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Ocean submesoscale dynamics are thought to play a key role in both the climate system
and ocean productivity, however, subsurface observations at these scales remain rare.
Seismic oceanography, an established acoustic imaging method, provides a unique tool
for capturing oceanic structure throughout the water column with spatial resolutions of
tens of meters. A drawback to the seismic method is that temperature and salinity
are not measured directly, limiting the quantitative interpretation of imaged features.
The Markov Chain Monte Carlo (MCMC) inversion approach has been used to invert
for temperature and salinity from seismic data, with spatially quantified uncertainties.
However, the requisite prior model used in previous studies relied upon highly
continuous acoustic reflection horizons rarely present in real oceanic environments due
to instabilities and turbulence. Here we adapt the MCMC inversion approach with an
iteratively updated prior model based on hydrographic data, sidestepping the necessity
of continuous reflection horizons. Furthermore, uncertainties introduced by the starting
model thermohaline fields as well as those from the MCMC inversion itself are accounted
for. The impact on uncertainties of varying the resolution of hydrographic data used to
produce the inversion starting model is also investigated. The inversion is applied to
a mid-depth Mediterranean water eddy (or meddy) captured with seismic imaging in
the Gulf of Cadiz in 2007. The meddy boundary exhibits regions of disrupted seismic
reflectivity and rapid horizontal changes of temperature and salinity. Inverted temperature
and salinity values typically have uncertainties of 0.16◦C and 0.055 psu, respectively,
and agree well with direct measurements. Uncertainties of inverted results are found
to be highly dependent on the resolution of the hydrographic data used to produce
the prior model, particularly in regions where background temperature and salinity vary
rapidly, such as at the edge of the meddy. This further advancement of inversion
techniques to extract temperature and salinity from seismic data will help expand the
use of ocean acoustics for understanding the mesoscale to finescale structure of the
interior ocean.
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INTRODUCTION

Mediterranean water eddies, or “meddies,” are anti-cyclonically
rotating, sub-surface lenses of warm, salty water formed
where the Mediterranean Sea outflows into the Atlantic
Ocean (e.g., Richardson et al., 2000). They are thought
to separate from the Mediterranean Undercurrent as it
interacts with topographic features such as canyons along
the Iberian continental margin (Serra et al., 2005). Meddies
are typically 20–100 km in diameter, have rotation periods
of a few days, and have cores that are 500–1,000 m thick
centered near 1,200 m depth (Armi and Zenk, 1984; Prater
and Sanford, 1994; Richardson et al., 2000). Meddies carry
waters with temperatures of 11.5–13.5◦C and salinities
36.2–36.8 within their cores (Armi and Zenk, 1984; Schultz-
Tokos and Rossby, 1991; Pingree and Le Cann, 1993; Prater
and Sanford, 1994; Richardson et al., 2000; Paillet et al.,
2002; Carton et al., 2010). With 15–20 Meddies produced
annually, meddies transport most of the Mediterranean
outflow into the wider Atlantic Ocean (Bower et al., 1997;
Richardson et al., 2000).

While the cores of meddies are largely homogeneous,
high gradients of temperature and salinity, with interleaving,
thermohaline intrusions and “layering” are commonly found
at the meddy periphery (Armi and Zenk, 1984; Ruddick,
1992; Ménesguen et al., 2009; Pinheiro et al., 2010; Biescas
et al., 2014). These layering structures typically have vertical
scales of 20–75 m and are thought to be generated by
both stirring and double diffusive processes (Ruddick and
Hebert, 1988; Pinheiro et al., 2010; Song et al., 2011; Meunier
et al., 2015). Such finescale layering formations likely play
a key role in the eventual disintegration of the meddy
through the shedding and mixing of their Mediterranean-
water core to the surrounding cooler, fresher Atlantic waters
(Armi et al., 1989; Hebert et al., 1990; Song et al., 2011;
Hua et al., 2013; Meunier et al., 2015). Meddies are also
known to decay through collision with seamounts (Schultz
Tokos et al., 1994; Richardson et al., 2000). Accounting for
these various mixing and decay processes, meddies typically
last 1–5 years. With translation speeds of a few cm/s,
typically south-westward, they can transport Mediterranean
water more than a thousand kilometers from its source
(Richardson et al., 2000).

Seismic oceanography has been used to image the finescale
to submesoscale structures associated with meddies, aiding
understanding of the important role that they play in the
redistribution of heat and salt across the North Atlantic (Wang
and Dewar, 2003; Biescas et al., 2008; Ménesguen et al., 2009;
Papenberg et al., 2010; McWilliams, 2016). Seismic oceanography
is a widely used technique that utilizes acoustic energy (of
typically 20–200 Hz) reflected at temperature and salinity changes
within the water column (Holbrook et al., 2003; Ruddick et al.,
2009; Sallarès et al., 2009). Resultant acoustic images display
oceanic structure with vertical and horizontal resolutions of
order ten meters, over regions tens of km long and to full
depth (e.g., Sheen et al., 2012; Gunn et al., 2020). Physical
phenomena such as internal waves, heat fluxes and turbulent

mixing can be quantitatively estimated by interpreting the
spatial structure of reflectors, which are often assumed to
follow isopycnals (Sheen et al., 2009; Papenberg et al., 2010;
Fortin et al., 2016, 2017; Sallarès et al., 2016; Dickinson
et al., 2017; Gunn et al., 2018, 2020). Seismic ocean data
essentially captures the relative strength of the thermohaline
stratification but does not explicitly measure absolute values
of temperature, salinity or density. As such the ability to
interpret and quantitatively assess many of the fascinating
structures imaged is limited. Seismic inversion techniques which
produce high resolution temperature and salinity fields with
quantified uncertainties are required and could represent a
step-change in our ability to observe the sub-surface ocean on
sufficient spatial scales.

Various different strategies have been applied to solve the
ocean seismic inversion problem including both full waveform
inversion and the inversion of temperature and salinity from
acoustic impedance calculated from reflection amplitudes and
hydrographic data (Wood et al., 2008; Papenberg et al.,
2010; Kormann et al., 2011; Bornstein et al., 2013; Biescas
et al., 2014; Padhi et al., 2015; Dagnino et al., 2016). The
accuracy of inverted temperature and salinity values are typically
estimated by comparison to “co-located” hydrographic data such
as conductivity-temperature-depth (CTD) casts or expendable
bathymetry (XBT) data. This approach to estimating the
inversion uncertainty, however, does not account for a time
or depth shift between CTD/XBT and seismic data. As such
Tang et al. (2016) developed a Bayesian Markov Chain Monte
Carlo (MCMC) inversion technique. In this Bayesian approach,
the uncertainty of inverted temperature and salinity values are
assessed by how well a distribution of possible solutions fit
the observed seismic acoustic reflectivity. However, due to the
band-limited nature of seismic data, which fails to capture
the background thermohaline structure (i.e., scales greater
than ∼100 m), the MCMC approach only encompasses the
uncertainty of the high frequency temperature and salinity
variability. The MCMC approach therefore requires an accurate
background temperature-salinity starting model to provide
information about the larger scale background variability. Tang
et al. (2016) found that a starting model produced from
available hydrographic (i.e., XBT cast) data did not capture
enough of the horizontal variability to successfully recover
thermohaline fields using the MCMC approach. However,
by applying the MCMC method to the specific case of an
internal solitary wave, Tang et al. (2016) were instead able
to exploit the highly continuous nature of the internal wave
reflection horizons to produce an initial model with sufficient
horizontal resolution: the undulating seismic reflection horizons
associated with the solitary internal wave were treated as
isothermals/isohalines and used to characterize the finer scale
horizontal temperature and salinity variability in between XBT
casts. However, the internal solitary wave is a rather unique
situation: firstly, it is not always possible to assume that
reflection horizons follow isothermals or isopycnals (Biescas
et al., 2014); secondly, reflection horizons are typically highly
discontinuous due to complex water structures, instabilities,
or unstable seismic acquisition conditions and noise. To
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FIGURE 1 | Bathymetry of data collection region. Red line = seismic transect GOLR12; white dots = 24 XBT casts deployed coincident with seismic acquisition;
black dot = 1 XCTD cast; blue stars = 3 CTD casts deployed before and after the seismic survey; yellow arrows = surface geostrophic velocity vectors for 7th May
2007. Inset shows location of the research area, and schematic of Mediterranean outflow pathway. Bathymetry was produced from the GEBCO 2020 dataset
(GEBCO Bathymetric Compilation Group, 2020). Altimeter products were generated using the Iberia Biscay Ireland Regional Seas Ocean Physics Reanalysis
Product with a resolution of 1/12◦ × 1/12◦ (https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=IBI_MULTIYEAR_PHY_005_002).

enable the MCMC inversion technique to be applied more
ubiquitously across seismic datasets, here a spatially iterative
MCMC inversion approach is developed which allows the
accurate inversion of temperature and salinity from a prior
model built from XBT data alone. The uncertainty associated
with the low frequency starting model is assessed and
incorporated into final inverted confidence limits, alongside
the dependence on the sampling resolution of the input
hydrographic data.

This study focuses on seismic oceanographic data collected
by the Geophysical Oceanography (GO) research survey in 2007
(Hobbs, 2007). The seismic data are unique as XBT casts were
deployed at unusually high spatial resolutions during seismic
acquisition (e.g., typically every 2 km). These data are therefore
ideal for investigating the influence of prior model resolution
on inversion results and providing a comprehensive dataset with
which to compare inverted values. Furthermore, the GO survey
focused on imaging sub-surface meddies, which typically display
rapidly changing temperatures and salinities and disrupted
reflectivity at their boundaries (Biescas et al., 2008; Ménesguen

et al., 2009). These data thus provide a challenging environment
with which to test the inversion.

MATERIALS AND METHODS

Data Acquisition and Processing
The seismic transect analyzed here, GOLR12, was acquired
between 09:37 and 17:45 on the 7th May 2007, in the Gulf
of Cadiz (Figure 1). Data were acquired as part of the
Geophysical Oceanography (GO) cruise number D318b on the
RRS Discovery. The seismic source consisted of six Bolt 1500LL
airguns with a usable bandwidth of 5–70 Hz. The source array
was shot every 20 s and the acoustic reflection energy was
recorded using a 2,400 m long SERCEL streamer with 192
channels and 12.5 m group spacing. Standard signal processing
was carried out with particular attention to retaining true
reflection amplitudes, paramount for later inversion. Seismic
data processing included: (1) Geometry setting; (2) Removal of
direct waves using an eigenvector filter applied to the raw shot
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gathers (Jones and Levy, 1987); (3) Incident angle, directivity
and spherical divergence corrections; (4) Noise attenuation
by applying a Butterworth band pass filter of 10–80 Hz to
shot gathers and compressing traces of anomalous amplitudes;
(5) Common midpoint (CMP) sorting; (6) Velocity picking
performed every 100 CMPs; (7) Source deconvolution: a reweight
deconvolution strategy (Sacchi, 1997) was applied to extract the
reflectivity from stacked seismic sections basing on the source
wavelet, which was modeled from the source array geometry
and airgun volumes using the Nucleus+ software; (8) Amplitude
calibration using the seafloor reflection and its first multiple
(Warner, 1990); (9) Conversion from two-way travel time to
depth using sound velocity derived from XBT data. The final
stacked section is shown in Figure 2A. The same seismic line
(GOLR12) is used to invert the temperature and salinity by
Papenberg et al. (2010).

Hydrographic data was collected by two ships: the
RSS Discovery and the FS Poseidon. In total, twenty-four
expendable bathythermographs (XBTs) and one expendable
conductivity/temperature profiler (XCTD) were deployed from
the RSS Discovery coincident with seismic data acquisition
(Figure 1). XBTs were deployed approximately every 2.3 km
reaching a depth of 1,830 m. Three CTDs were deployed by the
FS Poseidon, along the seismic transect a few hours before or
after seismic acquisition. Using the neural network approach
of Ballabrera-Poy et al. (2009), the CTD data allowed for the
estimation of salinity from XBT data. 70% of the CTD data were
used as training data, 15% as validation data and 15% as testing
data. Using only CTD data coincident with the seismic line (as
opposed to all 43 CTD casts collected on the GO cruise) produced
lower errors in the derived salinity values, likely because the
local depth-temperature-salinity relationship associated with
the meddy was better represented. Low frequency interpolated
temperature and salinity sections are shown in Figure 2: these
were used to form the prior model for the MCMC inversion.

Markov Chain Monte Carlo Inversion
Following Tang et al. (2016), a Bayesian Markov Chain Monte
Carlo (MCMC) approach is used to recover temperature and
salinity fields from the seismic data, alongside their probability
distributions (i.e., the posterior distribution), at the resolution
of the seismic image [i.e., O(10 m)]. In this approach, a
probability distribution associated with a prior model is used to
iteratively randomly draw N solutions at each inversion point.
A likelihood function determines how well each random sample
fits the observed data (i.e., seismic reflectivity), and whether
to accept or reject the solution. After a sufficient number of
iterations (i.e., the “burn-in” period) the posterior distribution
converges and fluctuates within a given range. The mean and
standard deviation of the posterior distribution, with burn-in-
period removed, are used to estimate the final temperature
and salinity, and their associated uncertainties (Gamerman and
Lopes, 2006). Here, the inversion was conducted on reflectivity
values and performed at every seismic reflectivity profile or
common midpoint (CMP) and depth coordinate across the
seismic section. The Markov chain length, N, was set to 2,000
and the first 1

3N iterations discarded as burn-in iterations. The

FIGURE 2 | (A) Seismic section of the GOLR12 dataset. Red and blue lines
represent reflection horizons caused by temperature and salinity changes in
the water column. White (black) dots = 24 XBT (1 XCTD) casts deployed
coincident with seismic acquisition; blue stars = 3 CTD casts deployed before
and after the seismic survey. (B) Low frequency temperature section built from
interpolation of XBT data. A linear interpolation was used with a vertical
smoothing (moving average) of 35 m. (C) Low frequency salinity section built
from interpolation of salinity estimated from XBT and CTD data following
Ballabrera-Poy et al. (2009). Panels (B,C) form the prior model for the MCMC
inversion. Note positions of XBT 4 and XBT 8 are indicated on panel (B) (see
section “Comparing Inverted Results to Observations”).

likelihood function of reflectivity, R given the model, m was
computed as

L
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where Robs(CMP, d) and Rpred(CMP, d) represent the measured
and predicted reflectivity data at each CMP and depth, and
σe is the measured data uncertainty. Robs was computed by
summing the high frequency component of the reflectivity,
Rhigh_freq_seismic, obtained from the seismic data (band-pass
filtered to 10–80 Hz), with the low frequency component
(<10 Hz, Rlow_freq_XBT) deduced using XBT interpolated
temperature and salinity fields (Figure 2) following Biescas
et al. (2014). As such Robs = Rhigh_freq_seismic + Rlow_freq_XBT .
Rpred

(
CMP, d

)
was computed from the vertical profile of the

starting model (Rlow_freq_XBT), but with the temperature or
salinity value at depth, d, sampled from a prior distribution.
This prior distribution was obtained using the standard
deviation of starting model temperature and salinity values
within a vertical 40 m window of d (i.e., the vertical spatial
resolution, L0 ∼ 40 m, corresponds to a frequency, fo, of
10 Hz following Lo = c/4fo, where c = 1, 500 ms−1 is
the sound speed (Sheriff and Geldart, 1995). σe was estimated
as 7.06 × 10−6, the ambient seismic noise calculated as
the standard deviation of seismic reflectivity within an area

beneath the meddy where there are no strong seismic
reflections. The ambient noise was found to follow a normal
distribution. See Tang et al. (2016) for further details of
inversion procedures.

Iteratively Improving the Prior Model
As shown later, the success of the MCMC inversion is highly
reliant on the accuracy of the low frequency component of the
prior model, Rlow_freq_XBT . A similar conclusion was noted by
Tang et al. (2016). To improve the start temperature-salinity
model for the inversion, we investigated iteratively updating
the prior model at each inverted common mid-point (CMP),
using previous inverted results. The seismic survey was broken
up into “inversion units,” defined by XBT locations such that
each unit was bordered by an XBT profile (XBTi and XBTii)
with Ns CMPs, or seismic reflectivity profiles, in between.
For each inversion unit, the MCMC inversion process was
started at the CMP closest to XBTi (i.e., CMP 1), with the
prior model computed by linearly interpolating data from XBTi
and XBTii. Inverted temperatures and salinities at CMP 1

FIGURE 3 | Schematic of inversion unit and iterative MCMC approach. Black dots indicate XBT positions that bound the inversion unit (XBTi and XBTii ). Solid black
lines represent the prior temperature-depth model as a function of depth. Red dots represent positions of Ns seismic CMPs, and red wiggles show associated
seismic reflectivity depth profiles used in inversion. Dashed lines represent newly inverted temperature-depth profiles. (A) Starting data within inversion unit. (B) CMP
1 is inverted using prior model from XBT data. (C) Inverted data from CMP 1 is used to update the prior model. CMP Ns is inverted. (D) Inversion from CMP Ns is
used to update prior model, and CMP 2 is inverted. The process is repeated for CMP Ns-2. . .CMP 3. . . until the whole inversion section has been processed.
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were then combined with XBTi and XBTii, to produce a new
prior model. The updated prior model was used for the next
CMP inversion, which was conducted at the CMP closest to
XBTii (i.e., CMP Ns). The process was repeated at CMP 2,
CMP Ns -1, CMP 3, CMP Ns-2. . ., until the whole unit had
been inverted: see Figure 3 for a schematic. Inverted results
were not incorporated into the prior model if an associated
posterior uncertainty anomaly (i.e., compared to a depth moving
average of 100 m) was above a chosen threshold of 0.04◦C. At
each inversion step therefore, the prior model was iteratively
updated to incorporate both the hydrographic data and previous
inversion results. Recovered temperatures and salinities using the
iteratively updated prior model were compared to those using a
stationary prior model.

Uncertainty Estimation
Uncertainties introduced to the high-frequency component of
the recovered temperature and salinity fields by noise in the
seismic data and any mis-alignment of XBT data is accounted
for in calculating the standard deviation of the posterior MCMC
distribution (Tang et al., 2016). Contamination to the reflectivity
field associated with the ringyness of the seismic source and
other receiver responses has been minimized by performing a
deconvolution on the seismic data using the source wavelet.
In this study we also quantify the uncertainty introduced by
inaccuracies in the low frequency starting temperature and
salinity models. Firstly, the error associated with the estimation
of the salinity from XBT temperature data using the non-
linear approach of Ballabrera-Poy et al. (2009) was evaluated
by applying the technique to CTD-based temperatures. The
RMS error between estimated and measured salinities was
computed for the 15% of CTD data not used in the model
training (with CTD data recorded every 1 m this equates to a
total of 6,090 data points, with 914 used for validation). The
RMS salinity error was found to obey a normal distribution
from which the standard deviation was used to compute the
uncertainty. Secondly, errors introduced as a result of the
interpolation of XBT data were considered. Starting models
were recomputed using 12, 7, 5, and 4 XBTs, corresponding to
typical XBT spacings of 4.6 km, 9.1 km, 13.6 km and 18.2 km,
respectively. The distribution of RMS errors between the starting
model temperature and salinities, and those measured from
the removed XBTs were used to estimate the interpolation
uncertainty for different XBT spacings (i.e., the standard
deviation of the error distribution which was found to follow
a normal distribution). For the case of all 24 XBTs (spacing
of ∼2.3 km), the error distribution was computed using half
the difference of XBT neighboring pairs. We note that the
position of reflectors can get distorted and reflection amplitudes
weakened by moving water effects (Klaeschen et al., 2009;
Vsemirnova et al., 2009; Papenberg et al., 2010). Maximum
current velocities in the survey region were ∼0.4 ms−1 and
hence uncertainties associated with moving water to the inverted
fields are likely small compared to other uncertainty sources
(Papenberg et al., 2010). A summary of the inversion process,
along with sources of uncertainties, is shown schematically
in Figure 4.

RESULTS

Markov Chain Monte Carlo Inversion of
the Seismic Section
The final recovered temperature and salinity fields, alongside
computed potential densities, for the meddy are shown in
Figure 5. The meddy shows a distinctive lens-shaped core of
warm (∼12.5◦C), salty (∼36.7 psu) water between 650 and
1,500 m depth. The meddy core temperature drops smoothly
with depth, while salinities appear slightly greater at the core
center. Overall the core is stably stratified. Layering filament
features with vertical scales of typically 30 m surround the
meddy core, where the velocity shear is likely greatest (e.g.,
Armi et al., 1989). These thermohaline intrusions are more
continuous and distinct at the top of the meddy, where they
encompass a region of roughly 300 m depth. On the western
boundary of the meddy the finescale structures become more
disrupted and the erosion of the meddy through mixing with
cooler, fresher north Atlantic water is apparent. Fewer filaments
are present on the lower surface of the meddy. The dynamics
of these imaged thermohaline intrusions and their variability
around the meddy core will be investigated in further studies.
On the northeast of the section, along the upper edge of the
meddy, there is one reflection horizon with anomalously low
temperatures, high salinities and unstable density: this region
should be interpreted with caution due to the high posterior
MCMC inversion uncertainties here (see section “Markov Chain
Monte Carlo Inversion Uncertainties”).

Figure 6 shows an example of the MCMC inversion process at
539 m depth for CMP 2300 (i.e., a transect distance of 8.1 km),
located at the midpoint of an inversion unit. The temperature
and salinity decrease steadily in the first 300 inversion iterations
before stabilizing after about iteration 600 (the “burn-in” period).
Comparison of prior and posterior distributions show the
reduced uncertainty in inverted compared to initial model
temperatures and salinities, with the mean temperature and
salinity dropping from 11.6 to 11.4◦C and from 35.73 to 35.68 psu
after the MCMC inversion.

Markov Chain Monte Carlo Inversion
Uncertainties
One of the developments to previous inversions of the GO
project meddies [e.g., see Papenberg et al. (2010) and Biescas
et al. (2014)] presented here is that the Bayesian framework
of the MCMC inversion allows for the posterior uncertainty
at each inversion point to be computed and thus the spatial
distribution of recovered temperature and salinity uncertainties
analyzed. While MCMC posterior distribution uncertainties
vary spatially, section averaged uncertainties are used for the
uncertainty associated with interpolation of the prior model,
and the error associated with estimating salinity from XBT
data (see Table 1). The final section uncertainty is shown in
Figure 7. Maximum uncertainties of the recovered temperature
and salinity are 0.28◦C and 0.12 psu, respectively. Regions of
higher reflectivity at the meddy boundary tend to correspond
to higher uncertainties. Despite the higher signal to noise ratio
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FIGURE 4 | Flow diagram summarizing the iterative MCMC inversion procedure. Rectangular shapes represent processing steps. Yellow rectangles represent the
starting points of one inversion loop (input temperature profile and seismic data). Blue circles indicate the uncertainties relating to methods, data or models. Green
rectangles represent output of inverted results and their corresponding uncertainties. Stages surrounded by red dashed lines represent updates to Tang et al. (2016).
Note that the synthetic reflectivity is calculated from the prior temperature-salinity model following Ruddick et al. (2009).

in these regions, MCMC posterior distribution uncertainties
increase due to higher thermohaline variability (Tang et al.,
2016). In particular, a short band of high uncertainties most
notable in the salinity field is found on the northeastern upper
meddy boundary. These high uncertainties are associated with
one reflection horizon and indicate the MCMC inversion did
not perform as well here, likely due to the high variability in the
temperature and salinity at the edge of the meddy and associated

disruptions to the reflectivity. Uncertainties in the meddy core
are typically 0.15◦C and 0.06 psu.

Table 1 summarizes the inversion uncertainties averaged
across the seismic section associated with the MCMC posterior
distribution, the interpolation used to produce the starting
model, and the estimation of salinity from XBT data using
the neural network fitting approach. The error associated with
the interpolation of the hydrographic data to produce the low
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FIGURE 5 | MCMC inversion results of seismic section for (A) temperature, (B) salinity and (C) potential density anomaly. 24 XBTs (white dots) are used to compute
the prior model, which is iteratively updated with inversion results. The inversion is performed at every CMP. Seismic data above 60 m depth is discarded due to the
contamination from the residual direct wave. No reflectors were present below 2,000 m. Grayed out regions mark areas of high uncertainty (i.e., within the top 5% of
uncertainties across the section).
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FIGURE 6 | (A) The Markov temperature and salinity chain at depth 539 m, CMP 2300. (B) Associated temperature prior and posterior probability density functions
(PDFs). Gray curve = prior distribution of temperature. Gray star = mean of temperature prior distribution. Blue bars = posterior distribution. Red star = the mean
temperature of the posterior distribution. (C) As for panel (B) but for salinities.

TABLE 1 | Uncertainties across the seismic section for an MCMC inverted
temperatures and salinities with all 24 XBTs used to produce the prior model
which is iteratively updated with inversion results.

Interpolation MCMC
posterior

T-S model
salinity

Overall

Temperature, ◦C 0.14 0.02 – 0.16

Salinity, psu 0.040 0.005 0.010 0.055

MCMC posterior uncertainty is the average of spatially varying posterior
distribution uncertainties. The bold values are the sum of all uncertainties.

frequency prior model dominates the total uncertainty as also
found by Biescas et al. (2014). For example, when all 24 XBTs are
used to compute the starting model, 88% of the total temperature
uncertainty is due to errors associated with the low frequency
starting model. The error associated with estimating salinity from
XBT data makes up roughly 18% of the total salinity uncertainty.
The impact of reduced XBT sampling on recovered temperature
and salinity uncertainties is shown in Figure 8.

Comparing Inverted Results to
Observations
To evaluate results, measured XBT data were compared with
inverted values: the inversion was re-run with every other
XBT removed, for independent validation of inverted results.
Here we show validation examples from two locations on the

seismic section: XBT 4, located to the west of the meddy,
and XBT 8 which was deployed at the edge of the meddy
where horizontally the temperature changes rapidly (see Figure 2
for XBT locations). Results are shown in Figure 9. Outside
the meddy (XBT 4) measured and inverted temperatures and
salinities are extremely well matched, with RMS error standard
deviations for temperature and salinity of 0.14◦C and 0.04 psu,
respectively. However, the quality of the initial model degrades
significantly in regions of rapid temperature or salinity change
after removing half of the XBTs. At the meddy edge (XBT 8)
inverted temperatures differ from XBT data by more than 1◦C
at some depths, such as between 1,000 and 1,200 m. The MCMC
was found to converge in this region, and the signal-to-noise of
the seismic data here is not unusually low. As such it is likely
the inaccuracy of the initial model that has resulted in these
poor inversion results (Figures 9E–H). Considering the reduced
uncertainty associated with increased XBT sampling (Figure 8),
inversion results are likely much better at XBT 8 for the case
where all 24 XBTs are utilized. An appropriately sampled low
frequency prior model is key for accurate inversion results.

Comparing an Iteratively Updated to a
Stationary Prior Model in the Markov
Chain Monte Carlo Inversion
Alongside improving the uncertainty estimates of inverted
temperature and salinity fields, we have also built on the
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FIGURE 7 | Spatial distribution of final inversion uncertainties for (A) temperature and (B) salinity using all 24 XBTs. Uncertainties include the standard deviation of
the posterior MCMC distribution, errors introduced from interpolation of the prior low frequency model, and the uncertainty in estimating salinity from XBT
temperature values.

MCMC inversion methods developed by Tang et al. (2016)
by iteratively updating the prior model at each step of the
inversion (see section “Materials and Methods”). Comparison
of inverted temperature and salinity uncertainties using an
iteratively updated prior model to a stationary prior model are
shown in Figure 10. Although the prior uncertainties of the
two methods are similar, posterior distribution uncertainties
(i.e., as computed from the MCMC process) are reduced
in the iterative approach. In particular, the more extreme
MCMC uncertainties are reduced in the iterative approach
as shown by the smaller tails in the uncertainty distributions
(Figure 10). The mean posterior temperature and salinity
uncertainties using the stationary prior model method are
0.03◦C and 0.008 psu compared to 0.02◦C and 0.005 psu for

the iteratively updated model, implying that inverted results
are closer to the field data if an iterative prior model is
used. Differences in inverted fields between a stationary and
iteratively updated prior model become most apparent when
a lower resolution starting model is used with reduced XBTs
(as is the case in many seismic oceanographic datasets), as
shown in Figure 11. Here MCMC inverted temperatures for
a region at the edge of the meddy using a prior model
with a reduced XBT spacing of ∼30 km are shown, using
both a traditional stationary prior model and an iteratively
updated prior model. Note that apart from the uncertainty
analysis, the stationary MCMC approach is essentially equivalent
to the conventional linearized inversion approach as used
by Papenberg et al. (2010) and Biescas et al. (2014). Both
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FIGURE 8 | (A) Variation of prior model interpolation temperature uncertainty (for the whole section) with XBT sampling resolution. Blue dot highlights slightly different
method used to compute uncertainty when all 24 XBTs are included (see section “Materials and Methods”). (B) As for panel (A) but for salinity uncertainties.

inversion approaches are compared to the high-resolution
temperature field constructed from all XBTs (i.e., with a
spacing of approximately 2 km). The temperature field from
the stationary method is found to vary little from the prior
model, and displays a far more coherent horizontal structure
when compared with both the iterative approach and high-
resolution XBT section (for example along the top in the region
at depths 600–800 m and transect distance 28–37 km). The
stationary prior model inversion thus appears to be highly
constrained to the interpolated background starting model.
Iteratively updating the prior model with previous inversion
results overcomes this constraint, and in many places results
in a more representative temperature inversion that reflects the
horizontal variability and complexity at the edge of the meddy
better. However, we note that there are some regions where
the non-stationary approach matches the high-resolution XBT
data better, such as just outside the meddy core (e.g., depths
1,200–1,350 m; transect distance 13–20 km) and we find that
the mean absolute difference between the inverted results and
the high-resolution temperature section for both approaches are
comparable. In conclusion, an iterative MCMC approach reduces
posterior uncertainties and removes contamination from linear
interpolation of the start model, but a high-resolution prior
model is still key for reconstructing detailed temperature and
salinity fields.

DISCUSSION AND CONCLUSION

The Bayesian MCMC approach has been applied to a seismic
oceanographic dataset to recover the temperature and salinity
of a meddy, with lateral and vertical resolutions of O(10 m).
A typical meddy with a stably stratified core of 12.5◦C and
36.7 psu, and complex layering and finestructure at the meddy

periphery is imaged. Uncertainties in the inverted temperature
and salinity results are estimated as 0.16◦C and 0.055 psu,
respectively. Whilst on face value these uncertainties appear
higher than other inversion studies e.g., Papenberg et al.
(2010), Biescas et al. (2014) and Tang et al. (2016), here the
inclusion of uncertainties associated with both the high frequency
and low frequency data components reflect more realistic
confidence intervals in recovered temperature and salinity values.
Furthermore, the use of the Bayesian MCMC approach has
allowed the spatial variability of uncertainties across the meddy
to be quantified.

In addition to improved uncertainty analysis, we also
investigated the impact of iteratively updating the prior model
used in the inversion with previous inverted results, such
that MCMC inversion approaches can be used on seismic
datasets that may not have coincident high-resolution XBT
data [e.g., as in Papenberg et al. (2010) and Biescas et al.
(2014)], or continuous reflections as in Tang et al. (2016).
The iterative approach is found to both reduce inversion
uncertainties and reduce artifacts introduced into the prior
model by the interpolation of XBTs. Overall, the iterative
MCMC inversion better represents the complex horizontal
structure as found around the meddy. However, it should
be emphasized that the improvements associated with the
iterative approach are secondary to the impact of using a
starting model of appropriate resolution: by quantifying and
comparing the contribution of uncertainties from different
sources we find that the main contributor to the final uncertainty
is the low frequency start model as derived from the XBT
interpolation. For example, a starting model based on XBT
spaced at ∼ 2 km reduces uncertainties in inverted temperature
and salinities by 0.16◦C and 0.04 psu, respectively, compared
to a starting model with XBTs spaced at roughly 18 km. By
comparison uncertainties associated with the MCMC inversion
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FIGURE 9 | (A) Temperature depth profiles deduced from the MCMC inversion using an iteratively updated prior model computed from half the XBTs (blue) and the
observed data computed from the removed XBT 4 (red) to the west of the meddy. Gray shaded regions show 95% uncertainty bands. (B) Differences between
inverted and measured XBT temperature at XBT 4. (C,D) As for panels (A,B) but for salinity data. (E–H) as for panels (A–D) but for the XBT 8, located at the edge of
the meddy. Note that the edge of the meddy (depths ∼1,100 m), where interpolation errors are particularly high, is one of the regions where the observations do not
fall within our 95% uncertainty estimate.

of the high-frequency information contained within the seismic
data are much smaller, being 0.02◦C and 0.005 psu. In
conclusion, although the iterative MCMC improves inverted
results, an accurate starting model is crucial for reducing the
final inversion uncertainty particularly in highly heterogeneous
regions such as sub-surface eddies. Other inversion studies also
note the necessity of accurate reference models (Biescas et al.,
2014; Dagnino et al., 2016; Tang et al., 2016). As such we
strongly recommend that high-resolution XBT deployments,
ideally deployed every few km, are conducted alongside future
seismic studies.

For analysis of legacy data sets lacking coincident, high
resolution hydrographic data, or seismic horizons that are
not continuous enough to extend prior models as achieved

by Tang et al. (2016), other approaches must be adopted
to produce spatially improved starting models. One option
may be to adopt the method used by Gunn et al. (2018),
whereby low resolution temperature fields were extracted from
seismic data using the RMS sound velocity picked during
velocity analysis of prestack seismic data. This approach could
enable the inversion of temperature and salinity fields from
seismic data without the need for coincident hydrographic data,
useful for analyzing legacy seismic datasets as collected by
the hydrocarbon industry. Alternatively, the MCMC inversion
approach could be combined with full waveform inversion
techniques which despite being computationally expensive
are applied directly to pre-stack data, avoiding assumptions
associated with seismic stacking techniques and deconvolution
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FIGURE 10 | Comparison of stationary and iteratively updated posterior inversion uncertainties. (A) Red (blue) lines show the histogram of posterior temperature
uncertainty MCMC distribution for stationary (iterative) prior model. Stars indicate the mean of distribution. (B) As for panel (A) but for salinity uncertainties.

FIGURE 11 | Comparison of MCMC inverted temperature fields using a stationary and iteratively updated starting model. Colored contours show temperature fields,
and the thick black line follows the 12.21◦C temperature contour, chosen to highlight the meddy structure. (A) Initial reduced XBT-based temperature model used for
inversion results shown in panels (B,C) based on interpolation of two XBTs approximately 30 km apart: white dots mark XBT locations. (B) Inverted temperatures
using the starting model as shown in panel (A) at each inversion location (i.e., a stationary prior model). (C) Inverted temperature field in which the starting model is
iteratively updated at each horizontal position with previous inversion results (see section “Iteratively Improving the Prior Model”). (D) As for panel (A) but the
high-resolution temperature field constructing using all available XBT data. Yellow dots mark XBT locations.

(Wood et al., 2008; Dagnino et al., 2016). Furthermore, the
combination of MCMC inverted seismic oceanographic field
studies, as demonstrated here, with coincident data from
underwater autonomous vehicles would provide a complete
picture of finescale to mesoscale structures. Seismic experimental
set up also impacts the final resolution of inversion results
(Hobbs et al., 2009).

This work contributes to the growing approaches to extracting
temperature and salinity data from marine seismic surveys, key

to understanding finescale and submesoscale oceanic structure
and how they relate to larger scale (mesoscale) dynamics. The
temperature and salinity fields of the meddy presented here are
of high enough resolution and accuracy to be used for further
dynamical analysis, such estimating isopycnal displacements
and dissipation levels (Sheen et al., 2009; Dickinson et al.,
2017) and using spice anomalies to diagnose lateral stirring
mechanisms (Klymak et al., 2015). Such data will ultimately
improve our understanding of the role that sub-surface eddies
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play in the distribution of heat, salt, nutrients and other tracers
within the ocean.
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