand, we prove stability estimates,
controlling the distance between the electric fields for two solutions of the VPME system, as is needed to
prove the uniqueness of solutions.

Our strategy is based on the following decomposition of the electric field. We write the electrostatic
potential in the form

U = Ū + Û ,
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where Ū satisfies the equation
−∆Ū = ρf , lim

|x|→0
Ū(x) = 0.

In other words, Ū satisfies the same equation as the electrostatic potential in the Vlasov-Poisson system
for electrons. The remainder Û must then satisfy either

∆Û = geŪ+Û or ∆Û =
geŪ+Û∫

R3 geŪ+Û dx
. (1.5)

We will similarly write
E = Ē + Ê, Ē := −∇Ū , Ê := −∇Û .

This decomposition was introduced in [7] in order to study the Vlasov-Poisson system for ions in the one
dimensional case. It was then used in [5] to study well-posedness in the cases d = 2, 3 on the torus.

In Section 2 of this article, we analyse the remainder term Û . To deal with the nonlinearity in the
equation satisfied by Û , we make use of techniques from the calculus of variations.

In this way we are able to show that, under assumptions on ρf that we expect to be satisfied by
solutions of the Vlasov-Poisson systems (1.3) and (1.4), the equations (1.5) for Û are well-posed and
enjoy good regularity estimates. Specifically, we show that Û ∈ C1,α for any α ∈ (0, 1), with a uniform in
time bound on this norm. Thus U is close to Ū up to a smoother correction, which is controlled uniformly
in time in a strong norm. These estimates then allow methods developed for the Vlasov-Poisson system
for electrons to be adapted to the ion case.

This strategy was previously used in [5] to show well-posedness on the torus in dimension two and
three. Here we apply it to the case where x ∈ R3. There are two main differences in the whole space
case compared to the torus case. One is that the domain is unbounded and we therefore need to account
for the decay of the potential at infinity. In practice, this involves identifying an appropriate functional
setting for the optimisation problem characterising Û .

The other is that in the whole space we study two different models, with different nonlinearities. In
particular, for the model (1.4) with fixed total charge, the nonlinearity is different from the torus case due
to the normalisation of the electron density. Notice, for instance, that this nonlinearity is not monotone
in Û . To handle this nonlinearity with techniques from the calculus of variations, it is necessary to modify
the functional used to show the well-posedness of the equation. The natural choice of functional is not
bounded below, and so the proof in Subsection 2.3.2 differs from the one in [5]. Moreover, a new stability
estimate is needed (Lemma 2.12).

1.2.2 Well-posedness in R3

The well-posedness consists of two parts: existence and uniqueness of strong solutions. The existence is
based on showing the propagation of moments. The idea is to show an a priori estimate on solutions, to
the effect that, if the initial datum has a velocity moment of sufficiently high order: if∫

R3×R3

|v|m0f0 dx dv < +∞,

then the velocity moments of the solution can also be controlled:

sup
t∈[0,T ]

∫
R3×R3

|v|m0f(t, x, v) dx dv < +∞.

In Section 4, we prove the propagation of moments in this sense for the VPME systems (1.3) and (1.4).
The principle is to follow the approach of Lions and Perthame [10], adapting it to include the extra part
of the electrostatic potential Û . This is possible thanks to the uniform estimates obtained in Section 2.

For the uniqueness part of Theorem 1.2, we use an approach in the style of Loeper [11], who proved
uniqueness for solutions of the Vlasov-Poisson system for electrons such that ρf is bounded in L∞(Rd).
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Loeper’s strategy is to prove a stability property for solutions with respect to the initial data, quantified in
the second order Wasserstein distance W2. In Section 3, we prove an estimate of this type for the VPME
systems (1.3) and (1.4) in the whole space. The key here is that we need to prove suitable stability
estimates for the smooth part of the potential Û , in the case of the unbounded domain R3. We carry this
out in Subsection 2.5.

In Subsection 1.3, we show how to use these results to complete the proof of Theorem 1.2 – in particular,
to show that under the assumptions of the theorem, the resulting solutions have bounded density so that
the uniqueness result may be applied.

1.3 Proof of the Main Result

Proof of Theorem 1.2. Arguing as in [10] and in [5], by approximation one can construct a global solution
f ∈ L∞([0, T ];L1 ∩ L∞(R3 × R3)) of (1.3) (resp. (1.4)) with uniformly bounded energy. Then, it follows
by Proposition 4.1 below that all moments of order less than m0 are uniformly bounded on every finite
time interval.

Next, we show that this implies that the solution has bounded density. We introduce the characteristic
system associated to the Vlasov-Poisson system, which is the following ODE system: for (x, v) ∈ R3×R3,

d

dt
X(t, x, v) = V (t, x, v),

d

dt
V (t, x, v) = E (X(t, x, v)) ; X(0, x, v) = 0, V (0, x, v) = v.

As in [10], since m0 > 6 this implies that Ē is uniformly bounded (see [10, Equation 16]), while Ê
is uniformly bounded thanks to Propositions 2.5-2.7. This implies that E is uniformly bounded, and
therefore the characteristics satisfy the bound

|V (t, x, v)− v| ≤ CT for all (t, x, v) ∈ [0, T ]× R3 × R3.

Thus

f(t,X(t, x, v), V (t, x, v)) = f0(x, v) ≤ C

(1 + |v|)r
≤ CT

(1 + |V (t, x, v)|)r
for all (t, x, v) ∈ [0, T ]×R3×R3,

and so
f(t, y, w) ≤ CT

(1 + |w|)r
for all (t, y, w) ∈ [0, T ]× R3 × R3.

Since r > 3, this yields

ρf (t, y) ≤ CT
∫
R3

1

(1 + |w|)r
dw ≤ CT for all (t, y) ∈ [0, T ]× R3,

and the uniqueness follows by Theorem 3.1.

1.4 Energy Functionals

We noted above that each of the VPME systems has an associated energy functional, which we denoted
respectively by EV and EF . These energy functionals are formally conserved by their associated systems.
The control of these energy functionals implies an integrability bound on the mass density ρf .

Lemma 1.6 (Control of the energy implies a moment bound). Assume one of the conditions

EV [f ] ≤ C0, EF [f ] ≤ C0.

Then there exists a constant C depending on C0 and ‖g‖L1(R3) only such that∫
R3×R3

|v|2f dx dv ≤ C.

It follows that, if f0 ∈ L∞(R3 × R3), the associated mass density, ρf =
∫
R3 f dv satisfies

‖ρf‖
L

5
3 (R3)

≤ C. (1.6)
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Proof. Observe that the functions xex, (x− 1)ex are bounded from below, uniformly for all x ∈ R:

xex ≥ −e−1, (x− 1)ex ≥ −1.

Therefore, since g ≥ 0, in the variable charge case we have∫
R3×R3

|v|2f dx dv ≤ EV [f ] + 2‖g‖L1(R3) ≤ C
(
C0, ‖g‖L1(R3)

)
.

In the fixed charge case, we have∫
R3×R3

|v|2f dx dv ≤ EV [f ] +
2

e
‖g‖L1(R3) ≤ C

(
C0, ‖g‖L1(R3)

)
.

The estimate (1.6) then follows from a standard interpolation argument; see Lemma A.1 below.

Notation. The notation Lp(g) denotes Lp norms taken with respect to the density g:

‖f‖pLp(g) =

∫
R3

|f(x)|pg(x) dx.

2 Electric Field Estimates

2.1 Decomposition

We decompose the electrostatic potential U into the form U = Ū + Û , where Ū satisfies

−∆Ū = ρf , lim
|x|→∞

Ū(x) = 0. (2.1)

Thus Ū is exactly the electrostatic potential we would have in the case of the classical Vlasov-Poisson
system. The remainder Û must satisfy either

∆Û = geŪ+Û , (2.2)

in the case of variable total charge, or

∆Û =
geŪ+Û∫

R3 geŪ+Û dx
,

in the case of fixed total charge.
In the rest of this section, we show that Ū and Û exist and exhibit regularity estimates for them.

2.2 Singular Part

We recall some basic estimates on Ū satisfying the Poisson equation (2.1), in the case where ρf ∈ L1 ∩
L5/3(R3). This is the degree of integrability we expect to have on ρf when f is a solution of the VPME
system, based on the conservation of mass and energy.

To study Ū , we make use of the Green’s function for the Laplace equation on R3, which is the function

G(x) =
1

4π|x|
, x 6= 0.

The Poisson equation (2.1) has a distributional solution of the form G ∗ ρf (see for example [9, Theorem
6.21]). This solution decays at infinity and thus is the unique such solution by Liouville’s theorem for
harmonic functions.

We have the following integrability estimates on Ū , which follow from [8, Section 4.5].
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Lemma 2.1. Let ρf ∈ L1 ∩ L
5
3 (R3). Then Ū ∈ L3,∞ ∩ L∞(R3) with the estimates

‖Ū‖L3,∞(R3) ≤ C‖ρf‖L1(R3), ‖Ū‖L∞(R3) ≤ C‖ρf‖
5
6

L
5
3 (R3)

‖ρf‖
1
6

L1(R3)
, [Ū ]

C0, 15 (R3)
≤ C‖ρf‖

L
5
3 (R3)

.

Let ρf ∈ L1 ∩ Lp(R3), where p ∈ (1, 3). Then

‖Ē‖
L

3
2 ,∞(R3)

≤ C‖ρf‖L1(R3), ‖Ē‖Lq(R3) ≤ C‖ρf‖Lp(R3),

where
1

q
=

1

p
− 1

3
.

Note in particular that for p = 5
3 , we have q = 15

4 . We thus expect to control Ē, uniformly in time, in
the spaces L

3
2
,∞(R3) and L

15
4 (R3).

2.3 Existence of the Smooth Part

2.3.1 Variable Total Charge

We prove the existence of Û by making use of techniques from the calculus of variations. Consider the
functional

JV [h] :=

∫
R3

|∇h(x)|2 + g(x)eh(x)+Ū(x) dx ≥ 0.

The idea is to minimise JV over those functions h decaying at infinity for which ∇h ∈ L2(R3). Note that,
by a Sobolev inequality, these functions belong to L6(R3). Hence we introduce the following classical
notation:

Ẇ 1,2(R3) := {h : R3 → R : h ∈ L6(R3), ∇h ∈ L2(R3)}.

Lemma 2.2. Assume that Ū ∈ Ẇ 1,2(R3). There exists a unique minimiser of JV over Ẇ 1,2(R3).

Proof. Consider a minimising sequence (hn)n ⊂ Ẇ 1,2(R3). For sufficiently large n we have the bound

JV [hn] ≤ JV [−Ū ] =

∫
R3

|∇Ū |2 dx+

∫
R3

g(x) dx.

It follows that (∇hn)n is uniformly bounded in L2(R3). We may therefore pass to a subsequence such
that hn ⇀ h in L6(R3) and ∇hn ⇀ ∇h in L2(R3). Also, by the Rellich-Kondrachov theorem, for any
bounded set A the sequence hn1A converges to h1A strongly in Lp(R3) for any p < 6. Hence, by a diagonal
argument, it follows that (by passing to a further subsequence) we may assume that hn converges to h
almost everywhere on R3.

By lower semi-continuity of the norm under weak convergence, we have∫
R3

|∇h|2 dx ≤ lim inf
n→∞

∫
R3

|∇hn|2 dx.

By Fatou’s lemma, we have∫
R3

geh+Ū dx =

∫
R3

lim
n→∞

gehn+Ū dx ≤ lim inf
n→∞

∫
R3

gehn+Ū dx.

It follows that
JV [h] ≤ lim inf

n→∞
JV [hn] = inf

φ
JV [φ].

Thus h is a minimiser. The uniqueness of h follows from the convexity of JV .
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We now show that the smooth part of the potential Û can be taken to be the minimiser of JV . Let Û
denote the minimiser of JV and note that∫

R3

geÛ+Ū dx ≤ JV [Û ] ≤ JV [−Ū ]

and thus geÛ+Ū is a function in L1(R3).
It is then possible to show that Û satisfies

∆Û = geŪ+Û ,

which is the Euler-Lagrange equation associated to the minimisation problem above (see Appendix B).

2.3.2 Fixed Total Charge

In this subsection we prove the existence of Û in the case of fixed total charge. We will use an estimate
due to Bouchut [4, Lemma 2.6], which is used to obtain lower bounds on the integral∫

R3

geU dx.

This will provide upper bounds on the nonlinearity in the Poisson equation in the fixed total charge case.

Lemma 2.3. Let g ∈ L1 ∩ L∞(R3) with
∫
R3 g dx = 1. Then, for U ∈ L3,∞(R3), the following estimate

holds: ∫
R3

ge−|U | dx ≥ Ce−C‖U‖L3,∞(R3) ‖g‖
1
3
L∞(R3) .

We recall that Ū has the representation G ∗ ρf and is therefore non-negative in the cases we consider
(d = 3).

Lemma 2.4 (Existence of Û). Let Ū ∈ Ẇ 1,2(R3) be non-negative. Then there exists a unique solution
Û ∈ Ẇ 1,2(R3) satisfying

∆Û =
geÛ+Ū∫

R3 geŪ+Û dx
.

For this Û , we have

0 <

∫
R3

geŪ+Û dx < +∞.

Proof. The uniqueness of solutions in the class Ẇ 1,2(R3) follows from [4, Lemma 2.5]. To construct a
solution, we look for a minimiser of

JF [h] :=

∫
R3

|∇h|2 dx+ log

(∫
R3

geŪ+h dx

)
.

The difficulty in this case compared to the variable charge case is that this functional is not bounded
below. We therefore introduce an approximating functional JK ,defined by

JK [h] :=

∫
R3

|∇h|2 dx+ LK

(∫
R3

geŪ+h dx

)
.

The function LK is a smooth and non-decreasing approximation of the logarithm function, satisfying

LK(x) :=

{
log x x > e−(K−1)

−K x ≤ e−K
, |L′K(x)| ≤ 1

x
∧ eK−1 ‖L′′K‖L∞ ≤ CK .
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We minimise JK over the space Ẇ 1,2(R3). First, note that

inf JK [h] ≤ JK [−Ū ] = ‖∇Ū‖2L2(R3) + LK
(
‖g‖L1(R3)

)
.

Let (hn)n be a minimising sequence. Since LK is bounded from below by −K, we have the uniform
estimates

‖∇hn‖2L2(R3) ≤ ‖∇Ū‖
2
L2(R3) + LK(‖g‖L1(R3)) +K∫

R3

geŪ+hn dx ≤ e−(K−1) ∨ exp
[
‖∇Ū‖2L2(R3) + LK(‖g‖L1(R3))

]
.

As in the proof of Lemma 2.2, we may pass to a subsequence such that hn converges almost everywhere
to some h(K), with ∇hn converging weakly in L2(R3) to ∇h(K). Therefore

‖∇h(K)‖L2(R3) ≤ lim inf
n→∞

‖∇hn‖L2(R3),

∫
R3

geŪ+h(K)
dx dx ≤ lim inf

n→∞

∫
R3

geŪ+hn dx.

Since LK is smooth and increasing, we have that

JK [h(K)] ≤ lim inf
n→∞

JK [hn] = inf
h
JK [h].

Hence h(K) is a minimiser of JK . It follows that h(K) is a solution of the associated Euler-Lagrange
equation

∆h(K) = geŪ+h(K)
L′K

(∫
R3

geŪ+h(K)
dx

)
. (2.3)

The right hand side of the approximating Poisson equation (2.3) is non-negative and its L1 norm
satisfies ∫

R3

geŪ+h(K)
L′K

(∫
R3

geŪ+h(K)
dx

)
dx ≤MK

(∫
R3

geŪ+h(K)
dx

)
,

where MK denotes the function
MK(x) = xL′K(x).

By assumption on LK , |MK | ≤ 1. Therefore ∆h(K) ∈ L1(R3) with

‖∆h(K)‖L1(R3) ≤ 1.

It follows that there exists C independent of K such that

‖h(K)‖L3,∞(R3) ≤ C.

Therefore, by Lemma 2.3, ∫
R3

geŪ+h(K)
dx ≥

∫
R3

geh
(K)

dx ≥ Cg > 0,

where Cg depends only on g, and in particular is independent of K. We may choose K sufficiently large
such that e−(K−1) < Cg. This implies that

L′K

(∫
R3

geŪ+h(K)
dx

)
=

1∫
R3 geŪ+h(K)

dx
,

so that for this choice of K, h(K) is in fact a solution of (2.7). We let Û = h(K).

2.4 Regularity of the Smooth Part

In this subsection, we prove regularity estimates on Û .
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2.4.1 Variable Total Charge

We prove the following regularity estimates on the function Û , constructed above as the unique minimiser
of JV over Ẇ 1,2(R3).

Proposition 2.5. Let ρ ∈ L1 ∩ L
5
3 (R3). Let Ū = G ∗ ρ. Then there exists Û satisfying (2.2) and the

estimates

‖Û‖L3,∞ ≤ C‖g‖L1(R3) exp

{
C‖ρ‖

1
6

L1(R3)
‖ρ‖

5
6

L
5
3 (R3)

}
‖∇Û‖

L
3
2 ,∞
≤ C‖g‖L1(R3) exp

{
C‖ρ‖

1
6

L1(R3)
‖ρ‖

5
6

L
5
3 (R3)

}
‖Û‖C1,α ≤ C‖g‖L∞(R3) exp

{
C‖ρ‖

1
6

L1(R3)
‖ρ‖

5
6

L
5
3 (R3)

}
, for all α ∈ (0, 1).

These estimates will follow from standard regularity theory for the Poisson equation, provided that
we can prove suitable integrability estimates on geŪ+Û . To do this, we first find a representation for Û
in terms of the Green’s function G. First recall that Û satisfies the equation

∆Û = geŪ+Û .

Then note that the following convolution with G is a solution of the same equation:

−G ∗ (geŪ+Û ).

Since geŪ+Û ∈ L1, this convolution belongs to the space L3,∞(R3). Thus the difference −G∗ (geŪ+Û )− Û
is a harmonic function decaying at infinity. Then by Liouville’s theorem

Û = −G ∗ (geŪ+Û ). (2.4)

From this representation it follows that Û ≤ 0. In particular,

geŪ+Û ≤ geŪ .

Then, for all p ∈ [1,+∞],

‖geŪ+Û‖Lp(R3) ≤ ‖geŪ‖Lp(R3) (2.5)

≤ e‖Ū‖L∞(R3)‖g‖1−1/p
L∞(R3)

‖g‖1/p
L1(R3)

< +∞.

Using this, we may deduce the following lemma.

Lemma 2.6. Assume that Ū ∈ L∞(R3). Then Û ∈ L3,∞ ∩C1,α(R3) for all α ∈ (0, 1), with the estimates

‖Û‖L3,∞(R3) ≤ Ce
‖Ū‖L∞(R3)‖g‖L1(R3), ‖Û‖C1,α(R3) ≤ C‖g‖L∞(R3) e

‖Ū‖L∞(R3) .

Proof. We use the representation (2.4) in combination with the Lp estimates (2.5).
In the case p = 1, we have

‖∆Û‖L1(R3) ≤ e
‖Ū‖L∞(R3)‖g‖L1(R3)

By [8, Section 4.5], Û ∈ L3,∞(R3) and Ê ∈ L
3
2
,∞ ∩ L∞(R3), with

‖Û‖L3,∞(R3) ≤ Ce
‖Ū‖L∞(R3)‖g‖L1(R3), ‖Ê‖

L
3
2 ,∞(R3)

≤ Ce‖Ū‖L∞(R3)‖g‖L1(R3).

In the case p =∞, we have

‖∆Û‖L∞(R3) ≤ e
‖Ū‖L∞(R3)‖g‖L∞(R3). (2.6)

By [8, Section 4.5], Ê ∈ C0,α(R3) for all α ∈ (0, 1), with

‖Ê‖C0,α(R3) ≤ Cge
‖Ū‖L∞(R3) .
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2.4.2 Fixed Total Charge

In this case, Û satisfies

∆Û =
geÛ+Ū∫

R3 geÛ+Ū dx
. (2.7)

We will perform a similar analysis as in the variable charge case above. The idea is to prove integrability
estimates for ∆Û . In the fixed charge case, we always have

‖∆Û‖L1(R3) = 1.

This implies that Û ∈ L3,∞(R3) and that for some universal constant C,

‖Û‖L3,∞(R3) ≤ C, ‖Ê‖
L

3
2 ,∞(R3)

≤ C. (2.8)

We next consider an L∞ estimate. Once again, we have the representation of Û in terms of a convo-
lution with the fundamental solution G. This representation implies that Û ≤ 0, and so

geŪ+Û ≤ ge‖Ū‖L∞(R3) .

In order to prove an L∞ estimate on ∆Û , the remaining step is to find a lower bound for the integral∫
R3

geÛ+Ū dx.

To do this, we use the fact that Ū ≥ 0 to deduce that∫
R3

geÛ+Ū dx ≥
∫
R3

geÛ dx.

Then, by estimate (2.8) and Lemma 2.3, there exists a constant Cg > 0 depending on g only such that∫
R3

geÛ+Ū dx ≥ Cg > 0.

Thus
‖∆Û‖L∞(R3) ≤ Cge

‖Ū‖L∞(R3) . (2.9)

From these estimates we deduce the following proposition.

Proposition 2.7. Let ρ ≥ 0 satisfy ‖ρ‖L1(R3) = 1 and ρ ∈ L
5
3 (R3). Let Ū be the unique Ẇ 1,2(R3)

solution of (2.1). Then there exists a solution of (2.7), which satisfies for all α ∈ (0, 1),

‖Û‖L3,∞(R3) ≤ C, ‖Ê‖
L

3
2 ,∞(R3)

≤ C, ‖Û‖C1,α(R3) ≤ exp

[
Cα,g

(
‖ρ‖

5
6

L
5
3 (R3)

)]
.

This is proved using the same Sobolev embedding estimates as in the variable charge case, using the
corresponding Lp estimates on ∆Û proved above.

2.5 Stability estimates

We want to extend to the VPME setting the uniqueness results in the style of Loeper for the case of
solutions with ρf ∈ L∞(R3). For this, we will need some stability estimates for the electrostatic potential
with respect to the charge density. The aim of this section is to prove the following results.
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Proposition 2.8 (Stability estimates: variable total charge). Let ρ1, ρ2 ∈ L∞(R3) be probability densities
on R3. Let Ūi ∈ Ẇ 1,2 ∩ L∞(R3) solve respectively for i = 1, 2

−∆Ūi = ρi.

Let Ûi ∈ L3,∞ ∩ L∞ ∩ Ẇ 1,2(R3) satisfy
∆Ûi = geÛi+Ūi .

Then

‖∇Ū1 −∇Ū2‖L2(R3) ≤ max
i
‖ρi‖

1
2

L∞(R3)
W2(ρ1, ρ2),

‖∇Û1 −∇Û2‖L2(R3) ≤ C max
i
‖ρi‖

1
2

L∞(R3)
W2(ρ1, ρ2),

where
C = ‖g‖

1
2

L
3
2 (R3)

exp

{
C0

[
1 + max

i
‖Ūi‖L∞(R3) + max

i
‖Ûi‖L∞(R3)

]}
.

Proposition 2.9 (Stability estimates: fixed total charge). Let ρ1, ρ2 ∈ L∞(R3) be probability densities
on R3. Let Ūi ∈ Ẇ 1,2 ∩ L∞(R3) solve respectively for i = 1, 2

−∆Ūi = ρi.

Let Ûi ∈ L3,∞ ∩ L∞ ∩ Ẇ 1,2(R3) satisfy

∆Ûi =
geÛi+Ūi∫

R3 geÛi+Ūi dx
.

Then

‖∇Ū1 −∇Ū2‖L2(R3) ≤ max
i
‖ρi‖

1
2

L∞(R3)
W2(ρ1, ρ2),

‖∇Û1 −∇Û2‖L2(R3) ≤ C max
i
‖ρi‖

1
2

L∞(R3)
W2(ρ1, ρ2),

where
C = ‖g‖

1
2

L
3
2 (R3)

exp

{
C0

[
1 + max

i
‖Ui‖L∞(R3) + max

i
‖Ûi‖L∞(R3)

]}
.

To prove these results, we first recall the following estimate from [11, Theorem 2.9]. Note that
in the original statement it is assumed that the densities have finite second moments. However, by
approximation, this assumption can be dropped.

Lemma 2.10 (Stability for Ū). Let ρ1, ρ2 ∈ L∞(R3) be probability densities on R3. Let Ūi solve respec-
tively for i = 1, 2

−∆Ūi = ρi, Ūi(x)→ 0 as |x| → ∞.

Then
‖∇Ū1 −∇Ū2‖L2(R3) ≤ max

i
‖ρi‖

1
2

L∞(R3)
W2(ρ1, ρ2).

The next step is to control the smoother part of the potential in terms of the singular part.
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2.5.1 Variable Total Charge

Lemma 2.11 (Stability for Û : variable total charge). Let φ1, φ2 ∈ L3,∞ ∩ L∞ ∩ Ẇ 1,2(R3) be given
non-negative functions. Let Û1, Û2 ∈ L3,∞ ∩ L∞ ∩ Ẇ 1,2(R3) satisfy

∆Ûi = geÛi+φi , i = 1, 2.

Then
‖∇Û1 −∇Û2‖2L2(R3) ≤ C ‖∇φ1 −∇φ2‖2L2(R3),

where, for some uniform constant C0,

C = ‖g‖
L

3
2 (R3)

exp

{
C0

[
1 + max

i=1,2
‖φi‖L∞(R3) + max

i=1,2
‖Ûi‖L∞(R3)

]}
.

Proof. Consider the difference Û1 − Û2, which satisfies the equation

∆(Û1 − Û2) = g
(
eÛ1+φ1 − eÛ2+φ2

)
. (2.10)

Using Û1 − Û2 as a test function in the weak form of (2.10), we find that

‖∇(Û1 − Û2)‖2L2(R3) =

∫
R3

g
(
eÛ2+φ2 − eÛ1+φ1

)
(Û1 − Û2) dx

=

∫
R3

geÛ2

(
eφ2 − eφ1

)
(Û1 − Û2) dx+

∫
R3

geφ1
(
eÛ2 − eÛ1

)
(Û1 − Û2) dx.

It is valid to use Û1 − Û2 as a test function since Û1 − Û2 ∈ Ẇ 1,2(R3) and g
(
eÛ2+φ2 − eÛ1+φ1

)
∈

L1 ∩ L∞(R3).
For all x, y ∈ R, by the Mean Value Theorem there exists ξ ∈ (x, y) such that

ex − ey = (x− y)eξ.

We therefore have the two inequalities

(ex − ey)(x− y) ≥ |x− y|2emin {x,y} (2.11)

and
|ex − ey| ≤ |x− y|emax {x,y}. (2.12)

Since Ûi ≤ 0, we have the estimate

‖∇(Û1 − Û2)‖2L2(R3) ≤
Cφ1,φ2
C
Û1,Û2

∫
R3

geÛ2 |φ1 − φ2||Û1 − Û2|dx−
C
Û1,Û2

Cφ1,φ2

∫
R3

geφ1 |Û1 − Û2|2 dx,

where
Cφ1,φ2 = exp

(
max
i=1,2

‖φi‖L∞(R3)

)
, C

Û1,Û2
= exp

(
−max
i=1,2

‖Ûi‖L∞(R3)

)
.

Using Young’s inequality for products, with a small parameter, we obtain for any η > 0

‖∇(Û1 − Û2)‖2L2(R3) ≤
Cφ1,φ2

4η
‖φ1 − φ2‖2L2(g) +

(
ηCφ1,φ2 − CÛ1,Û2

)
‖Û1 − Û2‖2L2(g).

Taking η such that ηCφ1,φ2 = C
Û1,Û2

, we conclude that

‖∇(Û1 − Û2)‖2L2(R3) ≤
1

4

C3
φ1,φ2

C2
Û1,Û2

‖φ1 − φ2‖2L2(g).
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We may then apply Hölder and Sobolev inequalities to obtain

‖∇(Û1 − Û2)‖2L2(R3) ≤ C ‖∇φ1 −∇φ2‖2L2(R3).

where
C = ‖g‖

L
3
2 (R3)

exp

{
C0

[
1 + max

i=1,2
‖φi‖L∞(R3) + max

i=1,2
‖Ûi‖L∞(R3)

]}
.

2.5.2 Fixed Total Charge

Lemma 2.12 (Stability for Û : fixed total charge). Let φ1, φ2 ∈ L3,∞ ∩ L∞ ∩ Ẇ 1,2(R3), φ1, φ2 ≥ 0 be
given. Let Û1, Û2 ∈ L3,∞ ∩ L∞ ∩ Ẇ 1,2(R3) satisfy

∆Ûi =
geÛi+φi∫

R3 geÛi+φi dx
. (2.13)

Then
‖∇Û1 −∇Û2‖2L2(R3) ≤ C ‖∇φ1 −∇φ2‖2L2(R3),

where, for some uniform constant C0,

C = ‖g‖
L

3
2 (R3)

exp

{
C0

[
1 + max

i=1,2

{
‖φi‖L∞(R3), ‖Ûi‖L∞(R3)

}]}
.

Proof. The difference Û1 − Û2 satisfies

∆(Û1 − Û2) =
geÛ1+φ1∫

R3 geÛ1+φ1 dx
− geÛ2+φ2∫

R3 geÛ2+φ2 dx
. (2.14)

We introduce the notation
mi :=

∫
R3

geÛi+φi dx.

We have the estimates
max
i=1,2

‖Ûi‖L3,∞(R3) ≤ C,

since the right hand sides of the equations (2.13) each have total integral equal to one. By Lemma 2.3,
and since Ûi ≤ 0 and φi ≥ 0, we have uniform upper and lower bounds

‖g‖L1(R3)e
‖φi‖L∞(R3) ≥ mi ≥ e−C .

From the weak form of equation (2.14), for all χ ∈ C∞c (R3),

−
∫
R3

∇χ · ∇(U1 − U2) dx =

∫
R3

χ

[
geÛ1+φ1

m1
− geÛ2+φ2

m2

]
dx (2.15)

From the assumptions on Ûi, we deduce that the right hand side of (2.14) is uniformly bounded in L∞

and L1. We can therefore extend the weak form (2.15) to test functions χ ∈ Ẇ 1,2(R3). We may therefore
choose χ = Û1 − Û2, which results in the identity

‖∇(Û1 − Û2)‖2L2(R3) =

∫
R3

(Û1 − Û2)

[
geÛ2+φ2

m2
− geÛ1+φ1

m1

]
dx

=

∫
R3

g
[
(Û1 + φ1 − logm1)− (Û2 + φ2 − logm2)

] [eÛ2+φ2

m2
− eÛ1+φ1

m1

]
dx

−
∫
R3

g (φ1 − φ2)

[
eÛ2+φ2

m2
− eÛ1+φ1

m1

]
dx− log

(
m2

m1

)∫
R3

g

[
eÛ2+φ2

m2
− eÛ1+φ1

m1

]
dx.
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The final term is equal to zero, by definition of mi. Applying the inequalities (2.11) and (2.12) above
results in the inequality

‖∇(Û1 − Û2)‖2L2(R3) ≤ −c1‖(Û1 + φ1 − logm1)− (Û2 + φ2 − logm2)‖2L2(g)

+ C1

∫
R3

g |φ1 − φ2|
∣∣∣(Û1 + φ1 − logm1)− (Û2 + φ2 − logm2)

∣∣∣dx,
where

C1 =
e

maxi=1,2 ‖Ûi+φi‖L∞(R3)

mini=1,2mi
, c1 =

e
−maxi=1,2 ‖Ûi+φi‖L∞(R3)

maxi=1,2mi
.

Young’s inequality for products, with a parameter, then implies the following estimate for any α > 0:

‖∇(Û1 − Û2)‖2L2(R3) ≤
(
C1

4α
− c1

)
‖(Û1 + φ1 − logm1)− (Û2 + φ2 − logm2)‖2L2(g) +C1α‖φ1 − φ2‖2L2(g).

Choosing α = C1
4c1

gives

‖∇(Û1 − Û2)‖2L2(R3) ≤
C2

1

4c1
‖φ1 − φ2‖2L2(g).

Then, since g ∈ L1 ∩ L∞, we deduce that

‖∇(Û1 − Û2)‖2L2(R3) ≤ Cg‖φ1 − φ2‖2L6(R3) ≤ C‖∇φ1 −∇φ2‖2L2(R3),

where, for some universal constant C0 > 0,

C = ‖g‖
L

3
2 (R3)

exp

{
C0

[
1 + max

i=1,2

{
‖φi‖L∞(R3), ‖Ûi‖L∞(R3)

}]}
.

3 Uniqueness

In this section we prove the uniqueness and stability in W2 of solutions to (V PME)V and (V PME)F
with bounded density. Recall that, given two non-negative measures on Rd with the same mass, one
defines

W 2
2 (µ, ν) := inf

π∈Π(µ,ν)

∫
Rd×Rd

|x− y|2π(dx dy),

where π ∈ Π(µ, ν) denotes the set of all probability measures in R2d that have marginals µ and ν.
Although the strategy of proof is very similar to the one used in our paper [5], the fact of working

in the whole space requires some modifications. The proof will be identical for the two models (1.3) and
(1.4), so we state it as a single theorem.

Theorem 3.1 (Uniqueness for solutions with bounded density). Let f0 ∈ L1(R3 × R3) be a probability
density with ρf0 ∈ L∞(R3). Fix a final time T > 0, and assume that g ∈ L1 ∩ L∞(R3), with g ≥ 0
satisfying

∫
R3 g = 1. Then there exists at most one solution f ∈ C([0, T ];L1(R3 × R3)) of (1.3) (resp.

(1.4)) with initial datum f0 such that ρf ∈ L∞([0, T ];L∞(R3)).
Moreover, the following quantitative stability estimate holds. Let fi, i = 1, 2, be two solutions of (1.3)

(resp. (1.4)) with ρfi ∈ L∞([0, T ];L∞(R3)).Then there exists a constant C, depending only on g and on
supt∈[0,T ]

(
‖ρfi(t)‖L1(R3) + ‖ρfi(t)‖L∞(R3)

)
(i = 1, 2), such that for all t ∈ [0, T ] the following bound holds:

1. If W2(f1(0), f2(0)) > 1/2 then

W2(f1(t), f2(t)) ≤W2(f1(0), f2(0))eCt.
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2. If W2(f1(0), f2(0)) ≤ 1/2, let t0 > 0 be such that log[W2(f1(0), f2(0))]e−Ct0 = log(1/2). Then

W2(f1(t), f2(t)) ≤

{
exp

[
log[W2(f1(0), f2(0))] e−Ct

]
for t ∈ [0, t0]

1
2e
C(t−t0) for t ∈ [t0, T ].

Proof. Let f1, f2 ∈ C([0, T ];L1(R3 × R3)) be two solutions of (1.3) (resp. (1.4)) such that ρf1 , ρf2 ∈
L∞([0, T ];L∞(R3)).

We will prove the result by means of a Gronwall type estimate. To do this, we note that as in [5],
thanks to our assumptions on the density, the electric field is log-Lipschitz and therefore our solutions are
transported by their respective characteristics, that we denote by (X(1), V (1)) and (X(2), V (2)).

Fix an arbitrary initial coupling π0 ∈ Π (f1(0), f2(0)) and consider the quantity

D(t) :=

∫
|X(1)

t −X
(2)
t |2 + |V (1)

t − V (2)
t |2 dπ0. (3.1)

As in [5], it follows from the definition of Wasserstein distance that

W 2
2 (ρf1(t), ρf2(t)) ≤W 2

2 (f1(t), f2(t)) ≤ D(t). (3.2)

Moreover, since π0 was arbitrary, we have

W 2
2 (f1(0), f2(0)) = inf

π0
D(0).

Hence, it suffices to control D(t). This amounts to performing a Gronwall estimate along the trajectories
of the characteristic flow.

Differentiating with respect to t gives

Ḋ(t) = 2

∫
(R3×R3)2

(X
(1)
t −X

(2)
t ) · (V (1)

t − V (2)
t ) + (V

(1)
t − V (2)

t ) ·
[
E1,t(X

(1)
t )− E2,t(X

(2)
t )
]

dπ0 (3.3)

We split the electric field into four parts:

E1,t(X
(1)
t )− E2,t(X

(2)
t ) =

[
Ē1,t(X

(1)
t )− Ē1,t(X

(2)
t )
]

+
[
Ē1,t(X

(2)
t )− Ē2,t(X

(2)
t )
]

+
[
Ê1,t(X

(1)
t )− Ê1,t(X

(2)
t )
]

+
[
Ê1,t(X

(2)
t )− Ê2,t(X

(2)
t )
]
.

Applying Hölder’s inequality to (3.3), we obtain

Ḋ ≤ D + 2
√
D

4∑
i=1

I
1/2
i ,

where

I1(t) :=

∫
(R3×R3)2

|Ē1,t(X
(1)
t )− Ē1,t(X

(2)
t )|2 dπ0, I2(t) :=

∫
(R3×R3)2

|Ē1,t(X
(2)
t )− Ē2,t(X

(2)
t )|2 dπ0;

I3(t) :=

∫
(R3×R3)2

|Ê1,t(X
(1)
t )− Ê1,t(X

(2)
t )|2 dπ0, I4(t) :=

∫
(R3×R3)2

|Ê1,t(X
(2)
t )− Ê2,t(X

(2)
t )|2 dπ0.

(3.4)

We estimate the above terms in Lemmas 3.3-3.6 below. Altogether we obtain

Ḋ ≤

{
CD|log(D)| if D < 1/2

CD if D ≥ 1/2.

Therefore
D(t) ≤ exp

[
log(D(0))e−Ct

]
as long as D(t) ≤ 1/2, while once D(t) reaches 1/2 (say at some time t̄ ≥ 0) then we have the alternative
bound

D(t) ≤ 1

2
eC(t−t̄).

From these bounds, the stability follows.
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In the remainder of this section, we prove Lemmas 3.3-3.6. We shall need the regularity estimates on
Ē provided by the boundedness of the density. It will be convenient to state them in a rather unusual
but compact form, for later use in Lemmas 3.3 and 3.5.

Lemma 3.2. Let Ū := G ∗ ρ, where G = − 1
4π|x| is the Green function, and assume that ‖ρ‖L1(R3) +

‖ρ‖L∞(R3) ≤M for some M ≥ 1. Let H : R+ → R+ denote the function defined as

H(s) :=

{
s (log s)2 if s ≤ e−2

4e−2 if s > e−2.

Then there exists a universal constant C such that

|∇Ū(x)−∇Ū(y)|2 ≤ CM2H(|x− y|2) for all x, y ∈ R3.

Proof. Let ŪM := 1
M Ū and ρM := 1

M ρ, and note that ŪM := G ∗ ρM with ‖ρM‖L1(R3) + ‖ρM‖L∞(R3) ≤ 1.
Hence, applying [11, Lemma 3.1] to the function ŪM we deduce that

‖∇ŪM‖L∞(R3) ≤ C, |∇ŪM (x)−∇ŪM (y)| ≤ C|x−y|
∣∣log |x−y|

∣∣ for all x, y ∈ R3 with |x−y| ≤ e−1.

This estimate implies that

|∇ŪM (x)−∇ŪM (y)|2 ≤ C H(|x− y|2) for all x, y ∈ R3,

and recalling that ŪM = 1
M Ū , this concludes the proof.

In all the following lemmas, D(t) is defined as in (3.1).

Lemma 3.3 (Control of I1). Let I1 be defined as in (3.4). Then

I1(t) ≤ CH(D(t)),

where H is defined in Lemma 3.2.

Proof. Since the density associated to ρf1 is uniformly bounded, we can apply Lemma 3.2 to bound

I1(t) ≤ C
∫

(R3×R3)2
H
(
|X(1)

t −X
(2)
t |2

)
dπ0.

Also, one can check that the function H is concave on R+. Thus, since π0 is a probability measure, we
may apply Jensen’s inequality to deduce that

I1(t) ≤ C H

(∫
(R3×R3)2

|X(1)
t −X

(2)
t |2 dπ0

)
≤ C H(D(t)),

where the last inequality follows from the fact that H is non-decreasing.

Lemma 3.4 (Control of I2). Let I2 be defined as in (3.4). Then

I2(t) ≤ C D(t).

Proof. One can note that, for any test function φ,∫
(R3×R3)2

φ(X
(i)
t ) dπ0 =

∫
R3×R3

φ(x)fi(t, x, v) dx dv =

∫
R3

φ(x)ρfi(t, x) dx. (3.5)

Thus

I2(t) =

∫
R3

|Ē1,t(x)− Ē2,t(x)|2ρf2(t, x) dx ≤ ‖ρf2(t)‖L∞(R3)‖Ē1,t − Ē2,t‖2L2(R3),

and we conclude using Propositions 2.8-2.9 (depending on the model under consideration) and (3.2).
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Lemma 3.5 (Control of I3). Let I3 be defined as in (3.4). Then

I3(t) ≤ CH(D(t)),

where the constant C > 0 depends only on E [f1(0)].

Proof. Note that

∆Û1,t = geÛ1,t+Ū1,t

(
resp. ∆Û1,t =

geÛ1,t+Ū1,t∫
R3 geÛ1,t+Ū1,t dx

)
.

We can thus deduce a log-Lipschitz estimate on Û by using Lemma 3.2. To do this we therefore need L1

and L∞ estimates on ∆Û .
By (2.6) and (2.9)

‖∆Û1,t‖L∞(R3) ≤ Cge
‖Ū1,t‖L∞(R3) .

Then, using the L∞ estimate on Ū from Lemma 2.1,

‖∆Û1,t‖L∞(R3) ≤ Cg exp

[
C‖ρf1(t)‖

5
6

L
5
3 (R3)

‖ρf1(t)‖
1
6

L1(R3)

]
≤ C,

where C depends only on the initial datum f1(0).
For the L1 estimates, in the fixed charge case we always have

‖∆Û1,t‖L∞(R3) = 1.

In the variable charge case, by (2.6) we have

‖∆Û1,t‖L1(R3) ≤ ‖g‖L1(R3)e
‖Ū1,t‖L∞(R3) ≤ ‖g‖L1(R3) exp

[
C‖ρf1(t)‖

5
6

L
5
3 (R3)

‖ρf1(t)‖
1
6

L1(R3)

]
≤ C,

where C depends only on the initial datum f1(0).
Therefore, by Lemma 3.2,

|∇Û1,t(x)−∇Û1,t(y)|2 ≤ CH(|x− y|2) for all x, y ∈ R3,

for some C depending only on f1(0).
We then argue as in Lemma 3.3: using the above regularity estimate on ∇Û1,t, we have

I3(t) ≤ C
∫

(R3×R3)2
H
(
|X(1)

t −X
(2)
t |2

)
dπ0.

Since H is concave and non-decreasing,

I3(t) ≤ C H

(∫
(R3×R3)2

|X(1)
t −X

(2)
t |2 dπ0

)
≤ C H(D(t)).

which concludes the proof.

Lemma 3.6 (Control of I4). Let I4 be defined as in (3.4). Then

I4(t) ≤ C D(t),

where D is defined as in (3.1) and CM,d depends on M and d.

Proof. Using (3.5), we deduce that

I4(t) =

∫
R3

|Ê1,t(x)− Ê2,t(x)|2ρf2(t, x) dx ≤ ‖ρf2(t)‖L∞(R3)‖Ê1,t − Ê2,t‖2L2(R3),

and we conclude by Propositions 2.8-2.9 and (3.2).
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4 Moment Estimates

In this section, we turn to the existence of strong solutions. We adapt the method of construction of
solutions developed by Lions and Perthame [10] for the Vlasov-Poisson system for electrons. The key step
is to prove an a priori estimate on the velocity moments of a solution. This is the content of the following
proposition.

Proposition 4.1. Let f0 ∈ L∞(R3 × R3), f0 ≥ 0, ‖f0‖L1(R3×R3) = 1. Assume that f0 also satisfies, for
some m0 > 3,

Mm0(0) :=

∫
R3×R3

|v|m0f0(x, v) dx dv < +∞.

Let f be a solution of (1.3) (resp. (1.4)) such that for all t,

EV [f ](t) ≤ C (resp. EF [f ](t) ≤ C),

and satisfying

‖f(t, ·, ·)‖L∞(R3×R3) ≤ ‖f0‖L∞(R3×R3),

∫
R3×R3

f(t, x, v) dx dv =

∫
R3×R3

f0(x, v) dx dv = 1.

Then, for all k < m0,∫
R3×R3

|v|kf(t, x, v) dx dv ≤ exp
[
C
(
1 + log(1 +Mk(0))

)
exp (Ct)

]
,

for some constant C depending only on ‖f0‖L∞(R3×R3) and EV [f0] (resp. EF [f0]).

The proof of this proposition follows by the classical argument by Lions and Perthame [10], simplified
with the use of Lorentz spaces. Indeed, since our electric field can be split as the sum of the classical
Vlasov-Poisson field plus a term uniformly bounded in L

3
2
,∞(R3) ∩ L∞(R3), the proof in [10] can be

adapted with some minor modifications. For convenience of the interested reader, we detail the argument
in Appendix A.

A Proof of Proposition 4.1.

The aim is to control the velocity moments Mk by use of a Gronwall estimate, where

Mk(t) := sup
0≤s≤t

∫
R3×R3

|v|kf(s, x, v) dx dv.

From [10], by using the equation we can deduce the estimate

d

dt
Mk(t) ≤ C‖Et‖Lk+3(R3)Mk(t)

k+2
k+3 . (A.1)

It therefore remains to control ‖Et‖Lk+3(R3). We assume from now on, without loss of generality, that
k > 3.

First, we note that the conservation of energy gives us uniform in time bounds on ρf and therefore
E. By Lemma 1.6 and conservation of mass, we have the uniform bounds

‖ρf (t, ·)‖L1(R3) ≡ 1, sup
t
‖ρf (t, ·)‖ 5

3
(R3) ≤ C.

From the regularity estimates above, we deduce that we have uniform bounds on the electric field:

sup
t
‖Ēt‖

L
3
2 ,∞(R3)

≤ C, sup
t
‖Ēt‖

L
15
4 (R3)

≤ C

sup
t
‖Êt‖

L
3
2 ,∞(R3)

≤ C, sup
t
‖Êt‖L∞(R3) ≤ C.
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If k + 3 > 15
4 , we require further estimates on ‖Ēt‖Lk+3(R3). To do this, we will follow the strategy

of [10]. We first note some preliminary estimates relating the Lp(R3) norms of ρf and Ē and similar
quantities to moments of f .

Lemma A.1. For any s, t ≥ 0 and k ≥ 0,∥∥∥∥∫
R3

f(s, · − vt, v) dv

∥∥∥∥
L
k+3
3 (R3)

≤Mk(s)
3
k+3 .

Proof. This is a standard interpolation argument. For any R > 0,∫
R3

f(s, x− vt, v) dv ≤ R−k
∫
|v|>R

|v|kf(s, x− vt, v) dv + ‖f(s, ·, ·)‖L∞(R3×R3)R
3.

Optimising over R gives

∫
R3

f(s, x− vt, v) dv ≤ C

(∫
|v|>R

|v|kf(s, x− vt, v) dv

) 3
k+3

.

Then ∥∥∥∥∫
R3

f(s, · − vt, v) dv

∥∥∥∥
L
k+3
3 (R3)

≤
(∫

R3

|v|kf(s, x− vt, v) dx dv

) 3
k+3

≤Mk(s)
3
k+3 .

Using Lemma 2.1, we deduce that control of moments implies integrability of Ē.

Lemma A.2. Let n ∈ (0, 6) and q ∈ (3
2 ,+∞) satisfy

q =
3

6− n
· (n+ 3).

Then there exists a constant Cq > 0 such that, for all t ≥ 0,

‖Ēt‖Lq(R3) ≤ CqM
3

n+3
n (t).

The resulting estimate on ‖Ēt‖Lk+3 is not sufficient to allow us to obtain a long term estimate from
the differential inequality (A.1). The next step is to obtain an improved estimate on Ē. We start by
obtaining a formula for ρf by solving the equation along characteristics with −E · ∇vf as a source term.
From a Duhamel representation of f , we deduce as in [10] that

ρf (t, x) = −divx

∫ t

0
s

∫
R3

[Ef(t− s, x− vs, v)] dv ds+

∫
R3

f0(x− vt, v) dv.

Since Ē = ∇∆−1ρf , by using Sobolev inequality and Calderon-Zygmund theory we deduce that

‖Ēt‖Lk+3(R3) ≤
∥∥∥∥∫ t

0
s

∫
R3

[Ef(t− s, · − vs, v)] dv ds

∥∥∥∥
Lk+3(R3)

+

∥∥∥∥∫
R3

f0(· − vt, v) dv

∥∥∥∥
L

3(k+3)
k+6 (R3)

.

To estimate the term involving f0, we use Lemma A.1 to deduce that∥∥∥∥∫
R3

f0(· − vt, v) dv

∥∥∥∥
L

3(k+3)
k+6 (R3)

≤ CMl(0)
3
l+3 ,

where l is chosen such that
l + 3

3
=

3(k + 3)

k + 6
=

9

k + 6
· k + 3

3
.

21



Since we have assumed that k > 3, then l < k and so Ml(0) is controlled by Mk(0).
To estimate the term involving Ef , we proceed as in [10], and we split the time integral into a short

time and a long time part:∥∥∥∥∫ t

0
s

∫
R3

[Ef(t− s, · − vs, v)] dv ds

∥∥∥∥
Lk+3(R3)

≤
∥∥∥∥∫ t0

0
s

∫
R3

[Ef(t− s, · − vs, v)] dv ds

∥∥∥∥
Lk+3(R3)

+

∥∥∥∥∫ t

t0

s

∫
R3

[Ef(t− s, · − vs, v)] dv ds

∥∥∥∥
Lk+3(R3)

.

We complete the estimates on these terms in the following two subsections.

A.1 Long Time Estimate

In this subsection, we prove that∥∥∥∥∫ t

t0

s

∫
R3

[Ef(t− s, · − vs, v)] dv ds

∥∥∥∥
Lk+3(R3)

≤ C| log t0|Mk(t)
1
k+3 . (A.2)

We will require the following Hölder-like inequalities for the Lorentz spaces Lp,q - see O’Neil [14] and
Tartar [17].

Lemma A.3. (i) Let 0 < p1, p2, p < ∞, 0 < q1, q2, q ≤ ∞ satisfy p−1 = p−1
1 + p−1

2 , q−1 = q−1
1 + q−1

2 .
Then

‖fg‖Lp,q ≤ Cp1,p2,q1,q2 ‖f‖Lp1,q1‖g‖Lp2,q2 ,

whenever the right hand side is finite.

(ii) Let f ∈ L1 ∩ L∞. Then, for any p ∈ [1,∞),

‖f‖Lp,1 ≤ Cp‖f‖
1
p

L1‖f‖
1− 1

p

L∞ .

Consequently, we have the following estimate. Let p ∈ (1,∞]. Let f ∈ Lp,∞ and g ∈ L1 ∩ L∞. Then

‖fg‖L1 ≤ Cp ‖f‖Lp,∞‖g‖
1− 1

p

L1 ‖g‖
1
p

L∞ .

Using this, we prove (A.2). By Minkowski’s inequality,∥∥∥∥∫ t

t0

s

∫
R3

[Ef(t− s, · − vs, v)] dv ds

∥∥∥∥
Lk+3(R3)

≤
∫ t

t0

s

∥∥∥∥∫
R3

[Ef(t− s, · − vs, v)] dv

∥∥∥∥
Lk+3(R3)

ds.

By Lemma A.3, we have the following estimate:∫
R3

[Ef(t− s, x− vs, v)] dv ≤ ‖E(t− s, x− s·)‖
L

3
2 ,∞(R3)

‖f‖
2
3

L∞(R3)

∣∣∣∣∫
R3

f(t− s, x− vs, v) dv

∣∣∣∣ 13 .
By Lemma 2.1, and Propositions 2.5, 2.7, E is bounded in L

3
2
,∞, uniformly in time. Thus∥∥∥∥∫ t

t0

s

∫
R3

[Ef(t− s, · − vs, v)] dv ds

∥∥∥∥
Lk+3(R3)

≤ C
∫ t

t0

s−1

(∫
R3×R3

|f(t− s, x− vs, v)|
k+3
3 dx dv

) 1
k+3

ds,

where C > 0 depends only on the initial datum.
By Lemma A.1,(∫

R3×R3

|f(t− s, x− vs, v)|
k+3
3 dx dv

) 1
k+3

≤Mk(t− s)
1
k+3 ≤Mk(t)

1
k+3 ,

since s > 0. Therefore (A.2) follows.
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A.2 Short Time Estimate

In this subsection we show that∥∥∥∥∫ t0

0
s

∫
R3

[Ef(t− s, x− vs, v)] dv ds

∥∥∥∥
Lk+3

≤ Ct2−
3
r

0

[
Mm(0)

1
k+3 +

(
1 +Mk(t)

δ
)]
,

where
δ =

3(m+ 3)

(k + 3)2
.

By Minkowski’s inequality,∥∥∥∥∫ t0

0
s

∫
R3

[Ef(t− s, · − vs, v)] dv ds

∥∥∥∥
Lk+3(R3)

≤
∫ t0

0
s

∥∥∥∥∫
R3

[Ef(t− s, · − vs, v)] dv

∥∥∥∥
Lk+3(R3)

ds.

By Hölder’s inequality, for any r > 3
2 we obtain

∫
R3

[Ef(t− s, x− vs, v)] dv ≤
(∫

R3

|E(t− s, x− vs)|r dv

)1/r

‖f‖
1
r

L∞(R3)

∣∣∣∣∫
R3

f(t− s, x− vs, v) dv

∣∣∣∣1− 1
r

≤ s−
3
r ‖Et−s‖Lr(R3) ‖f‖

1
r

L∞(R3)

∣∣∣∣∫
R3

f(t− s, x− vs, v) dv

∣∣∣∣1− 1
r

.

Thanks to Lemma 2.1, and Propositions 2.5, 2.7 we have

Ēt ∈ L
3
2
,∞ ∩ L

15
4 (R3), Êt ∈ L

3
2
,∞ ∩ L∞(R3),

with uniform in time estimates depending only on M2(0). We therefore choose r ∈ (3
2 ,

15
4 ) and obtain∥∥∥∥∫ t0

0
s

∫
R3

[Ef(t− s, · − vs, v)] dv ds

∥∥∥∥
Lk+3(R3)

≤ C
∫ t0

0
s1− 3

r

∥∥∥∥∫
R3

f(t− s, · − vs, v) dv

∥∥∥∥ 1
r′

L
k+3
r′ (R3)

ds,

where r′ satisfies 1/r + 1/r′ = 1, and the constant C > 0 depends only on the initial datum.
To control the density term, we use Lemma A.1 with a moment of higher order than k. Choose

m ∈ (k,m0) such that
m+ 3

3
=
k + 3

r′
.

Then∫ t0

0
s1− 3

r

∥∥∥∥∫
R3

f(t− s, · − vs, v) dv

∥∥∥∥ 1
r′

L
k+3
r′ (R3)

ds ≤ C
∫ t0

0
s1− 3

r dsMm(t0)
1
k+3 ≤ Ct2−

3
r

0 Mm(t0)
1
k+3 .

We control Mm by using (A.1), which implies that for all t ≥ 0,

Mm(t) ≤ C

(
Mm(0) +

(
t sup
s≤t
‖Es‖Lm+3(R3)

)m+3
)
.

‖Ês‖Lm+3(R3) is uniformly bounded by Lemma 2.6. For Ēs, we use Lemma A.2 to obtain

‖Ēs‖Lm+3(R3) ≤M
3

n+3
n (s),

where n = nm ∈ (0, 6) is related to m via the formula

m+ 3 =
3

6− n
· (n+ 3).
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We now aim to control Mn by Mk. Note that if n > 3 then n < m. Recall that m depends on r and
k, and that m ↘ k as r ↘ 3/2. As m ↘ k > 3 by assumption, nm ↘ nk < k. Therefore, by choosing r
sufficiently close to 3/2, we can ensure that nm ≤ k < m. Then, since Mn ≤M

n
k
k (by Hölder inequality),

for s ≤ t we have

‖Ēs‖m+3
Lm+3(R3)

≤Mn(t)
3(m+3)
n+3 ≤Mk(t)

3n(m+3)
k(n+3) ≤ (1 +Mk(t))

3n(m+3)
k(n+3) ≤ (1 +Mk(t))

3(m+3)
k+3 .

Thus
Mm(t0) ≤ C

[
Mm(0) +

[
t0

(
1 +Mk(t)

3
k+3

)]m+3
]
.

Then, for t0 ≤ 1,∥∥∥∥∫ t0

0
s

∫
R3

[Ef(t− s, x− vs, v)] dv ds

∥∥∥∥
Lk+3

≤ Ct2−
3
r

0

[
Mm(0)

1
k+3 +

(
1 +Mk(t)

δ
)]
,

where
δ =

3(m+ 3)

(k + 3)2
.

A.3 Full Estimate

Closing the estimate is identical to [10]. Choosing t0 = (1 +Mk(t))
− δr

2r−3 , and combining all the previous
estimates, gives a bound of the form

‖Et‖Lk+3(R3) ≤ C(1 + log (1 +Mk(t)))(1 +Mk(t))
1
k+3 .

Thus, recalling (A.1), one obtains

d

dt
Mk(t) ≤ C

(
1 + | log 1 +Mk(t)|

)
(1 +Mk(t)),

which completes the proof of Proposition 4.1.
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