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Abstract

In direct energy Kohn-Sham (DEKS) theory, the density functional theory elec-

tronic energy equals the sum of occupied orbital energies, obtained from Kohn-Sham-

like orbital equations involving a shifted Hartree-exchange-correlation potential, which

must be approximated. In the present study, the Fermi-Amaldi term is incorporated

into approximate DEKS calculations, introducing the required −1/r contribution to

the exchange-correlation component of the shifted potential in asymptotic regions. It

also provides a mechanism for eliminating one-electron self-interaction error and it

introduces a non-zero exchange-correlation component of the shift in the potential,

of appropriate magnitude. The resulting electronic energies are very sensitive to the

methodologies considered, whereas highest occupied molecular orbital energies and

exchange-correlation potentials are much less sensitive and are similar to those ob-

tained from DEKS calculations using a conventional exchange-correlation functional.

1



1 Introduction and Background

Levy and Zahariev1 have proposed a new approach for performing density functional theory

calculations. Central to their approach is a set of Kohn-Sham-like orbital equations,

[
−1

2
∇2 + v(r) + w(r)

]
ϕi(r) = εiϕi(r) , (1)

where v(r) is the external potential and

w(r) = w(r) + c . (2)

Here, w(r) is the familiar Hartree-exchange-correlation (Hxc) potential,

w(r) = vJ(r) + vxc(r) , (3)

which is the functional derivative of the Hxc energy functional,

G = J + Exc . (4)

This functional comprises the classical Hartree functional, expressed in terms of the den-

sity ρ(r),

J =
1

2

∫ ∫
ρ(r)ρ(r′)

|r− r′| drdr
′ , (5)

and the exchange-correlation functional, Exc. The shift c in Eq (2) is chosen to be

c =
G−

∫
w(r)ρ(r)dr

N
, (6)

2



where N is the electron number. Using Eqs (3) and (4), this can be partitioned into Hartree

and exchange-correlation components,

c = cJ + cxc , (7)

where

cJ =
J −

∫
vJ(r)ρ(r)dr

N
= − J

N
, (8)

and

cxc =
Exc −

∫
vxc(r)ρ(r)dr

N
, (9)

meaning the potential w(r) can be partitioned as

w(r) = vJ(r) + vxc(r), (10)

where

vJ(r) = vJ(r) + cJ (11)

and

vxc(r) = vxc(r) + cxc . (12)

The choice of c in Eq (6) is such that the electronic energy reduces to the sum of the

occupied orbital energies,

E =
∑
i

εi , (13)
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which contrasts Kohn-Sham theory, where this is not the case for conventional functionals.

In practical calculations, Eq (1) must be solved within a finite basis set, but this does not

affect the form of Eq (13).

Levy and Zahariev1 showed that the exact potential w(r) has desirable characteristics.

It does not exhibit a discontinuity as the electron number crosses integer; and upon any

isoelectronic change in the density, it changes less than any other potential that differs

from w(r) by a density-dependent additive constant. They therefore suggested that it was

desirable to approximate w(r) directly and then solve Eq (1) and evaluate the electronic

energy using Eq (13). Their method is termed direct energy Kohn-Sham (DEKS) theory.

For further discussion of DEKS, see Refs 2–8; also see Refs. 9,10 for an earlier, Hartree-Fock

variant.

Sharpe, Levy, and Tozer (SLT)7 used density scaling homogeneity considerations to carry

out DEKS calculations on a series of atoms and small molecules, providing several prelimi-

nary approximations for w(r). In particular, they demonstrated the utility of approximating

the shift, c, by its dominant Hartree component, cJ , meaning its exchange-correlation com-

ponent, cxc, was zero. The aim of the present study is to investigate the incorporation of

the Fermi-Amaldi (FA) term11 into the SLT approach. This provides a simple way to in-

troduce the required −1/r contribution to the exchange-correlation potential in Eq (12) in

asymptotic regions. Furthermore, we shall show that it provides a mechanism for elimi-

nating one-electron self-interaction error and that it introduces a non-zero value of cxc, of

appropriate magnitude. Methodology and results are presented in Section 2. Conclusions

are presented in Section 3.
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2 Methodology and Results

2.1 Preliminary work

It is helpful to start by summarising the approach and findings of SLT.7 They commenced

by defining an underlying Hxc functional (Eq (4)) and then shifted its potential by c to yield

the desired w(r) (Eq 2)), which was then used to solve Eq (1) (within a finite basis set)

and compute the electronic energy using Eq (13). For the Hartree component of the Hxc

functional, they used the exact J in Eq (5). For the exchange-correlation component, they

used

Exc = αGxc (14)

where α is a parameter and Gxc is a flexible, local functional proposed by Liu and Parr in

Ref. 12, which can be homogeneous of any order under density scaling and under coordinate

scaling; the latter was chosen to be order one. A consideration of potentials led SLT to set

c = cJ = − J
N

, meaning cxc = 0 (Eq (7)). It then follows from Eq (9) that the exchange-

correlation functional must be homogeneous of degree one under density scaling (a functional,

F , that is homogenous of degree k under density scaling, satisfies kF =
∫
vF (r)ρ(r)dr), for

which the Liu-Parr expression is simply

Gxc =
(∫

ρ
3
2 (r)dr

) 2
3
. (15)

Combining the exchange-correlation potential of the functional in Eq (14) with the Hartree

potential and the shift c = cJ = − J
N

, gave the overall DEKS potential,

w(r) = vJ(r) + α
δGxc

δρ(r)
− J

N

= vJ(r) + α
(∫

ρ
3
2 (r)dr

)− 1
3
ρ

1
2 (r)− J

N
(16)
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Two approaches were used by SLT to determine the parameter α. Initially, it was deter-

mined on a case-by-case basis, by demanding that the exchange-correlation energy obtained

by evaluating Eq (14) using a GGA density, from a prior GGA calculation, equals the cor-

responding GGA exchange-correlation energy. This simply requires

α = EGGA
xc /GGGA

xc , (17)

where GGGA
xc is obtained by evaluating Eq (15) using the GGA density and EGGA

xc is the GGA

exchange-correlation energy. For the GGA, SLT used the Perdew-Burke-Ernzerhof (PBE)

functional13 and we do the same in the current study. DEKS calculations determined using

Eqs (16) and (17) were denoted DEKS2.

Table 1 presents electronic energies (Eq (13)) determined using DEKS2, for 17 closed-

shell atoms and molecules taken from Ref. 14. Table 2 presents the corresponding highest

occupied molecular orbital (HOMO) energies, εHOMO (Eq (1)). The energies in Tables 1

and 2 are central quantities in the DEKS approach and although they will be relatively

insensitive to the actual behaviour of w(r) in asymptotic regions, they will still be affected

by the inclusion of the Fermi-Amaldi term, since its potential contributes to all regions of

space, not just asymptotic regions. It is therefore important to quantify how these energies

are affected by its inclusion. In addition to these energies, we also consider the DEKS

exchange-correlation potential, vxc(r) (Eq (12)) for the representative N2 molecule. Figure

1(a) presents this potential for DEKS2. All calculations in this study are performed using the

aug-cc-pVTZ basis set at the reference, near-exact geometries of Ref. 15, using the CADPAC

program.16

Given the central role of PBE in the methodology, we follow SLT and compare all results

in the present study with those from DEKS calculations using PBE. For electronic energies,

the DEKS PBE energies are identical to the regular Kohn-Sham electronic energies. For

HOMO energies, the DEKS PBE energies are the Kohn-Sham HOMO energies, shifted by c,
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Figure 1: DEKS exchange-correlation potentials, vxc(r), plotted along the bond axis in N2.
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Table 1: DEKS electronic energies (in a.u.).

DEKS2 DEKS3 DEKS2FA DEKS3FA DEKS4FA PBE
He −2.893 −2.718 −2.894 −2.933 −3.042 −2.892
Be −14.643 −14.497 −14.642 −14.469 −14.655 −14.629
Ne −128.906 −128.562 −128.864 −129.183 −129.439 −128.853
CH4 −40.508 −40.243 −40.492 −40.275 −40.414 −40.464
NH3 −56.562 −56.365 −56.533 −56.434 −56.599 −56.512
H2O −76.434 −76.248 −76.398 −76.421 −76.614 −76.381
HF −100.447 −100.213 −100.407 −100.567 −100.790 −100.393
Mg −199.993 −199.999 −199.963 −200.496 −200.705 −199.949
CO −113.292 −112.800 −113.242 −112.520 −112.600 −113.233
N2 −109.508 −108.991 −109.459 −108.709 −108.789 −109.452
Ar −527.433 −528.691 − 527.348 −529.169 −529.037 −527.338
F2 −199.503 −198.902 −199.431 −198.323 −198.242 −199.418
PH3 −343.075 −344.296 −343.033 −344.049 −343.945 −342.988
H2S −399.324 −400.608 −399.263 −400.556 −400.443 −399.234
HCl −460.728 −462.024 −460.654 −462.213 −462.091 −460.636
SO2 −548.538 −549.235 −548.458 −547.368 −546.315 −548.391
Cl2 −920.185 −922.212 −920.066 −919.379 −917.850 −920.036
MAD 0.069 0.658 0.020 0.681 0.843

evaluated using Eq (6) with PBE quantities. These PBE energies are presented in Tables 1

and 2; mean absolute deviations (MADs) relative to theses values are also presented. For the

N2 exchange-correlation potential, the DEKS PBE potential is the Kohn-Sham exchange-

correlation potential, shifted by the value of cxc for N2, evaluated using Eq (9) with PBE

quantities. This PBE exchange-correlation potential is presented in Figure 1. Of course,

these DEKS PBE calculations are not carried out in the real spirit of DEKS − they simply

shift the Hxc potential constructed from a standard exchange-correlation functional, whereas

w(r) should instead be constructed directly, without explicit reference to a standard func-

tional. However, they do provide an appropriate reference for the development of preliminary

approximations for w(r). Furthermore, it has been shown1,3 that the DEKS PBE HOMO

energies are actually in rather good agreement with exact values.

For electronic energies (Table 1) and HOMO energies (Table 2), the DEKS2 MADs are

0.069 and 0.056 au, respectively. For the exchange-correlation potential (Figure 1(a)), the
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Table 2: DEKS HOMO energies, εHOMO (in a.u.)

DEKS2 DEKS3 DEKS2FA DEKS3FA DEKS4FA PBE
He −1.447 −1.359 −1.447 −1.467 −1.521 −1.446
Be −1.817 −1.804 −1.753 −1.738 −1.754 −1.810
Ne −6.592 −6.574 −6.746 −6.764 −6.778 −6.716
CH4 −3.362 −3.349 −3.442 −3.431 −3.438 −3.436
NH3 −3.843 −3.834 −3.935 −3.930 −3.938 −3.914
H2O −4.577 −4.568 −4.694 −4.695 −4.705 −4.667
HF −5.491 −5.480 −5.629 −5.637 −5.649 −5.600
Mg −7.818 −7.818 −7.693 −7.706 −7.711 −7.751
CO −5.440 −5.424 −5.503 −5.480 −5.483 −5.505
N2 −5.386 −5.369 −5.472 −5.448 −5.450 −5.462
Ar −12.692 −12.715 −12.702 −12.735 −12.733 −12.737
F2 −7.084 −7.067 −7.195 −7.162 −7.160 −7.201
PH3 −9.422 −9.445 −9.409 −9.428 −9.426 −9.422
H2S −10.398 −10.420 −10.390 −10.413 −10.411 −10.404
HCl −11.501 −11.523 −11.504 −11.531 −11.529 −11.528
SO2 −11.002 −11.010 −11.056 −11.044 −11.032 −11.057
Cl2 −13.947 −13.965 −13.981 −13.975 −13.961 −13.970
MAD 0.056 0.065 0.020 0.023 0.028

DEKS2 potential resembles the PBE potential, although it vanishes asymptotically (cxc = 0),

whereas the PBE potential approaches its non-zero cxc value. Neither potential exhibits the

required −1/r + cxc asymptotic behaviour (Eq (12)).

A downside of DEKS2 is that it requires prior GGA calculations to be performed, in

order to determine the α values (Eq (17)). To overcome this, SLT considered applying the

functional in Eq (14) to a uniform electron gas, where the exchange-correlation energy is

approximated by the Dirac exchange energy.17 Equating the two yields

α
(∫

ρ
3
2 (r)dr

) 2
3

= Cx

∫
ρ

4
3 (r)dr , (18)

where Cx = −0.7386 is the Dirac exchange prefactor. Setting the constant density ρ(r) = N
V

,

where V is the volume, then gave

α = CxN
1
3 . (19)
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The red circles in Figure 2 are the DEKS2 α values for the 17 systems, plotted as a function

of N1/3. It is evident that there is an approximate proportionality, consistent with Eq (19).

SLT performed a zero-intercept least squares fit, yielding

α = −0.6888N
1
3 (20)

which is shown as the solid red line in the figure. The R2 value is 0.93 and the prefactor is

reassuringly similar to Cx. The use of Eq (20) therefore eliminates the need for an explicit

prior GGA calculation. DEKS calculations determined using Eqs (16) and (20) were denoted

DEKS3 and energies are presented in Tables 1 and 2. In moving from DEKS2 to DEKS3, the

electronic energy MAD increases by almost an order of magnitude, reflecting the approximate

nature of Eq (20). The increase in MAD is much less pronounced for HOMO energies. We do

not present the DEKS3 exchange-correlation potential for N2 because, on the scale plotted in

Figure 1, it is essentially indistinguishable from the DEKS2 potential. For further theoretical

and methodological details of DEKS2 and DEKS3, together with a full results analysis, the

reader is referred to Ref. 7.

2.2 Incorporation of the Fermi-Amaldi term

We now consider the incorporation of the Fermi-Amaldi term11 . To achieve this, we re-write

the exchange-correlation energy as

Exc = − J
N

+ αGxc (21)

where Gxc is again given by Eq (15), i.e. homogeneous of degree one under density scaling.

We note that Parr and Ghosh18 also recommended combining − J
N

with a functional that

is approximately homogeneous of degree one under density scaling, for atomic systems. A

related form was also considered in Refs 19 and 20.

Evaluating Eq (9) for the exchange-correlation functional in Eq (21) yields a non-zero,
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cxc = J
N2 , noting that we have treated N as a parameter rather than a functional, meaning

we do not differentiate it when taking functional derivatives; the same approach was used in

Refs. 7,18,19. (If N was instead treated as a functional and differentiated, then cxc would be

zero). Combining the exchange-correlation potential of the functional in Eq (21) with the

Hartree potential and the shifts cJ = − J
N

and cxc = J
N2 , gives the overall DEKS potential,

w(r) = vJ(r)

(
1− 1

N

)
+ α

(∫
ρ

3
2 (r)dr

)− 1
3
ρ

1
2 (r)− J

N

(
1− 1

N

)
(22)

To derive α, we first use the same approach that was used to derive Eq (17), which now gives

α =
EGGA

xc + JGGA

N

GGGA
xc

, (23)

where JGGA is the Hartree energy in Eq (5), evaluated using the GGA density. DEKS results

determined using Eqs (22) and (23) are denoted DEKS2FA and energies are presented in

Tables 1 and 2. In moving from DEKS2 to DEKS2FA, the MADs for electronic energies

and HOMO energies reduce by about a factor of three. Figure 1(b) presents the DEKS2FA

exchange-correlation potential. In moving from DEKS2 to DEKS2FA, the potential more

closely resembles the PBE potential; the non-zero cxc = J
N2 is clearly evident. Although it is

not apparent for the coordinate scale plotted, the DEKS2FA exchange-correlation potential

does exhibit the required −1/r+ cxc asymptotic behaviour (Eq (12)) by construction, which

neither PBE nor DEKS2 exhibit. The inclusion of the Fermi-Amaldi term therefore appears

beneficial from both an energy and potential perspective.

In order to eliminate the need for prior GGA calculations (Eq (23)), we again follow

SLT and consider applying the exchange-correlation functional (now Eq (21)) to a uniform

electron gas, where the exchange-correlation energy is approximated by the Dirac exchange

energy. This gives

− 1

2N

∫ ∫
ρ(r)ρ(r′)

|r− r′| drdr
′ + α

(∫
ρ

3
2 (r)dr

) 2
3

= Cx

∫
ρ

4
3 (r)dr . (24)
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However, the position-dependence of the denominator in the Hartree term means that setting

ρ(r) = N
V

does not lead to a simple expression for α, as it did in Eq (19). To make progress,

we choose to replace the exact Hartree term in Eq (24) with the approximate expression of

Liu and Parr,

J = CJ

(∫
ρ

6
5 (r)dr

) 5
3
, (25)

which was obtained by taking the general functional form in Ref. 12 and enforcing the

appropriate density scaling (order two) and coordinate scaling (order one) behaviour of the

exact Hartree energy; the quantity CJ is a positive parameter. This gives

−CJ

N

(∫
ρ

6
5 (r)dr

) 5
3

+ α
(∫

ρ
3
2 (r)dr

) 2
3

= Cx

∫
ρ

4
3 (r)dr , (26)

and setting ρ(r) = N
V

yields

α = CxN
1/3 + CJ . (27)

The blue circles in Figure 2 are the DEKS2FA α values, plotted as a function of N
1
3 . Once

again, the values are approximately proportional to N1/3, although there is now a vertical

offset compared to the red DEKS2 data, consistent with Eq (27). A least squares fit yields

α = −0.7632N
1
3 + 0.8908 (28)

which is shown as the solid blue line in the figure. The R2 value is 0.97, which is a marginal

improvement over the DEKS2 fit (R2 = 0.93). Consistent with Eq (27), the slope of −0.7632

is again similar to Cx, whilst the intercept of 0.8908 is of the same sign and order of magnitude

as the value of CJ = 1.0829, obtained by Liu and Parr12 through a fit to atomic data.

DEKS results determined using Eqs (22) and (28) are denoted DEKS3FA and energies are
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presented in Tables 1 and 2. In moving from DEKS3 to DEKS3FA, the MAD marginally

increases for electronic energies, whereas the MAD for HOMO energies reduces significantly.

Indeed, the DEKS3FA HOMO energies have a rather similar MAD to DEKS2FA, despite

the approximation inherent in Eq (28). We do not plot the DEKS3FA exchange-correlation

potential because, on the scale plotted in Figure 1, it is essentially indistinguishable from

the DEKS2FA potential.

2.3 Eliminating one-electron self-interaction error

The potential w(r) should be zero when N = 1, in order for the methodology to be one-

electron self-interaction free, and the present formalism allows this to be easily achieved.

The first and third terms in Eq (22) involve the factor (1− 1
N

) and so vanish when N = 1.

To eliminate one-electron self-interaction error, all that is therefore required is that α = 0

when N = 1 and the expression in Eq (28) points to a simple way to achieve this: simply

constrain the slope and intercept in the least squares fit to be equal and opposite. The

corresponding least squares fit gives

α = −0.6799(N
1
3 − 1) (29)

for which R2 = 0.95. DEKS results determined using Eqs (22) and (29) are denoted

DEKS4FA and energies are presented in Tables 1 and 2. DEKS4FA electronic energies

have a larger MAD than DEKS3FA, reflecting the approximate nature of Eq (29). How-

ever, the HOMO energies have only a slightly larger MAD. We do not plot the DEKS4FA

exchange-correlation potential because, on the scale plotted in Figure 1, it is again essentially

indistinguishable from the DEKS2FA potential.

Like other approximations,21 the Fermi-Amaldi term does not necessarily remedy all

problems associated with self-interaction. It is also worth noting that neither term in Eq

(21) is size extensive, but see Ref 7 for further discussion of this point.
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2.4 Relationship between values of cxc = J
N2 and cPBE

xc

A key feature of this methodology is the introduction of the non-zero exchange-correlation

shifts, cxc = J
N2 . We end this study by considering how these shifts relate to the corresponding

PBE shifts, hereafter denoted cPBE
xc , obtained by evaluating Eq (9) with PBE quantities. We

shall specifically consider the DEKS2FA values of J
N2 , but the same findings apply to the

DEKS3FA and DEKS4FA values, due to their very similar J values.

At first sight, we might expect that the J
N2 values would resemble the cPBE

xc values. Figure

3(a) plots a scatter plot of the two quantities for the 17 systems, but the correlation is rather

poor and the J
N2 values are notably larger for most of the systems. However, J

N2 is the amount

that the potential of our approximate functional (Eq (21)) must be shifted by, in order

that the electronic energy equals the sum of the occupied orbital energies. In energetically

important regions (i.e. the regions of space that govern the values of the occupied orbital

energies), this potential has a shape that connects to a −1/r potential in asymptotic regions.

By contrast, the value of cPBE
xc is the amount that the Kohn-Sham PBE potential must be

shifted by and it is well-established that in energetically important regions, this potential

already has a shift built into it; the value of that shift is approximately half of the integer

discontinuity, ∆xc (Refs. 22, 23). Put another way, in energetically important regions, the

PBE potential has a shape that should connect to a −1/r + ∆xc

2
potential in asymptotic

regions. (This is the basis of the asymptotic correction approach in Ref. 24). It follows that

rather than resembling cPBE
xc , the shift J

N2 should instead resemble cPBE
xc plus ∆xc

2
.

Values of ∆xc

2
can be approximated as the non-zero shifts that arise in GGA functional

development; for 15 of the 17 systems, we use the shifts that arose in the HCTH functional

development,25 which are tabulated in Table 2 of Ref. 26. For the remaining two systems

(Ar and H2S), we instead approximate ∆xc

2
as being the sum of the GGA HOMO energy

plus the experimental ionisation potential.23,24 The conclusions we reach are unchanged if

the latter approach is used for all 17 systems. Similarly, the conclusions are unchanged if

the near-exact ∆xc

2
values of Ref. 23 are used, where available. Figure 3(b) plots a scatter

15



plot of J
N2 and cPBE

xc + ∆xc

2
. The correlation is much improved over that in Figure 3(a):

R2 increases by a factor of two whilst the mean absolute difference between J
N2 and the

PBE quantities reduces by a factor of three. The agreement is far from perfect, but we are

encouraged by the agreement, given the natural manner in which the non-zero shift arises

and the approximations used in the analysis.

3 Conclusions

We have shown how the Fermi-Amaldi term can be easily incorporated into approximate

DEKS calculations. The preliminary methodology relies on a prior GGA calculation for

each system, but a uniform electron gas analysis can be used to eliminate the need for these

explicit calculations; the offset in the prefactor, α, arising from inclusion of the Fermi-Amaldi

term, is readily understood from the analysis.

The incorporation of the Fermi-Amaldi term introduces the required −1/r contribution

to the exchange-correlation component of the shifted potential in asymptotic regions. It also

provides a mechanism for eliminating one-electron self-interaction error and it introduces a

non-zero exchange-correlation component of the shift in the potential, of appropriate mag-

nitude. Insight into the values of the shifts is provided by a consideration of the integer

discontinuity. The resulting electronic energies are very sensitive to the methodology used

to determine α, whereas HOMO energies and exchange-correlation potentials are much less

sensitive and are similar to DEKS PBE quantities.

DEKS calculations are still in their infancy and our approach does not offer a practical

alternative to Kohn-Sham theory. However, we hope that the ideas used in this study will

stimulate further research into the DEKS approach and improved approximations for w(r).
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Figure 3: Scatter plots of exchange-correlation shifts for the 17 systems.
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