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A B S T R A C T 

A defining prediction of the cold dark matter cosmological model is the existence of a very large population of low-mass haloes. 
This population is absent in models in which the dark matter particle is warm (WDM). These alternatives can, in principle, 
be distinguished observationally because haloes along the line of sight can perturb g alaxy–g alaxy strong gravitational lenses. 
Furthermore, the WDM particle mass could be deduced because the cut-off in their halo mass function depends on the mass of 
the particle. We systematically explore the detectability of low-mass haloes in WDM models by simulating and fitting mock 

lensed images. Contrary to previous studies, we find that haloes are harder to detect when they are either behind or in front 
of the lens. Furthermore, we find that the perturbing effect of haloes increases with their concentration: Detectable haloes are 
systematically high-concentration haloes, and accounting for the scatter in the mass–concentration relation boosts the expected 

number of detections by as much as an order of magnitude. Haloes have lower concentration for lower particle masses and this 
further suppresses the number of detectable haloes beyond the reduction arising from the lower halo abundances alone. Taking 

these effects into account can make lensing constraints on the value of the mass function cut-off at least an order of magnitude 
more stringent than previously appreciated. 

Key words: gravitational lensing: strong – dark matter. 
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 I N T RO D U C T I O N  

he nature and identity of dark matter (DM) remain fundamental
pen questions in contemporary astrophysics; enormous effort is
urrently being directed at finding the answer. Numerical simulations
f the cosmological process of structure formation (e.g. Davis et al.
985 ; Springel et al. 2005 ; Frenk & White 2012 ) have shown that
 model based on the assumption that the DM consists of cold dark
atter (CDM) particles can very successfully reproduce a number

f large-scale astrophysical measurements (e.g. Wang et al. 2016 ;
lam et al. 2017 ; Planck Collaboration VI 2020 ). Several plausible
M candidates behave like CDM on large scales, but luckily,

heir different physical properties can make them distinguishable
n subgalactic scales. The defining property of standard CDM is
he nearly scale-invariant primordial power spectrum of density
uctuations, which results in an equally distinctive halo mass
unction, characterized by a large population of haloes down to
asses comparable to the Earth’s mass (Jenkins et al. 2001 ; Green,
ofmann & Schwarz 2005 ; Diemand et al. 2008 ; Angulo et al. 2012 ;
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ang et al. 2020 ). Most alternative DM models predict a suppression
f the primordial power spectrum on small scales and an associated
runcation of the halo mass function at a mass M cut . For example, in
he popular warm dark matter (WDM) model, free streaming arising
rom the thermal velocities of the particles at early times is the
ause of the suppression that occurs at a mass scale that is roughly
nversely proportional to the WDM particle mass (e.g. Avila-Reese
t al. 2003 ; Lo v ell et al. 2012 ; Schneider et al. 2012 ; Bose et al.
016 ). 
Current constraints on the WDM model stem primarily from a

ombination of the abundance of satellite galaxies in the Milky
ay (Lo v ell et al. 2012 , 2016 ; K ennedy et al. 2014 ; Ne wton et al.

020 ) and the properties of the Lyman α forest inferred from high-
edshift QSO spectra (Viel et al. 2013 ; Baur et al. 2016 ; Ir ̌si ̌c et al.
017 ; Boyarsky et al. 2019 ). A joint analysis of these, together with
onstraints from gravitational lensing (see below), places M cut at
4.3 × 10 7 M � for a thermal WDM relic. These bounds, ho we ver,

re subject to possible systematics such as uncertainties in the galaxy
ormation physics in the case of satellites (Newton et al. 2020 )
nd assumptions on the thermal history of the intergalactic medium
t high redshift in the case of the Lyman α forest (e.g. Garzilli,
oyarsky & Ruchayskiy 2017 ; Garzilli et al. 2019 ). Constraints from

ndependent probes, such as we discuss here, are therefore a priority.
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Strong gravitational lensing has emerged as an independent way 
o quantify the abundance of low-mass DM haloes and thus constrain 
he WDM particle mass. This technique uses g alaxy–g alaxy strong
ravitational lenses (e.g. Bolton 2005 ; Shu et al. 2016 ) to detect
ow-mass haloes through the perturbations they cause to the lens 
mage (see also the alternative approach based on flux ratio anomalies 
f lensed quasars; e.g. Xu et al. 2015 ; Gilman et al. 2018 , 2019 ,
020 ; Harv e y et al. 2020 ). These perturbations make it possible to
etect both satellite haloes in the main lens (subhaloes) and low-mass
central’ haloes along the line of sight (LOS; Li et al. 2017 ; Despali
t al. 2018 ), even if they contain negligible baryonic mass. In fact,
n the mass range of interest, � 10 8 M �, haloes are too small to have
ade a galaxy and so are completely dark (Benitez-Llambay & Frenk 

020 ). This is a great advantage as the abundance and structure of
solated DM haloes are unaffected by complications associated with 
aryonic processes and are very robustly determined by cosmological 
imulations. Distortions of strong lenses are therefore an especially 
lean way to probe the DM particle mass. 

A small number of detections have already been claimed, albeit 
or subhaloes more massive than those that can test WDM models 
Vegetti et al. 2010 , 2012 ; Hezaveh et al. 2016 ). The most challenging
spect of lensing lies in using these detections – and non-detections 
s well – to e xtract quantitativ e inferences about the DM model
e.g. Vegetti et al. 2014 , 2018 ; Ritondale et al. 2019 ). To do so, it is
ecessary to formulate robust predictions. For example, how many 
etections are to be expected in a given lensing system assuming
DM, or as a function of the WDM particle mass? 
Quantifying the number of detectable haloes, N d , in a specific 

ens means identifying which DM haloes, out of the cosmological 
opulation of haloes, can cause ‘observable’ perturbations to that 
ystem. More specifically, for a WDM particle with cut-off mass, 
 cut , 

 d ( M cut ) = 

∫ 
n ( x , y , z, ζh | M cut ) × p( x , y , z, ζh | θ, n ) d V d ζh , (1) 

here n is the cosmological number density of DM haloes 1 at sky-
rojected location, ( x , y ), redshift, z, and with properties, ζ h (such
s mass, concentration, etc.), while p is the probability of actually 
etecting such haloes were they to be truly present in the observed
ystem, given the properties of the lens itself, θ , and those of the data
for instance, the noise properties, n . In other words, were a halo to
e truly present: 

(i) p = 0 if its perturbations are too small to be observable,
mplying that a perturbing halo mass component would not be 
equired in the modelling to describe the data; 

(ii) p = 1 if its perturbations make a model including a perturbing
ass component statistically preferable to one that does not. 

The increase in Bayesian evidence between the two models (or 
he increase in log-likelihood) is often used as a deciding metric, 
nd most studies (e.g. Vegetti et al. 2014 , 2018 ) have indeed reduced
 to a binary classification: Were the halo to be truly present, p =
, if including a perturbing mass component causes the Bayesian 
vidence or log-likelihood to increase beyond some given threshold. 
his is usually referred to as the sensitivity function and, simply put,

t identifies the region of parameter space (comprising both physical 
osmological volume and halo properties) that can be actually probed 
y lensing. In contrast to the cosmological number density of DM 
 Here, we focus on LOS haloes. The same formalism applies to subhaloes in 
he main lens, albeit with a different density, n . 

2

w

aloes, n , the sensitivity function itself does not directly depend
n the DM model, 2 but it does shape expectations for the number
f detectable haloes, N d – as well as expectations for any other
bservable obtained through structure lensing studies. 
While advanced tools to model optical strong lensing data have 

een developed (e.g. Vegetti & Koopmans 2009 ; Nightingale et al.
021 ), it remains computationally e xpensiv e to calculate the sensitiv-
ty function and formulate these predictions. Systematic exploration 
s required to establish the range of properties that make a perturber
etectable. A minimum list of the independent variables includes 
he halo mass and halo concentration, the projected location of the
alo with respect to the lensing system, and its redshift. In addition,
he sensitivity function is unique to each individual lensing system 

ecause degeneracies in the lensing effects are such that different 
ensing configurations can ‘reabsorb’ the perturbations of identical 
M haloes with dif ferent ef ficiencies. In practice, mapping the entire
arameter space for each lens is often computationally prohibitive, 
nd a number of simplifying assumptions have been used to obtain
stimates of the integral in equation (1). Here, we explore the
ffect of these simplifications. Among the independent variables 
entioned abo v e, halo concentration and halo redshift are the most 

mportant. 
For instance, Minor et al. ( 2021 ) have recently shown that the halo

oncentration must be included as a free parameter when modelling a
erturber: If the concentration is fixed, the inferred perturber’s mass 
ay be biased by a factor of up to 6. They also show that higher

alo concentrations make perturbers more easily detectable, as the 
ensing effect of any mass distribution is driven by its surface density.
o we ver, the intrinsic scatter in the concentration of DM haloes

e.g. Neto et al. 2007 ; Ludlow et al. 2016 ; Wang et al. 2020 ) has so
ar been ignored in sensitivity mapping studies; instead, the mass–
oncentration relation has been collapsed on to the concentration 
xis entirely, forcing all haloes on to the mean value for their
ass. Additionally, the dependence of the mean mass–concentration 

elation on the DM model itself has also been neglected (e.g. Vegetti
t al. 2018 ; Ritondale et al. 2019 ). This latter assumption leaves
osmological halo abundances as the single measure to differentiate 
etween WDM models of different particle masses, despite the fact 
hat warmer DM models produce haloes that are increasingly less 
ense than their equal-mass CDM counterparts (e.g. Lo v ell et al.
012 ; Bose et al. 2016 ). 
As regards the perturber’s redshift, this axis has often been 

ollapsed by adopting a one-to-one scaling relation that recasts a 
alo’s redshift in terms of its ef fecti ve mass (Li et al. 2017 ; Despali
t al. 2018 ). This is obtained by requiring that the lensing convergence

i.e. the strength of the lensing effect – should remain nearly 
onstant. This is not equi v alent to performing a full non-linear search,
s done on real data, and therefore does not fully take into account
he modelling degeneracies that can occur in the real case. Lastly, we
lso briefly reflect on the influence of noise properties and the role
f a specific noise realization. We should stress that the abo v e issues
ertain specifically to g alaxy–g alaxy lensing analyses focused on 
ndividual perturber detections (e.g. Vegetti et al. 2014 ; Hezaveh et al. 
016 ). Some recent analyses based on forward-modelling approaches 
nd studies of flux ratio anomalies take full account of the effects
bo v e, including multiplane lensing effects and the scatter in the
ass–concentration relation (see e.g. Gilman et al. 2019 ; He et al.

020 ). 
 Although it does depend on the density profile of the perturbing haloes, 
hich, in turn, may itself depend on the DM model. 

MNRAS 510, 2464–2479 (2022) 
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3 For compactness of notation, we include the perturber’s sky coordinates, ( x , 
y ), and redshift, z, in the halo properties, ζ h . 
4 By ‘log-likelihood’ we mean the natural logarithm of the likelihood. All 
other instances of ‘log’ in this work represent the base 10 logarithm. 
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To explore the parameter space of a sensitivity function fully, we
se mock data and models that are somewhat simpler than those
mployed in state-of-the-art lens modelling studies (e.g. Vegetti &
oopmans 2009 ; Nightingale et al. 2019 ; Powell et al. 2021 ).
pecifically, we use models featuring parametric sources rather than
on-parametric pixelized sources (e.g. Warren & Dye 2003 ; Dye &
arren 2005 ; Nightingale & Dye 2015 ; Birrer, Amara & Refregier

016 ). This allows us to develop and apply a fitting procedure based
n a gradient descent algorithm, which is efficient enough to enable
he exploration of all of the independent dimensions of the parameter
pace rele v ant to this problem. This work compares ho w pre vious
ssumptions regarding the sensitivity function affect the power of
trong lensing to discriminate between different DM models, which
e assume is not strongly dependent on the specific approach to

ource modelling. 
In this work, we concentrate on LOS isolated perturbers, which

e model as pure Navarro–Frenk–White (NFW) profiles (Navarro,
renk & White 1997 ). Satellite subhaloes have different density
rofiles and their number density in the main lens is affected
y a variety of physical processes. He et al. (in preparation) use
he high-resolution cosmological hydrodynamical simulations of
ichings et al. ( 2021 ) to facilitate a comparison between the lensing
erturbations caused by satellite and LOS haloes, thereby allowing
n estimate of their relative importance. In their study, they also
mploy different sets of lens configurations and modelling and fitting
echniques. While they do not focus on the effect of halo concentra-
ion, their independent analysis finds quantitatively similar results on
he redshift dependence of a perturber’s detectability, which further
einforces the need to mo v e a way from the approximations used so
ar. 

We stress that this work is not intended as a substitute for analyses
imed at quantifying the sensitivity function of actual sets of observed
enses – which should be tailored to the lens configurations featured
n the real data and should be performed using the same modelling
echniques as applied to the real data. 

This paper is organized as follows: Section 2 provides a quick
 v erview of the standard procedure used to estimate the sensitivity
unction; Section 3 describes our modelling framework and fitting
rocedures; Section 4 describes our results, focusing on the depen-
ence of halo detectability on redshift and concentration; Section 5
ses our sensitivity maps to estimate the number of expected
etections for different WDM models; and Section 6 examines the
onsequences of our results for future substructure lensing studies. 

 SENSITIVITY  MAPPING  OV ERVIEW  

n the interest of clarity, we start by outlining the procedure
sually adopted to measure the sensitivity function. Let us assume,
or example, that we wish to predict the number of detectable
aloes (equation 1) for a specific strong lens. One would start by
odelling the lens image in order to infer (i) a mass model for the

ens galaxy and (ii) a light model for the source galaxy. Then, 

(1) using these and the noise properties of the data themselves,
ne simulates a strong lens image that includes a perturbing DM halo
ith a set of properties (such as mass and concentration), located at
rojected location, ( x , y ), and redshift, z; 
(2) one fits these mock data in two full but distinct non-linear

earches, the first with a model that includes a perturbing halo mass
omponent and the second without. 

(3) one compares the two model fits, by means of the Bayesian
vidence or the maximum log-likelihood. If a model including a halo
NRAS 510, 2464–2479 (2022) 
ass component provides a significantly better fit, the original data
re sensitive to a halo with those specific properties, thereby mapping
he probability of detection, p . 

This procedure is repeated multiple times so as to sample the entire
arameter space of perturbers’ locations and properties. 
We delve into the different steps of this procedure in the next

ection. In particular, we shall show that, in practice, we do not need
o perform one of the fits at all. 

 M O D E L L I N G  F R A M E WO R K  

e assume we have optical (mock) data, d , for a lensing system
haracterized by the presence of some perturbing LOS halo with
roperties, ζh , and we wish to assess its detectability. 3 We do so by
uantifying the log-likelihood 4 difference 

 L ( ζh ) = L m , h 

(
ˆ θm 

, ̂  ζh 

) − L m 

(
θ̄m 

)
, (2) 

here 

(i) L m 

(
θ̄m 

)
is the log-likelihood value corresponding to the best-

tting model that does not include a perturbing halo mass component.
his model is optimized o v er the parameters of the so-called
acromodel alone, θm 

, which include the parameters describing the
ource, θ s , and those describing the lens, as well as an y e xternal
hear, θ l ; 

(ii) L m , h 

(
ˆ θm 

, ̂  ζh 

)
is the log-likelihood value corresponding to

he best-fitting model that does include a perturbing halo mass
omponent, which is optimized o v er both macromodel and halo
arameters, with best-fitting values, ˆ θm 

and ˆ ζh , respectively. 

We take the detection probability, p ( ζ h ), in equation (1) to be a
unction of the log-likelihood gain, � L : 

( ζh ) = p( � L ( ζh )); (3) 

.e. perturbing haloes that result in higher values of the log-likelihood
ain, � L , are more easily detectable; for the moment, we defer fixing
he functional link between detection probability and log-likelihood
ncrease. 

All likelihood values are obtained by comparing the pixelized flux
alues, d , with the model flux distributions, f. We ignore the effect
f noise covariance [due to effects like point spread function (PSF)
onvolution] so that we simply have 

 = −1 

2 

∑ 

pixels 

∣∣∣∣d − f 
n 

∣∣∣∣
2 

, (4) 

here n represents the noise map associated with the data and we can
eglect the normalization term in ln n because we are only interested
n log-likelihood differences. We assume that the data only include
ux from the source; i.e. that both sky background and lens fluxes
ave been subtracted before performing the fits. 
A number of authors (e.g. Vegetti et al. 2018 ; Ritondale et al.

019 ) have argued for adopting the gain in Bayesian evidence,
ather than in the log-likelihood, as a basis for quantifying halo
etectability. We recall that the evidence is defined as the integral of
he posterior o v er the entire parameter space. We agree that the gain
n log evidence is a sounder statistical metric for model comparison.
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Figure 1. Model fluxes for the two lensing configurations used in this study, 
giant arcs (left) and quad (right) (linear scale with arbitrary units). 

i
f  

c  

i  

d  

a  

t  

fi

3

T  

a  

c  

h  

r  

i  

l
 

r  

r  

c
i  

i

�

w  

fl  

t  

c  

fi  

m
i  

c

w  

h

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/510/2/2464/6455326 by guest on 10 February 2022
o we ver, calculating the e vidence is orders of magnitude more
omputationally e xpensiv e than identifying the best-fitting model, as 
t requires sampling the likelihood surface o v er the entire parameter
pace in order to integrate it. This has become one of the main
easons behind the need for making simplifications when calculating 
he sensitivity function. 

It is important to stress that, as long as the same criterion is
onsistently employed to both (i) detect perturbers on real data 
nd (ii) measure the sensitivity function and make predictions for 
he expected number of detections, an evidence-based strategy and a 
ikelihood-based one are both perfectly acceptable and will both yield 
orrect results for the DM particle mass. It is indeed possible that an
vidence-based criterion may help to weed out false detections better 
n studies of real data. On the other hand, this is not strictly necessary
f the models used in sensitivity mapping share the same complexity 
f the real data, and therefore also share any spurious detections. 
n fact, a computationally more efficient criterion may facilitate 
 robust characterization of the properties and frequency of false 
ositives, and therefore help to take them into account when making 
redictions. For the present purposes, a likelihood-based criterion is 
eneficial in that it allows us to explore the entire parameter space
ystematically. Furthermore, for data of sufficiently high quality, 
he gain in evidence and in log-likelihood become equivalent (as 
mbodied by the BIC; see e.g. Hastie, Tibshirani & Friedman 2008 ;
onishi & Kitagawa 2007 ), and numerical experiments seem to 

ndicate that the quality of the Hubble Space Telescope ( HST ) data
s, in fact, high enough for the two approaches to often provide very
imilar results (He et al., in preparation). 

.1 Model families and mock data 

ur lensing systems feature the following: 

(i) a power-law mass profile to represent the main lens (Tessore 
t al. 2016 ), characterized by the following free parameters: ( x l , y l ),
he centre of the mass distribution; εl , the Einstein radius; β l , the slope
f the mass profile; ( e 1,l , e 2,l ), the two independent components of the
rofile’s ellipticity; and ( γ 1 , γ 2 ), the two independent components 
f the external shear. 
(ii) a parametric source with a Sersic profile: projected centre, ( x s ,

 s ); ef fecti ve radius, r eff ; ellipticity, ( e 1,s , e 2,s ); Sersic index, n s ; and
otal flux, I s . 

These two components define our macromodel: θm 

is therefore a 
5-dimensional vector. 
The perturbing haloes are modelled with spherically symmetric 

FW mass profiles (Navarro et al. 1997 ), introducing the following 
dditional five parameters: projected centre, ( x h , y h ); redshift, z h ;
ass, M h ; and concentration c h . Throughout the paper, we take halo
asses, M h , to be the virial mass, M 200 , i.e. the mass contained
ithin a sphere of density 200 times the critical density. We use

he open-source software PYAUTOLENS 5 (Nightingale & Dye 2015 ; 
ightingale, Dye & Massey 2018 ; Nightingale et al. 2021 ) to
enerate all of our mock data and for all our lensing modelling. 
Within this framework, we choose two different lensing con- 

gurations for our exploration. Both have their source at z s = 1
nd lens at z l = 0.5, but one is in a quad configuration while
he other features two asymmetric arcs. Values for the ground- 
ruth macromodel parameters, θm 

, are recorded in Table A1 ; Fig. 1
 PYAUTOLENS is an open-source software and available at https://github.com 

Jammy2211/PyAutoLens . 
F
r  
llustrates their geometry, displaying the corresponding model fluxes, 
 ( θm 

). The exact values are of no importance here: We simply
hoose sets of parameters that are qualitatively in line with what
s found in lensing studies of real systems, and we use a pair of
ifferent configurations to ensure that the trends we identify are not
 peculiarity of the specific system we happen to adopt. Throughout
his work, we use pixel size and PSF width typical for the HST data,
xing both quantities at 0.05 arcsec. 

.2 Signal-to-noise and noise realization 

he sensitivity function of a lens scales with the quality of the
vailable data, quantified here by the noise map, n , and the asso-
iated maximum value of the signal-to-noise, n ∝ 1/SN max . Notice,
o we ver, that while the noise map itself is known, the actual noise
ealization of the observed data is not. We are therefore interested
n assessing how different noise realizations affect the value of the
og-likelihood change. 

Let us assume that the data are characterized by a noise realization,
 , so that d = 〈 d 〉 + r , where 〈 · 〉 denotes an average over noise
ealizations. In the case of mock data, 〈 d 〉 is the input model flux
orresponding to the ground truth model parameters, which we 
ndicate with ( θm 

, ζ h ): 〈 d 〉 = f ( θm 

, ζ h ). The log-likelihood gain
s as in equation (2), with terms in the same order: 

 L ( ζh , r ) = −1 

2 

∣∣∣∣∣d − f 
(

ˆ θm 

, ˆ ζh 

)
n 

∣∣∣∣∣
2 

+ 

1 

2 

∣∣∣∣∣d − f 
(
θ̄m 

)
n 

∣∣∣∣∣
2 

, (5) 

here we have implicitly assumed a sum o v er image pix els. The
uxes, f ( ̂  θm 

, ˆ ζh ), and f ( ̄θm 

), correspond to the model that best fits
he noise-corrupted data, d , with and without an extra halo. It is
onvenient to consider instead the model fluxes that provide the best
t to the noise-free data, 〈 d 〉 , which we refer to as f h and f m 

. These
odels do not achieve the maximum log-likelihood values we require 

n equation (5). For example, for the model including a halo mass
omponent, 

1 

2 

∣∣∣∣∣d − f 
(

ˆ θm 

, ˆ ζh 

)
n 

∣∣∣∣∣
2 

= 

1 

2 

∣∣∣∣d − f h 
n 

∣∣∣∣
2 

− l bf 
h ( r ) , (6) 

here the difference, l bf 
h , is a function of the noise realization and

as a positive value. Similarly, 

1 

2 

∣∣∣∣∣d − f 
(
θ̄m 

)
n 

∣∣∣∣∣
2 

= 

1 

2 

∣∣∣∣d − f m 

n 

∣∣∣∣
2 

− l bf 
m 

( r ) . (7) 

urthermore, in order to highlight the dependence on the noise 
ealization, r , we can recast the model fluxes, f h and f m 

, in terms
MNRAS 510, 2464–2479 (2022) 
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f their associated residuals, f h = 〈 d 〉 + δh and f m 

= 〈 d 〉 + δm 

, which
ives 

1 

2 

∣∣∣∣∣d − f 
(

ˆ θm 

, ˆ ζh 

)
n 

∣∣∣∣∣
2 

= 

1 

2 

∣∣∣∣ r − δh 

n 

∣∣∣∣
2 

− l bf 
h ( r ) , (8) 

nd 

1 

2 

∣∣∣∣∣d − f 
(
θ̄m 

)
n 

∣∣∣∣∣
2 

= 

1 

2 

∣∣∣∣ r − δm 

n 

∣∣∣∣
2 

− l bf 
m 

( r ) . (9) 

quation (5) is therefore the difference between the right-hand sides
f the two equations abo v e. We are interested in the mean and the
tandard deviation of this difference across noise realizations. 

Let us first consider the two shifts, l bf 
h , and l bf 

m 

. These are non-zero,
ut they are not the leading terms of equation (5) that we seek. We can
how this by estimating their average magnitude across varying noise
ealizations. This can be calculated analytically under the assumption
hat the likelihood surface is Gaussian. If so, we can see that 

 l bf 〉 = 

k 

2 
ln 2 , (10) 

hich is valid for both l bf 
h and l bf 

m 

, and in which k is the number
f independent parameters in the likelihood. In our case, the model
hat includes a halo mass component features five additional free
arameters, so that 〈
l bf 
h − l bf 

m 

〉 = 

5 

2 
ln 2 ≈ 1 . 73 . (11) 

his is considerably smaller than the log-likelihood differences we
re after and we therefore ignore these terms from now on. 

By expanding the chi-square terms in equations (8) and (9), we
nally obtain the leading terms we are interested in: 

 L ( ζh , r ) ≈ 1 

2 

( ∣∣∣∣ δh 

n 

∣∣∣∣
2 

−
∣∣∣∣ δm 

n 

∣∣∣∣
2 
) 

+ 

r 
n 

· δh − δm 

n 

. (12) 

ere, the first term quantifies the inability of a model that does not
nclude a perturbing halo mass component to describe the perturbed
ata. This is what sensitivity mapping is after, and is independent
f the noise realization. The second term introduces scatter in the
easurement of the log-likelihood gain as a consequence of varying

oise realizations, r . The case we are interested in is the one in which
 model featuring a halo mass component provides a satisfactory fit
o the data, δh / n � 1. This is also the case of mock data in which
he model used to generate data is the same used to fit it: 〈 d 〉 = f h .
n this case, 

 L ( ζh , r ) ≈ 1 

2 

∣∣∣ δ
n 

∣∣∣2 
+ 

δ

n 

· r 
n 

, (13) 

here we have used δ ≡ δm 

for compactness. By definition, the noise
ealization, r , is a random variable with zero mean; furthermore, by
onstruction, the residuals, δ, are not correlated with r . As a result,
he second term in equation (13) averages to zero: 

 � L ( ζh ) 〉 ≈ 1 

2 

∣∣∣∣ δn 

∣∣∣∣
2 

. (14) 

e can estimate the magnitude of the scatter introduced by the same
erm by taking the ratio, r / n , to be a set of independent normal random
ariables with unit variance, which results in a standard deviation of 

td ( � L ( ζh ) ) ≈
√ ∣∣∣∣ δn 

∣∣∣∣
2 

∼
√ 

2 〈 � L ( ζh ) 〉 . (15) 

e test this scaling in Appendix B, where Fig. B1 shows experiments
hat highlight the scaling of equation (15). 
NRAS 510, 2464–2479 (2022) 
In conclusion, from equation (14) we deduce that the mean log-
ikelihood increase scales with the square of the maximum signal-
o-noise ratio, SN max , and we note that the Bayesian evidence will
lso feature in the same scaling. From equations (12) and (13), we
ee that, in real data, a scatter of the order of 

√ 

2 � L should be
xpected. In fact, the same scatter should be expected when mapping
he sensitivity function using mock data that include a random noise
ealization. This implies that multiple noise realizations should be
sed and results averaged. Ho we ver, the above analysis also shows
hat this can be a v oided by using noise-free mock data (i.e. r = 0),
hile at the same time using the appropriate noise map, n , featuring

he same maximum signal-to-noise as in the real data. This is the
trategy we adopt in this work. 

.3 Fitting pr ocedur e 

aving chosen our macromodels, θm 

, we can introduce intervening
OS haloes with input parameters, ζ h , and simulate the resulting
odel fluxes, f( θm 

, ζh ) = f. As outlined in Section 2, each de-
ermination of the lik elihood gain, � L ( ζh , r ), requires tw o non-
inear searches. Ho we ver, in our case, r = 0, so that we have
 ̂

 θm 

, ˆ ζh ) = ( θm 

, ζh ), or equi v alently, L ( ̂  θm 

, ˆ ζh ) = 0, by construction,
nd therefore, 

 L ( ζh ) = L 

(
θ̄m 

)
. (16) 

Thus, for each set of halo parameters, ζ h , we only require one
on-linear search in order to determine the best-fitting parameters,

¯m 

, of the model that does not include a halo mass component. This
s also the fit with fewer free parameters – and therefore both the
astest to run, and the least likely to get stuck in local minima during
 likelihood optimization. 

.3.1 Gradient descent approach 

e perform these optimizations using an iterative gradient descent
lgorithm. In essence, at each step, i , provisional estimates of the
est-fitting parameters, θ i 

m 

, and corresponding model fluxes, f i , are
sed to calculate the increments, δθ i 

m 

, which provide the best linear
mpro v ement of the model fluxes themselves. That is, the increment,
θ i 

m 

, minimizes the log-likelihood, 

 L i+ 1 = 

1 

2 

∑ 

pixels 

∣∣∣∣∣ 1 

n 

[ 

d −
( 

f i + 

∂f 
∂θm 

∣∣∣∣
θi 

m 

· δθ i 
m 

) ] 

∣∣∣∣∣
2 

, (17) 

here ∂ f/∂ θm 

| θi 
m 

is the gradient of the model fluxes calculated at
i 
m 

. This minimization is easily solved by the corresponding least-
quares problem. The parameters at the subsequent step are therefore
i+ 1 
m 

= θ i 
m 

+ ηδθi 
m 

, where η is the so-called learning rate. Iterations
re stopped when the corresponding likelihood value converges. In
rder to a v oid convergence at possible local maxima, we repeat
he procedure o v er a set of different initialization parameters, close
o the input parameters, θm 

. In practice, we find this to be rarely
ecessary, possibly because for most perturbing haloes the best-
tting parameters, θ̄m 

, are sufficiently close to the input values
hemselves, and the log-likelihood surface is smooth in our noise-free
etting. 

Despite allowing for this redundancy, we find gradient descent to
e efficient and ine xpensiv e for models featuring parametric sources.
his is because the (noise-free) gradient maps, ∂ f/∂ θm 

, are well
ehaved and easily estimated. In contrast, this is not so when non-
arametric pixelized sources are used. We have tried using gradient
escent to optimize the parameters of the lens while, at each iterative
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tep, a linear source inversion (e.g. Warren & Dye 2003 ; Dye &
arren 2005 ) determines the source model. Ho we ver, we find this

pproach to be unsuitable, despite the fact that in this case, gradient
escent is used on a significantly smaller parameter space (featuring 8 
imensions instead of 15). Due to the nature of the semilinear source
nversion, the residuals, d − f i , contain little information on the mass
odel itself, unless unrealistically high regularization values (e.g. 
uyu et al. 2006 ) are used. 

 MAPPING  T H E  SENSITIVITY  F U N C T I O N  

or each of the two macromodels we investigate, we map the log-
ikelihood gain, � L , o v er the space of halo parameters, ζ h = ( x h , y h ,
 h , M h , c h ), using a rectangular grid as follows: 

(i) The halo mass is varied between 8.0 ≤ log M h / M � ≤ 10.0, at
ntervals of 0.5 dex; 

(ii) Halo redshift is varied between 0.05 ≤ z h ≤ 0.95, at intervals 
f δz = 0.15. 
(iii) Halo concentrations deviate from the mass–concentration 

elation between log c − log c ( M , z) ≡ δlog c = 4 σ log c and δlog c =
2 σ log c , in intervals of σ log c . Here, σ log c is the lognormal scatter of

he mass–concentration relation, which we take to be independent 
f halo mass and redshift, and fix at σ log c = 0.15 dex (Wang et al.
020 ). F or this e xploration, we assume that δlog c = 0 means the
ass–concentration relation, c ( M , z), of CDM haloes, as measured

y Ludlow et al. ( 2016 ). 
(iv) Projected locations, x h , y h , are mapped o v er 50 intervals in

oth coordinates. We scale the total extent of our maps with redshift
o as to achieve better spatial resolution in the ( x , y ) plane when z h 
 z l . 

Figs 2 and 3 illustrate some of our maps as sky-projections of
he log-likelihood increase, � L , for our ‘arcs’ and ‘quad’ configu- 
ations, respectively. The first figure shows results for a perturbing 
alo of mass M h = 10 10 M �, the second for M h = 10 9.5 M �. Columns
orrespond to different values of the perturber redshift, z h . Rows are
or different halo concentrations. 

.1 Dependence on redshift 

 common assumption in sensitivity mapping is that the perturber’s 
edshift can be recast in terms of its ef fecti ve mass. Li et al. ( 2017 )
oticed that the mass and redshift of a perturber are highly degenerate, 
nd used this to introduce the idea of rescaling a perturber’s mass
s a function of redshift. Despali et al. ( 2018 ) investigated this
qui v alence further and provided a universal scaling between redshift
nd ef fecti ve mass, which is obtained by requiring that the map of
eflection angles be minimally changed. In practice, at any fixed 
rojected location, the perturbing characteristics of a halo of mass 
 h at a redshift z h have been equated to those of a halo located at

he redshift of the lens and having an ‘ef fecti ve’ mass of log M sh =
og M h + δM ( z h ). The mass shift, δM ( z h ), is clearly zero at z h =
 l , and is found to be monotonically increasing with redshift, so
hat detecting a halo of fixed mass becomes more challenging with 
ncreasing redshift, and is easiest for close-by perturbers. 

Figs 2 and 3 show that our calculations do not support this working
ypothesis in previous work. When fitting image fluxes (rather than 
eflection angles), we find that haloes are harder to detect when 
hey are behind or in front of the main lens. The details depend
n the precise lensing configuration, mass and concentration of the 
erturbing halo, and on the precise projected location. Ho we ver, a
ecrease in � L when the halo redshift deviates from the lens redshift
s a universal qualitative feature in our maps displayed by both our
dopted lensing configurations and across halo masses. It is worth 
tressing that, as found in previous work, perturbers in the foreground
ppear to be more easily detected than perturbers in the background.
o we ver, we do not find the sensitivity to increase with decreasing

edshift at z h < z l . This means that, with respect to a perturber at
he redshift of the lens, z h = z l , suitable changes to the macromodel
an more easily reabsorb the effect of a foreground halo of equal
ass when this is at low redshifts. In other words, degeneracies in

he lens modelling make the detection of perturbers of the same mass
ncreasingly more difficult with decreasing redshift. 

Fig. 4 summarizes the redshift dependence of the log-likelihood 
ncrease, showing the ratio between the log-likelihood increase for 
 perturber at some redshift, � L ( z h , M h , c h ), divided by that at the
edshift of the lens, � L ( z h = z l , M h , c h ). This ratio is then averaged
 v er the perturbers’ projected locations, ( x , y ). The top row refers to
ur ‘quad’ configuration, and the bottom one to our ‘arcs’. The right
olumn is for a perturber of mass M h = 10 10 M �, the left column
o one of mass M h = 10 9.5 M �. Profiles of different colours refer
o different values of the perturbers’ concentrations, corresponding 
o different rows in Figs 2 and 3 , for δlog c ∈ { −2, −1, 0, 1, 2,
, 4 } × σ log c . As described, for most haloes, the log-likelihood
ncrease decreases for redshifts that are both higher and lower than
he lens’ redshift, z l . The size of this decrease depends systematically
nd monotonically on halo concentration, with the less-concentrated 
aloes displaying sharper fall-offs. This suggests that the decrease 
n sensitivity at lower redshifts is driven by the increasing angular
ize of the perturbers. Haloes at lower redshifts and/or with lower
oncentrations cause perturbations to the lensing signal o v er wider
reas. In turn, these are more readily reabsorbed by ‘global’ changes
f the macromodel and/or source properties. 
Depending on the lensing configuration, for haloes on the mass–

oncentration relation, � L ( z h ) decreases by a factor between 1.15
nd 1.6 between z h = z l and 0.2, and then drops more sharply
o wards lo wer redshift. For the highest halo concentrations, we see,
nstead, a mild apparent increase in detectability at low redshift. 
o we ver, analysis of the top rows of Figs 2 and 3 shows that

his increase is due to the fact that Fig. 4 displays averages over
rojected locations. At the highest concentrations, the projected area 
n which perturbers result in ‘intermediate’ log-likelihood values, 
0 � � L � 100 (corresponding to orange hues in Figs 2 and 3 ),
ncreases at the lowest redshifts. In the same regions, log-likelihood 
 alues are lo wer at z h = z l , which dri ves the mild increase apparent
n the average quantities shown in Fig. 4 . On the other hand, even at
he highest concentrations, it remains true that the peak values of the
og-likelihood gain, � L , decrease with decreasing redshift. In any 
ase, this mild increase is limited to extremely concentrated haloes, 
nd, therefore, is not a representative behaviour. 

The qualitative contradiction between the predictions using de- 
ection angle maps and our results implies that previous estimates of

he number of detectable haloes obtained using the relation between 
ass and redshift proposed in Despali et al. ( 2018 ) are likely to
 v erestimate the number of low-redshift haloes. We will return to
his point in Section 5.2. 

.2 Dependence on concentration 

ost previous studies hav e fix ed the halo concentration to the mean
or their mass for the adopted mass–concentration relation. Ho we ver, 
igs 2 and 3 clearly show that concentration makes a significant
ifference to halo detectability. From top to bottom, the values of
he log-likelihood gain decrease monotonically: The perturbations 
MNRAS 510, 2464–2479 (2022) 
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Figure 2. An illustration of the sky-projections of our maps of the log-likelihood increase, � L , for our ‘arcs’ lensing configuration. Columns show a grid of 
dif ferent perturber redshifts. Ro ws are for dif ferent perturber concentrations. The perturber mass is fixed at M h = 10 10 M � in all panels. Individual panels share 
the same colour scale. It is apparent that more concentrated haloes result in larger � L values. Also, the � L values decrease away from the redshift of the main 
lens, z l = 0.5, for both higher and lower perturber redshifts. 
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f less concentrated haloes are more easily reabsorbed by changes of
he macromodel parameters. In turn, at fixed mass, more concentrated
aloes are more easily detected. 
Fig. 5 provides a summary of the dependence of the log-likelihood

ncrease, � L , on halo concentration. This shows the ratio between
he log-likelihood increase, � L ( z h , M h , c h ), for a perturber of any
oncentration, c , divided by that for one on the mass–concentration
elation, � L ( z h , M h , c h = c( M h , z h )). We reiterate that δlog c = 0
n our mapping of the sensitivity function corresponds to the mass–
oncentration relation measured by Ludlow et al. ( 2016 ). Similarly
NRAS 510, 2464–2479 (2022) 
o Fig. 4 , these ratios are then averaged over projected locations,
 x , y ). The top row refers to our ‘quad’ configuration, the bottom to
ne to our ‘arcs’. The right column is for a perturber of mass M h =
0 10 M �, and the left column for one of mass M h = 10 9.5 M �. Profiles
f different colours refer to different values of the perturbers’ redshift,
orresponding to different columns in Figs 2 and 3 . It is clear that
 L increases monotonically with concentration in all cases. The

calings appear qualitatively similar in all four panels, although,
s for the dependence on redshift, quantitative details are still
ependent on the lensing configuration and other halo parameters. In

art/stab3527_f2.eps
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Figure 3. Same as Fig. 2 , for our ‘quad’ lensing configuration. The perturber halo has a mass of M h = 10 9.5 M �. 
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articular, we record a significant secondary dependence on redshift: 
he detectability of haloes at the lowest redshifts is most strongly
oosted by concentration. The magnitude of this boost then decreases 
or redshifts approaching the redshift of the lens, where it has a
inimum, to then increase again towards higher redshifts. 
Notably, we find the dependence on concentration to be essentially 

xponential, at least when averaged over projected locations: 

 � L ( δlog c ) 〉 ( x ,y ) ∼ 10 α·δlog c 〈 � L ( δlog c = 0) 〉 ( x ,y ) . (18) 

he top-right panel of Fig. 5 displays guiding lines for the exponent
= { 0.18, 0.28, 0.4 } . The log-likelihood increase grows roughly by

 factor between 1.5 and 2.5 for each additional + 1 σ deviation from
he mass–concentration relation. We will analyse the consequences 
f this on the expected number of haloes in Section 5.3. 

 T H E  POPULATI ON  O F  DETECTA BLE  

A L O E S  

sing our maps of the log-likelihood increase, � L ( ζh ), we are ready
o perform the integral in equation (1). As done in previous work,
e use a sharp threshold, � L th , in the log-likelihood increase to

eparate detectable haloes from non-detectable haloes: 

( ζh ) = 

{
1 if � L ( ζh ) ≥ � L th 

0 if � L ( ζh ) < � L th , 
(19) 
MNRAS 510, 2464–2479 (2022) 
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Figure 4. The average dependence of the log-likelihood increase, � L , on 
redshift (see the text). The top row refers to our ‘quad’ configuration, and the 
bottom one to our ‘arcs’. The right column is for a perturber of mass M h = 

10 10 M �, and the left column for one of mass M h = 10 9.5 M �. Profiles of 
different colours refer to different values of the perturber concentrations (in 
terms of the shift relative to the median concentration at the rele v ant redshift; 
see the text). 
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Figure 5. The average dependence of the log-likelihood increase, � L , 
on halo concentration (see the text). The top row refers to our ‘quad’ 
configuration, and the bottom one to our ‘arcs’ configuration. The right 
column is for a perturber of mass M h = 10 10 M �, and the left column to 
one of mass M h = 10 9.5 M �. Lines of different colours refer to different 
values of the perturber redshift. 

c  

a  

l  

r

5

A  

n  

t  

l  

c  

i  

m  

t  

d  

F  

i
2

 

n  

p  

t  

a  

q  

M

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/510/2/2464/6455326 by guest on 10 February 2022
lthough we notice that the scatter characterized in equation (15)
ould provide a natural scaling for a smooth transition in the
etection probability. This will be useful when preparing detailed
redictions for real data, but would not affect our conclusions here,
o in this study we retain a sharp transition for simplicity. 

We parametrize the cosmological number density of DM haloes
s suggested by Lo v ell et al. ( 2014 ): 

 ( M h , z| M cut ) = n CDM 

( M h , z) 
(

1 + 

M cut 

M h 

)−1 . 3 
, (20) 

here n CDM 

( M h , z) is the CDM halo number density, for which we
dopt the form derived by Sheth, Mo & Tormen ( 2001 ). We take
his distribution to be uniform o v er projected sky coordinates, and
ssume that the distribution in concentration is lognormal, with a
pread of σ log c = 0.15 dex (independent of mass, redshift, and DM
odel). We take the median concentration to be dependent on the
M model, and adopt the parametrization proposed by Bose et al.

 2016 ): 

c( M h , z| M cut ) = 

c CDM 

( M h , z) 

[
(1 + z) 0 . 026 z−0 . 04 

(
1 + 60 

M cut 

M h 

)−0 . 17 
]

, (21) 

n which the median concentration of CDM haloes is as recorded by
udlow et al. ( 2016 ). 
These prescriptions allow us to calculate the integral of equa-

ion (1) using a Monte Carlo strategy. We randomly sample the
NRAS 510, 2464–2479 (2022) 
andidate haloes’ ζ h according to their cosmological number density,
nd then check whether they would be detectable using our maps of
og-likelihood increase, which we linearly interpolate between our
ectangular grid points. 

.1 The effect of data quality 

lthough our objective is not to provide absolute figures for the
umber of detectable haloes, Fig. 6 shows the cumulative dis-
ributions of detectable LOS haloes, N d , we obtain for our two
ens configurations. Both panels are for a CDM universe and are
alculated from our full maps of the log-likelihood increase, that is
ncluding both the full redshift dependence and the scatter in the

ass concentration relation. We have used SN max = 50. We stress
hat these figures cannot be directly applied to real data analysed with
ifferent techniques and featuring different lensing configurations.
 or definitiv eness, we include all haloes with projected coordinates

n a 4.5 arcsec × 4.5 arcsec area at z h ≤ z l , decreasing to 2.1 arcsec ×
.1 arcsec at z h = z s = 1, as displayed in Figs 2 and 3 . 
Our two lensing configurations provide substantially different

umbers of detectable haloes: A quad configuration appears less
rone to modelling degeneracies and therefore more promising for
he detection of perturbers. The number of expected detections is
lso a strong function of the imposed detection threshold. In our
uad lens configuration, thresholds of � L th = { 10, 20, 35, 50 } yield
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Figure 6. The cumulative number of detectable haloes, N d ( < M ), in a 
CDM universe. Lines of different colours refer to different values of the 
log-likelihood threshold required for detectability. The left-hand panel refers 
to our quad configuration, and the right-hand panel to our configuration 
featuring asymmetric arcs. The values displayed are for SN max = 50. 
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 d = { 0.2, 0.07, 0.02, 0.01 } detections with M h < 10 10 M � per lens,
espectively. 

The analysis of Section 3.2 also allows us to address systematically 
he dependence of the total number of detected haloes with the quality 
f the data, which in this work we have characterized by the value
f SN max . Equation (14) allows us to equate changes in the value
f SN max with changes in the value of the log-likelihood threshold 
equired for detection, � L th : 

 d ( SN max , � L th ) = N d ( αSN max , α
−2 � L th ) , (22) 

or any factor α. We use this equi v alence to focus on how the number
f expected detections for a CDM universe would change for higher 
r lo wer v alues of the signal-to-noise, i.e. for longer or shorter
xposure times. 

Fig. 7 shows the number of expected detections of haloes of mass
 h < 10 10 M � (left-hand panel) and M h < 10 9.5 M � (right-hand

anel) for varying values of SN max , normalized by the number of
etections predicted for SN max = 50. The figure displays the case 
f our ‘quad’ configuration; results for our ‘arcs’ configuration are 
imilar, albeit with a more marked dependence on the SN itself. Lines
f different colours refer to different values of the log-likelihood 
hreshold required for detectability. As expected, the number of 
etectable haloes is a rapidly increasing function of the signal-to- 
oise ratio. We find that, for a likelihood threshold of � L th = 20,
n increase in signal-to-noise ratio from 50 to 60 corresponds to a
oubling in the number of expected detections N d ( M h < 10 10 M �).
he same increase in data quality makes the expected detections 
 d ( M h < 10 9.5 M �) grow by a factor of 3. As shown in the same figure,

hese factors are even larger if higher values of the log-likelihood 
atio are required for detectability. For a value of � L th = 50,
nalogous to what has been used in most previous studies, we find
he corresponding figures to be 2.5 and 5 for haloes of M h < 10 10 M �
nd M h < 10 9.5 M �, respectively. It should be noted that an increase
n the maximum SN ratio from 50 to 60 corresponds to an increase
n the exposure time of a factor of ≈1.44, which is therefore smaller
han the corresponding gain in the number of detectable haloes. 
.2 The effect of redshift dependence 

e now examine the consequences of dropping the simplifying 
ssumption of a tight relationship between halo mass and redshift. 
e isolate this effect by considering a population of CDM haloes

ssumed to lie on the Ludlow et al. ( 2016 ) mass–concentration
elation; i.e. with reference to the previous section, here we ignore
he scatter in halo concentration. (We will consider this shortly.) 
ig. 8 shows the redshift distribution of the population of detected
aloes of mass M h < 10 10 M � we obtain when: for our two lensing
onfigurations 

(i) using the mass shift proposed by Despali et al. ( 2018 ) and
escribed in Section. 4.1, shown by a dashed line 6 ; 
(ii) using the full redshift dependence of our log-likelihood maps, 

hown by a solid line. 

As expected, the two curves match at z h = z l , but we predict
ignificantly fewer detections for foreground haloes, a reflection of 
he dependence on redshift of the log-likelihood increase described 
n Section 4.1. We also find that collapsing the redshift axis leads
o an o v erestimate of detectable haloes also at z h > z l , though by a
maller factor. 

The magnitude of the global o v erestimate varies with the lensing
onfiguration. F or definitiv eness, we use a threshold of � L th = 20
n Fig. 8 . For the ‘arcs’ configuration, the o v erestimate is a factor of
.95; for the quad configuration, it is a factor of 1.63. We stress that
hese figures should not be used to ‘correct’ previous measurements 
f the number of detectable haloes and are meant only as an estimate
f the magnitude of the effect. 

.3 The effect of the scatter in concentration 

e now consider the effect of accounting for scatter in the mass–
oncentration relation. We again focus on a population of CDM 

aloes, and compare the case in which all haloes are assumed
o lie exactly on the median mass–concentration relation to the 
ase in which a lognormal scatter is included. For definitiveness, 
n both cases we use the full redshift dependence of the log-
ikelihood increase, � L , and, for simplicity, we restrict attention to
ur quad configuration. Results are analogous for our ‘arcs’ lensing 
orphology. 
Fig. 9 shows the distribution of detectable haloes in the space

f halo mass and shift relative to the median halo concentration, 
or the case in which the scatter in concentration is accounted 
or. The two-dimensional histogram in the top panel is for an
ssumed threshold, � L th = 35. The vertical dashed line shows the
edian mass–concentration relation, δlog c = 0. It is clear that,

hanks to the dependence on concentration of the log-likelihood 
ncrease described in Section 4.2, most detectable haloes are high- 
oncentration haloes. This is quantified in the bottom panel of the
gure, which collapses the mass axis to show the distribution of
etected haloes o v er concentration shifts. F or reference, the dashed
ine shows the Gaussian distribution of all cosmological haloes. 
oloured lines show the distribution of the population of detectable 
aloes for different values of the log-likelihood threshold, � L th . 
Haloes with high concentration achieve � L > � L th more easily, 

o that higher thresholds for detectability correspond to increasingly 
oncentrated populations of detectable haloes. For � L th = 50 and 
ur quad configuration, we find 〈 δlog c / σ log c 〉 = 1.25 when including
MNRAS 510, 2464–2479 (2022) 
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Figure 7. The number of detectable haloes of mass M h < 10 10 M � (left-hand panel), and M h < 10 9.5 M � (right-hand panel) in a CDM universe as a function 
of the maximum SN of the data. Values are normalized to the number of detections predicted for SN max = 50, which we use as a fiducial value in this work. 
Lines of different colours refer to different values of the log-likelihood threshold required for detectability. 

Figure 8. Predictions for the redshift distribution of detected CDM haloes 
obtained when: (i) using the relation between halo mass and redshift proposed 
by Despali et al. ( 2018 ) based on deflection angles (dashed line) and (ii) using 
the full redshift dependence of the log-likelihood increase (solid line). The 
top panel is for the ‘arcs’ configuration, and the bottom panel for the quad 
configuration. Concentration effects are not included in this comparison. 

a  

f  

l  

r  

c  

〈
 

b  

a  

c
c  

c  

t  

w  

t  

L  

t  

h  

n  

a  

i  

t  

c  

t  

b  

o  

t
 

o  

D  

d  

l  

e  

‘  

t

5

I  

d  

t  

t  

t  

M

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/510/2/2464/6455326 by guest on 10 February 2022
ll haloes of M h < 10 10 M �. The average concentration shift increases
urther for decreasing perturber masses, as shown by the coloured
ines in the top panel. These represent the ‘mass–concentration
elation of detectable haloes’. Lower mass haloes require stronger
oncentration boosts to achieve detectability, so that for � L th = 50,
 δlog c / σ log c 〉 = 2.2 for haloes of M h ≈ 10 9.2 M �. 

The result is that the scatter in the mass–concentration relation
oosts the number of expected detections. At low halo masses, for
n y fix ed halo mass, there is a fraction of haloes with high enough
NRAS 510, 2464–2479 (2022) 
oncentration that become detectable if the scatter in the mass–
oncentration relation is accounted for, and which is lost when c =
 ( M , z). This is quantified in Fig. 10 , which shows the ratio between
he cumulative number of detectable haloes, N c ( < M h ), predicted
hen accounting for the scatter in the mass–concentration relation,

o the corresponding number obtained when c = c ( M , z) for all haloes.
ines of different colours refer to different values of the detection

hreshold, � L th . For all thresholds, the ratios are a strong function of
alo mass. The onset of the sharp rise identifies the halo mass that is
ot detectable at that threshold if c = c ( M , z), but for which detections
re possible because of concentration effects. For � L th = 50, even
ncluding all haloes with M h < 10 10 M �, concentration effects boost
he number of detectable haloes by a factor of 2.75 for our ‘quad’
onfiguration. Since our ‘arcs’ configuration leads to lo wer v alues of
he log-likelihood increase and fewer detections, the corresponding
oost is a factor ≈26, e x emplifying, on the one hand, the importance
f concentration effects, and, on the other, the need for estimates
ailored to the specific lensing configuration. 

Fig. 11 displays the same boost factor as a function of the number
f expected detections, N c (which include the effect of concentration).
if ferent v alues of the expected number of detections correspond to
if ferent v alues of the data SN (or equi v alently, dif ferent v alues of the
og-likelihood threshold for detection). Once again, we see that the
xact figures depend on the lens configuration; for example, here the
arcs’ configuration appears more sensitive to concentration effects
han the quad. 

.4 The effect of concentration on distinguishing DM models 

n most previous estimates of the dependence of the number of
etectable haloes on the properties of the DM model, particularly
he mass of a WDM particle (or, equi v alently, the cut-of f mass in
he mass function), it was assumed that all haloes lie exactly on
he median mass–concentration relation of CDM haloes. Not only
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Figure 9. The distribution of halo concentration for the population of 
detectable haloes in a CDM universe. The top panel shows a two-dimensional 
histogram of all detectable haloes in the plane of halo mass and concentration 
shift from the median relation, in units of the lognormal spread in the mass–
concentration relation. The colour scale shows the number of perturbers in 
each M-c pixel for a detection threshold of � L th = 35. Lines of different 
colours display the mean concentration shift, log c / σ log c , as a function of 
mass for different thresholds for detectability (see the text). The bottom panel 
shows the distribution of concentration for all detectable haloes of M h < 

10 10 M �, as a function of the thresholds for detectability. For reference, the 
dashed line shows the parent distribution of all cosmological haloes. 
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Figure 10. The boost to the cumulative number of expected detections, N c ( < 

M h ), resulting from including the scatter in the mass–concentration relation 
for our ‘quad’ configuration. Lines of different colours correspond to different 
thresholds for detectability. 

Figure 11. The boost to the cumulative number of expected detections, N c ( < 

M h ), resulting from including the scatter in the mass–concentration relation, 
as a function of the expected number of detections. 
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s this a poor approximation but it left the differences in the halo
bundances alone as the statistic to differentiate among different 
odels. Our results show that concentration is a crucial ingredient for

alo detectability. Warmer WDM models make low-mass haloes that 
re progressively less concentrated, as quantified by equation 21. This 
akes the concentration parameter potentially helpful in boosting the 

pread among the expected numbers of detections in different DM 

odels. 
We test this in Fig. 12 , in which we show, side by side, the

umulative number of expected detections, N d ( < M h ), for a range of
DM models, parametrized by their cut-off mass, M cut . The panel on

he right displays results for the case in which concentration effects 
re neglected, whereas the panel on the left includes both: (i) the
catter in the mass–concentration relation and (ii) the dependence of 
he median concentration on the DM model. For definitiveness, we 
how results pertaining to our ‘quad’ configuration, using a threshold 
or detection of � L th = 30. 

It is clear that concentration effects significantly enhance the 
ependence of the expected number of detections on the DM model. 
educed concentration values act together with reduced cosmolog- 

cal abundances to determine the expected number of detections. 
nce again, while the qualitative trend is clear and the magnitude 
f the effect significant, precise values are dependent on the lensing 
onfiguration and on the value of the threshold chosen for detection.
e attempt to quantify how much concentration effects can actually 

harpen substructure lensing constraints in Section 6.1. 

 DI SCUSSI ON  A N D  C O N C L U S I O N S  

e have quantified the ability of low-mass DM haloes along the
OS to perturb strong gravitational lenses, and explored how this 
epends on halo properties. This is a fundamental ingredient of 
ensitivity mapping, i.e. the process of assessing which perturbers, 
ut of the cosmological population of haloes, would actually be 
etectable when modelling strong lensing data. It is impossible to 
uantify the number of expected detections in different DM models 
n a gi ven observ ational data set without building the sensitivity
unction. Therefore, sensitivity mapping is a key aspect of placing 
MNRAS 510, 2464–2479 (2022) 

art/stab3527_f9.eps
art/stab3527_f10.eps
art/stab3527_f11.eps


2476 N. C. Amorisco et al. 

Figure 12. A comparison between the cumulative number of expected detections for our ‘quad’ configuration (threshold for detection, � L th = 30) when 
including both (i) the scatter in the mass–concentration relation and (ii) the dependence of the median concentration on the DM model (left), and when 
concentration effects are neglected (right). Concentration substantially enhances the spread between the expected detections in WDM models with different 
cut-off masses, M cut . 
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onstraints on the identity and properties of DM from the number of
erturbing haloes detected in strong lensing studies. 
We have adopted a likelihood-based approach; i.e. we differentiate

etween detectable and non-detectable haloes according to the like-
ihood gain, � L , associated with including a halo mass component
n the lens modelling. Some previous studies have proposed using
nstead the Bayesian evidence for this comparison. It should be
tressed that both approaches are equally valid. As long as the
ame criterion is consistently applied to both measure the sensitivity
unction – and therefore make predictions for the different DM
odels – and detect perturbers in the data, both approaches will

eturn the correct inference on the DM properties if the models used
n sensitivity mapping share the same complexities of the real data. 

At this stage, it cannot be excluded that the sensitivity functions
erived using likelihood or Bayesian evidence may exhibit some
ifferences when compared side by side, possibly reflecting that
he two criteria may lead to different sensitivity to perturbers in
ifferent regions of the parameter space. Ho we ver, it seems quite
nlikely that this would happen systematically at the high levels of
ignificance that we are considering here and that have become the
orm in structure lensing. At present, an evidence-based sensitivity
unction has not been derived as a function of either redshift or
alo concentration, where our major findings are. Therefore, we are
nable to make a direct comparison and have limited our analysis
o the differences with the approximate strategies that have been
dopted so far. 

Rather than attempting to quantify the number of expected detec-
ions for specific observed strong lenses, we have focused on building
n understanding of the sensitivity function itself, and how this scales
ith some of the crucial parameters at play. We have concentrated on

he importance of image depth, and shown that, as the log-likelihood
ifference scales with SN 

2 , high-signal-to-noise data are extremely
eneficial in that they allow the detection of a larger number of
erturbers, particularly of low-mass haloes (see Fig. 7 ). We have
lso shown that the specific noise realization introduces scatter in the
og-likelihood difference, of magnitude ≈√ 

2 � L (see Section 3.2),
NRAS 510, 2464–2479 (2022) 
hich suggests that a smooth link between the probability of
etection, p , and the log-likelihood gain, � L , rather than a sharp
hreshold, may be a better choice when comparing with real data. 

We find that our two different lens configurations yield signifi-
antly different numbers of expected halo detections, which indicates
hat some lensing morphologies (a quad configuration in our case)
re more valuable for strong lensing analyses (see Fig. 6 ). This will
e useful in selecting lenses to target with deeper observations. We
lso note that our estimates for the total number of detectable haloes
re somewhat lower than what has been suggested by similar studies
or the same values of lens and source redshifts, and for similar
ata quality. This may be due to the increased flexibility of our lens
odelling, including the possibility of shifts in the lens centre (see
egetti et al. 2014 ), as well as the assumed power-law profile slope

see Li et al. 2017 ; Despali et al. 2018 ). With particular reference to Li
t al. ( 2017 ) and Despali et al. ( 2018 ), the fact that we perform fully
on-linear searches when optimizing our macromodels certainly en-
bles them to reproduce better the perturbed data without the need of
ncluding a halo mass component, hence lowering the log-likelihood
ain. If anything, this highlights the importance of using exactly
he same techniques to both (i) model real data and make perturber
etections and (ii) produce estimates of the expected detections, as
ny mismatch would inevitably introduce systematic biases. 

We then concentrated on the role of halo redshift and halo
oncentration. In previous work, simplifications had been made to
ollapse these axes, in order to make the calculation of the sensitivity
unction computationally feasible. 

Concerning the redshift of the perturber, we have shown that,
ontrary to previous understanding, it becomes increasingly
hallenging to detect perturbing haloes in front of the main lens
hen they get closer to the observer (see Figs 2 –4 ). This implies

hat previous studies of the number of detectable haloes have likely
 v erestimated the number of foreground detections, at redshifts z h <
 l . The exact magnitude of this overestimation appears to depend on
he specific lensing configuration. As a reference, our experiments
how this factor to be between 1.5 and 2 (see Fig. 8 ). These previous
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Figure 13. The change on limits to the WDM cut-off mass, M cut , from 

including concentration effects, at a fixed number of expected detections for 
a CDM universe: N d,CDM 

= 1. Lines show likelihood ratios (see the text) 
resulting from the detection of (1, 2, 3) perturbers, respectively, from the top 
to the bottom row. Dashed lines display the inference based on predictions 
that ignore concentration effects. These are included in the solid lines. 
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stimates are not based on a calculation of the Bayesian evidence at
 h �= z l . Therefore, it is not currently known whether an evidence-
ased criterion for detection would indeed yield a dependence of 
he perturbers’ detectability on redshift that is analogous to the one 
e measure. Certainly, we find that the strategy adopted so far (of
sing deflection angles as proxies) underestimates the degree of 
e generac y in the lens modelling and therefore artificially makes the
etection of foreground perturbers easier than actually is in reality. 
Concerning concentration, we find that detectability is a strong 

unction of halo concentration, such that the population of detectable 
aloes is, in fact, a population of systematically high-concentration 
aloes (see Fig. 9 ). The shift in the average concentration relative
o the mass–concentration relation becomes increasingly large for 
aloes of lower masses, and increases when a higher threshold for
etectability is adopted. For a threshold of � L th = 50, the average
hift in the concentration of haloes with masses below 10 10 M � is
bout 1.25 σ log c , where σ log c is the lognormal scatter in the mass–
oncentration relation. 

Crucially, accounting for the scatter in the mass–concentration 
elation results in a boost to the number of detectable haloes. This
oost is a strong function of the lensing configuration and of the
hreshold for detectability (or, equi v alently, of the data quality as
uantified by the maximum signal-to-noise; see Figs 10 and 11 ). As
eference, for a combination of a lens configuration and detection 
hreshold that results in a total of 0.03 detections with M h < 10 10 M �
er lens in a CDM universe – which is roughly comparable to what
as previously predicted for lenses with the HST data – this boost

mounts to a factor of ≈2.5, and quickly grows to � 10 for the
etections expected at M h � 10 9.5 M �. 
Unfortunately, without a tailored study, it is impossible to provide a 

recise quantification of how the abo v e two effects would combine to
f fect pre vious estimates of the expected number of detections in real
bserved strong lenses, especially since the two effects have opposite 
igns. The o v erestimate related to the redshift dependence is sensitive
o the lensing configuration and certainly to the redshifts of both 
ens and source, which here we have kept fixed. The underestimate 
ue to the concentration dependence is a strong function of lensing 
onfiguration and data quality. It would appear that the correction due 
o concentration is larger than that due to the redshift dependence, 
ut further study is required to ascertain in which regime that is the
ase, and by how much. 

What we can already establish in this study is how concentration 
ffects can facilitate differentiating WDM models with different 
ut-off halo masses. We have shown that taking into account the 
ependence of the median halo concentration on the DM model 
ncreases the spread among the number of expected detections (see 
ig. 12 ). For warmer models, lower halo concentrations conspire 
ith lower cosmological halo abundances increasingly to suppress 

he number of detectable haloes. The effect of halo concentration had 
ot been included in previous studies, leaving only halo abundances 
o differentiate among DM models, therefore making it harder to 
istinguish them in strong lensing studies. 

.1 Sharper DM constraints from substructure lensing 

n order to quantify the extent to which concentration effects can 
harpen future substructure lensing constraints, we assume that we 
ave a set of strong lenses such that the total expected number of
etections in CDM is 

 d , tot 

(
M h < 10 9 . 5 M �, CDM 

) = 1 . (23) 
e ignore the contribution of satellite haloes, and assume that the
bo v e figure only includes haloes along the LOS, on which we have
ocused in this work. While we are not able to tailor our analysis
uantitativ ely to an y specific set of observed strong lenses, this figure
s representative of what is achievable with current HST data (Vegetti
t al. 2018 ; Ritondale et al. 2019 ), and therefore provides a useful
eference point. We use our maps of log-likelihood increase, � L , to
alculate the number of expected detections in the same set of lenses
or WDM models with dif ferent cut-of f masses, M cut . We do so
eparately for our ‘quad’ and ‘arcs’ lensing configurations, requiring 
hat the number of lenses in the two separate sets be such as to
atisfy equation (23) separately. 7 Furthermore, we set up predictions 
or both, the case in which concentration effects are accounted for and
he case in which they are ignored. Then, we compare the inferences
n the DM model that would result from actually detecting i = (1,
, 3) individual haloes, in the two different configurations. These are
isplayed in Fig. 13 , which shows the likelihood ratio: 

 = 

P ( i| N d , tot ( M cut )) 

P ( i| N d , tot ( M cut = 10 6 M �)) 
, (24) 

here P ( · | m ) is the Poisson probability distribution with mean,
 , and i is the number of actual detections. Inference resulting

rom predictions that ignore concentration effects is shown with 
ashed lines, while the likelihood ratio obtained when accounting 
or concentration effects is shown with solid lines. The vertical 
ines indicate the limits on the WDM cut-off mass corresponding 
o a likelihood ratio ( R ) of 0.05. The right and left columns
MNRAS 510, 2464–2479 (2022) 
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orrespond, respectively, to the two lensing configurations. Details
re only marginally different and the magnitude of the effect is
ery similar in the two cases: At fixed number of expected haloes
n a CDM universe, concentration effects make constraints on the

DM cut-off mass significantly more stringent. The suppression
n the concentration of WDM haloes enhances the effect of lower
osmological halo abundances, allowing constraints that are about
ne order of magnitude more stringent in M cut . 

.2 Outlook 

ur results bring renewed confidence to the field of halo detection
ith strong lensing data, and boost confidence that meaningful

onstraints can be obtained from analysis of current optical data.
 number of previous works ha ve contrib uted to the realization that

t is extremely challenging to use current optical HST data to obtain
onstraints on the cut-off of the DM halo mass function that are
ompetitive with those obtained from the satellites of the Milky Way
r measurements of the Lyman α forest (see Enzi et al. 2021 , and
eferences therein). This is because, if halo abundances alone are
sed to differentiate between CDM and WDM, in order to be able
o probe a WDM model with a cut-off mass, M cut (the mass below
hich the abundance of haloes declines sharply), it is necessary to
e sensitive to perturbers of that halo mass and below. However,
vidence is mounting that detecting haloes of mass M h ≈ 10 8.5 M �
s extremely challenging with current lensing data, and therefore that
t would be very difficult to place competitive constraints. 

Concentration effects change this picture completely. For example,
he limits displayed in Fig. 13 stem from detections of haloes
f mass M h > 10 9.5 M � – which is realistic with current HST
ata – but they can rule out values of the cut-off mass scale,
 cut � 10 8 M �. This is a direct reflection of the effects of halo

oncentration, which, in contrast to halo abundances, first affects
aloes of masses significantly above the cut-off mass itself. For
his reason, concentration effects allow substructure lensing studies
o probe WDM models with cut-off masses at least one order of
agnitude below the lo west sensiti vity mass scale. This implies that

ubstructure lensing is, in fact, a much more sensitive probe of the
dentity of the DM than had been previously recognized. 
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PPENDIX  A :  INPUT  M AC RO M O D E L S  

able A1 contains values of the adopted model parameters for the 
wo different lensing configurations used in this study. 
able A1. Input values for the two sets of macromodel parameters used in
his study. 

odel parameter Quad Arcs 

 x l , y l ) (0.0051 arcsec, 
0.0765 arcsec) 

(0.0396 arcsec, 0.08 arcsec) 

l 1.165 arcsec 1.095 arcsec 

l 1.93 1.99 
 e 1 , l , e 2 , l ) (0.022, 0.011) ( −0.013, 0.007) 
 γ 1 , γ 2 ) ( −0.037, −0.099) ( −0.008, 0.001) 
 l 0.5 0.5 
 x s , y s ) (0.024 arcsec, 0.032 arcsec) ( −0.024, 0.036) 
 eff 0.15 arcsec 0.12 arcsec 
 e 1 , s , e 2 , s ) (0.147, −0.135) (0.05, −0.25) 
 s 1.1 1.2 
 s 1 1 
 l 1.0 1.0 

PPENDI X  B:  DEPENDENCE  O N  T H E  NOIS E  

E A L I Z AT I O N  

ig. B1 shows the link between the mean and the scatter (standard
eviation) of the log-likelihood gain � L . Each point corresponds 
o a different set of halo properties ζ h . For each, 10 different
andom noise realizations have been considered and modelled. The 
orresponding set of values for the log-likelihood increase has been 
sed to estimate both mean value and standard deviation. The red
ashed line illustrates the prediction of equation (15). 

igure B1. The scaling of the scatter in the log-likelihood increase std( � L )
esulting from different noise realizations (at fixed signal-to-noise) and the 
ean log-likelihood increase 〈 � L 〉 . The red line shows the scaling of

quation (15). 
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