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Highlights

• Equation of state (EOS) modelling is a powerful tool to estimate mineral properties at

conditions not accessed by high pressure and temperature experiments.

• Experimental errors, both random and systematic (e.g. pressure scale, functional

forms), data consistency and sparsity all contribute to the uncertainties in mineral

seismic properties.

• Conventional explicit EOSs which are assumed to follow certain form provide a priori

information by fixing their functional form or pressure scale, thereby providing a biased

estimate of uncertainties.

• Neural networks based approach can implicitly capture full uncertainties together with

highlighting data gaps and identifying data inconsistencies.
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Abstract

Interpretation of information available from seismic data in terms of temperature and com-

position requires an understanding of the physical properties of minerals, in particular, the

elastic properties of candidate Earth minerals at the relevant (here, lower mantle) pressure

and temperature. A common practise for the bulk elastic properties is to measure volume at

a range of pressures and temperatures using experiments or computational methods. These

datasets are then typically fit to a pre-determined functional form, or equation of state to

allow computation of elastic properties at any other pressure or temperature. However, er-

rors, both random and systematic, limitations in the number of data and choice of pressure

marker and scale, as well as different functional forms of equations of state, all contribute

to the uncertainties in mineral seismic properties. In an attempt to present a more com-

prehensive view of these uncertainties, we use neural-network based techniques to infer the

relationship among: pressure, temperature, volume, bulk modulus, and thermal expansivity

of MgO. We illustrate our approach on experimental data, but an extension to ab initio data

is straightforward. The type of neural network used is called a Mixture Density Network

(MDN) which is a combination of a conventional feed-forward neural network and a mixture
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model that consists of Gaussian functions. MDNs are capable of approximating arbitrary

probability density functions, which allows us to compute the uncertainties in the predicted

equations of state. Since the networks interpolate locally between input samples, pressure-

volume-temperature relations are implicitly learned from data without imposing any explicit

thermodynamic assumptions or ad-hoc relationships. We use the partial derivatives of the

mapping between inputs (pressure and temperature) and output (volume) to compute the

isothermal bulk modulus and thermal expansivity. Flexibility of the MDNs allows us to

investigate the uncertainty due to certain data in one region of pressure-temperature space

without influencing the posterior probability density everywhere. In general, we find that the

elastic properties of MgO are well-constrained by experimental data. However, our study

highlights regions in which sparse or inconsistent data lead to poorly constrained elastic

properties, namely: at low pressure and high temperature (<25GPa and >1500 K), and

temperatures above 2700 K. While the former conditions are likely not important for the

Earth’s lower mantle, they are relevant in other planetary bodies such as the Moon and

Mars. Comparison with conventional equation of state forms shows that assuming a cer-

tain functional form of the pressure-volume-temperature relationship leads to potential bias

in uncertainty quantification, because the uncertainties are then specific to the underlying

form. In combination with data sets of other lower mantle minerals, this technique should

improve uncertainty quantification in interpretations of seismic data.

Keywords: equations of state; lower mantle; neural networks; periclase; MgO

1. Introduction1

Information such as variation of wave speeds (e.g. Dziewonski and Anderson 1981, Kennett2

et al. 1995), obtained by studying seismic data is crucial for understanding the internal3

structure of the Earth. Various studies have reported the presence of seismically distinct4

structures at multiple scales in the Earth’s mantle (e.g. Garnero and Helmberger 1998,5

Ritsema et al. 1999, Romanowicz 2008, Hernlund and Houser 2008, Deschamps et al. 2012,6
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Garnero et al. 2016). In order to relate those observed seismic structures to appropriate7

temperature and composition, constraints from mineral physics on the sensitivity of seismic8

wave speeds to these parameters are required (e.g. Jackson 1998, Trampert et al. 2001).9

The sensitivities have been used to infer the probable existence of chemical heterogeneities10

within the mantle (e.g. Trampert et al. 2004, Dobrosavljevic et al. 2019, Jackson and Thomas11

2021). Other studies have tried to constrain the (average) mantle geotherm and composition12

by combining seismic data and mineral seismic properties (e.g. Cammarano et al. 2003,13

2005a,b, Deschamps and Trampert 2004, Stixrude and Lithgow-Bertelloni 2005, Matas et al.14

2007, Cobden et al. 2008, 2009, Simmons et al. 2010, Khan et al. 2009, 2011, 2013). Mantle15

convection simulations (e.g. Nakagawa et al. 2009, 2010, 2012, Schuberth et al. 2009, 2012)16

have also incorporated mineral properties to illustrate the importance of joint geodynamical-17

mineralogical approaches to explain the seismic anomalies in the mantle. Mineral properties18

can be derived from experimental or theoretical methods. In particular, information on the19

density (or volume V), incompressibility and rigidity are required to obtain the seismic wave20

speeds in a material. Since it is not practical or feasible yet to perform experiments at each21

pressure (P) and temperature (T) that may exist within the Earth, the convention is to use22

equations of state (EOSs) to define the relationship among the thermodynamic variables P,23

V and T (e.g. Duffy and Wang 1998), and hence be able to estimate mineral properties at24

the conditions not accessed by experiments.25

However, a number of uncertainties are associated with this procedure. Experimental mea-26

surements contain random and systematic errors. The choice of pressure scale as well as27

different functional forms of the EOS (e.g. Vinet EOS, third/fourth order finite strain28

equations, also called Birch-Murnaghan EOSs, as well as the choice of Grüneisen models)29

all contribute to the uncertainties in mineral seismic properties. As a result, it becomes30

challenging to determine realistic uncertainties for the interpretations which relate seismic31

observations to temperature and composition.32

In this study, we present an Artificial Neural Network (ANN) based approach to infer the33
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pressure-volume-temperature (P-V-T) relationship of MgO, with a view to extend the appli-34

cation to other major lower mantle minerals. We collate experimental P-V-T data for MgO35

together with reported uncertainties, regardless of pressure scale or functional form used.36

By applying ANN techniques, P-V-T relationships are implicitly learned from data without37

any prior assumption on the functional form (or thermodynamic model) of the relationship.38

Specifically, we use Mixture Density Networks to infer material properties and assess their39

uncertainties. We compute the partial derivatives of inferred volume with respect to pres-40

sure and temperature to extract the bulk modulus and thermal expansivity, respectively.41

In order to test the feasibility of this approach, we train the networks only on experimen-42

tal data, although a combination of theoretical and experimental data is also possible and43

straightforward.44

2. Equations of state: Uncertainties45

Experimental approaches (e.g. Vassiliou and Ahrens 1981, Yoneda 1990, Utsumi et al. 1998,46

Duffy and Ahrens 1995, Fei 1999, Sinogeikin and Bass 2000, Sinogeikin et al. 2000, Dewaele47

et al. 2000, Speziale et al. 2001, Li et al. 2006, Dorogokupets and Dewaele 2007, Hirose et al.48

2008, Murakami et al. 2009, Kono et al. 2010, Dorfman et al. 2012, Ye et al. 2017) have49

been used to establish the P-V-T relationship of MgO. Experiments using a diamond anvil50

cell (DAC), a multi-anvil press (MAP) and shock compression have provided a huge number51

of data covering a wide range of pressure and temperature. Laboratory measurements of52

volume are done at a discrete set of pressure and temperature points. To cover the en-53

tire pressure and temperature range of lower mantle requires pressure extrapolation and/or54

interpolation of the measurements using a thermal equation of state. The most common55

procedure (e.g. Matas et al. 2007, Cobden et al. 2009) is to use an isothermal equation of56

state with a Mie-Grüneisen model for thermal pressure. In this approach, the total pressure57

is considered to be the sum of a static pressure and a quasiharmonic thermal pressure. The58

static pressure term describes the pressure-volume relationship at a reference temperature59
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(usually 300 K). Different functional forms, such as third/fourth order finite strain and Vinet,60

have been widely used to model isothermal compression curves often leading to different esti-61

mates of fitting parameters or ambient mineral properties such as volume (V0), bulk modulus62

(K0T ) and pressure derivative of bulk modulus (K ′0T ) at 0 GPa pressure (e.g. Speziale et al.63

2001, Dorogokupets and Dewaele 2007, Tange et al. 2009). To compute temperature effects64

(more precisely, thermal pressure) this framework uses a Grüneisen parameter whose volume65

dependence is uncertain (Ye et al. 2017). Although anharmonic effects are very small com-66

pared to the harmonic contribution to thermal pressure, some authors (e.g. Dorogokupets67

and Dewaele 2007) use models to account for this term as well.68

Additionally, the exact determination of pressure using a reliable pressure scale in static high69

pressure and temperature experiments is still a challenging task. The ruby pressure scale of70

Forman et al. 1972 used in DAC experiments has been largely calibrated (Liu and Bi 2016)71

using both static and dynamic compression data, but still suffers from large experimental72

uncertainties. Dynamic shock compression experiments provide an absolute pressure scale.73

But the correction for thermal effects can be very uncertain (e.g. Dorfman et al. 2012, Duffy74

and Wang 1998), especially at high shock temperatures because the corresponding thermal75

contribution also increases. Other widely used pressure scales are gold, platinum and MgO76

scales. A recent study by Ye et al. 2017 shows the inter-comparison of those scales up to 14077

GPa and 2500 K. They report ± 1 to 4 GPa (sometimes systematic) differences in pressure78

among those pressure scales. Although their study optimized different Au, Pt and MgO79

pressure scales to make them agree within ± 1 GPa, it concludes that the most preferred80

form of EOS (and the pressure standard itself) remains uncertain.81

Measurement errors, lack of an absolute pressure scale, and a variety of functional forms82

of EOSs all contribute to the uncertainties in mineral seismic properties. Assuming one83

particular EOS or pressure scale has the potential to produce biased uncertainty estimates84

that are specific to the underlying functional form. In this study we train neural networks85

to learn the implicit relation between pressure and temperature (as inputs) and volume,86
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bulk modulus and thermal expansivity (as outputs). The results are entirely data-driven87

without a priori selection of experiments or a functional form to explain the data. In this88

way, we can infer the relative contributions of data sparsity versus prior conditioning to the89

uncertainties. We can also map the level of certainty of the elastic parameters in pressure-90

temperature space, which can be propagated into seismic interpretation.91

3. The Mixture Density Network (MDN)92

3.1. Background93

Conventional neural networks (Hornik et al. 1989) are general function approximators, which94

can be used to infer an (arbitrary nonlinear) relationship (Cybenko 1989) between inputs95

and targets/outputs. However, the conditional average (i.e. the mean value of output96

conditioned on input data) given by such networks only provides limited information about97

that relationship (Bishop 1994). Since experimental P-V-T data contain measurement errors,98

and inferring P-V-T relationship using those data is an inverse problem which can have99

multiple solutions, naturally we seek to treat the problem in a probabilistic framework.100

Hence, instead of having only the average volume output, we want to find the posterior101

probability density function (pdf) for volume. The pdf for volume at a given pressure and102

temperature can be denoted as103

σ(V |P, T ). (1)104

We can represent a general pdf by combining a conventional feed-forward neural network105

with a Gaussian Mixture Model (GMM), which is then called a Mixture Density Network106

(MDN) (Bishop 1994 and Bishop 1995). The architecture of the MDN used in this study is107

shown in Figure 1, and consists of a two layer feed-forward neural network and a GMM. The108

GMM contains a mixture of a finite number of Gaussian kernels which are then weighted to109

give the posterior pdf. The mean, standard deviation and weight of each Gaussian kernel110

are parameterized by weights and biases of the feed-forward neural network, also known as111
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network parameters (α).112

Application of MDNs in Earth Sciences ranges from inversion of surface wave data for global113

crustal thickness (Meier et al. 2007a,b), temperature and water content variations within114

the transition zone (Meier et al. 2009), inference of Earth’s radial seismic structure (de Wit115

et al. 2013), inversion of free oscillations (de Wit et al. 2014), constraints on lower mantle116

anisotropy (de Wit and Trampert 2015), nonlinear petrophysical inversion (Shahraeeni and117

Curtis 2011), source inversion of strong-motion data (Käufl et al. 2016b), inferring parame-118

ters governing mantle convection (Atkins et al. 2016) to travel-time tomography (Earp and119

Curtis 2020). In our case, based on some experimental P-V-T data, we seek to approximate120

the true posterior pdf (Equation 1) by a parameterized posterior121

p(V |P, T ;α) ≈ σ(V |P, T ). (2)122

In other words, for a given pressure and temperature, the posterior probability density for123

volume is given by the pdf in expression 2 which is parameterized by the weights and biases124

(α) of the feed-forward neural network. These parameters are learned during the network125

training process (see Sub-section 3.2). The posterior pdf (Equation 2) can be expressed as126

a linear combination of a fixed number of Gaussian kernels (also see Figure 1) as127

p(V |P, T ;α) =
M∑
n=1

πn(P, T ;α)φn(V |P, T ;α) (3)128

where M denotes the number of kernels used, and πn are mixing coefficients which satisfy129

M∑
n=1

πn(P, T ;α) = 1. (4)130

If the number of Gaussian kernels is M, then the total number of outputs from the feed-131

forward network is K= 3M because each kernel is parameterized by its weight (πn), mean132

(µn ) and standard deviation (σn). Equation 4 ensures that the posterior integrates to 1133
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Figure 1: Architecture of the Mixture Density Network (MDN). A two layer feed-forward neural network
(left) is combined with a GMM (centre) to get the posterior pdf (right). P & T denote the network inputs, hj
are the hidden nodes, and yk are the outputs of feed-forward network. Indices J and K represent the number
of hidden and output nodes, respectively. Except for the input nodes, each circle represents a computational
node. Hidden layer nodes take a weighted sum (with weights αij , where i 6= 0) of input data (P & T ) plus a
bias term (α0j) as inputs and apply a sigmoid activation function. The output layer nodes take a weighted
sum (weighted by αjk, where j 6= 0) of the outputs from the hidden layer plus a bias (α0k) and apply a
linear activation function to give the outputs yk. These outputs are related to the mean, standard deviation
and weight of each Gaussian in the GMM (see Appendix A for details). Each Gaussian in the GMM is then
weighted to give the final posterior pdf.

making it a valid probability density. φn in equation 3 are Gaussian kernels of the form134

φn(V |P, T ;α) =
1√

2πσn(P, T ;α)
exp

{
− (V − µn(P, T ;α))2

2σn(P, T ;α)2

}
(5)135

where µn and σn are the mean and standard deviation of Gaussian kernels in the GMM.136

These parameters of the GMM are related to the outputs (yk) of the feed-forward network137

(see details in Appendix A).138
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3.2. MDN initialization and training139

In order to find the appropriate weights and biases of the feed-forward neural network,140

we train the MDN using a sub-set of the experimental P-V-T data. In fact, the total141

experimental P-V-T data, shown in Figure 2 (Fei 1999, Jacobsen et al. 2008, Fei et al.142

2004a, Fei et al. 2004b, Dewaele et al. 2000, Speziale et al. 2001, Utsumi et al. 1998, Fiquet143

et al. 1999, Ye et al. 2017, Kono et al. 2010, Dorfman et al. 2012, Zhang 2000, Fiquet et al.144

1996, Dubrovinsky and Saxena 1997, Hirose et al. 2008, Litasov et al. 2005, Murakami et al.145

2012, Sinogeikin and Bass 2000, Li et al. 2006 and Fan et al. 2019), is divided into three146

sets: training (70%), monitoring (20%) and test (10%) sets. During training, the MDN takes147

pressure and temperature from the training data and outputs a pdf for volume according148

to Equation 3. However, we need to decide on the initial values of the network parameters149

of the feed-forward neural network to compute the first output. We randomly draw the150

input layer and hidden layer weights (Bishop 1995) according to Gaussian distributions (see151

Appendix B for details). Once the MDN is initialized and training has started, the difference152

between the output and the target can be computed according to an error function defined153

in Appendix B. This function is also called the loss function which is minimized iteratively154

using the ADAM optimization method (see detailed algorithm in Kingma and Ba 2014). We155

use TensorFlow (1.13.1) (Abadi et al. 2015) to construct, train and evaluate the MDN.156

Overfitting is a general property of the maximum likelihood technique (Bishop 1995). We157

use a separate monitoring data set to monitor the error decay during training. We evaluate158

the monitoring set error at the end of each iteration; if the monitoring error starts to increase159

(i.e. the network starts to over-fit the training data) then we stop the training procedure and160

save the last best trained model. This technique is also called the early-stopping technique.161

It is known that the inverse problem can have multiple solutions (i.e. a range of network162

parameters can possibly provide equally likely solutions). We train a number of independent163

MDNs, and combine them by a weighted sum (e.g. Käufl et al. 2016a). The weight of each164

network is based on how well it performs on the test data which is not used during training.165
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Figure 2: Experimental P-V-T data for MgO used in this study (Fei 1999, Jacobsen et al. 2008, Fei et al.
2004a, Fei et al. 2004b, Dewaele et al. 2000, Speziale et al. 2001, Utsumi et al. 1998, Fiquet et al. 1999, Ye
et al. 2017, Kono et al. 2010, Dorfman et al. 2012, Zhang 2000, Fiquet et al. 1996, Dubrovinsky and Saxena
1997, Hirose et al. 2008, Litasov et al. 2005, Murakami et al. 2012, Sinogeikin and Bass 2000, Li et al. 2006
and Fan et al. 2019) to train the MDNs. Data with uncertainties from X-ray diffraction experiments (in
static high P-T, Brillouin spectroscopy and ultrasonic interferometry) are collected for the analysis. Note:
uncertainties in collected experimental data are not plotted because the scale would be inappropriate to
visualize them.

The performance is measured by the same error function that we use to calculate training166

and monitoring errors (for details see Appendix B). In this way, the explicit dependence of167

the posterior on the network parameters can be avoided. The choice of the number of MDNs168

depends on the problem at hand. A rough estimate for a relatively simple problem (e.g. a169

few inputs and a target/output) may lie in the range 10-20 (Käufl et al. 2016a). However,170

in order to compute the uncertainties in bulk modulus and thermal expansivity (details in171

Section 5) we train a large number of MDNs (103). The number of hidden nodes to use in172

each MDN are randomly selected from a pre-defined range which is 16-32. We conducted a173

separate test (not shown here) to find the range that provides the lowest errors for the test174

set. Similarly, we propagate the uncertainties in experimental data through the MDNs by175

randomly perturbing the thermodynamic variables within the reported uncertainty range.176
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3.3. Network performance177

We use the test data set to examine how well the trained MDNs perform when a new datum178

is presented. Since the test data are not used in network training, we can use them to179

predict the output and subsequently compare with target data. In Figure 3 (top panel) the180

predicted volume is compared with the target data. The MDNs predict pdfs for volume, and181

for this comparison we compute the conditional mean volume (conditioned on inputs P &182

T), instead of using the full posterior pdfs on volume, as183

< V |P, T ;α >=
M∑
n=1

πn(P, T ;α)µn(P, T ;α). (6)184

This special case of MDN corresponds to the standard neural network output (Bishop 1994),185

i.e. only the feed-forward network with one volume output. Equation 6 shows the mean186

volume output for one MDN, and we calculate the weighted sum (weights are chosen ac-187

cording to the test set error as mentioned previously) of mean volumes from all MDNs. One188

alternative to the conditional posterior mean could be the posterior mode. However, the189

posterior mode may be biased towards certain pressure scales which contain relatively more190

data in the training set compared to other scales.191

In the region of high temperatures and low pressures (Figure 3, top panel) the trained MDNs192

show lower resolving capacity, providing more uncertain volume predictions. We found that193

this discrepancy in network predictions comes from the inclusion of specific training data194

points (high temperature data of Fiquet et al. 1996) in those ranges. We note that Fiquet195

et al. 1996 did not include a thermal pressure term in their experiments and so it is likely196

that the total pressure is underestimated. Moreover, the reported temperatures are likely197

overestimated by about 20 to 50%. We trained another network excluding these data in our198

training set and access the prediction performance (Figure 3, bottom panel). In doing so,199

MgO volumes are resolved within the prior range of experimental data, also in the region200

of low pressure and high temperature. This shows the networks’ ability to capture the201
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Figure 3: Performance of MDNs. Target volumes from the test data set are compared with mean volumes
(Equation 6) predicted by the MDNs. Top panel shows mean volumes predicted by the MDNs trained with
all experimental data while bottom shows results with high temperature data of Fiquet et al. 1996 and
Murakami et al. 2012 excluded (also see Sub-section 4.2). The pressure (left) and temperature (right) range
of the test data set is shown by colourbars on both panels. We note that the solid red line in the Figure refers
to a perfectly resolved network prediction. Points located near this line are well resolved and those located
away represent more uncertain volume predictions. The MDNs best predict the volumes in low temperature
regions and at simultaneous high temperature and pressure. However, including high temperature data
of Fiquet et al. 1996 into training provides more uncertain volume predictions in the low pressure, high
temperature region. For two data points marked with “+” in both left and right plots in the top panel,
we plot posterior pdfs for volume in Figure 4. One datum is located in the low pressure, high temperature
region where the effect of high temperature data from Fiquet et al. 1996 is significant and another away from
it.

underlying data consistency.202

Low pressure data (approximately less than 30 GPa) are relatively dense up to about 1400 K203

compared to higher temperatures. Similarly, most of the high pressure data, i.e. extending to204

the lower mantle environment, come either from approximately between 1500 K to 2700 K or205

from ambient temperature measurements. Besides that, the experimental data doesn’t cover206

simultaneous high temperature and high pressure regions, for example temperatures greater207
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than ∼2700 K at pressures expected near the bottom of lower mantle. Hence, we expect208

wider posterior probability density functions for volume in regions of sparse experimental209

data coverage.210

So far we have only shown the mean of the posterior pdf for volume. To illustrate more211

clearly the effect of the high temperature data of Fiquet et al. 1996 on the posterior pdf212

at low pressure, high temperature, we take two data points from the test set (denoted by213

‘+‘ in Figure 3, top panel). Both points are drawn at low pressures, but one is at high214

temperature and located away from the solid line and another at low temperature is close215

to it. In Figure 4 posterior pdfs at those points are shown. They show a more uncertain216

prediction for the high temperature, low pressure input. Once we remove Fiquet et al.217

1996 data from training (see Sub-section 4.2), the network predicts narrow posterior pdfs218

showing less uncertainty (cf. including those in training) in volume. Although excluding219

Fiquet et al. 1996 provides less uncertain volume predictions, due to limited availability of220

experimental data at high temperature and low pressure (approximately >1500 K and < 25221

GPa) the predicted posterior pdfs are still slightly wider than at similar temperatures and222

high pressures (also see Sub-section 4.2 and Appendix C.1).223

Figure 4: Posterior pdfs for MgO volume (solid curves) for two data points from top panel of Figure 3
together with their target values (red dashed line) and conditional mean volume (black dashed line). Left:
inputs are 24.86 GPa and 300.19 K. The posterior pdf is narrow and uni-modal with the posterior mode
located close to the target value. Right: inputs are 1.36 GPa and 2116.03 K. The posterior pdf is broad
and multi-modal with target volume located away from the posterior modes. The smaller peak is the due to
experimental P-V-T data of Fiquet et al. 1996.
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4. MDN predicted material properties224

4.1. P-V relationship at 300 K225

The predicted pdfs for volume along a 300 K isotherm are presented in Figure 5. A subset of226

the training data (i.e. only around 300 K temperature) is also shown along with the MDN227

predictions. The uncertainty in volume increases with pressure as shown by the increasing228

width of pdfs. This is expected as the training data (around 300 K) are more consistent229

with each other at lower pressures.230

Figure 5: The predicted pdf by the MDNs for volume of MgO along a 300 K isotherm. Left: pdf for volume
up to lower mantle pressures is shown as a continuous function of pressure. The colour scale shows the value
of the probability density function. Right: pdfs on volume are shown at 5 GPa pressure intervals together
with training data around 300 K (shown as circles in the background). The training data show less variation
at low pressures which results in narrower pdfs compared to high pressures.

In Figure 6 we compare pdfs for the volume of MgO along a 300 K isotherm with EOSs231

of Tange et al. 2009, Speziale et al. 2001, Stixrude and Lithgow-Bertelloni 2005, 2011 and232

Dorogokupets and Dewaele 2007 (denoted as T09, S01, SLB0511 and DD07, respectively). In233

this study, we use MINUTI (Sturhahn 2020) to compute volume, bulk modulus and thermal234

expansivity as a function of pressure (and temperature) from these EOSs. For ambient235

temperature comparisons, static equations (i.e. third-order finite strain or Vinet) together236

with respective fitting parameters (V0, K0T and K ′0T ) as reported in the literature are used.237

We show the pdfs for volume (Figure 6, left panel) at every 5 GPa. The EOSs diverge as238

the pressure increases. At 135 GPa, the difference in volume between the equations of state239
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of Stixrude and Lithgow-Bertelloni 2005, 2011 and Tange et al. 2009 is ∼0.68 Å3, whereas240

one standard deviation predicted by the neural networks is ±0.54 Å3. Moreover, the slope of241

each individual EOS differs. This can best be visualized by computing ∂P
∂V

for all EOSs (see242

Figure 6, right panel). Although Speziale et al. 2001 and Stixrude and Lithgow-Bertelloni243

2005, 2011 are based on third order Birch-Murnaghan EOSs, their fitting parameters are244

different. Comparisons between different EOSs and their fitting parameters are given by245

other studies (e.g. Dorogokupets and Dewaele 2007, Tange et al. 2009, Ye et al. 2017, etc.).246

The mean slope predicted by the neural network shows a slightly stiffer EOS compared to247

the ”standard” EOSs from the literature. This may be due to the fact that our training data248

include experiments which make use of different pressure standards (e.g. Ruby, NaCl, Pt,249

Au) than the EOSs considered for comparison (which are based on MgO). Nevertheless, such250

a difference in slope together with the volume difference will inevitably lead to a significant251

divergence in the inferred compressibility and thermal expansivity (see Section 5).252

Figure 6: Left: our predicted pdfs for volume of MgO along a 300 K isotherm (black lines) compared with
previously published EOSs (Tange et al. 2009, Speziale et al. 2001, Stixrude and Lithgow-Bertelloni 2005,
2011 and Dorogokupets and Dewaele 2007) (coloured lines). Pdfs for volume are shown at 5 GPa pressure
intervals. Right: ∂P

∂V of MgO EOSs from the left panel. For this computation, we take the mean (Equation
6) of the output posterior on volume at every 0.1 GPa interval. The divergence between different EOSs
increases with pressure.
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4.2. High temperature P-V-T relationships253

We use the trained MDNs to predict volumes of MgO at different temperatures. As an254

example, we plot the predicted pdfs for volume along a 2500 K isotherm in Figure 7, left panel255

(other isotherms are provided in Appendix C.1). Similar to the ambient temperature (Sub-256

section 4.1), the 2500 K isotherm shows a well-constrained volume prediction at lower mantle257

pressures. However, the high temperature pdfs show more uncertain volume predictions at258

low pressures (except at 0 GPa). For example, at 5 GPa the pdf is relatively wide and259

bimodal compared to that at high pressures (e.g. 100 GPa) which is unimodal. As discussed260

earlier in Section 3.3, high temperature experimental data of Fiquet et al. 1996 do not include261

a thermal pressure term, and it is likely the total pressure is underestimated. This can be262

visualised in Figure 7, left panel, where training data points located approximately between263

5-15 GPa have a smaller volume compared to data around 20 GPa and ∼2500 K. We train264

another network without the high temperature data of Fiquet et al. 1996 and plot the results265

on the right panel of Figure 7. The posterior pdf for volume at 5 GPa now shows a unimodal266

peak and the width is decreased by approximately a factor of 2 (cf. left panel at 5 GPa).267

Although removing Fiquet et al. 1996 reduces the uncertainties in volume, the posterior pdf268

is still wider than at high pressures for the same temperature. This region of low pressure,269

high temperature is known to be dominated by anharmonic effects. Although these effects270

are implicitly represented in our volume pdfs, there are limited experimental data in this271

region (temperature >1500 K and pressure <25 GPa) to further constrain them.272

We compare the MDN predicted pdfs along a 2500 K isotherm (Figure 7) with some conven-273

tional EOSs (Tange et al. 2009, Speziale et al. 2001, Stixrude and Lithgow-Bertelloni 2005,274

2011 and Dorogokupets and Dewaele 2007). The variation in volume between these EOSs275

at high pressures is similar to that observed at 300 K. It has been noted in earlier studies276

(e.g. Ye et al. 2017) that the discrepancies in high temperature EOSs are partly due to277

persistence of the disagreement between them at 300 K (reference isotherm). Furthermore,278

at low pressure (<25 GPa) Speziale et al. 2001 diverges from other EOSs. This deviation is279
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Figure 7: Left: pdfs for volume of MgO along a 2500 K isotherm predicted by MDNs trained with all data.
Right: same as left but Fiquet et al. 1996 and Murakami et al. 2012 data are excluded. For comparison,
volumes along the high temperature isotherm for some previously published EOSs (Tange et al. 2009, Speziale
et al. 2001, Stixrude and Lithgow-Bertelloni 2005, 2011 and Dorogokupets and Dewaele 2007) are computed
using MINUTI (Sturhahn 2020). On both panels we plot a sub-set of the total training data, namely those
data at temperatures between 2100 and 2600 K. Excluding Fiquet et al. 1996 data from neural network
training significantly reduces the width of the pdfs at high temperature and low pressure.

likely due to different values of fitting parameters together with distinct Grüneisen models to280

compute the thermal behavior. For example, Speziale et al. 2001 do not consider anharmonic281

effects, and their ambient Grüneisen parameters are also different than other studies (see282

e.g. Ye et al. 2017, Dorogokupets and Dewaele 2007). Besides that, as with the case of the283

Figure 8: Left: pdfs for volume of MgO along a 2700 K isotherm predicted by the MDNs trained with all
data. We also plot a sub-set of the training data, namely those whose temperatures lie between 2600 and
2800 K. Note: the large uncertainty in volume in the low pressure region (approximately below 25 GPa) is
due to inclusion of data from Fiquet et al. 1996 as discussed in the text. Right: Comparison of posterior
pdfs for volume predicted by MDNs trained with and without Murakami et al. 2012 (M12) and Fiquet et al.
1996 (F96) data at 2700 K and 60 GPa. The small peak at around 66 Å3 is due to Murakami et al. 2012
data.
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300 K isotherm, all explicit EOSs lie within the uncertainty range predicted by our MDNs,284

which is expected because some training data come from the MgO pressure scales described285

by these EOSs.286

At 2700 K, the MDN predicted pdfs (Figure 8) show bimodal volumes in the pressure range287

of approximately 45-90 GPa. Once we plot the associated training data on top, it becomes288

clear that the smaller peaks in the pdfs are the representation of experimental data points289

of Murakami et al. 2012. Surprisingly, for the same reported volume and temperature they290

report pressures which are different from each other by about 36 GPa. However, their291

reported densities appear to be physically reasonable. Nevertheless, we train another network292

to discriminate how much uncertainty is coming from those specific data points. In doing293

so, the posterior becomes unimodal. At 60 GPa, including Murakami et al. 2012 data leads294

to a factor of approximately 3.5 wider pdfs for volume (Figure 8, right panel) compared to295

results without those data. However, the effect of those data points seems to be local in296

P-V-T space and their influence decreases for example, at higher pressures. This is because297

MDNs interpolate locally in between samples, and data in one region of P-T space doesn’t298

influence uncertainties everywhere.299

5. Bulk modulus and thermal expansivity300

Since the training data do not contain explicit values for the volume derivatives with respect301

to the inputs (P and T), getting constraints on bulk modulus (-V ∂P
∂V

) and thermal expansivity302

( 1
V
∂V
∂T

) is less straightforward than constraining the volumes. Hence, we follow a slightly303

different approach compared to volume. We calculate the mean volume using Equation 6 for304

any given P and T from each earlier obtained MDN. Then we perturb pressure (P+δP ) while305

keeping the temperature fixed and compute the mean volume (< V (P + δP, T ) >) for that306

pressure from the same MDN. This way, we can compute the mean isothermal bulk modulus307

(K) as shown in Equation 7. Similarly, we evaluate mean volumes for two slightly different308

temperatures but at a fixed pressure, and use that to compute the thermal expansivity, α309
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(Equation 8). For numerical differentiation, we use δP = 0.1 GPa and δT = 1 K. Using a310

different value for ∂P or ∂T provides similar results.311

< K|P, T ;α > = < −V (P, T ) >
δP

< V (P + δP, T ) > − < V (P, T ) >
(7)312

313

< α|P, T ;α > =
1

< V (P, T ) >

< V (P, T + δT ) > − < V (P, T ) >

δT
(8)314

Hence, in this approach, we take the derivatives of the P-V (or T-V) curve defined by the315

mean of the posterior pdfs from each neural network rather than fitting P-V-T data to a316

predefined EOS to get fitting parameters (such as K0T and K ′0T ). Since we have trained a317

large number of MDNs (103) to predict the posterior pdf for volume, we get the same number318

of mean isothermal bulk modulus and thermal expansivity values. This way, each neural319

network approximates a slightly different mapping and its derivatives, and the distribution320

on the mean bulk modulus and thermal expansivity can approximate the uncertainties on321

them. Moreover, we use the same networks to compute the pdfs for volume and the mean322

volumes; the volume that goes into the calculation of bulk modulus and thermal expansivity323

is therefore consistent.324

As an example, Figure 9 shows bulk modulus as a function of pressure along two selected325

isotherms (refer to Appendix C.2 for other isotherms). The bulk modulus predicted by326

neural networks shows a higher value at high pressure along the 300 K isotherm compared327

to conventional EOSs. As mentioned earlier, this is likely due to the fact that the training328

data come from experiments which make use of different EOSs and pressure standards than329

those (MgO based) EOSs considered for comparison. Moreover, the fitting parameters (V0,330

K0T and K ′0T ) are different for different EOSs. Hence, although these EOSs predict volume331

within the uncertainty range predicted by MDNs (Figure 6, left panel), their derivatives332

(Figure 6, right panel) differ significantly from each other and also from the MDN prediction,333

leading to different values of bulk modulus.334
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Figure 9: Comparison of the mean bulk modulus (a, b, c and d) and thermal expansivity (e and f) predicted
by the neural networks with previously published equations of state for MgO (Tange et al. 2009, Speziale
et al. 2001, Stixrude and Lithgow-Bertelloni 2011 and Dorogokupets and Dewaele 2007) as a function of
pressure. The output from the neural networks is shown with greyscale- the darker the region of the plot,
the greater the number of MDNs which predict the bulk modulus (or thermal expansivity) has that value.
Frequency counts for output from the MDNs are at intervals of 1 GPa for pressure and bulk modulus, and
10−7 K−1 for thermal expansivity. For (a), (c) and (e) neural networks are trained with all collected data,
whereas for (b), (d) and (f) data from Fiquet et al. 1996 and Murakami et al. 2012 have been excluded.
Due to the inclusion of Fiquet et al. 1996 data we obtain large uncertainties in bulk modulus and thermal
expansivity in low pressure, high temperature regions. Note: the overlapping of different EOSs makes the
background histogram difficult to visualise.

One high temperature (2000 K) comparison between the neural network predicted mineral335

properties and other studies is shown in Figure 9- c, d, e and f. In general, bulk modulus336
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Figure 10: Comparison of the MDN predicted mean bulk modulus at (a) 2700 K, 60 GPa, (b) 2700 K, 135
GPa, (c) 300 K, 135 GPa and (d) thermal expansivity at 2700 K, 135 GPa of MgO trained with and without
Murakami et al. 2012 (M12) and Fiquet et al. 1996 (F96). The effect of Murakami et al. 2012 data on bulk
modulus and thermal expansivity is mainly around 2700 K, and it gradually reduces as pressure decreases
or increases outside the interval approximately 45-90 GPa.

values predicted by the neural networks agree well with explicit EOSs, although Tange337

et al. 2009 shows slightly higher values at moderate pressures (e.g. 60 GPa). The mean338

bulk modulus predicted by the neural networks shows a large uncertainty at low pressures339

(below ∼ 25 GPa) when high temperature data by Fiquet et al. 1996 are included. In340

Figure 9- d, we show the bulk modulus predicted by the neural network trained without341

Fiquet et al. 1996 (and Murakami et al. 2012). Here, the uncertainties at low pressure342

are significantly decreased. Similarly, neural networks trained without those two data sets343

predict physically reasonable thermal expansivities (Figure 9- f) compared to those trained344

with all data sets (Figure 9- e). At high temperatures, we still see a sharp bend around 20345

GPa (also see Appendix C) which we suggest may be related to anharmonic effects. As the346
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experimental data is relatively sparse in this region, one would need additional measurements347

(or theoretical studies) to confirm this. Furthermore, the thermal expansivity of Speziale348

et al. 2001 deviates from other EOSs. As mentioned in earlier studies (e.g. Dorogokupets349

and Dewaele 2007), this may be improved by including anharmonic terms in the EOS. In350

equation of state formalisms, one can add an anharmonic term to the total free energy. This351

additional term has a T2 dependence, rather than simply a linear temperature term. The352

effect of adding this term is most significant at low pressures, and can potentially capture353

more accurately the volume dependence at high temperatures compared with the standard354

thermal models without anharmonicity (for temperatures less than or equal to 2700 K in355

this meta dataset).356

Besides low pressure, including Murakami et al. 2012 data during network training provides357

mean bulk modulus uncertainties that are more than 4 times larger (Figure 10- a) than358

excluding them together with Fiquet et al. 1996, and this discrepancy reduces at higher359

pressures (Figure 10- b). Moreover, as expected, neither Fiquet et al. 1996 nor Murakami360

et al. 2012 data influence bulk modulus at low temperatures, as shown in Figures 10- c and361

9- a, b.362

6. Discussion363

Fitting parameters (such as K0T and K ′0T ) are inherent to explicit global EOSs, and a364

correlation between them tells us how one parameter changes with another providing optimal365

global fit. We do not estimate the uncertainties on fit parameters of EOSs which are specific366

to the underlying global functional form. Instead, we directly provide the uncertainties on367

volumes which are local in P-T space. The MDN is a kernel based method where we fit368

(a mixture of Gaussian) kernels to the experimental data and get an arbitrary probability369

density function on volume at any given P and T. The neural networks are flexible and370

interpolate locally; the uncertainties in one region of P-T space don’t impact the posterior371

pdf everywhere. For example, Figure 7 shows no change in high pressure pdfs while removing372
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Fiquet et al. 1996 data in the region of low pressures. Our approach is also very powerful at373

identifying data inconsistencies when using different data sources.374

The posterior pdfs given by the MDNs represent uncertainties in volume due to experi-375

mental errors, data gaps and data inconsistencies from different studies. Together with the376

uncertainties in mean isothermal bulk modulus and thermal expansivity, these results can377

be used by, for example, seismologists working on thermochemical interpretation of seismic378

data. Although uncertainties in volume, bulk modulus and thermal expansivity vary locally379

depending on sparsity and consistency of the experimental data, using these outputs from380

MDNs, one can directly compute bulk wave speed (φ2 = KS/ρ) and density (ρ) at any given381

pressure and temperature. However, in order to compute bulk wave speeds at temperatures382

applicable to the lower mantle, we need the adiabatic bulk modulus (KS = KT (1 + αγT )),383

where γ is Grüneisen parameter and α is the thermal expansivity. Nevertheless, assuming384

that the difference between isothermal (KT ) and adiabatic (KS) bulk moduli, at 300 K is385

roughly within ±1.0% (Marquardt et al. 2018), the bulk wave speed of MgO is 11.14±0.07386

km/s at 135 GPa. At the same condition, the relative uncertainty (one standard deviation387

around mean) in density predicted by the MDNs is about ±1.0%. This is larger than or388

comparable to the relative density variations in lower mantle estimated by previous studies389

(e.g. Ishii and Tromp 1999, Trampert et al. 2004, Koelemeijer et al. 2017). Although the390

Grüneisen parameter varies as a function of volume that ultimately depends on pressure391

(and temperature), we assume it to be approximately 1.1±0.3 (e.g. Stixrude and Lithgow-392

Bertelloni 2011, Ye et al. 2017) at 2700 K and 135 GPa to give an estimate of uncertainties393

in bulk wave speed. In doing so, the relative uncertainty in bulk wave speed is about ±1.77%394

which is larger than the reported bulk sound speed variation in the lower mantle (e.g. Tram-395

pert et al. 2004).396

Estimation of mineral properties beyond the range of experimental data requires extrapola-397

tion. The standard EOSs can easily be used for extrapolation provided that the assumptions398

of the functional form hold in the region of no data. In general, it has been observed that399
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Figure 11: Probability density function for volume of MgO along a 2700 K isotherm (a) and 100 GPa isobar
(b). Training data belonging to temperature between 2400 and 3000 K (a), and pressure range from 96 to
103 GPa (b) are also shown. Magenta (SLB0511) and red (T09) curves are Stixrude and Lithgow-Bertelloni
2005, 2011 and Tange et al. 2009 EOS, respectively. They follow the volume trend predicted by the network.
In the region outside the prior data, the trained MDNs provide wider pdfs as they are forced to extrapolate
the volume. To illustrate this more clearly, volume pdfs at a fixed temperature (and pressure) and three
different pressure (and temperature) are also shown in c (and d).

MDNs provide a wider estimate of uncertainties in the region of little to no training data400

(Käufl et al. 2016a). Here too, as shown by the wider pdfs in Figure 11, the uncertainty401

in predicted mineral properties increases when the network has to extrapolate from distant402

training data. We note that EOSs of Stixrude and Lithgow-Bertelloni 2005, 2011 and Tange403

et al. 2009 closely follow the pdf predicted by the network indicating that it learns a func-404

tional form present in the data, but errs on the cautious side by returning larger uncertainties.405

From a Bayesian perspective, we would advise against extrapolation as this covers a region406

outside the prior. Figure 11, however, demonstrates some capability of neural networks to407

extrapolate beyond the ranges of the data, although we would need to establish how far this408

is related to the precise network architecture.409
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The shear modulus is required to calculate compressional and shear wave speeds. There is no410

thermodynamic expression for the shear modulus, but functional forms are often assumed,411

for example third order finite-strain and shear counterpart of the Keane EOSs (Keane 1954)412

by Kennett 2017, to compute the shear modulus which are based on the bulk modulus413

calculation. One can also use the linear relationship among shear modulus, adiabatic bulk414

modulus and pressure given by Stacey 1995. However, the uncertainties in shear modulus415

would then be dependent on those in bulk modulus, and the assumption that shear properties416

can be constrained from the bulk properties. An alternative is to use data from experiments417

such as Brillouin Spectroscopy that provide shear wave speed information. Together with418

unit-cell volume, as measured by X-ray diffraction on the same sample (e.g. Murakami et al.419

2012, Kurnosov et al. 2017) and known sample composition, the density and thus shear420

moduli can be determined. However, these data sets do not cover simultaneous high pressure421

and temperature regions that are expected in the Earth’s lowermost mantle. For example,422

the highest temperature and pressure data for MgO reported in Murakami et al. 2012 are423

six measurements at 2700 K and between 32.5-68.4 GPa. Nevertheless, a combination of424

wave speed data from ultrasonic techniques and Brillouin Spectroscopy together with high425

P-V-T data from x-ray diffraction techniques has the potential to exhaustively sample the426

lower mantle geotherm in the near future (Marquardt and Thomson 2020).427

We note that, in principle, a combination of experimental data and theoretical calculations428

(e.g. Karki et al. 1999, Oganov and Dorogokupets 2003, Wu et al. 2008) is possible. This may429

provide additional constraints on the predicted mineral properties covering a wider range of430

pressure and temperature. Since our approach implicitly identifies the consistency between431

different data sources, a proper rationale can be developed to mix data and uncertainties from432

theory with experiments. Furthermore, the MDN based approach can easily be extended to433

the upper mantle and the core. Since MDNs are flexible, they can be employed to model434

multi-mode targets/outputs. This would be helpful to model for example volume anomalies435

induced by the iron spin transition (e.g. Marquardt et al. 2009, Speziale et al. 2007, Lin436

et al. 2006, Crowhurst et al. 2008, Solomatova et al. 2016). A natural progression of this437
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work is to extend it for solid solution. It is straightforward to include composition, e.g. the438

Mg/Fe ratio, by including it as an extra dimension in the input data (i.e. P, T and mol% Fe439

in ferropericlase) provided there is enough training data.440

7. Conclusions441

This study demonstrates the feasibility of a neural network based approach to infer the442

material properties of lower mantle minerals. In our approach, we learn the underlying P-V-443

T relationship providing a reasonable approximation of the P-V-T data of MgO. This allows444

us to compute the uncertainties in density, thermal expansivity and bulk modulus without445

prescribing an explicit EOS. Once the networks are trained, it is a simple function that can446

be evaluated at any given pressure and temperature to get volume, mean bulk modulus and447

thermal expansivity with uncertainties. In order to train the networks, we collect data from448

high P-V-T experiments without prior selection of data (e.g. based on pressure scale or449

functional form used). Hence, our uncertainties are not biased towards a subjective selection450

of experimental data. Furthermore, our approach identifies inconsistencies between data451

from different sources. The assumption that an EOS follows a particular form provides a452

priori information by fixing their form (or thermodynamic model) and/or pressure scale.453

It remains to be determined which EOS form best describes the thermodynamic behaviour454

of MgO at wide range of pressures and temperatures. In this study, we compare a few455

”standard” EOSs with the material properties inferred from neural networks and show that456

choosing one particular explicit form provides a biased estimate of uncertainties.457

Based on the prediction performance of the MDNs and comparison with conventional EOSs458

(such as Figures 3, 7, 9, and Appendix C), we can be most confident about physical inter-459

pretation of seismic data in the lower mantle within the prior range of experimental data460

(Figure 2). In the regions where there exists little evidence about how the P-V-T relationship461

behaves, such as at low pressure, high temperature (<25 GPa, >1500 K), and temperatures462

approximately >2700 K at pressures expected towards the core-mantle boundary, neural463
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networks show increasingly uncertain predictions. Although for the Earth’s lower mantle,464

low pressure and high temperature environments may not be relevant, they are expected in465

other planetary bodies such as the Moon and Mars (e.g. Khan et al. 2014, 2018). With466

currently available data, it likely provides meaningful uncertainties that could be used by467

seismologists within certain ranges of pressure and temperature, while highlighting the P,468

T regions in which more experimental (or theoretical) data is needed before we can draw469

robust conclusions on temperature and composition.470
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Appendices477

Appendix A. Generalised theory of the MDN478

Let, x = {x1, x2, ..., xI} be the input data to the feed-forward part of the MDN. Please note,479

to generalise this section, we write inputs as x and targets as mk instead of P & T and V,480

respectively. The feed-forward network outputs yk are computed as a weighted sum of the481

outputs from the hidden nodes plus a bias482

yk = f2

(
J∑
j=1

αjkhj + α0k

)
(A.1)483

where the function f2 is an identity function such that f2(p) = p, αjk is the hidden layer484

weight matrix and α0k represents a bias term of each output node. Now, the hidden node485
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outputs hj are computed as486

hj = f1

(
I∑
i=1

αijxi + α0j

)
(A.2)487

where the function f1 is a logistic sigmoid function f1(p) = 1
1+exp(−p) , αij is the input layer488

weight matrix, α0j are the biases of hidden nodes and xi are input data. yk are related to489

the parameters, namely weights (πn), means (µn) and standard deviations (σn) of Gaussians490

in the Gaussian Mixture Model (GMM) by the following relationship (for details see e.g.491

Bishop 1994, de Wit et al. 2013)492

πn(x;α) =
exp
(
y
(π)
k (x;α)

)
∑M

n=1 exp
(
y
(π)
k (x;α)

) , (A.3)493

494

µn(x;α) = y
(µ)
k (x;α) and (A.4)495

496

σn(x;α)) = exp
(
y
(σ)
k (x;α)

)
. (A.5)497

Appendix B. MDN initialization and training details498

The total data (x) is divided into three sets- training (70%), monitoring (20%) and test499

(10%) sets such that500

xtrain ⊂ x, xmonitor ⊂ x and xtest ⊂ x (B.1)501

with xtrain ∩ xmonitor = ∅, xtrain ∩ xtest = ∅ and xmonitor ∩ xtest = ∅. Using the training502

data (xtrain) we train the MDN. However, before we train the MDN we need to decide on503

initial values of the network parameters. We randomly draw the input layer and hidden layer504

weights (Bishop 1995) according to the following Gaussian distributions505

αij ∼ N
(

0,
1

I + 1

)
(B.2)506
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and507

αjk ∼ N
(

0,
1

J + 1

)
, (B.3)508

respectively. Where I and J are number of input and hidden nodes, respectively. Similarly,509

the output layer biases are initialized by a K-means clustering algorithm (i.e. fitting a510

GMM to the training data set). Once the initialization is done and the training begins,511

the difference between the output and the target can be computed according to the error512

function513

Etrain =
∑
train

− ln
(
p(mk|xtrain;α)

)
(B.4)514

which is summed over all training data providing the average error. This function is also515

called the loss function which is minimized iteratively using the ADAM optimization method516

(see detailed algorithm in Kingma and Ba 2014). The explicit dependence of output posterior517

on the network parameters (see Käufl et al. 2016a and references therein) can be avoided by518

using multiple MDNs and combining them by weighted sum. The weight of each MDN is519

determined by the test set error as520

wi = exp
(
− Etest(xtest,αi)

N

)
(B.5)521

where index i denotes the i-th MDN (C MDNs in total) and N is the size of the test data522

set, and the MDNs are combined according to523

p(mk|x;α) =
C∑
i=1

wi∑
j wj

pi(mk|x;αi). (B.6)524

Appendix C. Mineral properties525

Appendix C.1. P-V-T EOS526
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Figure Appendix C.1: P-V relationship of MgO predicted by MDNs trained with (left) all data and (right)
excluding Murakami et al. 2012 and Fiquet et al. 1996. Comparison with previously published EOSs (Tange
et al. 2009, Speziale et al. 2001, Stixrude and Lithgow-Bertelloni 2005, 2011 and Dorogokupets and Dewaele
2007) along 1500 K (top), 2000 K (middle) and 2700 K (bottom) isotherms also shown.
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Appendix C.2. Bulk modulus527

Figure Appendix C.2: Comparison of the bulk modulus of MgO predicted by the neural network along 1500
K (top) and 2700 K (bottom) isotherms with other studies (Tange et al. 2009, Speziale et al. 2001, Stixrude
and Lithgow-Bertelloni 2011 and Dorogokupets and Dewaele 2007) as a function of pressure. Left panel
shows results from MDNs trained with all data and the right panel shows results from MDNs excluding
Murakami et al. 2012 and Fiquet et al. 1996 data in training.
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Appendix C.3. Thermal expansivity528

Figure Appendix C.3: Comparison of the thermal expansivity of MgO predicted by neural networks with
Tange et al. 2009, Stixrude and Lithgow-Bertelloni 2011 and Dorogokupets and Dewaele 2007 along 300 K
(top), 1500 K (middle) and 2700 K (bottom) isotherms as a function of pressure. Left panel: MDNs trained
with all data. Right: MDNs trained without Murakami et al. 2012 and Fiquet et al. 1996 data.
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