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SUMMARY

Inmostmalemammals, fitness is strongly shaped by competitive access tomates,
a non-shareable resource. How, then, did selection favor the evolution of cooper-
ative social bonds? We used behavioral and genetic data on wild chimpanzees
(Pan troglodytes schweinfurthii) in Gombe National Park, Tanzania, to study
the mechanisms by which male-male social bonds increase reproductive success.
Social bonds increased fitness in several ways: first, subordinate males that
formed strong bonds with the alpha male had higher siring success. Indepen-
dently, males with larger networks of strong bonds had higher siring success.
In the short term, bonds predicted coalition formation and centrality in the coali-
tion network, suggesting that males benefit from being potential allies to
numerous male rivals. In the long term, male ties influenced fitness via improved
dominance rank for males that attain alpha status. Together, these results sug-
gest that male bonds evolved in chimpanzees by affording both short- and
long-term pathways to reproductive success.

INTRODUCTION

Humans and other animals form differentiated affiliative bonds that are associated with survival and repro-

duction (Holt-Lunstad et al., 2010; Ostner and Schülke, 2018; Seyfarth and Cheney, 2012). Yet despite

growing evidence of fitness consequences of sociality, only two studies in non-human mammal species

have provided evidence of the mechanisms by which sociality might lead to higher survival or reproductive

success (Ostner and Schülke, 2018; Schülke et al., 2010; Thompson, 2019). In wild horses (Equus caballus),

more social mares experienced less frequent male harassment and had higher rates of offspring produc-

tion (Cameron et al., 2009). In Assamese macaques (Macaca assamensis), males that had stronger bonds

formed more aggressive coalitions, rose in rank in subsequent periods, and ultimately sired more offspring

(Ostner and Schülke, 2018; Schülke et al., 2010). Here, we use long-term behavioral and genetic data to

investigate the relationship between sociality and reproduction in male chimpanzees.

Previous studies in male chimpanzees provide reason to suspect similar mechanisms at work. Subordinate

males that support and affiliate with the alpha male have higher mating success (Bray et al., 2016; Duffy

et al., 2007). Additionally, male affiliative behavior can predict coalitionary support in aggressive interac-

tions (Mitani, 2006; Watts, 2002), and subordinate males with higher direct and indirect centrality in the

aggressive coalitions network have higher current and future rank (Gilby et al., 2013; Watts, 2018) and

are more likely to sire offspring in the short term, independent of dominance rank (Gilby et al., 2013).

Finally, males with more strong affiliative ties are more likely to rise in rank (Bray et al., in press), and

higher-ranking males sire more offspring (Boesch et al., 2006; Langergraber et al., 2013; Newton-Fisher

et al., 2010; Wroblewski et al., 2009). Yet no study in chimpanzees has demonstrated a link between social

relationships and reproductive success. Our study thus aims to fill gaps in this picture of male cooperative

and competitive behavior by determining (1) whether male social bonds predict reproductive success and

(2) what mechanisms link social bonds to coalition formation and paternity. Specifically, we tested three hy-

potheses regarding themechanisms linking sociality and paternity success. These were that (1) subordinate

males can form strong bonds with the alpha male to achieve greater reproductive success via mating con-

cessions, which we call the ‘‘alpha concessions’’ hypothesis; (2) males can form bonds with other males to

improve their short-term reproductive success via social leverage stemming from aggressive coalitionary

support, which we call the ‘‘coalitionary support’’ hypothesis; and (3) males can form bonds with other
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Table 1. List of models and model fit parameters for full dataset, using measures of social relationships to predict

male siring success

Affiliative index Model Df AICc DAICc Akaike weight

DAI4 Count of strong association ties 6 360.104 �7.349 0.700

DAI4 Sum of strong assn. indices 6 362.823 �4.63 0.180

(none) Null model 5 367.453 0 0.018

DAI4 Count of all association ties 6 368.384 0.931 0.011

DAI4 Sum of all association indices 6 369.129 1.676 0.008

Grooming Total grooming partners 6 368.668 1.215 0.01

Grooming Total time spent grooming 6 368.679 1.226 0.01

Grooming Sum of grooming times above mean 6 368.777 1.324 0.009

Grooming Count of strong grooming rate partners 6 369.085 1.631 0.008

Grooming Sum of grooming rates above the mean 6 369.288 1.835 0.007

Grooming Overall grooming rate 6 369.388 1.935 0.007

Grooming Count of strong grooming time partners 6 369.468 2.015 0.006

Grooming Mean grooming rate across all partners 6 369.485 2.032 0.006

CSI Sum of top 3 CSI values 6 369.282 1.828 0.007

CSI Sum of CSI values above the mean 6 369.465 2.011 0.006

CSI Count of high CSI ties 6 369.471 2.018 0.006

Models include all terms from the null model, plus the term described in the model column. DAICc shows difference in cor-

rected AIC score between each model and the null model, with negative values indicating models that fit better than the null

model and positive values indicating those that fit less well. The two best fit models account for 88% of total model weight.
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males to increase their long-term reproductive success via improved dominance rank, which we call the

‘‘rank improvement’’ hypothesis.

RESULTS

Using model comparisons, we first tested whether male sociality was associated with an increased likeli-

hood of siring offspring. From a dataset of 56 siring events with known paternity between 1980 and

2014, we constructed a null model with a binary outcome variable indicating siring success and terms for

male age, male genetic relatedness to the infant’s mother, male dominance rank, and random intercepts

for male identity (see STARMethods). We then addedmeasures of association and grooming to determine

if they improved model fit. Because studies differ over the most biologically meaningful method for char-

acterizing social connectedness (Ellis et al., 2019; Ostner and Schülke, 2018; Silk et al., 2013; Thompson,

2019), we conducted information-theoretic comparisons of models containing all terms from the null model

plus measures based on (a) dyadic association in small groups (hereafter ‘‘association’’), (b) grooming re-

lationships and overall grooming effort, as well as (c) composite indices of dyadic association and groom-

ing (see STAR Methods and Table 1 for a full list and descriptions of model terms). We found that two

models had better fit than the null model: one containing the number of ‘‘strong association ties’’, defined

as dyadic association indices above the yearly community mean (Ellis et al., 2019), and a second containing

the summed strength of strong dyadic association ties (DAICc = �7.35 and �4.63, respectively; Table 1).

These two measures were highly correlated (Pearson correlation = 0.89) and likely represent two ways of

capturing the same social dynamic. According to the best model, males with more strong association

ties had a higher likelihood of siring offspring (binomial generalized linear mixed model, odds ratio

[OR] = 1.63, 95% confidence interval [CI] = [1.19–2.23]); remarkably, a one standard deviation increase in

the number of strong association ties correspondeds to a 63% increase in probability of siring a given

offspring, after accounting for male age, relatedness to the mother, and dominance rank score (see

STAR Methods; Figure S1). Even after adding an additional term to control for overall gregariousness

(the total time each male spent with other males and females of reproductive age; see STAR Methods),

the same two models had better fit than the null model (DAICc = �3.75 and �1.51, respectively), and in

the best-fit model, the count of strong association ties was again positively associated with the likelihood

of siring offspring for males (OR = 1.52, CI = [1.08–2.15]). Results also held when using raw association

counts instead of sociality indices based on association (see STAR Methods, Table S1).
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Table 2. List of models and model fit parameters using measures of social relationships to predict male siring

success among subordinate males only

Model df AICc DAICc Akaike weight

CSI with alpha + count of strong association

ties

7 282.489 �11.700 0.532

Grooming rate with alpha + count of strong

association ties

7 284.330 �9.859 0.212

Count of strong association ties 6 284.773 �9.416 0.17

Association rate with alpha + count of strong

association ties

7 286.476 �7.713 0.072

CSI with alpha 6 291.437 �2.752 0.006

Association rate with alpha 6 292.645 �1.544 0.003

Grooming rate with alpha 6 292.848 �1.341 0.003

Null model 5 294.189 0 0.002

Models include all terms from the null model, plus the term(s) described in the model column. DAICc shows difference in

corrected AIC score between each model and the null model, with negative values indicating models that fit better than

the null model.

ll
OPEN ACCESS

iScience
Article
Next, we investigated possible mechanisms by which social bonds may confer fitness benefits. We first

tested the alpha concession hypothesis; previous research in chimpanzees showed that subordinate males

that formed strong relationships with the alpha male received mating concessions by the alpha (Bray et al.,

2016; Duffy et al., 2007) (see also e.g. Henzi et al., 2010; Snyder-Mackler et al., 2012). Thus, to determine

whether those subordinate males that had a strong social bond with the alpha male had higher reproduc-

tive success, we analyzed the subset of 45 siring events by non-alpha males. We again generated a null

model with male age, male genetic relatedness with the mother, and male dominance rank score, with

random intercepts for male identity. We then compared the null model with themodel containing the num-

ber of strong association ties (the term from the best fit model in the previous analysis), models including

several measures of bond strength with the alpha male, and models including both (Table 2). The best-fit

model (DAICc =�11.70) included the composite sociality index (CSI) of grooming and association with the

alpha male, as well as the count of strong association ties, while the next best fitting model included

grooming rate with the alpha male, as well as the count of strong association ties (DAICc = �9.86; Table

2). In the best-fit model, both CSI with the alpha male (OR = 1.44, CI = 1.03–2.02) and count of strong as-

sociation ties (OR = 1.76, CI = 1.24–2.48) were positively associated with likelihood of siring offspring (Fig-

ures 1, 2, and S2). Thus, subordinate males with strong bonds with the alpha male, as well as those with

many strong association ties, were more likely to sire a given offspring, after accounting for the effects

of dominance rank score, age, and genetic relatedness with the mother. CSI with the alpha male and

the number of strong association ties were not highly correlated (Pearson correlation = 0.08; Figure S2),

suggesting that they represented independent tactics for achieving siring success.

To further ensure that the two measures were structurally independent, we conducted two additional an-

alyses. First we re-calculated the number of strong association ties, this time excluding alpha males from

the count. Model fits and parameter estimates were effectively identical to those presented here (Table

S2). Second, we tested whether bonds with the second-ranked (beta) male had comparable effects on

siring success to those with the alpha male. In contrast with alpha males, we found no evidence that strong

bonds with beta males improved siring success, suggesting that bonds with the alpha male are functionally

different from other close bonds (Table S3). These findings provide support for the ‘‘alpha concessions’’

hypothesis: male chimpanzees can gain fitness benefits by establishing strong bonds with alpha males,

who are more likely to concede matings to close social partners (Bray et al., 2016). They also point to

another independent strategy: males can also succeed by building a large network of strong association

ties, which do not necessarily include the alpha male.

A large bond networkmay affordmultiple additional routes to fitness by conferring social leverage that extends

beyond an individual’s own resource holding potential (Lewis, 2002; Watts, 2010). In the short term, social bonds

may facilitate coalition formation, which could help males avoid harassment or gain access to resources such as

mating opportunities (Bissonnette et al., 2015; Ostner and Schülke, 2018; Schülke et al., 2010; Thompson, 2019;
iScience 24, 102864, August 20, 2021 3
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Figure 1. Predictors of siring success among subordinate males

Predicted relationship between siring probability and (A) male age; (B) male rank score; (C) male-female genetic

relatedness; (D) strength of the composite sociality index with the alpha male; and (E) count of strong association ties,

among subordinate (i.e., non-alpha) males, using a restricted dataset of 45 siring events by subordinate males. Predictor

variables are standardized within each period except for age, which was standardized across the entire dataset, and the

genetic relatedness term. Error regions indicate 95% confidence intervals.
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Watts, 1998). Coalitions occur when two ormore individuals jointly direct aggression at one ormore targets (Bis-

sonnette et al., 2015; Harcourt and de Waal, 1992) and have been shown to confer fitness advantages. For

example, in Assamesemacaques, social bonds predicted coalition formation, and both bond strength and coa-

lition formation predicted rank increase and reproductive success in later periods (Schülke et al., 2010). To test

the coalitionary support hypothesis in chimpanzees, we investigated whether dyads that had stronger associa-

tion relationships (based, as above, on association in small parties) and/or those with stronger grooming rela-

tionships were more likely to form aggressive coalitions, accounting for dominance rank, age, time observed

together (because dyads that were rarely seen together have fewer opportunities to form coalitions), and indi-

vidual tendencies to form coalitions (see STAR Methods). As predicted, we found that relationship strength

based on association was indeed positively correlated with the probability of forming coalitions (probit AME

model, posterior mean = 0.17, 95% credible interval = [0.02–0.32]), an effect that was similar to that of grooming

rate on coalition formation (posterior mean = 0.15, CI = [-0.01–0.32]) (Figure S3).

Previous research in Gombe found that it was specifically indirect ties in the network of coalition formation

that predicted rank improvement and reproductive success. Males with high betweenness in the coalition
4 iScience 24, 102864, August 20, 2021
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network—those that formed coalitions with males that did not form coalitions with each other—were more

likely to rise in rank and sire offspring (Gilby et al., 2013). Similarly, subordinate males in two smaller chim-

panzee communities at other study sites achieved disproportionate mating success during periods when

higher-ranking males depended on their support to consolidate power in a dominance struggle (de Waal,

1982; Nishida, 1983). We therefore examined whether males with more strong association ties also had

higher betweenness in the network of male coalition formation and found this to be the case (F = 16.15,

estimate = 0.03, 95% confidence interval = [0.01–0.04]; Figure S4). Together, these findings suggest that

one explanation for the relationship between strong association tie count and reproductive success is

that males with many strong association ties leverage their position as a potential ally of numerous rivals

within their community to gain access to mating opportunities or protection from harassment, consistent

with the coalitionary support hypothesis.

Finally, we examined the rank improvement hypothesis: that sociality facilitates long-term improvements in

dominance rank, which provide future reproductive advantage (Ostner and Schülke, 2018; Schülke et al.,

2010; Thompson, 2019). Bray et al. (in press) found that at Gombe, males with more strong association

ties achieved higher dominance rank in the following year. Therefore, a positive association between

rank and reproductive success would suggest that social bonds have a delayed effect on reproductive suc-

cess via rank acquisition (Ostner and Schülke, 2018; Thompson, 2019). We found partial support for this hy-

pothesis: using all siring events, dominance rank was positively associated with likelihood of siring offspring

(best model: OR = 1.53, CI = 1.12–2.10; Figure S1). In addition, a path analysis revealed that higher rank

score among subordinate males may indirectly increase their reproductive success because higher-ranking

subordinates tended to have stronger bonds with the alpha (Table S4, Figure S7). However, after excluding

alpha males, dominance rank was not directly associated with the likelihood of siring offspring in the best-

fit model (best model: OR = 1.09, CI = 0.70–1.70; Figure 1). In addition, while alpha males sired the highest

proportion of offspring during the study period (20%), males occupying each rank position from two (beta)

to 10 sired roughly 7–10% of total offspring (Figure S5). Therefore, it appears that rank acquisition is a long-

term reproductive strategy that primarily benefits those males that attain alpha status.
iScience 24, 102864, August 20, 2021 5
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DISCUSSION

Among group-living animals, social bonds are expected to evolve to mitigate the inevitable costs of living

in groups (Ostner and Schülke, 2018). Male chimpanzees compete aggressively for access to females (Duffy

et al., 2007; Muller and Mitani, 2005; Wrangham, 2002) and alpha males tend to display the highest rates of

aggression (Muller, 2002) and usually sire a disproportionate share of offspring (Boesch et al., 2006; Langer-

graber et al., 2013; Newton-Fisher et al., 2010; Wroblewski et al., 2009). Our results suggest that bonds

formed by subordinate male chimpanzees provide leverage with which to achieve higher reproductive suc-

cess in this competitive environment. Subordinate males that formed strong social relationships with the

alpha male, as well as those that had many strong association ties with non-alpha males, were more likely

to sire offspring than other subordinate males.

Leverage refers to the components of power relationships independent of individual resource holding po-

tential or fighting ability, such as the fighting ability of coalition partners or the possession of a resource

(like agonistic support) that cannot be appropriated by force (Lewis, 2002; Watts, 2010). Individuals should

therefore gain leverage from alliances with high-ranking group mates, as well as from a position as a po-

tential ally to two rivals. Previous research found that subordinate males gain leverage from prosocial re-

lationships with alpha males, which in turn confers improved access to mates. Alpha males grant mating

concessions to subordinate males that provide them with coalitionary support (Duffy et al., 2007) and those

that groom them at high rates (Bray et al., 2016). Reproductive concessions have also been reported in

other mammalian species (Henzi et al., 2010; Snyder-Mackler et al., 2012), although it is often difficult to

separate the effects of reproductive concessions from those of limited control by dominant individuals

(Bray et al., 2016; Clutton-Brock, 1998). Using genetic data, we have extended previous behavioral evi-

dence in chimpanzees by showing that the strength of subordinate males’ relationship with the alpha

male was positively associated with their likelihood of siring offspring.

We also found that subordinate males with larger networks of strong association ties with other subordi-

nate males were more likely to sire offspring (Figures 1, 2, and S1). The effect of the number of strong as-

sociation ties was independent of the effect of the amount of time males spent with other group members

in general. This supports the idea that, in species with high fission-fusion social dynamics (Aureli et al.,

2008), association preferences are important measures of social bonds (Bray et al., in press; Bray and Gilby,

2020; Gilby and Wrangham, 2008). Indeed, dyads with stronger association ties were more likely to form

coalitions, indicating that leverage derived from close relationships likely provides a short-term strategy

linking social bonds with reproductive success via coalition formation.

Moreover, males with more strong association ties had higher coalitionary betweenness, i.e., they tended to

form coalitions with males that did not form coalitions with each other. Previous research in the Gombe popu-

lation found that males with high coalitionary betweenness were more likely to rise in rank and father offspring

(Gilby et al., 2013). While it is possible that social temperaments and skills that influence indirect centrality in a

social network could be heritable in a species with complex social cognition (Brent, 2015), it remains unlikely that

coalitionary betweenness would be a target of selection because this measure also depends on the coalitionary

behavior of other individuals. Our results are consistent with the more parsimonious explanation that individual

behavior operating at the local network level (maximizing one’s set of potential coalition partners by forming

more strong social bonds) is responsible for the previously reported association between betweenness in the

network of coalitions and male reproductive success. Indeed, cognitive studies report that chimpanzees are

capable of understanding the concept of social leverage (Sánchez-Amaro et al., 2018) and thus that they may

be able to take advantage of leverage afforded by a broad set of potential coalition partners. Our results are

also consistent with earlier research in small groups of captive and wild chimpanzees, which found that males

that were potential allies of two higher-ranked rivals temporarily leveraged their position for greater mating suc-

cess (deWaal, 1982; Nishida, 1983). Similar results were also reported in humans in organizational settings: peo-

ple that connect others that do not themselves connect have higher compensation, better performance evalu-

ations, and gain more promotions than their structurally redundant peers (Burt, 2004, 2009), an effect attributed

in part to leverage gained by the ability to form alliances with two individuals in conflict (Burt, 2009).

Finally, another study from the Gombe population found that males withmore strong association ties tended to

rise in rank or maintain high rank (Bray et al., in press). Here, we confirmed earlier evidence that dominance rank

predicts reproductive success amongmale chimpanzees (Boesch et al., 2006; Langergraber et al., 2013;Newton-

Fisher et al., 2010; Wroblewski et al., 2009). While higher-ranking subordinate males tended to form stronger
6 iScience 24, 102864, August 20, 2021
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bonds with the alphamale, when alphamales were excluded from the analysis, male dominance rank score was

notan importantdirectpredictorof siringsuccess. In the longterm,of the36males in thecurrent studycommunity

that survived at least until age 16, 12 (33%) achieved alpha status at some point. Therefore, social bonds among

male chimpanzees may contribute to future reproductive success by facilitating higher dominance rank if males

rise to, and retain, alpha status. In the short term, however, it appears that subordinatemales benefit from strong

relationships with the alpha male but not directly from competitive advantages gained from higher dominance

rank.

These results based on genetic data differ from earlier evidence in Gombe, which found that higher dominance

rank predicted mating success even among non-alpha males (Bray et al., 2016). Additional data are needed to

clarify whether these differing results are due to the smaller sample size of the current genetic dataset or to the

timing of mating by subordinate males relative to the period of maximum female fecundity.

It is unclear why males that had large grooming networks or those that spent more time grooming overall

did not sire more offspring in the current analysis. One hypothesis that remains to be tested is that groom-

ing that occurs in small parties serves to establish social bonds but is recorded less frequently by observers

(because focals of small groups are rare), while grooming observed in larger groups is less indicative of

partner preference. This would predict that grooming data recorded in small parties would show a similar

relationship with siring success as do strong association ties.

Kinship has long been recognized as a pivotal factor in the evolution of male social bonds (van Hooff and

van Schaik, 1994), but more recent evidence underscores the importance of bonds among unrelated males

as well (Ostner and Schülke, 2018; Schülke et al., 2010). Although male philopatry and female dispersal

mean male chimpanzees tend to reside with kin, males also form bonds, cooperate, and affiliate with

non-kin (Bray and Gilby, 2020; Goldberg and Wrangham, 1997; Langergraber et al., 2007; Mitani, 2009; Mi-

tani et al., 2000). Our results may help explain this phenomenon: if males benefit from forming strong as-

sociation relationships and coalitions with many males (Gilby et al., 2013), there is a clear selective advan-

tage to building large bond and alliance networks that extend beyond close kin.

Amongmammals, sociality predicts survival and longevity inmales and females across numerous taxa, including

cetaceans (Ellis et al., 2017; Stanton andMann, 2012), non-human primates (Archie et al., 2014; Brent et al., 2013;

Campos et al., 2020; Silk et al, 2003, 2009, 2010), hyraxes (Barocas et al., 2011), ungulates (Nuñez et al., 2015; Van-

der Wal et al., 2015), and humans (Holt-Lunstad et al., 2010; House et al., 1988). Several studies have also linked

sociality to reproductive output, including in primates (Assamese macaques: Ostner and Schülke, 2018; Schülke

et al., 2010; rhesusmacaques,Macacamulatta: Brent et al., 2013), cetaceans (Wiszniewski et al., 2012), and ungu-

lates (Cameron et al., 2009). Yet other research has complicated this picture; for example, one study found that

maleGuinea baboons (Papio papio) that socializedmorewith othermales had lower reproductive success, likely

due to a trade-off between time spent socializing withmales and time spent socializing with females (Dal Pesco,

2020).Notably,maleguineababoonshave relativelyegalitariandominance relationships,with low ratesofwithin-

sex aggression and indistinct dominance relationships (Patzelt et al., 2014). Our results thus add to a growing

body of evidence that social bonds are linked to reproductive output. Further, because male chimpanzees

compete aggressively for access to females (Duffy et al., 2007;Muller andMitani, 2005;Wrangham, 2002), our re-

sults suggest that same-sex affiliative social relationships should contribute to reproductive success in taxa with

strong within-sex competition.

Few studies in mammals have investigated the mechanisms by which sociality produces improved repro-

ductive output. In wild horses, more social mares experienced less frequent male harassment and had

higher rates of offspring production (Cameron et al., 2009), and in Assamese macaques, unrelated males

that had stronger bonds with their top three partners formed more coalitions, rose in rank in subsequent

periods, and ultimately sired more offspring (Schülke et al., 2010). Recent reviews have called for greater

attention to the mechanisms underpinning the sociality-fitness link in mammals (Ostner and Schülke,

2018; Silk et al., 2013; Thompson, 2019). Here, we provide evidence consistent with multiple independent

pathways linking male social bonds and reproductive success in a social mammal.

Our goal was to determine how social bonds are related to coalition formation and reproductive output.

We found that male chimpanzees benefit from social bonds in three ways: first, we show that males that

formed strong social bonds with the alpha male were more likely to sire offspring, probably via the
iScience 24, 102864, August 20, 2021 7
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that males with more strong association ties showed later increases in rank score. Asterisk (*) indicates that the current study found evidence that rank

improved siring success only for alpha males, although other studies in Gombe and other sites have documented higher reproductive success for

high-ranking males beyond the alpha position (see main text).
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previously demonstrated mechanism of mating concessions by the alpha male (Bray et al., 2016). Second,

we show that males with large networks of strong ties were more likely to sire offspring. In the short term,

males that formed strong association ties with many group mates had more coalition partners were more

central in the network of coalition formation and were more likely to sire offspring, independent of domi-

nance rank. In the long term, as previously shown, male chimpanzees with more strong association ties had

higher rank scores a year later (Bray et al., in press), and current results demonstrate that those that rose to

the alpha position had better siring success (Figure 3). Because males with more strong association ties

formed more coalitions, this long-termmechanism resembles the mechanism described in male Assamese

macaques (Schülke et al., 2010). Identifying the precise short-term mechanism by which strong association

ties might facilitate leverage and improved male reproductive success (e.g. via coalitionary mate guarding

(Watts, 1998) reduced harassment outside of mating contexts (Cameron et al., 2009), or some other mech-

anism) requires further research. Nevertheless, current results suggest that social bonds provide multiple

short- and long-term routes to reproductive success. In doing so, they underscore the behavioral flexibility

of non-human primates and broaden the scope of proximate mechanisms underlying social evolution.

Limitations of the study

This study relied on observational data and is unable to confirm a causal relationship between male soci-

ality and reproductive success. It remains possible that some other factor, such as phenotypic quality, de-

termines both male social behavior andmale siring success and that therefore the relationships reported in

the current study are spurious. However, evidence of multiple independent pathways linking male bond

formation and reproductive success make this a less parsimonious explanation.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Cleaned data and code https://github.com/jtfeld/male_sociality_RS Zenodo: https://doi.org/10.5281/zenodo.

5027438

Experimental models: Organisms/strains

32 male and 26 female free-ranging

chimpanzees

not applicable not applicable

Software and algorithms

R 4.0.3 R Core Team, 2020 https://cran.r-project.org/

R package EloOptimized 0.3.0 Feldblum et al., 2019 https://cran.r-project.org/web/packages/

EloOptimized/index.html

R package lme4 1.1-27 Bates et al., 2015 https://cran.r-project.org/web/packages/

lme4/index.html

R package MuMIn 1.43.17 Barto�n, 2020 https://cran.r-project.org/web/packages/

MuMIn/index.html

R package amen 1.4.4 Hoff et al., 2020 https://cran.r-project.org/web/packages/

amen/index.html

R package coda 0.19-4 Plummer et al., 2006 https://cran.r-project.org/web/packages/

coda/index.html

R package igraph 1.2.6 Csárdi & Nepusz, 2006 https://cran.r-project.org/web/packages/

igraph/index.html

R package lavaan 0.6-8 Rosseel, 2012 https://cran.r-project.org/web/packages/

lavaan/index.html

R package semPlot 1.1.2 Epskamp, 2019 https://cran.r-project.org/web/packages/

semPlot/index.html
RESOURCE AVAILABILITY

Lead contact

Further information and requests for code and data should be directed to and will be fulfilled by the lead

contact, Joseph T. Feldblum (feldblum@umich.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� Data are available at https://github.com/jtfeld/male_sociality_RS

� All original code is available at https://github.com/jtfeld/male_sociality_RS and is publicly available

as of the date of publication (see key resources table for accession code).

� Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects

Subjects were 32 male and 26 female free-ranging chimpanzees (Pan troglodytes schweinfurthii) in the Ka-

sekela community in Gombe National Park, Tanzania. Males were between 11.0 and 40.8 years of age, and

females were between 12.3 and 43.3 years of age (see below for inclusion criteria).
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Ethical guidelines

Data collection was approved by Tanzania National Parks, Tanzania Wildlife Research Institute, and

Tanzania Commission for Science and Technology, as well as the Duke University Institutional Animal

Care and Use Committee.
METHOD DETAILS

Gombe National Park is located in western Tanzania on the eastern shore of Lake Tanganyika. Since 1973,

local field assistants have conducted daily full-day focal follows on individuals in the Kasekela community,

one of three chimpanzee communities in the park (Goodall, 1986). The observers record the party compo-

sition, social behavior, and physical location of the focal individual and all other individuals present, and the

arrival and departure time of individuals joining and leaving the focal’s party. Since 1994, researchers have

also collected fecal samples for genetic analysis (Constable et al., 2001). Chimpanzees have a social orga-

nization with high fission-fusion dynamics, meaning that party composition changes frequently and the full

community is rarely together in a single party (Goodall, 1986). FromDecember 1996 to November 2013, the

start and end times, direction, and partner identity of all grooming bouts involving the focal individual were

recorded in narrative notes. Before and after those dates, observers recorded the partner identity and di-

rection of all grooming bouts involving the focal individual at five-minute intervals.

We used behavioral and genetic data from 1986 to 2014 to investigate the reproductive consequences of

male sociality. We analyzed data by siring event, using association and grooming data in the year preced-

ing each siring event to predict the likelihood of siring by a given male. We chose year-long intervals to

facilitate comparison with earlier work on sociality and adaptive outcomes in in chimpanzees and other

nonhuman primates (e.g. Bray et al., in press; Bray and Gilby, 2020; Ellis et al., 2019; McFarland et al.,

2017; Silk et al., 2018, 2009, 2006a, 2006b). We included males in a given siring window if they were alive

and at least 11 years old on the conception date, as the youngest known successful male sire in Gombe

was 11.4 years old. The community averaged 12.3 (range 9–15) such males across periods.

We began with 60 paternity assignments which were reported in earlier publications (Constable et al.,

2001; Feldblum et al., 2014; Gilby et al., 2013; Massaro et al.; Walker et al., 2017; Wroblewski et al.,

2009), which include detailed descriptions of genotyping and paternity assignment methods (Massaro

et al.; Walker et al., 2017; Wroblewski et al., 2009). Briefly, 8–11 microsatellite loci were genotyped for

mothers, offspring, and candidate males. The eight loci that are genotyped for all individuals (Barbian

et al., 2018) have a mean of 10.4 alleles per locus (range: 6–16) and a mean heterozygosity of 0.828

(range: 0.744-0.907). Fathers were first identified using the exclusion principle, and then confirmed via

likelihood methods in Cervus (Kalinowski et al., 2007). All candidate males have been genotyped since

1992 for Kasekela and since 2003 for Mitumba (the northern community in Gombe). Additional geno-

typed males from the unhabituated southern Kalande community were included in the paternity ana-

lyses, and we conservatively assumed 90% sampling of all candidate males in likelihood analyses. In

all cases, the identified father was the only male that lacked allelic mismatches with the offspring’s ge-

notype given the maternal genotype (i.e. all other males were excluded by one or more loci) and was

assigned at the strict confidence level of 95%. For infants with known paternity, we estimated siring

date by subtracting 226 days, the mean gestation period in Gombe, from the infant’s birthdate (Boehm

and Pusey, 2013).

Because mating and reproduction are less likely between closely related male-female dyads in Gombe

(Feldblum et al., 2014; Walker et al., 2017), we generated pairwise relatedness values between potential

sires and each infant’s mother using Queller and Goodnight’s R (Queller and Goodnight, 1989). Genetic

relatedness data were missing for some dyads because genetic sampling began in Gombe after the death

of some study subjects, so we excluded four siring events for which we were missing four or more related-

ness values between mothers and potential male sires. We lacked genetic data for one additional male, so

we excluded him from the seven additional siring events for which he was present. Finally, we excluded two

males from siring analyses because they were unable to reproduce: Pax was excluded from all siring win-

dows because he received severe testicular injuries before puberty and was rendered sterile, and Goblin

was excluded as a potential sire from siring events after October, 1989, when he received severe testicular

injuries in a fight and was subsequently suspected of being sterile (Goodall, 1986, 1992). This resulted in a

dataset of 56 total siring events, with 32 unique males and 25 unique females.
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Because researchers differ in their approaches to characterizing social relationships (Ellis et al., 2019; Ost-

ner and Schülke, 2018; Silk et al., 2013; Thompson, 2019) and because different measures of social integra-

tion predict fitness-related outcomes across studies, with no obvious way to know a priori the best measure

to use (Ellis et al., 2019; Ostner and Schülke, 2018), we followed recent precedent (Bray et al., in press; Ellis

et al., 2019) by testing several measures of male sociality.

To measure dyadic association in each siring window we calculated dyadic Simple Ratio Index (‘‘SRI’’)

values based on joint arrivals in parties of four or fewer individuals (Bray and Gilby, 2020; Cairns and

Schwager, 1987; Foerster et al., 2015). The SRI accounts for the total arrivals of both members of a dyad,

and therefore controls for differences in observation effort and gregariousness among individuals. We

scored individuals as arriving together if they were both present at the start of a focal follow or if they joined

a party with the focal individual within fiveminutes of each other (Bray andGilby, 2020; Foerster et al., 2015).

Males in the sample had a mean of 41.5 such arrivals per year (range: 3 to 133), with 679/740 yearly male

arrival counts of more than 20 arrivals. Dyadic SRIs had amean value of 0.03 (range 0–0.66). SRI values based

on arrivals in groups of different sizes were positively correlated, and restricting joint arrivals to small

groups increases the likelihood that associating individuals were actually interacting (Newman, 2001)

and more accurately reflects partner choice. In addition, restricting our data to individuals’ first arrival of

a given day mitigates problems of autocorrelation in association data (Bray et al., in press; Bray and Gilby,

2020; Foerster et al., 2015) and the confounding effects of individual variation in gregariousness (Foerster

et al., 2015; Pepper et al., 1999).

First, we used dyadic SRI values to generate four measures of individual male bondedness and social

integration that have been used in previous studies of male social behavior in this population (Bray

et al., in press). To measure total association, we calculated 1) the total number of association partners

in each window (i.e. the total number of males with whom a given male arrived in a small group at least

once), and 2) the sum of the SRI values for all association partners. To determine whether males

benefitted from stronger relationships in particular, we classified strong association ties as those with

an SRI value above the siring window mean (Ellis et al., 2019; McFarland et al., 2017; Silk et al., 2018),

and calculated 3) the total number of strong association ties (Ellis et al., 2019; McFarland et al., 2017;

Silk et al., 2018), and 4) the sum of the SRI values for strong association ties (Ellis et al., 2019) (Table

1). Because the number of males varied between periods we standardized all values by Z-transformation

within each siring window.

Second, we calculated several measures of grooming effort and grooming relationship strength with other

males. Males groomed other males for a mean of 506 (range 0–3990) minutes per siring window. This cor-

responded to males grooming a mean of 1.2% (range 0–17.7%) of their time in groups with at least one

other male when one of the two males was the focal individual. Male-male dyads groomed for a mean

of 46 (range 0–1105) minutes per siring window. Male-male dyads groomed at a mean rate of 0.6% (range

0–11.7%) of their focal time together. To capture total grooming effort, we included 1) a measure of total

time eachmale spent grooming with other males, and 2) individual grooming rate, defined as the total time

spent grooming other males divided by the total focal minutes with at least one other male, and 3) total

number of grooming partners. We next calculated total time each dyad spent grooming and used these

values to generate two individual sociality indices: 4) the number of strong grooming ties (i.e. those with

grooming durations above the siring period mean) (Ellis et al., 2019; McFarland et al., 2017; Silk et al.,

2018), and 5) the sum of grooming durations with partners with above-average grooming durations (Ellis

et al., 2019). Finally, we calculated dyadic grooming rates by dividing dyadic time spent grooming by

the total time both individuals were in a group together and one was focal (because grooming was only

recorded for focal individuals). Thus this measure controls for opportunity to groom, ensuring that results

were not driven by spatiotemporal clustering within the community range. Using these dyadic rates, we

determined three additional measures of grooming: 6) mean grooming rate across all group members,

7) number of partners with a grooming rate above the siring period mean (Ellis et al., 2019; McFarland

et al., 2017; Silk et al., 2018), and 8) sum of the grooming rate values for partners with above-average

grooming rates (Ellis et al., 2019) (Table 1). Because of differing number of males between periods, and

because themethod of recording grooming changed during the study period (see above), we standardized

all grooming measures by Z-transformation within each period. Dyadic SRI values were weakly positively

correlated with grooming times (R2 = 0.09) and grooming rates (R2 = 0.04), indicating that the association

and grooming measures captured different aspects of dyadic relationships.
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Third, following studies of sociality and fitness in other taxa (Schülke et al., 2010; Silk et al., 2009), we gener-

ated several measures of social bonds using a composite index of grooming and association in small

groups. To generate dyadic composite sociality indices (‘‘CSIs’’), we first scaled SRI and grooming rate

values by dividing them by their respective means in each window, then averaged the scaled SRI and

grooming values to generate a composite index. From these CSI values, we generated three measures

of individual sociality: 1) several studies in cercopithecine monkeys have found that the strength of individ-

uals’ top three CSI scores predicted survival and reproductive output (Ostner and Schülke, 2018; Schülke

et al., 2010; Silk et al., 2009), so following these we calculated the sum of each individual’s top three CSI

values in each period, 2) following studies of the adaptive benefits of strong and weak ties in cercopithecine

monkeys (Ellis et al., 2019; McFarland et al., 2017; Silk et al., 2018), we calculated the count of strong CSI

values, i.e. those above the siring window mean, for each individual, and 3) the sum of each individual’s

strong CSI values (Table 1). Because the number of males varied between periods we standardized all

values by Z-transformation within each siring window. Details of bivariate correlations between sociality

predictors are presented in Figure S6.

To ensure that poor sampling did not influence rate-based measures of sociality, we excluded dyads

observed for less than 1800 min together in a given window, or for whom one individual had 20 or fewer

arrivals in a window, from individual-based measures of sociality (Bray et al., in press; Bray and Gilby,

2020; Foerster et al., 2015). We also excluded dyads observed together for less than 600 min when one

or the other was the focal individual from the calculation of grooming rate and CSI-based measures above.

We extracted instances of coalitionary aggression from detailed narrative field notes. Aggression events

were instances of directed displays, chases, or contact aggression, and were considered coalitionary if

two or three males directed aggression at one or more males (Gilby et al., 2013). Coalitions of three males

were scored as three dyadic coalitions.

We generated dominance rank scores from records of submissive pant-grunt vocalizations, a formal vocal

signal of submission in chimpanzees (Bygott, 1979; Goodall, 1986). To measure dominance rank, we calcu-

lated male rank scores on the date of each siring event using a modified Elo score method, with the k

parameter and entry scores optimized usingmaximum likelihood fitting using the ‘‘EloOptimized’’ package

(Feldblum et al., 2019; Foerster et al., 2016). All analyses were conducted in R version 4.0.3 (R Core Team,

2020). This method dynamically updates rank scores at each interaction, allowing for the calculation of rank

on a given date. Elo scores were based on 7050 pant-grunts with unambiguous actor and recipient among

37 males age 10 or older from 1978 to 2014. Males in the current sample participated in a mean of 506 pant-

grunt events (range 66–2430), which meets the robustness criterion for estimating reliable dominance hi-

erarchies (Sánchez-Tójar et al., 2018). Because the mean value of Elo scores varied slightly between periods

due to males entering the hierarchy and dying, we standardized Elo scores within each period by Z-

transformation.

Finally, to make effect sizes easier to compare, we centered and scaled male age by Z-transformation.
QUANTIFICATION AND STATISTICAL ANALYSIS

Sociality and siring success

For our model comparison procedure, we first chose a null model using an information-theoretic model

selection procedure. We specified a generalized linear mixed model (‘‘GLMM’’) with a logit link function,

with a binomial outcome variable indicating male siring success in each siring window (1 for the successful

male, 0 for the other males) and five predictor terms: male relatedness with each mother, scaled male Elo

score, scaled male age, scaled male age squared, and the count of males of reproductive age on the date

of siring, as well as random intercepts for male identities. We ran this full model in the lme4 package in R

(Bates et al., 2015; R Core Team, 2020), and then used a model selection procedure with corrected AIC

values (‘‘AICc’’) as our selection criterion to determine the best set of non-social terms for predicting

male siring success using the MuMIn package in R (Barto�n, 2020; Burnham and Anderson, 1998). AIC values

can select overly complex models (Burnham and Anderson, 1998); indeed adding a nuisance (i.e.

completely random) parameter to a well-fitting model will tend to produce a DAIC value of �2, potentially

leading to the inclusion of the model in the top model set (Arnold, 2010). Therefore excluding models from

the top model set that differ from better-supported models by the addition of one term can improve infer-

ence and parameter accuracy (Harrison et al., 2018; Richards et al., 2011). We therefore excluded such
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models from the set of candidate models and includedmodels within 6 AICc points of the best model in the

top model set. The best-fit model included three terms: genetic relatedness, Elo score, and male age, and

accounted for 48% of the Akaike weight. The next best model (DAICc = 0.67) included two terms: genetic

relatedness and Elo score, and accounted for 34% of the Akaike weight. We treated the best-fit model

(including scaled male age, genetic relatedness with the mother, male Elo score, and random intercepts

for male identity) as the non-social Null model against which we compared subsequent models.

Next, we tested the hypothesis that male sociality facilitates siring success by comparing the Null model to

the set of 13 models that included all terms from the Null model, plus one measure each of male social

connectedness (see above), using AICc as our selection criterion (Table 1). This procedure asked whether

including a given measure of male sociality increased the likelihood of minimizing information loss when

predicting siring success relative to models including no social connectedness predictor. We also calcu-

lated Akaike weights for each model, which can be interpreted as conditional probabilities for each model

(Burnham and Anderson, 1998).

We found that two models including measures of association had lower AICc values than the Null model,

and together accounted for 88% of model weights (see Results and Table 1). These included the count and

total strength of strong association ties, respectively (see Results and Table 1). We conducted an additional

set of analyses to test whether the relationship between strong association ties and siring success was

driven by male gregariousness. To do this, we calculated a measure of gregariousness for each male by

summing the dyadic time eachmale was observed with other males and females of reproductive age (males

older than age 10, females older than age 11;Walker et al., 2018), and then standardized these values within

each siring window by Z-transformation. We then added this term to the Null model and re-ran our model

comparison procedure described above. We again compared models using corrected AIC and Akaike

weights.

Our measure of dyadic association controlled for differences in observed arrivals between males (Cairns

and Schwager, 1987). To confirm that our choice of index did not bias our results, we regenerated our as-

sociation measures using raw joint arrival counts, rather than the Simple Ratio Index. We then re-calculated

the two measures of individual association found to be important for predicting siring success in our pri-

mary analysis, this time using these raw joint arrival counts; 1) the total number of strong association ties

(i.e. ties in which dyads had more joint arrivals than the yearly mean) (Ellis et al., 2019; McFarland et al.,

2017; Silk et al., 2018), and 2) the sum of the joint arrivals for strong association ties (Ellis et al., 2019) (Table

1). Because the number of males varied between periods we standardized all values by Z-transformation

within each siring window.

We then conducted a reduced version of the model comparison procedure from the primary analysis (see

above). We compared the null model (which included scaled male age, genetic relatedness with the

mother, male Elo score, and random intercepts for male identity) with two models including all terms

from the null model, plus measures 1) and 2) above. Results were similar to those presented in the primary

analysis, with the model including number of strong ties based on raw joint arrival counts fitting better than

the null model (although the sum of joint arrivals across strong association ties did not fit better than the

null model; Supplemental information and Table S1).
Testing the alpha concessions hypothesis among subordinate males

Finding no confounding effect of gregariousness, and consistent results whether using an association in-

dex or raw data, we next conducted a series of analyses to investigate the mechanisms by which male so-

ciality might influence their reproductive success. First, we conducted a model comparison procedure to

determine whether subordinate male affiliative relationships with the alphamale in each siring window pre-

dicted siring success. To do this, we excluded the alpha male in each window from the dataset, and further

excluded 11 siring events when the alpha male was the sire. The resulting dataset included 45 siring events,

with 23 unique males and 23 unique females. We again specified a binomial GLMM, with rank, age, and

genetic relatedness terms as predictor variables, random intercepts for male identity, and siring success

as the binary outcome variable, as our Null model. We tested the hypothesis that strong bonds with the

alpha male facilitate reproductive concessions by comparing the Null model to models including all terms

from the Null model plus 1) measures of bond strength with the alpha, 2) the term from our best model for

predicting siring success (count of strong association ties), and 3) models including both (Table 2). As
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before we compared models using corrected AIC and Akaike weights. To confirm that our models met

model assumptions of predictor term independence, we calculated variance inflation factors (VIFs) for

each of the models in the model comparison set shown in Table 2. No term in any of the models had a

VIF value above 2, indicating satisfactory predictor term independence.

We conducted two additional analyses to further assess the independence of the twomechanisms for achieving

siring success suggestedby the primary analyses. First, we recalculated the count of strong association tiesmea-

sure, this time excluding alpha males from the count of strong association ties. This measure thus represented

the number of strong ties formed by subordinatemales with other subordinatemales. We then re-ran the above

model comparison procedure to determine whether strong bonds with the alphamale, as well as the number of

strong affiliation ties with males other than the alpha, facilitated higher reproductive output among subordinate

males. To do this we compared the Null model to models including all terms from the Null model plus 1) mea-

sures of bond strength with the alpha, 2) the count of strong association ties (excluding the alpha male), and 3)

models including both (Table 2). As before we compared models using corrected AIC and Akaike weights. The

newmeasure of the count of strong association ties was not correlatedwith the strength of theCSI with the alpha

male (Pearson correlation = �0.0001). Model comparisons revealed the same relative model fits as reported in

the primary analysis (Supplemental information and Table S2).

Second, to determine whether bonds with alphamales are functionally different from other close bonds, we

ran an additional analysis to assess whether social bonds with the second-rankedmale were also associated

with increased siring success. If bonds with the alpha male do not differ functionally from those with other

males, and bonds with the alpha were incidental to a male strategy of forming many strong bonds, we pre-

dicted that males with strong bonds with the beta male should also be more likely to sire offspring. To test

this, we calculated each male’s 1) association rate, 2) grooming rate, and 3) Composite Sociality Index with

the beta male in each reproductive window as described above. As in the primary analysis, we excluded

four siring events for which we were missing four or more relatedness values between mothers and poten-

tial male sires. We lacked genetic data for one additional male, so we excluded him from the seven addi-

tional siring events for which he was present. Finally, we excluded Pax from all siring events andGoblin from

siring events after October, 1989, because they were unable to reproduce (see above for more details). We

then excluded all beta males from the analysis, as we could not quantify their relationship to themselves,

and excluded three siring events where the sire was the beta male. This resulted in a dataset of 53 total

siring events, with 24 unique males and 24 unique females.

We then re-ran ourNullmodel using the newdataset. As in the primary analysis, this was aGLMMwith a logit link

function, with a binomial outcome variable indicatingmale siring success in each siring window. The Null model

included scaledmale age, genetic relatedness with themother, andmale Elo score as predictor terms, as well as

random intercepts formale identity.We then proceededwith a reducedmodel comparison procedure to deter-

mine whether adding each of our three measures of bond strength with the betamale improvedmodel fit (Sup-

plemental information and Table S3).

Finally, to better understand the complex interactions between predictor terms and siring success among

subordinate males, we fit a path model using the dataset of subordinate males. As before, this dataset

included 45 siring events, with 23 unique subordinate males and 23 unique females. We conducted the

analysis using the lavaan package in R (Rosseel, 2012), using the default diagonally-weighted least squares

estimator. We specified male Elo score, male age, and male genetic relatedness with the female as predic-

tor (i.e. exogenous) variables, with count of strong association ties as an intermediate outcome (i.e. endog-

enous) variable predicted by Elo score and age, CSI with the alpha male as a second intermediate (i.e.

endogenous) variable predicted by Elo score, age, and count of strong association ties, and siring success

as a binary outcome (i.e. endogenous) variable predicted by all five other terms (Figure S7). The chi-square

test was non-significant and root-mean-square error of approximation (RMSEA) was <0.05, indicating

acceptable fit (Hu and Bentler, 1999; Steiger, 2007). This was supported by additional tests of model fit

(Comparative Fit Index = 1.00, Tucker-Lewis Index = 1.057). We then used the semPlot R package (Ep-

skamp, 2019) to visualize the associated path diagram.
Testing the coalitionary support hypothesis

We conducted two analyses to investigate the relationship between association in small groups and coa-

lition formation, using a dataset of 265 male-male coalitions targeting other males from 1994 to 2012. The
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dataset contained a yearly mean of 14 coalitionary events (range 4–34). Following previous analyses of co-

alitionary behavior in the Gombe population, we limited our coalition event data to 1) directed displays, 2)

chases, and 3) physical attacks. We then included coalitionary aggression events wherein two or three

males simultaneously directed aggression at between one and three unambiguous male targets (Gilby

et al., 2013). First, we used an Additive and Multiplicative Effects model to examine the relationship be-

tween affiliative behavior and coalition formation in one-year windows from 1994 to 2012 (Hoff, 2009;

Hoff et al., 2013). For each dyad in each year, we used a binary outcome variable indicating whether the

dyad formed at least one coalition during the year. We then calculated time observed in the same party,

joint arrivals in parties of four or fewer individuals, and grooming rate as detailed above. Because dyadic

affiliation and coalition formation may be influenced by dyadic age and rank similarity (e.g. Mitani et al.,

2002), we also included terms for dyadic difference in cardinal Elo scores and dyadic age difference. We

standardized all dyadic measures by Z-transformation within each year. Finally, we included individual pre-

dictor terms for age category (young: age <20 years old; prime: 20% age <30; old: age >30) and individual

cardinal Elo score. The Additive and Multiplicative model approach uses a Bayesian modeling framework

to analyze dyadic network data, and solves the problem of specifying random effects structures for non-

directional dyadic data by representing the data as a relational matrix and estimating individual row and

column effects, which are constrained to be identical for symmetric outcome variables. Row and column

effects in this case captured individual heterogeneity in tendency to form coalitions. We conducted

modeling in the ‘‘amen’’ package, which uses Bayesian model fitting algorithms to estimate AME models

(version 1.4.4; Hoff et al., 2020) in R version 4.0.3 (R Core Team, 2020) using a binary probit AMEmodel with

the model specification that accounts for repeated observations, MCMC chain length of 90,000 iterations,

and a burn-in period of 1000 iterations. To ensure that the MCMC chains mixed properly, we ran each

model three times with different random seeds in each case, and then calculated scale reduction factors

(Brooks and Gelman, 1998; Gelman and Rubin, 1992) using the R package coda (version 0.19-4; Plummer

et al., 2006). The potential scale reduction factors for all parameters were %1.01 (all upper C.I. values %

1.03), and multivariate potential scale reduction factors were%1.03, indicating sufficient convergence. Es-

timates and standard deviations across repeated model runs were nearly identical, but because they varied

slightly, results reported in the manuscript represent those values averaged across the three repeated

model runs.

Next we tested the relationship between betweenness in the network of coalition formation and count of

strong association ties. To prevent pseudoreplication of observations due to overlapping siring windows,

for each individual we re-calculated count of strong association ties and betweenness in the coalitions

network in one-year windows between 1994 and 2012. Following Gilby et al. (2013) we used coalitions of

two and of three males to generate our networks, and we treated coalitions of threemales as three pairwise

coalitions. While this approach likely influences triadic closure in the ensuing coalitions networks, and thus

may reduce inter-individual differences in betweenness centrality, our goal in this analysis was to determine

whether male bonds might be responsible for the previously-reported relationship between coalitionary

betweenness and siring success (Gilby et al., 2013), and thus we kept methods consistent. We then

excluded years from the analysis in which fewer than 8 dyads formed coalitions with each other to ensure

sufficient network density to calculate differentiated betweenness values. This resulted in a dataset with 13

years of data, with 154 observations of 19 unique males. We calculated betweenness in the network of coa-

lition formation in each window using the igraph package in R (Csárdi and Nepusz, 2006; R Core Team,

2020). We scaled counts of strong association ties within each year via Z-transformation to account for vary-

ing community size between years, and then ran a simple linear model to examine the relationship between

each individual’s count of strong association ties and their coalitionary betweenness.
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