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Abstract
Braided vector fields on spatial subdomains which are homeomorphic to the
cylinder play a crucial role in applications such as solar and plasma physics, rel-
ativistic astrophysics, fluid and vortex dynamics, elasticity, and bio-elasticity.
Often the vector field’s topology—the entanglement of its field lines—is non-
trivial, and can play a significant role in the vector field’s evolution. We present
a complete topological characterisation of such vector fields (up to isotopy)
using a quantity called field line winding. This measures the entanglement of
each field line with all other field lines of the vector field, and may be defined for
an arbitrary tubular subdomain by prescribing a minimally distorted coordinate
system. We propose how to define such coordinates, and prove that the result-
ing field line winding distribution uniquely classifies the topology of a braided
vector field. The field line winding is similar to the field line helicity considered
previously for magnetic (solenoidal) fields, but is a more fundamental measure
of the field line topology because it does not conflate linking information with
field strength.

Keywords: topology, fluid dynamics, tubular domains, helicity

(Some figures may appear in colour only in the online journal)

1. Introduction

The entanglement of vector field integral curves (field lines) in tubular subdomains homeomor-
phic to the cylinder has long been of wide interest. For example, in stellar interiors, twisted
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bundles of magnetic field lines—known as magnetic flux ropes—are potentially important for
the generation of large scale magnetic fields (Childress and Gilbert 1995, Moffatt and Proc-
tor 1985, Nordlund et al 1992, Bao and Yang 2010). In stellar atmospheres such as the Sun’s
corona, twisted and braided magnetic fields play a crucial role in dynamic phenomena such
as coronal heating, jet formation, and coronal mass ejections (Rust and Kumar 1996, Török
and Kliem 2005, Wilmot-Smith 2015, Prior and MacTaggart 2016, Yeates and Hornig 2016).
Another area where the dynamic entanglement of magnetic field is crucial is the formation of
relativistic jets from black holes and neutron stars (Komissarov 1999, Heinz and Begelman
2000, Contopoulos et al 2009, Prior and Gourgouliatos 2019).

In thin body elasticity, structures such as ropes, cables, and biopolymers are treated as thin
elastic tubes which can be internally twisted and which often react to this twisting by form-
ing looped and knotted structures (Goriely and Tabor 1998, Thompson et al 2002, Grason
2009, Starostin and Van der Heijden 2014, Prior and Neukirch 2016). A particularly well
known example is plectoneme formation, whereby an elastic tube submitted to increasing
twisting becomes unstable and loops at its centre, forming a self-contacting loop. As the twist
is further increased the number of loops increase and the tube becomes supercoiled. DNA is an
example of a biopolymer which exhibits this supercoiling and where twisting can be applied
by optical tweezer experiments e.g. Forth et al (2008). Supercoiling acts as a mechanism for
large DNA molecules to compactify in order to fit into their local environment (Mullinger and
Johnson 1980). In all of these varied systems, a crucial aspect is their inability to disentangle,
at least completely. This often informs their physical behaviour, and means that quantifying
entanglement is important for understanding the systems themselves.

Motivation for our work comes from the particular context of magnetised plasmas, where
the standard tool for quantifying entanglement is a volume integral called magnetic helicity,
H (Woltjer 1958, Berger and Field 1984), analogous to a similar quantity in fluid dynamics
(Moreau 1961, Moffatt 1969, Arnold and Khesin 1992). For a ‘closed’ magnetic field whose
field line curves are tangent to the boundary, the value of this integral is invariant under an
ideal evolution because field lines cannot reconnect and change their topology. As a result,
having non-zero H constrains the amount of magnetic energy that can be released (Arnold and
Khesin 1992). In such a magnetically-closed volume, it has long been known that H may be
written as an average of the Gauss linking integral between all pairs of magnetic field line
curves (Pohl 1968, Moffatt 1969, Cantarella and Parsley 2010). Recently, Prior and Yeates
(2014) showed that the H admits an analogous interpretation for so-called ‘braided’ mag-
netic fields, where magnetic field lines connect between two planar boundaries rather than
being tangent. In this case, H is gauge dependent, but the authors showed that there is a par-
ticular gauge, the ‘winding gauge’, in which H is the equal to the average winding number
between all pairs of field line curves. This extends the topological interpretation of helicity
beyond the restricted case of tangent fields, which are not directly relevant for applications
such as stellar atmospheres.

The main limitation of the winding-gauge helicity is that it is defined only for domains
foliated by planes, for which the standard definition of winding number can be used. How-
ever, in many contexts it would be useful to consider tubular domains of more general shape.
One example would be the concentrated magnetic flux ropes that form during flux emergence
into the solar atmosphere. Such flux ropes typically occupy curved and distorted domains that
cannot be represented as foliations of parallel planes (Longcope and Malanushenko 2008). Yet
to characterise the internal entanglement of such structures it is necessary to isolate them from
the surrounding magnetic field. Recent work has suggested that these structures may be more
stable if they have a complex, ‘braided’ internal field-line topology, rather than a uniformly
twisted structure (Prior and Yeates 2016). Even in stable loops it was shown that different
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internal braiding patterns can lead to significantly different internal heating (Wilmot-Smith
et al 2011). It is important to note that the definition of winding-gauge helicity given in Prior
and Yeates (2014) will fail not only if the tubular domain as a whole has a curved shape, but
also if its end ‘caps’ are not flat. Recently it was shown that accounting for such wrinkling of
the Sun’s surface can significantly affect the measured input of magnetic helicity into the solar
atmosphere (Prior and MacTaggart 2019). Observational studies of such helicity injection are
important because they can potentially be used try to predict the ensuing behaviour of the atmo-
spheric magnetic field (Romano et al 2011, Dalmasse et al 2014, Gopalswamy et al 2017), as
well as providing insight into the unobservable magnetic structure in the solar interior. Thus
there is a need to consider winding numbers on more general domains, so as to quantify the
entanglement of vector fields on those domains. This is the main aim of this paper.

To fully quantify the entanglement of a braided vector field, it is not sufficient to consider
only a single, global integral like magnetic helicity, H. To give an extreme example, since H is
a signed quantity, one can have a topologically non-trivial vector field with zero total H, such
as the Borromean rings (Del Sordo et al 2010) or the equivalent magnetic braid (Wilmot-Smith
2015). Moreover, in real systems that are not perfectly ideal, it is often the case that there are
substantial local changes in entanglement, even when the total H (the average entanglement)
is conserved to a good approximation (Taylor 1974, Russell et al 2015). A full understanding
of the field line topology therefore requires the study of finer-grained invariants. As such, our
main quantity of interest in this paper is not the analogue of H (which would be the average
winding among all pairs of field lines), but rather the analogue of field line helicity (Berger
1988, Yeates and Hornig 2013, Aly 2018, Yeates and Page 2018, Moraitis et al 2019). This we
call the field line winding, as it is defined for each field line and measures the average winding
of this field line with all others.

Our new measure of field line winding allows not only for more general shapes of domain
but also for more general classes of vector field. We still assume that the vector field is ‘braided’
(defined precisely in section 2), but unlike in Prior and Yeates (2014) we do not require it to
be solenoidal (divergence free). As will be discussed in section 6, this amounts to removing
the field-strength information from the winding measure. Magnetic helicity, for example, has
units of magnetic flux squared, and is effectively a confluence of both topological and strength
information. As shown in Prior and Yeates (2014), a given set of field line curves can have dif-
ferent helicity depending on the field strength. In this paper, we focus purely on how to uniquely
describe the field line topology, without regard to the strength. This unweighted, purely topo-
logical measure applies equally to non-solenoidal fields, whereas the magnetic helicity, for
example, is an ideal invariant only thanks to the solenoidal nature of the magnetic field.

The paper is organised as follows. After stating our assumptions on the vector field and
domain in section 2, we give the general definition of winding numbers and field line winding
in section 3. These definitions rely on establishing a least distorted vector field on the domain,
whose field lines have no mutual winding. This is addressed in section 4. In section 5, we prove
that the field line topology is completely determined by the distribution of field line winding.
This is an extension of an earlier completeness result that applied only to a more restricted class
of solenoidal vector fields (Yeates and Hornig 2013, Yeates and Hornig 2014, Prior and Yeates
2018). As well as extending the class of domains and vector fields considered, we prove that
the field line winding measure uniquely determines not only the field line mapping (as in the
earlier papers) but also whether or not the two vector fields can be linked by an ideal evolution
(an end-vanishing isotopy). Thus we also strengthen the earlier result for magnetic fields. The
relation of our field line winding invariant to magnetic helicity is discussed in section 6, before
concluding in section 8.
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Figure 1. A tubular subdomain M is an embedding of the unit cylinder in R
3 given

by a homeomorphism F : C → R
3. The discs Dz of constant z in the cylinder C map to

distorted surfaces Sz that foliate M. Shown in green are a field line F(γ) ∈ M and its
preimage curve γ ∈ C. A crucial part of this study will be to determine a minimally-
distorted choice for the map F, within a given subdomain M.

2. Assumptions and notation

In this paper, we consider vector fields v defined on subdomains M ⊂ R
3. Both are restricted,

in the following ways. The subdomain M is ‘tubular’, meaning that it may be thought of
as an embedding of the solid unit cylinder C in R

3, determined by some homeomorphism
F : C → R

3, as in figure 1. This homeomorphism F is by no means unique, and an important
part of this paper will be to choose a suitable F. Note that the boundary ∂M = S0 ∪ S1 ∪ Ss

is the union of two end caps S0, S1 and a side boundary Ss, and this composite boundary
is assumed Lipschitz continuous. This means that M can be foliated by a set of surfaces
Sz, z ∈ [0, 1]. We will choose F so that these surfaces are the images of the discs Dz of con-
stant z in C, where we define Cartesian coordinates on C as (x1, x2, z). This notation recog-
nizes the special role of the third coordinate in defining the foliation. In effect, z becomes an
axial coordinate for M. Throughout this paper we will denote points in C by x and points in
M by y.

The vector field v is ‘braided’, meaning that it is Lipschitz continuous, non-zero everywhere
in M∪ ∂M, and satisfies the boundary conditions

ẑ · v > 0 on S0, ẑ · v > 0 on S1, n̂ · v = 0 on Ss, (1)

where ẑ is a unit vector normal to Sz pointing in the direction of increasing z and n̂ is the unit
normal to Ss. Thus the integral curves/field lines of v are all rectifiable curves that connect from
S0 to S1, as shown for the three example field lines in figure 2. The final assumption on v is that
its field lines can be deformed by isotopy to a vector field satisfying ẑ · v > 0 on every Sz. By an
isotopy we mean a continuous set of homeomorphisms of the curves (which are automorphisms
of the domain M). For such fields, we can define a mapping from S0 to Sz, or equivalently
from D0 to Dz by following the field lines. These mappings are diffeomorphisms thanks to the
Picard–Lindelöf theorem see, e.g. Arnold (2012). In particular, we define a diffeomorphism
f (1) from D0 to D1 that will be used in section 5.
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Figure 2. Three curves that could be field lines of a braided vector field as defined in
section 2. The green curve would not be monotone in z but is still valid provided that the
corresponding v can be deformed by isotopy to a field with field lines that are monotone
in z.

3. Field line winding

Our goal in this paper is to describe the field-line topology of a braided vector field v in M.
In other words, properties of the field lines that remain unchanged under a continuous iso-
topy/deformation of v. Since the field lines exit M through S0 and S1, we must qualify this
statement: we consider properties that remain invariant under isotopies of v that vanish on S0

and S1. These we call end-vanishing isotopies.
Our topological invariants are based on winding numbers between field lines. In this paper,

we take advantage of the embedding of M and define the winding number between any two
curves in M by calculating the winding number between their two preimage curves in C.
An alternative approach would be to work in M directly by choosing a metric structure. The
advantage of our approach is that it allows us to define the angle in a simple and clear manner
(i.e. on the cylinder), as well as simplifying the proof in section 5. Figure 3(a) shows field lines
of an example vector field on a tubular domain M, and figure 3(b) shows the preimages of
these curves in C for a particular choice of the embedding map F. How best to choose F will
be addressed in section 4.

3.1. Pairwise winding number

Given two preimage curves γ, γ̃ in C, the most basic topological invariant is their pairwise
winding number. In any plane Dz, we can use the Cartesian components of the two curves γ
and γ̃ to define the ‘angle’ between them,

Θ(γ, γ̃, z) = arctan

(
γ2(z) − γ̃2(z)
γ1(z) − γ̃1(z)

)
, (2)

as shown in figure 4. The net change in this angle as we follow the curves from z = 0 to z = 1
is the pairwise winding number
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Figure 3. Example illustrating the mapping of field line curves from a tubular domain
M (a) to the cylinder C (b), along with the resulting distribution of field-line winding
Lv in D0 (c). The green curves in (a) and (b) show a particular field line γ and its preim-
age. The interpretation of Lv(γ) is its average winding number with each of the other
curves. Overall, this vector field shows significant entanglement due to the intermixing
of positive and negative winding.

L(γ, γ̃) =
1

2π

∫ 1

0

d
dz
Θ(γ, γ̃, z) dz (3)

=
1

2π

∫ 1

0

(γ1 − γ̃1) d
dz (γ2 − γ̃2) − (γ2 − γ̃2) d

dz (γ1 − γ̃1)

(γ1 − γ̃1)2 + (γ2 − γ̃2)2
dz, (4)

where primes denote differentiation by z. Alternatively, we may write

L(γ, γ̃) =
1

2π
(Θ(γ, γ̃, 1) −Θ(γ, γ̃, 0)) + N(γ, γ̃), (5)

where N(γ, γ̃) counts the (signed) number of branch cut crossings as we follow the curves in
z. This makes clear that L(γ, γ̃) is invariant under any isotopy of the curves that does not move
their end-points. In other words, it is a topological invariant.

Berger and Prior (2006) showed that the definition of L(γ, γ̃) may be generalised to allow
for non-monotonic curves like the green curve in figure 2. Such a curve γ is split into n + 1
sections γ(0), . . . , γ(n) using the n turning points where dγz/dz = 0. For each section, we define
the indicator function

σ(i) =

⎧⎪⎪⎨⎪⎪⎩
1 if dγ(i)

z /dz > 0,

−1 if dγ(i)
z /dz < 0,

0 otherwise.

(6)
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Figure 4. Definition of the angle Θ between two curves γ, γ̃ on C.

We split γ̃ and define σ̃( j) in a similar way. Then the pairwise winding number is the sum

L(γ, γ̃) =
n∑

i=0

ñ∑
j=0

σ(i)σ̃( j)

2π

∫ zmax
i j

zmin
i j

d
dz
Θ(γ(i), γ̃( j), z) dz, (7)

where [zmin
i j , zmax

i j ] is the mutual range of z values (if any) shared by the curve sections γ(i) and
γ̃( j). Once again, L(γ, γ̃) is invariant to any isotopy of the curves that fixes their endpoints.
It reduces to (3) if both curves have only a single section stretching from z = 0 to z = 1.
(Although not needed here, Berger and Prior (2006) also showed that when the curves are
closed, L(γ, γ̃) is equal to their Gauss linking integral, hence the notation ‘L’.)

It is important to realize that the value of L(γ, γ̃) depends on the choice of embedding map
F. This is illustrated by figure 5. Nevertheless, L(γ, γ̃) is a topological invariant for any (fixed)
choice of F, under deformations that vanish on S0 and S1.

3.2. Field line winding of a vector field

In principle, we could characterise the field line topology of v by the set of all pairwise winding
numbers L(γ, γ̃) between all pairs of preimage field lines. However, we will show in section 5
that this would entail significant redundancy. A more succinct description of the field line
topology is given by a quantity we call the field line winding. This is defined for each field line
γ, and is simply the average winding number of γ with all other field lines in C, i.e.

Lv(γ) =
∫

D0

L (γ, γ̃(x)) d2x. (8)

Here γ̃(x) denotes the field line starting from a point x ∈ D0. Since every field line γ passes
through D0, Lv defines a scalar distribution on D0. An example of such a distribution is shown
in figure 3(c).

By virtue of its definition, Lv is invariant under end vanishing isotopies of v that vanish on
S0, S1. Like L(γ, γ̃), the field line winding Lv(γ) is dependent on the choice of mapping from
C to M; we will shortly fix this choice and hence the definition of L.
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Figure 5. How two different choices of mapping F can lead to different pairwise winding
number L(γ, γ̃). Here the red and green curves show F(γ) and F(γ̃), while yellow lines
indicate the surface that F(γ) should belong to in each coordinate system to give constant
Θ(γ, γ̃, z). In (a) F(γ) lies in this surface, so L(γ, γ̃) = 0, but in (b) it does not and
L(γ, γ̃) �= 0.

An alternative way to write (8) is to use Cartesian coordinates (x1, x2, z) on C, then (4) gives

Lv(γ) =
1

2π

∫ 1

0

∫
Dz

(x1 − γ1) d
dz [γ̃2(x) − γ2] − (x2 − γ2) d

dz [γ̃1(x) − γ1]

(x1 − γ1)2 + (x2 − γ2)2
d2x dz,

(9)

where γ̃(x) is the curve passing through the point x = (x1, x2, z) ∈ Dz.

4. Choice of embedding map

For measuring field line winding on a fixed subdomain M, any choice of embedding map F :
C →M will generate a topological measure Lv that is invariant under end-vanishing isotopies.
However, as we saw in figure 5, the actual value of Lv for each field line depends on the chosen
mapping. In order to allow for comparison between vector fields on different M, it is useful to
define F uniquely and fix an absolute Lv. In this section, we propose to do this by identifying
the ‘least distorted’ vector field on M, that follows the shape of the tube as simply as possible.
We then define F so that the field lines of this least distorted field are the images of vertical
lines on C. This way, they will all have Lv ≡ 0. Vector fields with non-trivial field line topology
will then have Lv �= 0, at least for a subset of their field lines.
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4.1. The least distorted field

A natural candidate for least-distorted braided vector field on M is a harmonic vector field
u = ∇φ that satisfies

∇2φ = 0 in M, (10)

ẑ ×∇φ = 0 on S0, S1, (11)

n̂ · ∇φ = 0 on Ss. (12)

Here we reiterate that ẑ is the unit normal to the cross-sectional surfaces Sz, and n̂ is the unit
normal to the side boundary Ss. Conditions (10)–(12) define u uniquely up to magnitude, dis-
regarding the trivial case of constant φ. Condition (11) implies that φ is constant on each of the
end caps, so that the integral curves are normal to these end caps. The actual values of these
two constants control the magnitude and sign of u, but not the shape of its integral curves. That
this field can be assumed to exist on M is a result of theorem 1.1 of Gol’dshtein et al (2011),
which provides a mixed boundary condition Hodge decomposition on Lipschitz domains. In
particular the dimension of the harmonic field space, given by (1.6) in that paper, is 1 for a
cylinder; this dimension corresponds to the magnitude of the field u.

To motivate the choice of condition (11), consider any other harmonic field ∇φ′ = ∇
(φ+ ψ) in M that satisfies (12) and has the same flux as ∇φ through S0 and S1, meaning
that ∫

S0

ẑ · ∇ψ dS =

∫
S1

ẑ · ∇ψ dS = 0. (13)

It follows from these boundary conditions, and from the constancy of φ on S0 and S1, that the
Dirichlet (stretching) energy of ∇φ′ is the orthogonal sum∫

M
|∇φ′|2 dV =

∫
M
|∇φ|2 dV +

∫
M
|∇ψ|2 dV. (14)

Therefore ∇φ is the harmonic field in M that minimizes this energy for a given axial flux. In
this sense, it has the least distorted integral curves. This is related to the notion of harmonic
coordinates in Riemannian geometry (DeTurck and Kazdan 1981), which may be thought of
as minimizing the Dirichlet energy of a coordinate map from M to R

3.
Examples of this field u are shown in figure 6 for various domains, computed using the finite-

element code IFEM2 in MATLAB (Chen 2009). Note that the curves of this least distorted field
flow through the domain, contouring to its shape and expanding (contracting) when the tube
does. They are the natural analogue of straight lines in a Cartesian domain.

4.2. Definition of the embedding map

It is most convenient to specify F−1 rather than F itself directly. Our fundamental idea is that
field lines of u should map to vertical lines in C, but this leaves considerable freedom in the
choice of F−1, both in the z coordinate (effectively distance along the field lines) and in which
field line of u maps to which vertical line in C.

To set the z coordinate, note that u = ∇φ naturally defines a foliation {Sz} of M by taking
each Sφ to be the surface φ = constant. Given the freedom in scaling the magnitude of u, we

9
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Figure 6. Example domains and computations of their minimally distorted fields u.

may always arrange that φ = 0 on S0 and φ = 1 on S1. The fact that φ gives a valid foliation
relies on the fact that u is non-zero everywhere on the interior of M (see appendix A).

Choosing which field line of u maps to which vertical line is equivalent to choosing F−1 on
one of the end caps, say S0. Equivalently, we must choose functions (x1(y), x2(y)) for y ∈ S0. To
avoid measuring any spurious pairwise winding (cf figure 5), we require each of the functions
x1 and x2 to be harmonic in the two-dimensional surface S0, that is

∇2
S0

x1|S0 = ∇2
S0

x2|S0 = 0. (15)

where ∇2
S0

indicates the Laplacian operator in the surface S0. To specify a unique solution we
also need to impose boundary conditions on ∂S0. In order to ensure that F−1 (and hence F)
is one-to-one, these boundary conditions must take the form x1 = cos(θ(s)), x2 = sin(θ(s)),
where θ(s) is an angle function of arclength s along ∂S0. An example is shown in figure 7,
where we make the simple choice θ(s) = 2πs/L for some arbitrary point s = 0, where L is the
perimeter length of S0.

10
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Figure 7. Example illustrating our proposed definition of the mapping F on the lower
boundary, S0. Black lines in (a) show the images under F of x1 and x2 contours, whereas
those in (b) show the images of polar coordinate (r, θ) contours under the same F.

5. Topological classification

In this section, we will show that the field-line winding Lv distribution for a braided vector
field v completely determines the topology of its field lines, in the following sense.

Theorem 1. Let v, v′ be two braided vector fields on the same domain M whose field lines
on Ss are linked by an end-vanishing isotopy. Then the field lines of v and those of v′ within
M can be linked by an end-vanishing isotopy if and only if Lv = Lv′ on all of D0.

Notice that this is purely a result about the field line curves: the magnitudes of v and v′ do not
matter, because Lv and Lv′ depend only on the geometry of the curves. The boundary require-
ment on Ss relates to a fundamental fact regarding the classification group of parametrized
diffeomorphisms of the unit disc (Aref 1984, Birman 2016). Essentially, if the correspond-
ing field line mappings f(1), f ′(1) differ on the side boundary, then this difference could be
compensated by an opposite rotation on the interior, leading to both fields having the same Lv.

Proof of theorem 1. One direction is immediate: we know that Lv is invariant under any
isotopy of v that vanishes on S0 and S1. The other direction is a deeper result. Our strategy
will be to first show that equality of Lv and Lv′ implies equality of the corresponding field line
mappings f (1), f (1)′ from D0 to D1. Then, we will show that this implies the existence of an
end vanishing isotopy between the field lines of v and those of v′.

To show equality of the field line mappings f (1) and f ′(1), consider the gradient of Lv(γ)
with respect to the field line startpoint (r, θ) ∈ D0. This is most succinctly expressed in the
language of differential forms as d⊥Lv, and we claim that

d⊥Lv = f ∗α− α, where α(r, θ, z) =
r2

2
dθ. (16)

To see this, note that we can write Lv in terms of the field line mapping f as

Lv(γ) =
∫

D0

[
1

2π

(
f ∗Θ−Θ

)
+ N(γ, γ̃(x))

]
r̃ d2x, (17)

where Θ(γ, γ̃(x), z) is the angle made in the surface Dz by the curve γ and another curve
γ̃ rooted at a point x ∈ D0. Treating this as a function of the γ-startpoint (r, θ) ∈ D0, we

11
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differentiate to find

d⊥Lv =
1

2π

∫
D0

(
f ∗d⊥Θ− d⊥Θ

)
d2x. (18)

One may show by explicit calculation (see appendix B) that

1
2π

∫
D0

d⊥Θ d2x = α, (19)

from which (16) follows.
Now consider the composite map g : D0 → D0, defined by g = f (1)−1 ◦ f ′(1). Under our

assumption Lv = Lv′ , it follows from equation (16) that g∗α = α (Yeates and Hornig 2013).
Equivalently, in components,

g2
r

2
∂gθ

∂r
= 0,

g2
r

2
∂gθ

∂θ
=

r2

2
. (20)

The first equation shows that gθ(r, θ) = G(θ), but the fact that f (1) = f ′(1) on the side bound-
ary (by our assumption on Ss) means that gθ(r, θ) = θ. The second equation then shows that
gr(r, θ) = r, so g is the identity and hence f (1) = f ′(1).

This leaves us to show that there exists an isotopy between any two braided vector fields
with the same field line mapping f (1). For this we utilise some established results. The field
lines f (z) are parametrised curves in the group of diffeomorphisms of the unit disc, Diffeo(D2).
Since f (0) = f ′(0) = id and f (1) = f ′(1), the composite map

f c(z) =

{
f (z) z ∈ [0, 1)

f ′(2 − z) z ∈ [1, 2].
(21)

forms a closed curve in this group which is anchored at the identity. If this curve can be shrunk
to the identity within the group by a homotopy then the field lines can be linked by an iso-
topy. Thus we are interested in the homotopy group π1(Diffeo(D2)) of curves in Diffeo(D2)
(anchored at the identity). A number of established facts related to this group allow us to answer
the question. Firstly, there is a restriction map

Diffeo(D2) → Diffeo(S1), (22)

obtained by restricting each diffeomorphism in D2 to the boundary ∂D2 = S1. This is a fibra-
tion with fibre Diffeo∂D2 (D2), namely diffeomorphisms of the disc that fix the boundary. This
implies that the map π1

(
Diffeo((D2)) → π1(Diffeo(S1))is an isomorphism—see Mann (2013)

in conjunction with theorem 4.41 in Hatcher (2002). Finally there is a homotopy equivalence
between Diffeo(S1) and the group O2 of rotations (see Smale (1959)). Putting this information
together implies that the set of closed curves in the space Diffeo(D2), from which our map fc

is drawn, can be categorised up to homotopy by their behaviour when restricted to the bound-
ary of the cylinder. Then the fact that the homotopy group has the structure of O2 implies that
closed curves in Diffeo(D2) are homotopic to the identity if and only if they describe no net
integer rotation on the boundary. The boundary assumption in the theorem ensures this for fc.

�
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6. Relation to helicity

Since each pairwise winding number L(γ, γ̃) is itself invariant under end-vanishing isotopies
of v, it is clear that any functional

Wv(γ) =
∫

D0

w(x)L(γ, γ̃(x))d2x (23)

will be similarly invariant. The field line winding Lv(γ), with w ≡ 1 is the simplest such invari-
ant, and is already sufficient to completely determine the field line topology of v. Nevertheless,
there may be situations in which other weightings are of physical interest.

The most notable example is field line helicity, which is defined for the subset of divergence-
free braided vector fields. Typical examples are magnetic fields (in magnetohydrodynamics)
or vorticity fields. In this section, we shall denote such fields as b rather than v. The field line
helicity is the particular Wv invariant given by

Ab(γ) =
∫

D0

J0(x)bz(x)L(γ, γ̃(y)) d2x, (24)

where J0 is the Jacobian of the map F−1 : S0 → D0, and bz is the normal component of b on
S0. When M = C, we have J0 ≡ 1 so

Ab(γ) =
∫

D0

bz(x)L(γ, γ̃(x)) d2x. (25)

For this case, Prior and Yeates (2014) showed that (25) is equivalent to the original definition
of field line helicity, Ab(γ) =

∫
γ a · dl (where b = ∇× a) provided that the vector potential a

is in the so-called winding gauge

a(x1, x2, z) =
1

2π

∫
Dz

b(x̃1, x̃2, z) × (x1 − x̃1, x2 − x̃2, 0)
(x1 − x̃1)2 + (x2 − x̃2)2

d2 x̃. (26)

Indeed, they used the geometrical interpretation in terms of winding numbers to motivate this
particular choice of gauge.

For more general M, we can similarly relate (24) to a particular choice of vector potential.
It is convenient to think of b as a differential two-form β = ibvol3 on M, where i is the interior
product and vol3 the volume form (Frankel 2011). Then pushing forward the integral from D0

to S0, and using equation (3.13) of Frankel (2011), we have

Ab(γ) =
∫

S0

βz(ỹ)L(γ, γ̃(ỹ))dỹ1 ∧ dỹ2 (27)

=

∫ 1

0

∫
S0

βz(ỹ)
d
dz
Θ(γ, γ̃(ỹ), z)dỹ1 ∧ dỹ2dz (28)

Now, the divergence free property of b means that the form βzdy1 ∧ dy2 is conserved along
field lines, so we can write

Ab(γ) =
∫ 1

0

∫
Sz

βz(ỹ)
d
dz
Θ(γ, γ̃(ỹ), z) dỹ1 ∧ dỹ2 dz. (29)

13
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Using (4) and the fact that dγi/dz = β i/βz, we find that

Ab(γ) =
∫
γ

α, (30)

where the one-form α = α1dy1 + α2dy2 + αzdz has components

α1(y) = − βz(ỹ)(y2 − ỹ2)
(y1 − ỹ1)2 + (y2 − ỹ2)2

dỹ1 ∧ dỹ2, (31)

α2(y) =
βz(ỹ)(y1 − ỹ1)

(y1 − ỹ1)2 + (y2 − ỹ2)2
dỹ1 ∧ dỹ2, (32)

αz(y) =
β1(ỹ)(y2 − ỹ2) − β2(y1 − ỹ1)

(y1 − ỹ1)2 + (y2 − ỹ2)2
dỹ1 ∧ dỹ2. (33)

This one-form corresponds to a vector potential a on M which is the generalisation of the
winding-gauge vector potential (26).

Notice that Ab contains no additional topological information compared to Lb; the difference
is that it weights each field line differently according to bz. This weighting has physical mean-
ing because βzdy1 ∧ dy2 is preserved along field lines—thus the weighting is a property of the
field line as a whole, not just an arbitrary function of the endpoints on S0. An interesting con-
sequence of the additional weighting is that, although Ab is invariant under end-vanishing
isotopies of b like Lb, it may behave differently from Lb if the domain M changes shape.
This remains to be investigated further.

7. Calculating the quantity

The evaluation of Lv(γ) assumes we have a tubular field v on a domain M (and that it can
be represented in the ambient Cartesian coordinate system). One method to perform this eval-
uation is to represent the field v on the preimage cylinder as w = M−1v ∈ C. One can then
calculate Lv(γ) on the domainC via a calculation on the field w which will yield Lv(γ). By doing
this one can use a single code to perform the winding calculation on a cylindrical mesh. To

perform this pull-back we construct a set of local vector fields
(

∂
∂x1

, ∂
∂x2

, u
)

for the coordinate

system (x1(z), x2(z), z). (i.e. represent these vector fields in the ambient Cartesian coordinate
system). Then the field v can be written as

v = v1
∂

∂x1
+ v2

∂

∂x2
+ vzu, (34)

where the functions (v1, v2, vz) are obtained by solving a matrix equation given the known

Cartesian forms of the set
(

v, ∂
∂x1

, ∂
∂x2

, u
)

. Note that the set
(

∂
∂x1

, ∂
∂x2

, u
)

is not necessar-

ily orthogonal, although by definition ∂
∂x1

and ∂
∂x2

are normal to u. The functions (v1, v2, vz)
represent components of the field w in a Cartesian coordinate system for C (which can then
be converted to cylindrical coordinates if needs be). Once the components (v1, v2, vz) of w
have been obtained one simply needs to calculate the winding for a vector field in the cylindri-
cal domain C. Descriptions of how this can be done can be found in (Prior and Yeates 2018,
Gekelman et al 2020) but briefly one can use formula (4) noting that v1/vz = dγ1/dz and
v2/vz = dγ2/dz. Thus, computationally, most of the novelty here is associated with calculating
the fields ∂

∂xi
, i ∈ 1, 2. This can be done via the following steps all of which can be conducted

in the ambient Cartesian coordinate system in which M is embedded:

14
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(a) Calculate the least distorted field u by solving the problem defined by equations (10)–(12),
a finite element method, as used for the examples in figure 6, will allow for arbitrary M.
One can, for example, use the method detailed in Persson and Strang (2004) to generate a
mesh for M.

(b) Construct the transverse coordinate system of the bounding surface S0 as shown in figure 7.
This involves solving Laplace’s equation (15) on the surface S0, subject to the boundary
conditions described in section 4.2. In general this requires solving Laplace’s equation
on a non-Euclidean surface, as such an implicit method like the closest point method
(Macdonald and Ruuth 2010) might be beneficial.

(c) The vector field ∂
∂x1

, for example, can be approximated by choosing a pair of coordinates
(x1(0), x2(0)) and (x1(0) + dx, x2(0)) defining points in S0. The dx here means a small
step along the coordinate system (x1(0), x2(0)) spanning S0 (i.e. along a curve of constant
x2(0)). We can then trace the integral curves r[x1(0), x2(0)](z) of u emanating from these
points by solving the o.d.e.

dr
dz

[x1(0), x2(0)](z) =
u

u · u
, (35)

with the functional argument indicating that r[x1(0), x2(0)](0) will be the Cartesian coordi-
nates of the point defined by (x1(0), x2(0), 0) in the ambient coordinate system. Dividing
by u · u ensures that the curves will advance to the same surfaces of constant z coor-
dinate value in the folidation defined by the field u, as ∇z = u (see e.g. Frankel (2011)
chapter 2.1(e)). Then, for any z > 0, we can obtain the following finite difference estimate
for ∂

∂x1
:

r[x1(0), x2(0)](z) − r[x1(0) + dx, x2(0)](z)
dx

. (36)

Thus one can construct the vector fields ∂
∂x1

and ∂
∂x2

on surfaces of constant z in the minimal
coordinate system, as required to obtain the functions (v1, v2, vz).

8. Conclusions and comparison to other work

The primary development in this work (theorem 1) is the proof of a topological classifi-
cation theorem for braided vector fields on tubular subdomains, which are homeomorphic
to the cylinder as defined in section 4. Specifically, the field lines of a given braided field
may be continuously deformed into those of another other field—without moving their end-
points—if and only if the two fields have the same distribution of field line winding, Lv. There is
a small caveat: this invariant cannot distinguish overall full (integer) rotations. These could
be detected solely from the field line mappings on the side boundary, and are unlikely to be
problematic in practical applications. Our result strengthens an earlier theorem of Yeates and
Hornig (2014) and extends it to a broader class of vector fields; specifically to include those
which have divergence. The measure Lv has recently been applied to study reconnection in a
laboratory plasma experiments (Prior and Yeates 2018, Gekelman et al 2020); here we have for-
malised the underpinning result and extended it to tubular sub-domains that cannot be foliated
by parallel planes, including tubular domains foliated by non-Euclidean surfaces.

The unique definition of Lv relies on the identification of a least distorted vector field u,
defined in section 4.1, whose integral curves are mapped to straight lines on the cylinder (on
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which the field line winding is defined). Our choice of u and its mapping to the cylinder have
three critical properties:

(a) The vector field u minimises the Dirichlet (distortion) energy among all braided vector
fields on a given tubular domain M with a specified flux, i.e. it minimises

E =

∫
M

v · v dV , for specified
∫

S0

ẑ · v dS. (37)

The latter constraint relates to the fact the energy varies with flux for a fixed topology,
whereas we are interested purely in finding the vector field of least entangled topology.

(b) In this mapping, all field lines of u have zero pairwise winding number, so the winding
measure Lv is everywhere zero for u itself.

(c) To determine which field line of u maps to which vertical line on C, we use harmonic
coordinates so as to avoid the erroneous measurement of entanglement such as in figure 5.

The combination of these three properties means that a non-trivial distribution Lv necessar-
ily indicates non-trivial internal entanglement of the original vector field v. This entanglement
may be seen as increasing the energy above the minimum level enforced by the distorted global
shape of the domain M itself. The only comparable construction to this of which we are
aware is the so-called Mermin–Ho basis, which is defined on a pre-determined Riemannian
manifold. Using the notion of parallel transport with respect to a preferred vector field (not
specifically assigned in the theory) one can define a local basis on the manifold from which
any local deviations of an arbitrary vector from this field are quantified (Mermin and Ho
1976, Kamien 2002). Our work differs in that we define and justify the choice of a preferred
vector field. Moreover, this justification is based on a globally defined notion (the winding rate
dΘ(γ, γ̃, z)/dz), rather than a local notion (parallel transport). The Godbillion–Vey invariant
see e.g. (Arnold and Khesin 1992), can be related to the helicity of the integral curves of the
foliation of a closed domain so is not directly comparable here (see Webb et al (2014) for a
discussion of its applicability in MHD contexts). Finally we mention that the field line helicity
25 can be formally written as the canonical Hamiltonian (Yeates and Hornig 2014, Prior and
Yeates 2018), and thus is formally equivalent to the Calabi invariant of disc diffeomorphisms
(Kudryavtseva 2014). Our work here demonstrates that Lv which applied to a larger class of
fields and as such is more fundamental.

The invariant Lv used in our classification theorem provides a fundamental description of
the field line topology, in the sense that it depends only on the integral curves of the vector
field and not on its magnitude or flux. This is in contrast to the widely used (field line) helic-
ity invariants for divergence-free fields (Webb et al 2014, Russell et al 2015, Cantarella and
Parsley 2010, Yeates and Page 2018, Moraitis et al 2019), which do depend on the flux. Indeed,
we showed in section 6 that the field line helicity—effectively, the helicity of an infinitesimal
flux tube surrounding a single field line—takes a similar integral form to Lv but with an addi-
tional weighting of flux. As such, it mixes a purely topological quantity (the pairwise winding)
with a physical quantity (the flux). This indicated the invariance of helicity under Euler flows
(ideal motions) which vanish at the domain boundaries requires not only the invariance of
L(γ, γ̃) but also the divergence-free condition, which ensures preservation of flux. Since the
flux can change without altering the field line topology, Lv is revealed as a more fundamental
quantity than the (field line) helicity. It has recently been shown that this additional decom-
position of the magnetic (field line) helicity into topological (winding) and strength compo-
nents can in provide additional practical information for diagnosing the changing/emerging
topology of magnetic fields (Prior and MacTaggart 2019, Prior and MacTaggart 2020,
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Gekelman et al 2020, MacTaggart and Prior 2021): such as the identification of the underlying
topological structure of emerging magnetic fields into the solar corona.

One significant potential application of this categorization theorem is to both magnetic and
fluid vortex reconnection. If we have a field v(t) evolving in time on a given domainM then we
can calculate the distribution of Lv(γ) across all field lines (i.e. on C0), as a function of time.
If this distribution changes in time it must mean the field has changed connectivity (assum-
ing no change at its ends). Reconnection of magnetic fields or fluid vortex lines is a typically
a local phenomenon, so if the time step separating v(t) and v(t + dt) is sufficiently small, the
change to the distribution Lv(γ) due to reconnection over the time dt will be spatially localised.
That is to say if dt is small enough one can identify the regions of (and amount) of chang-
ing field connectivity from the changing distribution Lv. This exact procedure was used in
(Prior and MacTaggart 2019, Gekelman et al 2020) to characterise and quantify the reconnec-
tive activity in reconnective plasma experiments conducted in cylindrical domains at the UCLA
basic plasma facility. The results presented here serve to, (a) provide a theoretical underpin-
ning to the measures used in these studies, and (b) extend the method to a far wider variety of
domains and hence potential applications.

One final point of discussion is whether the measure Lv(γ) is applicable to closed tubular
domains e.g. a torus or knotted tube. One can use the measure Lv(γ) on such domains by
choosing on cross-sectional surface to represent the starting surface S0. One issue with this
procedure that the distribution would look different depending on the surface chosen. However,
for tracking reconnective activity in a time-dependent field evolution it would only matter that
this choice is consistent, as it is the change in the distribution that is to be monitored. A second
issue is that for example ergodic curves on such domains (excluded in open domains by our
assumptions, but not if the domain is closed), mean that the notion that a single point in S0

corresponds to a single curve becomes invalid. This is not necessarily a problem but one might
need to recognise that the ergodic field line can change connectivity with itself at distinct non
local points along its length. Finally, for an isotopic evolution of the field (in a closed domain)
there would be motion at the bounding caps S0/S1 (which are artificially chosen in the closed
case). That is to say the distribution Lv(γ) would change under isotopy. This motion can be
accounted for if the isotopic motion is known. For example in plasma models this isotopic
motion is the plasma ion velocity, and it can be measured in experiments, as discussed in Prior
and MacTaggart (2019), Gekelman et al (2020). In those studies the domain was cylindrical
but there was isotopic end motion, and a procedure to extract the change in the Lv(γ) due to
isotopic boundary motions was constructed. Once this change is removed and other change
must be due to reconnective changes in the field. In the closed case this same procedure can be
applied at the chosen bounding caps S0/S1.

Data availability statement

No new data were created or analysed in this study.

Appendix A. Validity of the foliation defined by u

In this appendix we show that the least-distorted harmonic field u defines a valid foliation of
the domain M. In particular, we will show that u �= 0 everywhere on the interior of M, so
that there is a unique surface Sz through all interior points and the winding integrals are well
defined. It is possible to have points with u = 0 on the boundary ∂M, but these do not prevent
the existence of the foliation.
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Figure A1. Possible local structures of the constant-φ surfaces around null points of
harmonic fields u = ∇φ. There are two possibilities, depending on whether the null
point is isolated (a) or part of a null line (b).

To rule out null points of our harmonic field u = ∇φ, the idea is to consider the possible
structures of constant-φ surfaces that could result from such points, and show that such sur-
faces cannot exist. If p is a hypothetical point where u(p) = 0, then the local linearisation of u
around p is constrained by the fact that u is harmonic. Firstly, the tensor u is symmetric due to
∇× u = 0, meaning that it has real eigenvalues λ1, λ2, λ3. Secondly, it is traceless due to
∇ · u = 0, so that λ1 + λ2 + λ3 = 0. There are two possible structures around p, shown in
figure A1. If all three eigenvalues are non-zero, then in suitable local coordinates we may
write

u = ∇φ ≈ ± (x, y,−2z) , so φ ≈ ±1
2

(
x2 + y2 − 2z2

)
. (A.1)

Then the surface φ = 0 has the topology of two cones whose tips meet at p (figure A1(a)),
separating two-sheet hyperboloids with φ > 0 and one-sheet hyperboloids with φ < 0. Alter-
natively, if one eigenvalue is 0 then p is part of a null line (figure A1(b)) and, again in suitable
local coordinates, we may write

u = ∇φ = ± (x, 0,−z) , so φ = ±
(
x2 − z2

)
. (A.2)

The φ = 0 surface is then a pair of intersecting planes. The null line could either be a closed
loop or could intersect the boundary ∂M. It is not possible to have a null surface, nor for all
three eigenvalues to vanish at p (unless u = 0 on the whole domain).

To rule out null points and lines, we must consider how the φ surfaces extend outside the
neighbourhoods of these structures. To do so, we use the fact that φ defines a continuous foli-
ation of M everywhere outside the null set N = {p ∈ M|u(p) = 0}. This follows from the
Frobenius theorem. So the φ = 0 surfaces from null points or lines extend smoothly away
from these locations and can end only on N or on the boundary ∂M. In fact, they can only
intersect (transversely) the side boundary Ss, owing to the boundary conditions of constant φ
on S0 and S1.

Consider first a single null point in the interior, as in figure A2(a). Each of the two φ = 0
surfaces must either be closed or end on Ss (as shown in figure A2(a)). To show that nei-
ther is possible, let n̂ be the outward normal from the indicated volume V . Then observe that
n̂ · u is non-zero with the same sign everywhere on these two surfaces where they bound V ,
becauseφ < 0 on one side andφ > 0 on the other. Since the two surfaces intersect Ss, and since
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Figure A2. Global extensions of the φ = 0 surfaces from (a) an isolated null point,
(b) two isolated null points, and (c) a null point and a null line. In (a), the surfaces
intersect the side boundary Ss, enclosing a volume V . In (d) the φ = 0 surface intersects
S0 and S1 transversely, but this is forbidden by the boundary conditions φ = constant on
S0 and S1.

n̂ · u = 0 on Ss, there must be a net flux in/out ofV , contradicting∇ · u = 0. If the surface were
closed instead of intersecting Ss, we would similarly obtain a contradiction. So a single null
point in the interior cannot exist.

This argument extends to rule out multiple null points or lines in the interior (of which
there can only be a countable number). Tracing the φ = 0 surfaces from some null point or
line, we can extend these surfaces, possibly incorporating further points in N —as depicted in
figures A2(b) or (c)—until the composite surfaces either close on themselves or intersect Ss.
Either way we can find a finite volume enclosed with a non-zero flux of u through its boundary,
which contradicts ∇ · u = 0.

Finally we point out that since the boundary is Lipschitz continuous it is possible to embed
the conic structure of a null surface φ = 0 in the boundary. As an example this would be neces-
sary on the bounding curves ∂S0/1 for an hourglass domain morphology, owing to the boundary
conditions on u.

Appendix B. Derivation of equation (19)

To evaluate the left-hand side of (19) at the point x0 = (r, θ), consider the components of d⊥Θ
in polar coordinates (r, θ). Differentiating the expression (2) for Θ(x0, x, z) gives

∂Θ

∂r
=

(x1
0 − x1) sin θ − (x2

0 − x2) cos θ

(x1
0 − x1)2 + (x2

0 − x2)2
, (B.1)

∂Θ

∂θ
= r

(x1
0 − x1) cos θ + (x2

0 − x2) sin θ

(x1
0 − x1)2 + (x2

0 − x2)2
. (B.2)

To evaluate the integrals, change from (x1, x2) to polar coordinates centred at x0,

x1 = ρ cos ϕ+ x1
0, x2 = ρ sin ϕ+ x2

0. (B.3)

In these coordinates,

∂Θ

∂r
=

sin(ϕ− θ)
ρ

,
∂Θ

∂θ
= −r

cos(ϕ− θ)
ρ

. (B.4)
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Integrating with respect to (ρ,ϕ) we must account for the fact that the ρ limit of integration
is a function of ϕ. Substituting expressions (B.3) into the equation (x1)2 + (x2)2 = 1 for the
boundary leads to the integration limit

ρ(ϕ) = −r cos(ϕ− θ) +
√

r2 cos2(ϕ− θ) − r2 − 1. (B.5)

Using the phase behaviour of sin and cos, we may then evaluate

1
2π

∫
D0

∂Θ

∂r
ρdρ dϕ =

1
2π

∫ 2π

0
sin(ϕ− θ)ρ(φ) dϕ = 0 (B.6)

and

1
2π

∫
D0

∂Θ

∂θ
ρdρdϕ =

r
2π

∫ 2π

0
cos2(ϕ− θ) dϕ =

r
2
. (B.7)
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