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a b s t r a c t

In this paper, we compare two approaches to numerically approximate the solution
of second-order Gurtin–Pipkin type of integro-differential equations. Both methods
are based on a high-order Discontinous Galerkin approximation in space and
the numerical inverse Laplace transform. In the first approach, we use functional
calculus and the inverse Laplace transform to represent the solution. The spectral
projections are then numerically computed and the approximation of the solution
of the time-dependent problem is given by a summation of terms that are
the product of projections of the data and the inverse Laplace transform of
scalar functions. The second approach is the standard inverse Laplace transform
technique. We show that the approach based on spectral projections can be very
efficient when several time points are computed, and it is particularly interesting
for parameter-dependent problems where the data or the kernel depends on a
parameter.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In this paper, we propose a numerical method for the wave equation

utt + Au −
∫ t

0
k(t − s)Au(s)ds = h, (1.1)

hich is based on a spectral decomposition of the positive self-adjoint operator A and the inverse Laplace
ransform. The operator A is by assumption elliptic and the spectrum of A consists of positive eigenvalues

of finite multiplicities.
Wave equations with memory (1.1) are used to model heat transfer with finite propagation speed,

systems with thermal memory, viscoelastic materials with a long memory, and acoustic waves in composite

∗ Corresponding author.
E-mail address: christian.engstrom@lnu.se (C. Engström).
ttps://doi.org/10.1016/j.aml.2021.107844
893-9659/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.aml.2021.107844
http://www.elsevier.com/locate/aml
http://www.elsevier.com/locate/aml
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aml.2021.107844&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:christian.engstrom@lnu.se
https://doi.org/10.1016/j.aml.2021.107844
http://creativecommons.org/licenses/by/4.0/


C. Engström, S. Giani and L. Grubišić Applied Mathematics Letters 127 (2022) 107844

o
o

a
t

s

2

media [1,2]. Properties of the studied class of integro-differential equations were studied by many authors
and we refer to [3] for a substantial presentation.

Several numerical methods for (1.1), and related equations, based on convolution quadrature [4,5] and
the numerical inverse Laplace transform [6,7] have been developed over the last 25 years. The aim of the
current study is to take advantage of the fact that A is a self-adjoint operator with discrete spectrum. Robust
high-order finite element methods are well developed for approximating the eigenvalues and eigenvectors of
A and we will in this work use the p-version of the symmetric interior penalty method [8]. The approximation
f the solution of the time-dependent problem is then given by a summation of terms that are the product
f the precomputed projections of the data and the inverse Laplace transform of scalar functions.

The Laplace transform of (1.1) results in an equation T (λ)û = f̂ and a numerical contour integral
method is used to compute the inverse Laplace transform. The success and rate of convergence of the
numerical inverse Laplace transform depend then crucially on the spectrum of the operator function T and
the magnitude of the resolvent norm ∥T (λ)−1∥. In this paper, the infinite sum in the spectral decomposition
of A is truncated, which results in a projected operator function TN . The spectrum of T contains branches of
eigenvalues with unbounded imaginary parts but the projected operator function TN will only have spectral
points with finite imaginary parts. This makes it straightforward to deform the contour in the Bromwich
inversion formula into C− := {λ ∈ C : Re λ < 0}, which is Talbot’s approach [9].

The projection-based approach described above is numerically compared with a standard inverse Laplace
transform technique, which requires that many source problems be solved for each time point. A large part of
the computations is in the projection-based approach independent of the data or point in time and we show
that the approach can be very efficient when several time points are computed. The method is particularly
interesting for parameter-dependent problems where the data are sufficiently smooth, or the kernel depends
on a parameter. For the considered test case and implementation in MATLAB, the projection method is
several orders of magnitude faster than the standard approach even if the precomputation time is included.

The paper is organized as follows. In Section 2 we present a representation formula for the solution, which
includes eigenvalues and spectral projections of A, and an estimate of ∥T (λ)−1∥. In Section 3, we outline the
standard approach inverse Laplace technique. Numerical results are presented in Section 4, and conclusions
are stated in Section 5.

The presentation will for simplicity be restricted to L2(Ω), where Ω denotes a bounded Lipschitz domain,
nd the case when A is a self-adjoint realization of the Laplace operator in L2(Ω). We denote by (·, ·), ∥ · ∥
he inner product and norm in L2(Ω), respectively.

The essential spectrum σess(B) of a closed operator B with domain dom B is defined as the set of all λ ∈ C
uch that B − λ is not a Fredholm operator. Let T denote an operator function where T (λ) for λ ∈ D ⊂ C

is an unbounded linear operator with domain dom T (λ). Then, the essential spectrum of T is the set

σess(T ) = {λ ∈ D : 0 ∈ σess(T (λ))}. (1.2)

. The spectral projection based method

The studied damped wave equation can then for u = u(t) : [0, ∞] → L2(Ω) formally be written in the
form

utt − ∆u +
∫ t

0
k(t − s)∆u(s)ds = h, (2.1)

where h : R+ → L2(Ω), k ∈ L1(R+), and the initial data u(x, 0) = u0(x), ut(x, 0) = u1(x) are in
L2(Ω). For simplicity, we restrict the study to Dirichlet conditions. Take A : L2(Ω) → L2(Ω) with domain
dom A = {u ∈ H1

0 (Ω) : ∆u ∈ L2(Ω)} as the self-adjoint realization of the Laplace operator. Assume∫ ∞ 2
that k ∈ L1(R+) is non-negative, non-increasing, and 0 k(τ)dτ < 1. Then (2.1) is well-posed in L (Ω).
2
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Furthermore, for h ≡ 0, u0, u1 ∈ dom A, we have u ∈ C1(R+; dom A1/2); see [10] for further regularity
results.

After applying the Laplace transform f̂(λ) =
∫ ∞

0 f(t)e−λtdt to (2.1) we formally obtain

T (λ)û = ĥ + λu0 + u1, T (λ) = λ2 + (1 − k̂(λ))A.

The domain dom T of the closed operator function T must be L2(Ω) for λ ∈ D with ĝ(λ) = 0, where
ĝ(λ) := 1 − k̂(λ). Hence,

T (λ) = λ2 + ĝ(λ)A, dom T (λ) =
{

L2(Ω) if ĝ(λ) = 0,

dom A otherwise.
(2.2)

The following theorem is important for the numerical inverse Laplace transform computations.

Theorem 1. The essential spectrum of the operator function T in (2.2) is σess(T ) = {λ ∈ D : ĝ(λ) = 0}
nd for λ ̸∈ σ(T ), the following resolvent estimate holds

∥T −1(λ)∥ ≤ 1
|ĝ(λ)||ℑγ̂(λ)| , γ̂(λ) = − λ2

ĝ(λ) .

roof. The proof of characterization of the essential spectrum is a special case of Theorem 2.1 in [11].
Assume that λ ̸∈ σ(T ). From the assumption that A is self-adjoint, it follows

|ĝ(λ)|∥T −1(λ)∥ = ∥(A − γ̂(λ))−1∥ = 1
dist (σ(A), γ̂(λ))

nd we can then estimate the norm as

∥T −1(λ)∥ ≤ 1
|ĝ(λ)|dist (R, γ̂(λ)) = 1

|ĝ(λ)||ℑγ̂(λ)| .

The advantage with the proposed resolvent estimate is that it is independent of the spectrum of the
self-adjoint operator A and therefore can be approximated at low computational cost. From results in [3]
and properties of the inverse Laplace transform, it can then be shown that the general solution of (2.1) can
be represented as

u(t) = 1
2πi

∫ r+i∞

r−i∞
eλtT (λ)−1f̂(λ) dλ, f̂(λ) = ĥ + λu0 + u1. (2.3)

The self-adjoint operator (A, dom A) has compact resolvent and spectrum σ(A) = {µ1, µ2, . . . }. Let Pj

enote the spectral projection corresponding to the eigenvalue µj . Then, T (λ)−1 can be represented as

T (λ)−1 =
∞∑

j=1
Kj(λ, µj)Pj , Kj(λ, µj) = 1

λ2 + µj(1 − k̂(λ))
, A =

∞∑
j=1

µjPj . (2.4)

Assume that ĥ(x, λ) =
∑M

i=1 ĥi(λ)gi(x). The solution of the time-dependent problem (2.1) can then be
represented in the form

u(t) = 1
2πi

∞∑
j=1

∫ r+i∞

r−i∞
eλtFj(λ) dλ, Fj(λ) = Kj(λ, µj)

[
M∑

i=1
ĥi(λ)Pjgi + λPju0 + Pju1

]
. (2.5)

ach term in the series (2.5) can then by linearity be written as a product of the operator Pj times the inverse
ˆ
aplace transform of a scalar function Hj : C → C. In this paper, we base the numerical approximation

3
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of (2.1) on the representation formula (2.5) (the projection approach) with T replaced by the projected
operator function

TN (λ) := λ2 + (1 − k̂(λ))AN , AN =
N∑

j=1
µjPj . (2.6)

Talbot’s approach to numerically compute the inverse Laplace transform is to deform the standard contour
in the Bromwich integral and several contours and quadrature formulas have been proposed; see [12,13]. In
this paper we use

Hj(t) = 1
2πi

∫ π

−π

Ĥj(s(α))es(α)ts′(α) dα, s(α) = 2Q

5t
α(cot α + i), −π < α < π, (2.7)

here Q is the number of quadrature points used in [14]. In the numerical simulations we use k(t) = ae−bt

nd compare with the standard approach that is based on (2.3). It can then be shown that σ(T ) ⊂ C−,
here the eigenvalues with non-zero imaginary part are enclosed in a vertical strip and σess(T ) ⊂ R− [11].
oreover, a derivation similar to [11, Lemma 2.6] shows then that the eigenvalues of TN with non-zero

maginary part are enclosed by a finite vertical strip. Hence, it is always possible to choose Q > 0 such that
encloses all singularities in TN (λ)−1.
Let Vp

h denote the space of piece-wise polynomials of degree p on a triangulation Th of Ω . The symmetric
nterior penalty method (SIP) is used to obtain the approximate eigenpairs (µh, vh) ∈ R × Vp

h of A. In
he following, P h

j denotes the discrete spectral projection associated to the single eigenvalue µh
j . For an

igenvalue µj of finite multiplicity, i.e dim Pj(L2(Ω)) < ∞, we have the following well known result

δ(P h
j (Vp

h), Pj(L2(Ω))) → 0, dim Vp
h → ∞,

here δ denotes the subspace gap [8]. This shows that we have no pollution of the eigenspaces and it is
ossible to show that the eigenvalues converge with double algebraic rate compared to the convergence of
he eigenvectors. The original result from [8] was proved for h adaptive discontinuous Galerkin scheme,
hereas the non-pollution result for the full hp-symmetric interior penalty discontinuous Galerkin finite
lement method has been obtained in [15, Section 3.1, Theorem 3.3.].

In the case of analytic eigenfunctions, there exist for the p−version of SIP constants Cj > 0 and γj > 0
uch that

|µj − µh
j | ≤ Cje

−2γj

√
dim Vp

h .

or a detailed presentation of the method, we refer to [8,15,16].

heorem 2. Assume that ĥ(x, λ) =
∑M

i=1 ĥi(λ)gi(x) where hi and Kj, as defined in (2.4), are regular and
uniformly bounded along the path of integration in the inverse Laplace transform. Furthermore, assume that

∥u0 −
N∑

j=1
P h

j u0∥ ≤ ϵ0, ∥u1 −
N∑

j=1
P h

j u1∥ ≤ ϵ1 ∥gi −
N∑

j=1
P h

j gi∥ ≤ ϵgi
, (2.8)

where P h
j denotes the approximate projection operator. Set Cf = maxj |L−1(Kjf)|, where L−1 denotes the

inverse Laplace transform and let uh
N denote the approximate solution using the projected operator function

(2.6). Then, for sufficiently large finite element space Vp
h and N , the following asymptotic error estimate holds

to the first order

∥u − uh
N ∥ ≲

M∑
ϵgi

Cĥi
+ ϵ0Cλ + ϵ1C1. (2.9)
i=1
4
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Proof. The exact solution can be written in the form u(x, t) = G∞ + U∞ + V∞, where

GN =
N∑

j=1
L−1(Kj(λ, µj)

M∑
i=1

ĥi(λ)Pjgi), UN =
N∑

j=1
L−1(λKj(λ, µj))Pju0,

VN =
N∑

j=1
L−1(Kj(λ, µj))Pju1.

he corresponding approximate operators are denoted by

Gh
N =

N∑
j=1

L−1(Kj(λ, µh
j )

M∑
i=1

ĥi(λ)P h
j gi), Uh

N =
N∑

j=1
L−1(λKj(λ, µh

j ))P h
j u0,

V h
N =

N∑
j=1

L−1(Kj(λ, µh
j ))P h

j u1.

et µj = µh
j + ϵj , where µh

j denotes an approximate eigenvalue of A, and assume that ϵj is sufficient small.
hen a Taylor expansion gives

Kj(λ, µj) = Kj(λ, µh
j ) + ϵjK1

j (λ, µh
j ) + · · · , K1

j (λ, µh
j ) = − 1 − k̂(λ)

[λ2 + µh
j (1 − k̂(λ))]2

.

The proposed estimate is based on the leading order terms in the expansion. We have

u − uh = G∞ − Gh
N + U∞ − Uh

N + V∞ − V h
N ,

where to the first order

G∞ − Gh
N =

N∑
j=1

L−1(Kj(λ, µh
j )

M∑
i=1

ĥi(λ)(Pj − P h
j )gi) +

∞∑
j=1+N

ϵjL−1(K1
j (λ, µh

j )
M∑

i=1
ĥi(λ)Pjgi),

U∞ − Uh
N =

N∑
j=1

L−1(Kj(λ, µh
j )λ)(Pj − P h

j )u0 +
∞∑

j=1+N

ϵjL−1(K1
j (λ, µh

j )λ)Pju0,

V∞ − V h
N =

N∑
j=1

L−1(Kj(λ, µh
j ))(Pj − P h

j )u1 +
∞∑

j=1+N

ϵjL−1(K1
j (λ, µh

j ))Pju1.

hen

∥U∞ − Uh
N ∥ = ∥

N∑
j=1

αj(Pj − P h
j )u0 +

∞∑
j=1+N

βjPju0∥, αj = L−1(Kj(λ, µh
j )λ),

βj = ϵjL−1(K1
j (λ, µh

j )λ),

here

∥
N∑

j=1
(Pj − P h

j )u0 +
∞∑

j=N+1
Pju0∥ ≤ ϵ0.

he term |βj | goes rapidly to zero as N +1 ≤ j → ∞. Therefore, we may in the derivation of the asymptotic
stimate assume that |βj | < max |αj | and set Cλ := max |αj |. Then, we obtain

∥U∞ − Uh
N ∥ ≤ ϵ0Cλ,
nd the remaining terms in (2.9) are derived similarly.
5
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3. The standard approach

The standard approach, based on a direct discretization of (2.3) or similar problems, has been studied
by many authors, including [5,6,17,18]. It is not clear that Talbot’s approach will work well for the studied
wave equation, since the imaginary part of eigenvalues of T can be arbitrarily large. Hence, the discrete
roblem may have eigenvalues with very large imaginary part. As a consequence, a curve s that encloses
ll singularities in the matrix function T h(λ)−1 must be very long, which requires many quadrature points.
owever, the numerical results using the standard approach are mainly used for comparison of speed and
e will therefore present numerical results based on a discretization of

u(t) = 1
2πi

∫ π

−π

es(α)ts′(α)T −1(s(α))f(s(α)) dα, (3.1)

where the same contour s and the same number of quadrature points are used for both methods.
Our numerical simulations show that the method based (T h)−1 on also produces accurate results for the

test case even if the contour does not enclose all singularities in (T h)−1. However, the estimate in Theorem 2
does only apply to the projection based method. A significant difference between the two approaches is that
(3.1) requires the solution of a large number of source problems, whereas in the discretization of (2.5) it
is only necessary to compute the inverse Laplace transform of scalar functions and sum up terms from
precomputed series expansions of the given data.

4. Numerical results

In this section we compare our current implementations in MATLAB of the projection approach with the
standard approach. The computational platform is a Laptop with 16 Gb RAM and an i7-7700HQ CPU @
2.80 GHz. The precomputation steps in the projection approach consist of

1. Approximate the eigenpairs of A corresponding to the smallest eigenvalues using the symmetric interior
penalty method

2. Determine an orthonormal basis of eigenvectors
3. Determine the eigenvalues with largest imaginary part of the reduced operator function T h

N

4. Choose a curve that encloses the spectrum of the reduced operator function T h
N

5. Compute an upper bound of the resolvent of the reduced operator function T h
N over the curve

In the online phase, we

1. Project the data on the computed span of the eigenvectors
2. Compute the numerical inverse Laplace transform of the scalar functions in the representation formula

(2.5)
3. Sum up the terms, where the terms consist of products of the terms in (2) and the projected data from

(1)
4. Compute simultaneously to 3. the global error estimator in Theorem 2

It may in some applications also be possible to compute the inverse Laplace transforms before the online
tep. This would significantly speed up the online computations, but we will not consider that possibility in
he comparison with the standard approach.

We choose Ω = (0, 1)2 and the data such that the exact solution of (2.1) is given by

u(x, t) = h1(t)g1(x) + h2(t)g2(x), (4.1)

here
2 −t a b b
h1(t) = 1, h2(t) = −t e , g1(x) = sin(n0πx1) sin(m0πx2), g2(x) = (x1x2) (1 − x1) (1 − x2) . (4.2)

6
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Fig. 1. Talbot curve when t = 1 and spectrum of reduced operator function (2.6) using N = 20. The computed eigenvalues are marked
with ◦ and × are quadrature points on the contour s.

Set k(t) = 0.5e−t. The operator function, which is defined for all λ ∈ C \ {−1}, is then rational:

T (λ) = λ2 +
(

1 − 1
2

1
1 + λ

)
A, dom T (λ) =

{
L2(Ω) if λ = − 1

2 ,

dom A otherwise.

he spectrum σ(T ) consists of the essential spectrum σess(T ) = {−1/2} and complex eigenvalues of finite
ultiplicity that have negative real part. It is possible to enclose the spectrum using results from [11], but
e will for illustration purposes numerically compute the eigenvalues with non-zero imaginary part; see [19].
he projection method will be based on at most N = 10 projections, corresponding to the approximations
f the lowest eigenvalues of A := −∆. Fig. 1 depicts quadrature nodes on the chosen Talbot curve when

= 32 quadrature points are used and t = 1. A discretization of the estimate in Theorem 1 shows that
orm of the resolvent T −1

N (and its discretization) for points on the Talbot curve is

max
α

∥TN (s(α))−1∥ ≤ 0.51.

Hence, the resolvent is well behaved along the integration path.
Fig. 2 depicts the L2-error and the estimated L2-error from Theorem 2 for two different discretizations,

when the reduced operator function is based on N = 1, 2, . . . , 10 projections and the exact solution is (4.1). A
coarse mesh with 36 triangles was used in all computations. Note that the exact solution in Case 2 oscillates
less than in Case 1 but a lower polynomial degree is used (p = 6, DOFs= 1008 in Case 2 and p = 10,

OFs= 2376 in Case 1). As a result we obtain small errors in Case 2 using only the projection corresponding
o the lowest eigenvalue but the error is smaller for Case 1 if N ≥ 6. Moreover, the estimated L2-error follows
he exact error even if the exact error is of order one.

Table 1 presents the total computational time for 10 points in time using different finite element spaces.
he times in parenthesis under the Projection approach include the precomputation of an ON-basis. For
oth approaches, we use N = 10 in the SIP approximation and 32 quadrature nodes in the numerical

nverse Laplace transform. A coarse mesh with 36 triangles was used in the computations of the first two
ows from the top with p = 3 in row one and p = 10 in row two. A finer mesh with 3766 triangles was used
or the lowest two rows with p = 2 in row three and p = 4 in row four. The errors for the two approaches
re very similar but the projection method is much faster. The column Factor indicates the speed up of the
rojection approach compared with the Standard approach with the current implementation in MATLAB.

hose factors depend on the hardware, the implementation, and the problem.

7
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p

Fig. 2. The L2-error and the error estimator in Theorem 2 for the problem (4.1), with t = 1, as a function of the number of

rojections N in the reduced operator function (2.6). Case 1: p = 10, a = b = 8, n0 = 3, and m0 = 1. The exact L2-errors are marked
with × and + is the error estimator. Case 2: p = 6, a = 4, b = 5, n0 = m0 = 1. The exact L2-errors are marked with □ and ◦ is the
error estimator.

Table 1
Total computational time in seconds for 10 points in time and different discretizations. The numbers
in parenthesis include the precomputation of an ON-basis. The L2-errors for the standard and the
projection approach are very similar.

The Unit square

dofs Standard Projection Factor

360 0.83 0.19 (0.54) 4.4 (1.5)
2376 11 0.21 (0.76) 52 (14)
22596 51 0.61 (2.69) 83 (19)
56490 301 0.68 (5.28) 442 (57)

5. Conclusions

We have presented a numerical method for integro-differential equations based on a spectral decomposi-
tion and the inverse Laplace transform. This approach avoids the bottleneck in the standard approach, which
is that we need to solve a large number of linear systems when we compute the numerical inverse Laplace
transform. The proposed method projects the data on the span of a selection of eigenvectors and we showed
numerically that the proposed global error estimate follows the exact error also for coarse discretizations.
Alternative approaches include methods based on a Proper Orthogonal Decomposition (POD), which also
could lead to a significant speedup, but at the cost of a much longer precomputation step.
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[16] S. Giani, L. Grubǐsić, H. Hakula, J.S. Ovall, An a posteriori estimator of eigenvalue/eigenvector error for penalty-type
discontinuous Galerkin methods, Appl. Math. Comput. 319 (2018) 562–574, http://dx.doi.org/10.1016/j.amc.2017.07.007,
URL https://doi.org/10.1016/j.amc.2017.07.007.

[17] S. Larsson, F. Saedpanah, The continuous Galerkin method for an integro-differential equation modeling dynamic
fractional order viscoelasticity, IMA J. Numer. Anal. 30 (4) (2010) 964–986, http://dx.doi.org/10.1093/imanum/drp014,
URL https://doi.org/10.1093/imanum/drp014.
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