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Summary

Exceptionally preserved fossils are key to reconstructing the origin
of the modern animal body plans in the Cambrian radiation. The
Panarthropod phyla Euarthropoda, Onychophora and Tardigrada
have roots in a ‘lobopodian’ grade typified by broadly cylindrical
organisms with sclerotized dorsal plates and paired ventral
projections. A similar anatomical configuration has been taken to
link certain palaeoscolecid worms with the earliest ecdysozoans.
Shi et al. (2021a) contend that these similarities evolved
convergently, and that palaeoscolecids are priapulan relatives with
little bearing on the panarthropod evolution.

Here we show that this conclusion holds only under a particular
treatment of inapplicable character states with known shortcomings.
When inapplicable tokens are handled more rigorously, palaeosco-
lecids are most parsimoniously reconstructed as stem-group
panarthropods with homologous dorsal plates and ventral projec-
tions – highlighting the degree to which the treatment of
inapplicable data can influence fundamental evolutionary conclu-
sions. As the position of palaeoscolecids depends so strongly on the
underlying methodology, and is highly uncertain under a Bayesian
approach, we consider it premature to exclude the possibility that
panarthropods evolved from a grade of palaeoscolecids with dorsal
plates and ventral projections.

Introduction

Palaeoscolecids are a widespread Palaeozoic group of armoured
subcylindrical worms whose phylogenetic position has attracted
much debate. Their regionalized pharyngeal armature and
posterior hooks recall those of priapulans (Harvey et al. 2010;
Smith 2015; Smith et al. 2015), but the possibility that such
features may have been present in the ancestral ecdysozoan (Smith
and Caron 2015) permits relationships elsewhere among the
moulting animals, whether close to the nematomorphs, recogniz-
ing similarities in cuticle structure (Hou and Bergström 1994;
Wills et al. 2012); as sister to the panarthropods (Dzik and
Krumbiegel 1989; Han et al. 2007a); or close to the root of
Superphylum Ecdysozoa (Budd 2001).

Precise anatomical observations of additional fossil material,
such as the valuable description of new cricocosmiid specimens by
Shi et al. (2021a), are needed in order to resolve this uncertainty.
Tabelliscolex and its close relatives Cricocosmia and Tylotites have
previously been linked to lobopodians on the basis of their
phosphatized dorsal sclerites (Han et al. 2007a, b), which
potentially correspond to net-like sclerites in an equivalent position
on early–diverging lobopodians such as Microdictyon,
Onychodictyon and Cardiodictyon (Ramsköld and Chen 1998).

Shi et al. (2021a) describe serially repeated projections that lie
ventrally opposite these dorsal plates. These structures fit neatly into
the appealing, if speculative, framework proposed by Dzik and
Krumbiegel (1989), in which lobopodians evolved from a
palaeoscolecid-like ancestor via the extrusion of ventral legs
opposite dorsal plates. This scenario rests on the assumption that
plates in lobopodians and palaeoscolecids are homologous, and
could imply that newly described ventral projections represent
precursors to the lobopod limbs of lobopodians.

Shi et al. (2021a) display commendable caution by testing this
model in a phylogenetic framework, combining characters from two
established phylogenetic datasets to test palaeoscolecid relation-
ships within a modern framework of ecdysozoan evolution,
encompassing recent fossil finds and conceptual advances (Wills
et al. 2012; Smith and Ortega-Hernández 2014; Smith and Caron
2015; Yang et al. 2015; Zhang et al. 2016; Howard et al. 2020).

This combined dataset is characterized by a high proportion of
character states that cannot logically be coded; 7155 of 17 005
entries are marked as ‘inapplicable’. As an example, a taxon without
sclerites cannot be meaningfully coded for the sub-character
‘sclerite ornamentation’ (character 86, Shi et al. 2021b), as
neither of the two states ‘net-like’ or ‘scaly’ applies.

Fitch (1971) parsimony and the Mk model (Lewis 2001) treat
these inapplicable states as though they were simply uncertain, an
approach that is known to materially affect the identification of
optimal topologies (Maddison 1993; Brazeau et al. 2019). By way
of example, a transition between ‘net-like’ and ‘scaly’ dorsal
sclerites might be inferred in an ancestor that lacks sclerites. The
inference of an evolutionary step that could not logically have
occurred may add to an overall parsimony score that would
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otherwise be optimal. Workable solutions to the problem – each
with their own strengths and limitations – have recently been
proposed (De Laet 2005; Brazeau et al. 2019; Tarasov 2019;
Goloboff et al. 2021; Hopkins and St. John 2021).

Methods

We explore the impact of inapplicable data on the results of Shi et al.
(2021) by reanalysing their morphological matrix using four
methods: Bayesian inference and maximum likelihood under the
Mk model (Lewis 2001); standard Fitch (1971) parsimony; and the
‘inapplicable-aware’ parsimony algorithm of Brazeau et al. (2019)
(‘BGS’).

The first three methods seek to replicate and extend the results of
Shi et al. (2021); we follow these authors’ methodology, making
appropriate selections for unspecified analytical parameters.

For Bayesian inference, we conduct three independent runs of six
chains in MrBayes 3.2.7a (Ronquist et al. 2012), sampling every
10 000 generations for 6 000 000 generations, discarding the first
25% of samples as burn-in. We use the Mk model with gamma-
distributed rate variation across characters (Lewis 2001), and a
Dirichlet prior distribution on branch lengths (Rannala et al. 2012;
Zhang et al. 2012). Convergence between runs is indicated by
minimum estimated sample sizes > 1800 and potential scale
reduction factors = 1.000 for the tree length and alpha parameters.

We calculate the maximum likelihood tree using IQ-tree 1.6.12
(Nguyen et al. 2015). ModelFinder (Kalyaanamoorthy et al. 2017)
identifies the Mk model (Lewis 2001), with a four-category gamma
model of rate heterogeneity and a correction for ascertainment bias,
as the most appropriate model under the Bayesian information
criterion. Correspondingly, the five invariant sites are removed prior
to analysis. This model estimates 188 parameters from 174 variable
sites, meaning that branch length estimates – and consequently
reconstructed tree topologies – are likely to be unreliable (Burnham
and Anderson 2002). We further note that IQ-tree treats partially
ambiguous states (e.g. {0, 2}) as fully ambiguous (i.e. ?).

To identify optimal trees under the Fitch (1971) parsimony
implementation, we use TNT 1.5 (Goloboff et al. 2008a) with each
of the implied weighting (Goloboff 1993) concavity constants 2, 3,
4.5, 7, 10, 15, 22, 34, 51, 76, 114 and∞ (i.e. equal weights), without
extended implied weighting (Goloboff 2014). We stop tree search,
using the parsimony ratchet and tree drifting heuristics (Goloboff
1999; Nixon 1999), once the optimal score is hit 1000 times.

Finally, we apply the ‘Morphy’ (Brazeau et al. 2017) implemen-
tation of the BGS inapplicable treatment (Brazeau et al. 2019) using
the R (R Core Team 2021) package ‘TreeSearch’ (Smith 2018,
2021), which conducts tree search using the parsimony ratchet
heuristic (Nixon 1999). Implied weighting scores are calculated
using the formula e=(eþ k) (Goloboff 1993), where e is the extra
score associated with each character (i.e. the ‘Morphy’ score minus
the minimum score possible), and k is the concavity constant. At
each concavity constant, we run the search until tree score has not
improved for 18 consecutive ratchet iterations, retaining up to 171
most parsimonious trees for each analysis.

Because six characters in the Shi et al. (2021a) matrix contain
6–13 sub-characters, and 14 sub-characters are contingent on more
than one character, the TNT implementation of the Goloboff et al.
(2021) algorithm (which supports a maximum of five sub-
characters) cannot be used. The BGS algorithm, whilst approximate
and imperfect (Brazeau et al. 2019; Goloboff et al. 2021), is the
only inapplicable-aware phylogenetic method that supports arbi-
trarily many contingent sub-characters, and for which a computa-
tionally tractable implementation is presently available. This allows
us to analyse the Shi et al. (2021a) matrix without modification,
simplifying the interpretation of our results.

We explore differences between analytical methods by con-
structing a tree space (Hillis et al. 2005; Smith in press a) on a subset
of 20 most parsimonious trees from each parsimony analysis, 100

Fig. 1. Summary of Bayesian posterior trees. Cricocosmiids (bold) are
among the least stable taxa in Bayesian analyses, but are most likely to
fall as sister to a clade comprising nematoids and panarthropods. The
presence of paired ventral structures in the common ancestor of these taxa
is not resolved by probabilistic methods. Tree represents the majority-rule
consensus of the posterior distribution after removing the rogue taxon
Acosmia, and is arbitrarily rooted on Loricifera + Kinorhyncha. Taxa are
coloured according to their relative instability (Smith in press b): darker
text denotes taxa that occupy a consistent position in all sampled trees.
Edges are labelled with the posterior probability of the associated
bipartition split; pie charts at nodes denote the reconstructed probability
that serially repeated paired ventral structures (char. 77, Shi et al. 2021b)
were present at each ancestral node.
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trees from the posterior distribution of each of MrBayes run, and the
single most likely tree.

We define our tree space based on quartet distances between
unrooted trees (Estabrook et al. 1985; Sand et al. 2014; Smith
2019b), which map faithfully into two dimensions via principal
coordinates analysis (Gower 1966) (trustworthiness × continuity
> 0.9) (Venna and Kaski 2001; Kaski et al. 2003). The minimum
spanning tree (Gower and Ross 1969), which shows the shortest
graph connecting all trees, highlights distortions in the mapping
(Smith in press a). We verified that the results of tree space analysis
are robust to the choice of distance metric by repeating the analysis
using the clustering information distance (Smith 2020).

Morphological datasets often include taxa with a poorly
constrained phylogenetic position, removal of which allows
additional groupings to be resolved in a consensus tree
(Wilkinson 1994, 1996). We evaluate the stability of leaves
within the posterior distribution of trees in order to identify rogue
taxa using the heuristic approaches of Smith (in press b).

To evaluate the evolutionary implications of different tree
topologies, we reconstruct ancestral states using the BGS algorithm
(parsimony trees) and maximum likelihood (Bayesian trees), using
the R packages ‘ape’ and ‘TreeSearch’ (Paradis and Schliep 2019;
Smith 2021).

Results

Our Bayesian analysis reproduces the results presented by Shi et al.
(2021a). Analysis of the Bayesian posterior tree sample identifies
Acosmia (Howard et al. 2020) as a rogue taxon whose variable
position between posterior trees reduces the resolution of the
majority-rule consensus tree. A majority-rule summary of the
Bayesian posterior after removing Acosmia from each tree topology

(Fig. 1) thus yields additional phylogenetic information (Smith
in press b). Most pertinently, the posterior tree sample suggests
(with p . 0:7) that cricocosmiids belong in the stem group of a
clade comprising nematoid worms and panarthropods, which are
likely (p . 0:6) to be sister taxa.

Despite the tendency of phylogenetic analyses to overestimate
Bayesian posterior probabilities, particularly in the presence of
ambiguous (or inapplicable) data (Suzuki et al. 2002; Erixon et al.
2003; Yang and Rannala 2005; Lemmon et al. 2009), the results of
this analysis are inconclusive as to whether the common ancestor of
cricocosmiids and panarthropods had serially repeated paired
ventral structures (char. 77, Shi et al. 2021b; Fig. 1); indeed, this
character is reconstructed with a degree of uncertainty at all nodes.
Dorsal epidermal specializations (char. 79, Shi et al. 2021b) are
reconstructed as absent at this ancestral node with p ¼ 0:8.

Trees identified as optimal under the maximum likelihood and
parsimony criteria fall at or beyond the fringes of the area of tree
space sampled by the Bayesian posterior distribution (Fig. 2;
Supplementary Data). Their high distance from the more central and
densely sampled regions of the Bayesian posterior distribution
indicates that these trees do not correspond to the most plausible
trees under the Mk model.

Even if the most likely tree has an low likelihood of being exactly
correct (p ¼ e�2390:0492), it can in principle serve as a point estimate
of the most likely tree topologies in situations where a single
bifurcating tree is desired (Brown et al. 2017). In this case, however,
the large distances between the maximum likelihood tree and the
majority of the Bayesian sample (Fig. 2) indicate that it inadequately
represents the distribution of plausible trees and the associated
phylogenetic uncertainty.

Parsimony analysis under the Fitch algorithm replicates the
results of Shi et al. (2021a), though our extended searches recover

Fig. 2. Mapping of distances between
trees recovered by different analyses.
Fitch (1971) parsimony (+) and maximum
likelihood (×) resolve cricocosmiids as
sister to Priapulida (squares); BGS
parsimony [Brazeau et al. (2019); open
shapes] as sister to Panarthropoda
(triangles); the Bayesian posterior sample
[Lewis (2001); filled shapes] encompass
both these possibilities as well as a
position as sister to Panarthropoda +
Nematoida (circles). p denotes the
posterior probability of each topological
hypothesis. Low (light shading) v. high
(dark shading) concavity constants return
a distinct set of trees in both parsimony
treatments.
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additional most-parsimonious trees (k = 3: 82 rather than four;
equal weights: 4 981 rather than six; tree scores listed in
Supplementary Data). Values of the concavity constant close to
TNT’s default of 3, which is understood to penalize homology
too severely in many settings (Goloboff et al. 2008b, 2018; Smith
2019a), recover trees that are very different from those under
more appropriate concavity constants (higher values; darker
shades in Fig. 2), which in turn resemble those obtained under
maximum likelihood and equal weights; the most prominent
differences concern whether Microdictyon and similar taxa fall in
the stem group to Panarthropoda or Onychophora (Supplementary
Data).

BGS parsimony recovers very different trees to Fitch parsimony
(Fig. 2; tree scores listed in Supplementary Data), again with strong
differences between low concavity constants (in which Acosmia
plots with kinorhynchs and loriciferans; Supplementary Data) and
high ones (where Acosmia plots with nematoids; Fig. 3). All BGS
trees recover the clade comprising panarthropods and lobopodians
emerging from a paraphyletic ‘Cricocosmiidae’ (Fig. 3). The most
parsimonious character reconstruction indicates that serially
repeated paired ventral structures (char. 77, Shi et al. 2021b
Fig. 3) and dorsal epidermal specializations (char. 79, Shi et al.
2021b) evolved in the common ancestor of Tabelliscolex and
panarthropods, and are homologous between these groups. The
potential homology of the paired ventral structures inMafangscolex
remains uncertain under the BGS algorithm.

Discussion

The central conclusion of Shi et al. (2021a) – that dorsal sclerotized
plates and spinose ventral appendages evolved independently in
lobopodians and cricocosmiids – is supported only when
cricocosmiids are resolved as stem-group priapulans. Parsimony
analyses only recover this situation under unsuitable treatments of
inapplicable characters. Bayesian analysis, which cannot yet readily
account for inapplicable characters, assigns a low posterior
probability (5.5%) to a stem-group priapulan relationship.

Our reanalyses indicate that it is more parsimonious to reconstruct
cricocosmiids in the stem group to Panarthropoda, and that this
relationship – with the possible inclusion of the nematoids – is
substantially more likely than any other. This view is consistent with
the origin of panarthropods (and potentially nematoids) from within
a palaeoscolecid grade, and the homology of their dorsal and ventral
repeated structures (Dzik and Krumbiegel 1989). Nevertheless, in
light of the strong impact of methodology on the relationships of the
palaeoscolecids, and the considerable uncertainty in their super-
phylum-level affinity indicated by Bayesian analyses, we feel that it
is premature to offer a decisive statement on the potential
homologies between serially repeated structures in lobopodians
and palaeoscolecids.
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