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Abstract
Self-adaptive systems (SASs) are increasingly leveraging autonomy in their decision-making to manage uncertainty in their
operating environments. A key problem with SASs is ensuring their requirements remain satisfied as they adapt. The trade-off
analysis of the non-functional requirements (NFRs) is key to establish balance among them. Further, when performing the
trade-offs it is necessary to know the importance of each NFR to be able to resolve conflicts among them. Such trade-off
analyses are often built upon optimisation methods, including decision analysis and utility theory. A problem with these
techniques is that they use a single-scalar utility value to represent the overall combined priority for all the NFRs. However,
this combined scalar priority value may hide information about the impacts of the environmental contexts on the individual
NFRs’ priorities, which may change over time. Hence, there is a need for support for runtime, autonomous reasoning about
the separate priority values for each NFR, while using the knowledge acquired based on evidence collected. In this paper,
we propose Pri-AwaRE, a self-adaptive architecture that makes use of Multi-Reward Partially Observable Markov Decision
Process (MR-POMDP) to perform decision-making for SASs while offering awareness of NFRs’ priorities. MR-POMDP
is used as a priority-aware runtime specification model to support runtime reasoning and autonomous tuning of the distinct
priority values of NFRs using a vector-valued reward function. We also evaluate the usefulness of our Pri-AwaRE approach
by applying it to two substantial example applications from the networking and IoT domains.

Keywords Self-Adaptive systems · Priorities · Non-functional requirements · Decision-making

1 Introduction

Self-adaptive systems (SASs) are systems that take dynamic
adaptive decisions under uncertain environmental conditions
to achieve their functional and non-functional requirements
(NFRs) [26,30,51]. An example of a SAS would be an Inter-
net of Things (IoT) network [2,61], that serves as a basis
for the implementation of a cyber-physical system such as
a smart home. These systems are continuously exposed to
different environmental situations, such as communication
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interference and dynamic traffic loads, which may have dif-
ferent effects on the satisfaction levels of the NFRs. Such
effects might include high energy consumption or poor
packet delivery performance [27,35,52]. Hence, a SAS needs
to adapt dynamically at runtime. These adaptations may
involve trade-offs between the SAS’s NFRs as the encoun-
tered environmental conditions change, sometimes in ways
that deviate from those anticipated at design time.

Specification models exist that describe the decision-
making process based on these trade-offs, and include the
alternative adaptation actions and the priority of NFRs
[20,29]. If these specification models, developed at design
time, can also be used and updated at runtime, a SAS can
be made requirements-aware [51] by monitoring its require-
ments’ compliance during runtime. The specification model
(S) is derived by analysts from the requirements and the
knowledge domain (K). According to Zave and Jackson [63]
(seeEq. 1),monitoring compliancewith the requirements (R)
can be done bymonitoring compliance with the specification
model (S).
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S, K � R (1)

It is safe to believe that Swill remain a valid implementa-
tion of R if and only if K does not change from the moment
that S was built until the moment requirements compliance
is assessed. However, in a SAS there is uncertainty about K
[10], which cannot be assumed to remain unchanged. On the
upside, a SAS may provide opportunities to learn about its
environment and so reduce K’s uncertainty.

Several runtime optimisation techniques have been devel-
oped to support the decision-making process specified in S
of SASs [1,6,9,16,18,33,59]. These techniques are based on
optimisation methods that include decision analysis and util-
ity theory [46,47], that select from a set of alternatives the
adaptation that yields the highest utility value.

A problem with these techniques used in SASs is that
they typically use single-objective optimisation techniques
[44,55], i.e. they use a single-scalar cumulative utility value
to represent a combined cardinal priority for all NFRs. How-
ever, the adaptive decisions taken by SASs can have different
effects, either positive or negative, on the satisfaction levels
of individual NFRs [30,55,59]. For example, in an IoT net-
work, the decision to increase transmission power on the
links under the situation of high interference will have a pos-
itive impact on the packet delivery performance, but it will
harm energy consumption [61]. Single-objective techniques
using a combined cardinal priority do not give any informa-
tion about the different impacts of adaptive decisions on the
individual NFRs in terms of their satisfaction. Further, these
impacts may change according to the evolution of the SAS
over time, leading the SAS to evolve its adaptation strate-
gies [13]. Hence, the priorities assigned at design time may
no longer be valid at runtime due to unforeseen or emergent
contexts that in turn may lead to the violation of a NFR. In
a nutshell, the limitations of current optimisation techniques
are (i) that they treat NFRs’ priorities as a single combined
value, and (ii) the assigned NFRs’ priorities are considered
to be fixed and unchanging.

1.1 Principal ideas

We argue that adaptation decisions need to be informed by
theNFRs’ priorities; something that cannot be achieved if the
priorities are aggregated into a single combined value. How-
ever, it may prove that the priorities assigned at design time
are not appropriate or even achievable under certain condi-
tions. Theprioritiesmayneed to be re-evaluated and changed,
informed by the knowledge gained by the SAS encountering
such conditions.

Let us define priority-awareness.

Definition 1 Priority-awareness is the capability of provision
for autonomous changes of priorities to address the required
satisfaction levels of NFRs.

The compliance with the requirements (R), according to
Zave and Jackson [63], can be achieved using a runtime spec-
ification model (S) that is equipped with the newly found
knowledge (K’) that has an effect on changing individual
NFR priorities.

S, K ′ � R (2)

The key challenge here is to have a runtime specification
model that has the capability of:

(1) modelling and reasoning with the cardinal priorities of
individual NFRs.

(2) supporting the tuning of NFRs’ priorities to better match
the newly discovered situation and acquired knowledge,
while respecting their relative priorities.

Based on [63], next we present our main contributions
towards addressing the specified research challenges.

1.2 Contributions

In this paper, we propose Pri-AwaRE, a self-adaptive archi-
tecture, that uses an extension of Multi-Reward Partially
ObservableMarkovDecisionProcess (MR-POMDP) [54,55]
called MR-POMDP++, as a runtime specification model (S)
embedded within the MAPE-K loop. MR-POMDP++ is a
multi-objective sequential decision-making technique that
uses the concept of rewards to:

a. support priority-aware decision-making by providing
the runtime modelling and reasoning of priorities of individ-
ual NFRs using a vector-valued reward function. Hence, the
decision-making takes into account the knowledge (K’) that
allows the MR-POMDP++ to re-evaluate the priorities.

b. provide SASs with a principled way to maintain com-
pliance of the Requirements (R) by autonomously tuning the
NFRs’ priorities at runtime under uncertain environmental
contexts.

We also provide a proof of concept by applying our pro-
posed approach to two different example applications from
the networking and IoT domains and comparing it to the
existing state-of-the-art techniques. Based on the experi-
ments, we show that priority-aware decisions offered by
our Pri-AwaRE architecture support satisfaction of NFRs in
terms of more informed choices of NFRs’ priorities.
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1.3 Organization of the paper

The paper is organized as follows: Sect. 2 explains base-
line concepts related to decision-making in SASs. Section
3 presents the Pri-AwaRE architecture to support priority-
aware decision-making in SASs. In Sect. 4, the experiments
and evaluations are presented followed by threats to valid-
ity in Sect. 5. Section 6 presents related work. Finally, the
conclusions and future work are presented in Sect. 7.

2 Underlying concepts

In this section, we introduce the key concepts used in the
paper. First, we define the decision-making process in SASs
driven by NFRs [3,12,20]. We then describe the techniques
and architectural concepts that we use in our work to ensure
that NFRs are satisfied to an appropriate level that respects
their respective priorities. These are: Partially Observable
MarkovDecision Process (POMDP),Multi-Reward Partially
Observable Markov Decision Process (MR-POMDP), Opti-
mistic Linear Support (OLS) algorithm and the MAPE-K
architecture.

2.1 Decision-making in SASs

SASs are continuously exposed to different environmental
contexts that affect the satisfaction of NFRs. During the
decision-making process of a SAS, the system performs
different tasks that have different impacts on the satisfac-
tion levels of NFRs. The decision-making process of a SAS
involves the following key concepts [4]:

2.1.1 NFRs

The main objective of decision-making in a SAS is to satisfy
its non-functional quality requirements, i.e. the NFRs, while
fulfilling the functional goals [6]. The NFRs are associated
with two important characteristics at runtime [20]:

– Satisfaction Level The satisfaction level of a NFR refers
to the extent to which that NFR has been satisfied as a con-
sequence of an action performed by the SAS and its level of
satisfaction at the previous time step of execution. The satis-
faction level can be represented by a conditional probability
distribution P(NFRi is satisfied | action a).

– Priority The priority value for a NFR is a scalar cardi-
nal value used to represent its importance for satisfaction at
runtime. The priority for satisfaction of NFRs may change
due to the change in environmental conditions at runtime.

2.1.2 Monitorables

As the environment in which the SAS is operating is continu-
ously changing, a SAS continuously monitors these changes
over time by using monitorables that represent information
about the state of the environment. For example, the interfer-
ence and traffic load on the network links can be monitored.

2.1.3 Actions

Actions are defined as the adaptation strategies comprising
of discrete set of software configurations, solutions or service
components that is selectedby aSASduringdecision-making
[5,49]. To achieve the target functional goals alongwith satis-
fying the NFRs, the SAS selects an action [3,38] based on the
monitorable values and the satisfaction levels and priorities
for the NFRs at a given point of time. The adaptation actions
performed by SASs have an impact (positive or negative) on
the satisfaction levels of NFRs.

2.2 POMDPs

The significance of POMDPs to SASs is that they are used to
solve sequential decision-making problems under uncertain
and dynamic environmental contexts [45,56]. They offer an
agent-based decision-making approach by considering the
agents working in a partially observable environment. This
means that the agent cannot directly observe the underlying
state. Instead, to choose the optimal action, it mustmaintain a
probability distribution over the set of possible states, known
as a belief, based on a set of observations and observation
probabilities.

An exact solution to a POMDP yields the optimal action
for each possible belief over the possible states. The optimal
action maximizes the expected reward of the agent over a
possibly infinite horizon. The sequence of optimal actions is
known as the optimal policy of the agent for interacting with
its environment. The basic elements of a POMDP are shown
in Fig. 1.

A POMDP is specified as a tuple<S,A,Z,T,O,R,γ >where
S represents the set of states specifying a description of the
state of the environment; A is the set of Actions that the agent
can select to perform at a particular time; Z is the set of obser-
vations specifying the information received by the agent from
the environment using sensors related to the set of states S;
T is the transition function T (s, a, s′) = P(s′|s, a) speci-
fying the probability of moving to the next state s’ given
an action a and current state s; O is the observation func-
tion O(s, a, z) = P(z|s, a) specifying the probability of
observing the observation z given an action a and resulting
state s; R is the reward function R(s,a) specifying a scalar
real value generated by the environment as a feedback of the
action a performed by the agent provided with the state s
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Fig. 1 POMDP

of the environment; γ is the discount factor to support the
preference for the immediate reward values over the future
rewards. The value of the discount factor lies between 0 and1.
The values for rewards are normally assigned by the domain
experts at design time based on the information that is pro-
vided to them at design time or from the previous experiences
[23,34,36].

The decision-making agent tries to find the policy π , a
mapping from the state of the environment to action, that
maximizes the value function, i.e. the expected utility value
of the sum of discounted rewards, as follows:

Vπ = Eπ [Rt + γ Rt+1 + γ 2Rt+2 . . . |st ] (3)

Hence, based on the current state st of the system, the
value function Vπ is used to compute how much cumulative
reward, discounted by γ , we can expect to get in future, if a
particular action is performed in a particular state at time t.

Thus, the reward value R(s,a) is used to evaluate the effect
of performing an action a during the state s with the help of
a value function. Therefore, a cardinal scale is assigned to
each decision made during a specific state of the system to
indicate its priority.

As the states in a POMDP are not fully observable, a belief
b over the states of the system is maintained. A POMDP
offers the capability to quantify uncertainty in terms of the
(partially) observed state of the environment. In reference to
point-based planning methods [53,57] for solving POMDPs,
that focus on the computation of a policy based on a sampling
of points from the belief space, the value function over the
beliefVb is represented by a set ofα-vectorsA. Eachα-vector
is associated with an action a and has a length of |S| in order

to provide a value for each state s. Theα-vector is represented
as follows:

αa = [V (si ), V (si+1), . . . , V (s(n))] (4)

Here, V (si ) represents the value of the value function for
state si given a total number of n states.

Thus, given A, the value over the belief is computed as:

Vb = max
α∈A b.α (5)

Therefore, for each belief b, a set of α vectors A provides
a policy πA for the action that maximizes the value. The
application of selected actions by the decision-making agent
leads to a change in the state of the system.

2.3 MR-POMDPs

MR-POMDP [44,54,55], similar to POMDPs, is a sequen-
tial decision-making technique used to solve multi-objective
decision problems. MR-POMDP is actually a POMDP that
has more than one reward values represented in the form of
a vector-valued reward function R as shown in Fig. 2. In
MR-POMDPs, each objective (NFRs in our case) is asso-
ciated with its own separate reward value. Hence, the size
of the reward vector is equal to the number of objectives.
As a consequence, the value function, given an initial belief
Vb0 for the policy π of the MR-POMDP, is also a vector.
Thus, each single element in the value function vector repre-
sents the expected utility value associated with each separate
objective. As a result, it evaluates the effect of performing
an action on the satisfaction of that objective given a par-
ticular state. The values of the elements in the value vector,
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associated with each objective, create a relative ranking for
the objectives. Hence, these expected utility values represent
the priority of objectives for their satisfaction, while making
the decision. We use this built-in capability of MR-POMDPs
to compute expected utility value for each individual objec-
tive as a base for the autonomous tuning of the priorities at
runtime.

As R is a vector, each element in the α-vector is also
a vector as a result creating an α-matrix, A. Each row in
the α-matrix represents the values for the objectives in a
particular state. The multi-objective value of taking an action
a associatedwith alphamatrixA under a belief b is computed
as follows:

Vb = bA (6)

As the value function is represented as a vector in MR-
POMDP, there may be multiple policies. The value functions
of thesemultiple policies can be considered as optimal on the
basis of the different priorities associated with the objectives.
In order to select the best optimal policy from these multiple
policies, a scalarization function f(Vb,W) is used to scalar-
ize the value vectors Vb with respect to the weights W, and
computed by the agent, corresponding to the objectives [43]
and computed as follows:

f (Vb,W ) = W .Vb = wi Vbi + wi+1Vbi+1 . . . + wnVbn (7)

where wi and Vbi refer to the weight and value for the ith
objective given n number of total objectives. The size of the
weights vector W is also equal to the number of the objec-
tives. In this paper, the weights vector values are computed
using the Optimistic Linear Support (OLS) algorithm [44] at
runtime.

Hence, for a given belief b, α matrix for each action and
weight w, we can compute the policy πA that takes the max-
imal value using Eqs. 6 and 7 as:

V ∗
b (w) = max

A∈A bAW (8)

Hence, in MR-POMDP the reward vector is used to rep-
resent the priorities of objectives (NFRs in our case) by
indicating their desirability in terms of their satisfaction
given a particular state of the environment. The reward
vector has to be initialized with estimated values. These val-
ues are assigned by domain experts and should reflect the
experts’ knowledge and the information they have available
to them. The design-time assignment of priorities is a normal
requirements practice. However, it is difficult to get right and
particularly so if, as is often the case for SASs, the priori-
ties assigned to a set of requirements may not be appropriate
for all contexts the system encounters at run-time. Nor is

the deployment of expert knowledge always easy, as high-
lighted in [58] where consensus between experts proved hard
to achieve. To mitigate these difficulties, Pri-AwaRE permits
requirements’ priorities to be revised dynamically at run-
time in a principledway.Nevertheless, theNFRs’ satisfaction
may be compromised if the initial, estimated reward values
are poorly chosen. In our work, we have used simulations
[21,50] to derive good initial values for the rewards.

2.4 Optimistic Linear Support

The Optimistic Linear Support (OLS) algorithm is based on
Cheng’s Linear Support [11] approach for solving POMDPs.
OLSpresented asAlgorithm1 follows anouter loop approach
that creates an outer shell around aMR-POMDP solver (Per-
sues1) [57] to create a solution set known as the Convex
Coverage Set (CCS) X [43] to represent the collection of
value vectors Vπ (specifying the multi-objective values) and
their associated policies π such that after performing scalar-
ization a maximizing policy is in the set. In order to select
the policy having themaximizing valueV∗

X (w), linear scalar-
ization of the value vector is performed using the parameters
in the form of weights vector.2 OLS helps in finding these
weights intelligently at runtime. The OLS algorithm consid-
ering a two objective problem is presented in Fig 3.

The OLS algorithm starts by taking an empty set of X
denoting the CCS of value vectors as shown in line 1 of
Algorithm 1. The algorithm repeatedly executes steps 2 to
9 until no improved value vectors are found evaluated by
the Maximal Possible Improvement Δ [42,44]. In the first
two iterations of the while loop, the algorithm selects the
first two corner points as the extrema of the weights simplex,
i.e. wa = 0.0 and wb =1.0 as represented by the red vertical
lines in Fig. 3. Next, the value vectors, for example Va =
[8,1] and Vb =[2,7], for these corner points (wa and wb) are
computed using a MR-POMDP solver represented by the
blue lines in between these corner points. On the basis of
these value vectors, a new corner point (wc) is identified at
their intersection. Then, Maximal Possible Improvement Δ

[44] is computed for wc. If Δ is improving then for this new
corner weight wc, a new value vector Vc = [6,5] is calculated
by the calling the MR-POMDP solver as shown in Fig. 3.
More corner points are generated such as wd and we from
the intersecting points of the existing value vectors. Again
Maximal Possible Improvement Δ for each wd and we is
calculated. The corner weight (out of wd and we) having

1 Persues is a point-based planning technique for solving POMDPs.
2 Considering a two-objective problem, the value of one of the weights
can be computed as one minus the other weight due to the application
of linear scalarization as w1 = 1 − w2, where w1 and w2 refer to
the scalarization weights for the values associated with objective 1 and
objective 2, respectively.
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Fig. 2 MR-POMDP

Fig. 3 Optimistic Linear Support

high Δ is selected and MR-POMDP solver is called again to
compute the value vector for the selectedweight. The process
is repeated until none of the remaining corner weights yield
an improvement in the form of Δ.

The process returns a set X known as CCS of the value
vectors and their associated policies. As we have more than
one policy returned, we have to select the best policy on
the basis of scalarization function by taking weight values
generated as part of the OLS algorithm. The policy having
the maximum scalarized value V ∗

X (w) is then selected. The
flow chart representing the step by step execution of OLS
algorithm is shown in Fig. 4. More details on OLS and MR-
POMDP solver can be found at [48].

Algorithm 1: Optimistic Linear Support
Result: Convex Coverage Set X
X ← ∅;
while ¬(Δ.isMaximum()) do

Select w ; // Select Corner Point w
// Calculate Value Vector V and π

(V , π) ← MRPOMDPSolver(w);
CalculateΔ;
if Δ.isMaximum() then

X ← X ∪ V ;
end

end

TheOLSAR3 algorithm is an extension ofOLS algorithm.
It follows the same steps as OLS but it reuses the alpha
matrices from previous iterations to compute the approxi-
mate Convex Coverage Set (CCS) of value vectors.

2.5 MAPE-K architecture

The MAPE-K control loop is an architectural blueprint for
autonomic computing systems and was first introduced by
IBM as a vision about Autonomic Computing [25]. As SASs
represent a specialized form of autonomic systems, they also
employ the MAPE-K architecture loop. This architecture
consists of the managing system and the managed system.
The managed system corresponds to the application logic
while the managing system corresponds with the decision-
making agent, which makes use of the feedback loop with
the phases Monitor-Analyse-Plan-Execute that run over a
knowledge base. It is known as the MAPE-K loop for short.
During theMonitor phase, themanaging system collects data

3 More details on the OLSAR and point-based planning techniques are
provided in [48].
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Fig. 4 Step By step execution of OLS

from the managed system supported by sensors connected to
the managed system. In the Analyse phase, the managing
system analyses the monitored data to check if adaptation
actions are required. If an adaptation action is required, the
decision-making agent plans for the adaptive actions that will
be performed by the managing system. The goal is to achieve
operational goals exhibited by the managed system along
with satisfaction of NFRs during the Plan phase. Lastly, dur-
ing the Execute phase, the planned actions are carried out
through the actuators over the managed system. The knowl-
edge K of the MAPE-K loop represents the data required
by the managing system to execute all the loop. The runtime
model based on theMR-POMDP is embedded in theMAPE-
K architecture loop to underpin decision-making for SASs.

3 Pri-AwaRE: self-adaptive architecture

This section presents the Pri-AwaRE architecture to support
runtime decision-making for SASs. The proposed architec-
ture makes use of MR-POMDP, as a priority-aware runtime
model, as part of the phases of the MAPE-K loop.

Next, we present the Priority-Aware MR-POMDP++ and
its use as part of the proposed self-adaptive architecture to

support decision-making in SASs using an illustrative exam-
ple of the IoT network.

3.1 Illustrative example

In order to illustrate our proposed approach, we consider the
example of a self-adaptive Internet ofThings (IoT) [2,61] net-
work. As a concrete application, we consider the simulating
environment ofDELTA-IoT an exemplar SAS representing an
IoT network for a smart campus [21]. The simulator rep-
resents a multi-hop IoT network consisting of 15 motes,
includingRFID sensors, passive infrared sensors and temper-
ature sensors, distributed across the various buildings of KU
Leuven campus. These motes, based on LoRa (Long-Range)
radio communication, are deployed in each building to pro-
vide access to the laboratories, monitor the occupancy status
and sense the temperature. The motes communicate with
each other to fulfil the functional goal of relaying informa-
tion to the central gateway deployed at the central monitoring
facility of the campus. The IoT networks are required to sur-
vive for a long period of time on a single battery along with
maintaining communication reliability. Hence, themain goal
for an IoT network is to increase the lifetime of the net-
work by satisfying the NFRs of Minimization of Energy
Consumption (MEC) and Reduction of Packet Loss (RPL)
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Fig. 5 Mapping of MR-POMDP to priority-aware MR-POMDP++

under uncertain environmental contexts of communication
interference and dynamic traffic load. For the purpose of
satisfaction of NFRs under uncertain environmental condi-
tions, the network is required to tune network link settings
such as the communication range, transmission power and
distribution factor for links using different adaptation strate-
gies.

3.2 MR-POMDP++

In this section, we present MR-POMDP++, a priority-aware
runtimemodel, to represent the priorities and satisfaction lev-
els of NFRs to perform decision-making in a SAS as shown
in Fig. 5. Next, we present the rules for NFRs representation
in the form of MR-POMDPs to support runtime decision-
making in SASs.

(1) NFR satisfaction andMR-POMDP states

In order to achieve satisfaction of NFRs, a SAS is required to
take adaptation actions that canhavedifferent effects (goodor
bad) on their satisfaction. Therefore,NFRs cannot be labelled
as fully satisfied nor fully violated. Due to the lack of crisp-
ness in the nature of satisfaction of NFRs, the satisfaction
levels of NFRs cannot be represented as an absolute value
of True or False [19]. Therefore, the satisfaction levels can
be modelled in the form of probability distributions such as

P(NFR=True) and aNFR is considered as satisfied if itmeets
an acceptability threshold constraint defined by the design
experts [58]. For example, in IoT case, the satisfaction level
of RPL can be specified as P(RPL = True) = 0.9 or P(RPL =
True) = 0.4. The RPL can be considered as highly satisfied if
the P(RPL = True) > = 0.8 where 0.8 can be considered as
the required threshold constraint.

Such specification of satisfaction levels of NFRs can
be represented using the states of MR-POMDP. In MR-
POMDP++, we consider each state to represent the set of
combinations of satisfaction levels of NFRs. As states in
MR-POMDP are not directly observable, a belief (i.e. a prob-
ability) over each state is maintained. Hence, the satisfaction
levels of NFRs can be expressed in the form of marginalized
probability distributions P(NFRi = True) where NFRi

belongs to the set of NFRs [38].
On the basis of this description, we derive a mapping rule

as follows:

Rule: 1 The state s ∈ S in MR-POMDP++ represents the set
of combinations of satisfaction levels of the non-functional
requirements (NFR1 . . . NFRn). As the states in the MR-
POMDP++ are partially observable, the satisfaction levels
of the NFRs can be represented in the form of probability
distributions P(NFRi = True).

These probabilities can be used to conclude if the satis-
faction levels meet the acceptability thresholds.
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Table 1 States of the IoT network in terms of NFR

S NFR1 = MEC NFR2 = RPL

s1 True True

s2 True False

s3 False True

s4 False False

Using Rule 1, the total number of states in terms of the sat-
isfaction levels of NFRs inMR-POMDP++ can be computed
as: |S| = |2||NFR| where |S| corresponds to the size of set
S, |NFR| corresponds to the number of NFRs, and 2 corre-
sponds to True and False. For example, in an IoT network, if
we consider 2NFRsofMinimizationofEnergyConsumption
(MEC) and Reduction of Packet Loss (RPL), so the number
of states for MR-POMDP++ will become |S| = 22 = 4 as
shown in Table 1.

2) NFR priorities and rewards vectors

During the decision-making process in SASs, the adaptation
decisions should take into account the satisfaction priorities
of individual NFRs. Priorities of NFRs indicate their level
of importance for satisfaction. The higher the priority, the
more important it is to satisfy that NFR at a particular point
of time.

MR-POMDPs facilitate the modelling of these individual
NFR priorities using a reward vector. In MR-POMDPs, a
vector-valued reward function is used to associate a separate
reward value with each objective (a NFR in our case). The
reward values are generated as a feedback signal according
to the decisions (adaptation actions) taken byMR-POMDPs.
The reward value associated with a particular objective indi-
cates the effect, either positive or negative, of performing an
action on the satisfaction of that objective. Hence, the reward
vector values specify a relative ranking of the objectives
(NFRs) in terms of the cardinal effect that an actionwill have
on the satisfaction of that objective (NFR) under an uncer-
tain environmental condition. Consequently, a higher reward
value for an objective indicates its higher priority (impor-
tance level) which is taken into account when an adaptation
decision is taken by MR-POMDPs.

For example, in an IoT network, if the communication
interference at a particular point of time is high, the decision-
making agentmight select the adaptation action of increasing
transmission power (ITP) in order to support the NFR of RPL.
However, increasing the transmission power might have a
negative effect on the energy consumption. Therefore, given
the current environmental context of high link interference,
on the basis of the selected action of ITP, the system will
generate an immediate reward for the RPL (e.g. 75) that is
higher than the reward for theMEC (that could be, e.g.− 50).

The reward value for RPL is higher than the reward value
of MEC because it is more important to satisfy RPL at this
point of time according to theMR-POMDP, given the current
conditions.

Hence, the reward values represented in the form of a
reward vector show a relative ranking of the NFRs in terms
of the effect that the action will have on their satisfaction as
follows:

R(s,a) = [RRPL , RMEC ] = [75,−50]

The reward vector values are initially assigned by the require-
ments engineers or domain experts [58]. In MR-POMDP++,
we consider these reward values as the initial expert defined
priorities for NFRs.

Using these concepts, the priorities representation for
NFRs in MR-POMDP++ is explained by the following rule:

Rule: 2 The values in the reward vector R(s,a) over
the execution of an action a ∈ A given state s ∈ S in
MR-POMDP++ represent the priorities of non-functional
requirements (NFRs).

R(s,a) = [RNFR1, RNFR2, . . . RNFRm]

where RNFR1 represents the reward for NFR1 corresponding
to the priority value of NFR1 and so on.

(3) Expected utility values and autonomous tuning of priori-
ties

In SASs, the priorities of NFRs may vary according to
the changes in the environmental context. The ability to
autonomously adapt to the context is what MR-POMDP++
offers. For example, if energy conservation is themost highly
prioritized NFR, but at some point in time the batteries
become fully charged, then rewarding thatNFR’s satisfaction
may no longer be the optimal behaviour for the system. In
order to deal with such situations, MR-POMDP++ with help
of rewardvectors offers anopportunity forautonomously tun-
ing the individual NFRs’ priorities. This tuning of priorities
is done by the computation of the separate expected utility
value for each NFR, during the operation of MR-POMDPs
(using Eq. 3) as follows:

VNFRi = Eπ [Rit + γ Rit+1 + γ 2Rit+2 . . . |st ] (9)

where VNFRi and Ri represent the expected utility value and
reward values for NFRi. As presented in Eq. 9, the rewards,
representing the initial expert defined priorities, are used for
the computation of the distinct expected utility value for each
NFR at runtime.
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Hence, these expected utility values represent the newly
tuned priority values of the different NFRs. The expected
utility values consider the individual effect of performing
an action on the satisfaction of an individual NFR given an
uncertain environmental context, and are considered while
making the decisions at runtime. More details about the
autonomously tuned priorities are provided in Sect. 4.

Hence, MR-POMDP++ as a runtime specification model
(S) takes into account the new knowledge (K’) about
the priorities of the individual NFRs to perform runtime
decision-making for SASs for the purpose of conformance
to the Requirements (R).

Next, we present the proposed self-adaptive architec-
ture, Pri-AwaRE, that makes use of Priority-Aware MR-
POMDP++ to perform decision-making for SASs.

3.3 Architecture for decision-making in SASs

The proposed Pri-AwaRE architecture for SASs is inspired
by the feedback architecture of the reinforcement learn-
ing (RL) process based on the interactions between the
decision-making agent and the environment in which the
decision-making agent operates [31]. On the basis of the
observations monitored about the current state of the envi-
ronment, the decision-making agent performs an action in
order to achieve the desired goal. This process repeats con-
tinuously. Considering the above, we define an architecture
for the SASs consisting of two components corresponding
to the managed system (i.e. the environment in RL process)
and the managing system (i.e. the decision-making agent in
RL process), respectively, as shown in Fig. 6.

The Pri-AwaRE architecture structures themanaging sys-
tem (based on feedback loop) interacting with the managed
system using probe and effector interfaces [50] as shown
in Fig. 6. Our Pri-AwaRE approach focuses mainly on the
aspects of the managing system.

In the next subsection, we present the components of the
Pri-AwaRE architecture such as the managed and managing
system (the decision-making agent). We also present the use
of theMR-POMDP++ to support priority-awareness, by pro-
viding support to model and represent the satisfaction levels
and priorities for NFRs.

(1) Managed system

The managed system represents the actual environment for
which we want to implement self-adaptive capabilities. It is
instrumented using probe and effector components that are
used to send information to and from the managing system.

For example, an IoT network operating according to its pre-
defined settings can be considered as a managed system. To
add self-adaptive capabilities, we have to attach some exter-
nal managing system that can interact with the network using
some probing and effector interfaces [21,50].More details on
the interaction of the managing andmanaged system are pro-
vided in [50]. For our study, we have selected the remote data
mirroring (RDM) and IoT network environments represented
by the RDMSim [50] and Delta-IoT [21], respectively, to act
as the managed system.

(2) Managing system

The managing system consists of the following components:

(a) Monitoring component Monitoring components of the
managing systems use sensors of the managed system in
order to get data regarding the monitorable values (e.g. com-
munication interference and traffic load on the links in an
IoT network). The monitored values are sent as an input to
the MR-POMDP++ model in the form of observations.

(b) Analysis and planning components The analysis and
planning components of the managing system make use of
the steps of the MR-POMDP++ process as shown in Fig.
6. The MR-POMDP++ model takes observations from the
monitoring component and the current belief over the states
(maintained by MR-POMDP++) from its runtime Knowl-
edge as an input. The MR-POMDP++ model analyses these
values to perform planning for the adaptation actions for
the fulfilment of target operational goals and satisfaction of
NFRs, such as Minimization of Energy Consumption and
improvement in packet delivery performance in case of the
IoT network.

(c) Execution component The execution component takes
the prompted action by MR-POMDP++ as an input and per-
forms that action on the managed system using effectors or
actuators of the managed system, to therefore meet the oper-
ational functional goals and satisfy NFRs to comply to the
requirements (R).

d) Knowledge component: The knowledge component
is based on the runtime knowledge maintained by MR-
POMDP++ that is taken into account during the decision-
making process.

The process is performed continuously during the SAS’s
execution.

Next, we present the application of Pri-AwaRE, our
Priority-Aware self-adaptive architecture, to the example
application of DELTA-IoT network.
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Fig. 6 Pri-AwaRE architecture

3.4 Pri-AwaRE architecture for decision-making in
the IoT network

The Pri-AwaRE architecture for the case of IoT networks
consists of the following two components:

(1)The managed system represents an IoT network. As a
concrete example, we consider an IoT network for smart
campus represented by the DELTA-IoT simulator [21].

(2) The managing system based on the constructs of
MAPE-K loop andMR-POMDP++ consists of the following
components:

(a) Monitoring component

At a given timestep, data from the motes is gathered by the
monitoring component using the probe component (i.e.
sensor) of the DELTA-IoT simulator. The probe collects
information about the link interference in the form of Signal
to Noise Ratio (SNR). The monitored SNR value is forwarded
to the Analysis and Planning components.

(b) Analysis and planning components

To support priority-awareness, the steps ofMR-POMDP++
process are used to support analysis andplanning. Themoni-

tored SNR value is sent as an input, in the form of observation,
to theMR-POMDP++. Then, theMR-POMDP++ analyses the
observed SNR value and the current belief over the state
maintained by the runtime model of the MR-POMDP++
(i.e. the Knowledge K) and plans for the selection of the
next suitable adaptation strategy in the form of an action to
be performed by the system. The knowledge component of
MAPE-K loop comprises of the runtime knowledge main-
tained by MR-POMDP++.

The components of theMR-POMDP++ for the considered
DELTA-IoT network are explained next.

States: According to Rule 1, for the two NFRs (MEC and
RPL), four states are identified and are shown in Table 1.

Actions: represent the adaptation strategies to maintain
the satisfaction of the NFRs RPL and MEC. These actions
are Increase Transmission Power (ITP) and Decrease Trans-
mission Power (DTP). ITP supports RPL by increasing the
communication range [27,28] of the motes along with the
adjustment of the distribution factor on the links. As the
value of the communication range is directly proportional
to the transmission power, increasing the communication
range leads to improved packet delivery performance at the
cost of high energy consumption [21]. The action DTP sup-
ports MEC by decreasing the communication range along
with adjusting the distribution factor of the links. Decrease
in the communication range leads to decrease in transmis-
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sion power and, as a result, leads to lower level of energy
consumption.

Rewards: There is a vector-valued reward function to
represent the priorities of NFRs from the perspective of the
experts. Therefore, the reward vector has a size of 2 rep-
resented as R(s,a) = [RMEC , RRPL ]. RMEC represents the
priority value for MEC and RRPL represents the priority val-
ues forRPL at runtime. The reward vector values (provided by
the experts) for NFRs in the DELTA-IoT network are shown
in Table 2

Transition Function: According to Rule 1, the states are
represented as a combination of NFRs in MR-POMDP++.
The transition probabilities T(s,a,s’) are factored as marginal
conditional probabilities of NFRs P(MEC′ | MEC, a) and
P(RPL′ | RPL, a) using the property of conditional indepen-
dence and Bayes rule [38] as follows:

T (s, a, s′) = P(s′|s, a) = P(MEC ′ | MEC, a)

P(RPL ′ | RPL, a)

The transition probabilities for going from one state to
another as a result of action for the IoT case are shown in
Table 3. These transition probabilities are provided by the
experts.

Observations As the states of NFRs are not directly
observable, we use monitorables to obtain observations
required for monitoring the NFRs’ satisfaction levels based
on the information obtained from the environment. In case
of the IoT network, we consider the monitorable SNR to
observe link interference [21]. Depending on the possible
set of values of SNR, i.e. being less than, greater than or
equal to zero, we have three types of observations. The higher
the value of SNR, the stronger will be the signal strength
of the link Therefore, it indicates less interference and vice
versa.

Considering the given set-up, the MR-POMDP++ serves
as a priority-aware model to analyse the given observations
and plan for the next suitable action.

(c) Execution component

The execution component executes the selected action on
the managed system by using the effector component of the
DELTA-IoT simulator.

4 Experimental evaluations

We have conducted experiments using two different exam-
ple applications from the networking domain as a proof of
generalization of application of our Pri-AwaRE approach.
The example applications are selected on the basis of the
type of decisions, i.e.Global or Local considering a network

environment that is composed of nodes. Global decisions
have an effect on the entire network configuration, whereas
local decisions affect the link configurations associated with
a particular node.

The first example application that is presented is based
on the decision-making in a self-adaptive IoT network. In the
IoT network, local decisions are taken for each sensor based
on local contextual information retrieved from the links asso-
ciated with them. On the other hand, our second example
application is related to a self-adaptive remote data mirror-
ing (RDM) network. In the RDM system, global decisions
for topology change are taken based on the analysis of the
global contextual information (such as total number of active
network links) to satisfy the NFRs. We have also compared
our Pri-AwaRE approach with the existing single-objective
approaches of RE-STORM [38] (implemented using the
DESPOT and Perseus solvers) and RE-STORM-ARROW
[39]. The experimentswere performedon aLenovoThinkpad
with intel Core i7, 8th Gen processor and 16 GB RAM. A
complete account of the results associated with the RDM
case study is reported in [48].

4.1 MR-POMDP solver

As solving a MR-POMDP is a computationally intractable
problem,we have usedOptimistic Linear SupportwithAlpha
Re-use (OLSAR) algorithm based on a point-based MR-
POMDP solver, to generate approximate solutions by per-
forming approximate backups while computing α−vectors
only for a set of sampled belief values. Hence, it has
proven to scale well during the experiments performed. The
reuse of the alpha matrix in the algorithm also makes it
efficient.

4.2 Experimental hypotheses

In this section, we define our hypotheses for the experiments.
Let us revisit the concept of priority-awareness as defined in
Definition 1.

Based on the above concept of priority-awareness, the null
H0 and alternative H a hypotheses are described as follows:

H0: Pri-AwaRE does not improve decision-making under
uncertainty in comparisonwith single-objective optimization
techniques, which do not offer priority-awareness.

Ha: Pri-AwaRE improves decision-making under uncer-
tainty in comparison with single-objective optimization tech-
niques, which do not offer priority-awareness.

Next,we provide a description of the example applications
and experimental evaluations to test the hypotheses using
these example applications.
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Table 2 Reward values for the
NFRs in the DELTA-IoT
network

S Action (A) Reward Vector Values

RNFR1 = RMEC RNFR2 = RRPL

s1 DTP 89 80

s2 DTP 75.1 20

s3 DTP 75 30

s4 DTP 10 5

s1 ITP 80 89.67

s2 ITP 40 75

s3 ITP 30 70

s4 ITP 5 10

Table 3 Transition probabilities for NFRs

NFR1 = Minimization of Energy Consumption(MEC)

Action (A) MECt RPLt P(MECt+1 = True) P(MECt+1 = False)

DTP True True 0.89 0.11

DTP True False 0.92 0.08

DTP False True 0.84 0.16

DTP False False 0.87 0.13

ITP True True 0.85 0.15

ITP True False 0.88 0.12

ITP False True 0.73 0.27

ITP False False 0.76 0.24

NFR2 = Reduce packet loss (RPL)

Action (A) MECt RPLt P(RPLt+1 = True) P(RPLt+1 = False)

DTP True True 0.92 0.08

DTP True False 0.89 0.11

DTP False True 0.96 0.04

DTP False False 0.91 0.01

ITP True True 0.98 0.02

ITP True False 0.96 0.04

ITP False True 0.99 0.01

ITP False False 0.97 0.03

4.3 Example application 1: Local decision-making
for IoT network

As our first example application, we have used the simulat-
ing environment of DELTA-IoT; an exemplar self-adaptive
system representing an IoT network for a smart campus [21].
Next, we present the initial set-up for the experiments using
the DELTA-IoT exemplar.

4.3.1 Initial set-up

In the DELTA-IoT network, each timestep corresponds
to a 15 min of network activity [21]. For the current set of

experiments, at each timestep,weexecute theMR-POMDP++
model for eachmote (havingmote ids from 2 to 15) individu-
ally to make the local decisions of performing the action ITP
or DTP according to their monitored link interference values.
For experiments with DELTA-IoT network, we focus on the
NFRs ofMEC and RPLwhich are representation of the NFRs
concerned with the quality and performance [19] of the net-
work. For the initialization of theMR-POMDP++model, the
states, rewards vector values and transition function probabil-
ities are presented in Tables 1, 2 and 3, respectively. Further,
to evaluate the approach, we have compared the results in
terms of the real values from the DELTA-IoT simulator for
the satisfaction of 2 NFRs MEC and RPL.
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4.3.2 Requirements specification

Defined by the experts [21], following set of Requirements
(R) regarding the satisfaction levels of NFRs for DELTA-IoT
network are considered:

R1: Total energy consumption in the network should be
less than or equal to 20 coulombs, i.e. SATMEC <= 20

R2: Total packet loss in the network should be less than
or equal to 20%, i.e. SAT RPL <= 0.20

4.3.3 Experiments

The experiments have been performed to demonstrate the
following two cases for evaluation of the hypotheses:

Case 1: Priority-aware decisions and autonomous tuning of
NFRs’ priorities

We have executed the MR-POMDP++ model for each mote
individually in the network (having mote ids from 2 to 15) at
each timestep. The model monitors the link interference on
the outgoing links for a particularmote and takes the decision
of increasing or decreasing the transmission power on the
links by increasing or decreasing the communication range.
So the model takes a local decision related to each mote at
a particular timestep in order to configure its corresponding
links as shown in Table 4. For example, first at timestep t1,
all the links for mote 2 are configured as a result of the action
of DTP. As a consequence, the satisfaction level for MEC
becomes 33.961559 and a satisfaction level for RPL becomes
0.041667, respectively. The model is then executed for mote
3, mote 4 and so on.

The initial NFRs’ priorities represented in the form of
rewards are taken into accountwhile taking the adaptive deci-
sions of action selection. Let us study how the priorities of
NFRs represented in the form of rewards have an impact on
the decision of action selection for the purpose of link con-
figurations for a particular mote in DELTA-IoT network as
shown in Table 4. Considering the case of timestep t1, the
expected utility values for NFRs are considered during the
decision-making process at runtime. For example, for mote
2 the expected utility value for MEC has a higher value of
764.171898 than that for RPL having a value of 605.188297.
As the expected utility value supports theMEC, so the action
selected for mote 2 is DTP that supports MEC. In contrast,
for the configuration of the links of mote 7, the action of
ITP is selected on the basis of the higher expected utility
value of 788.205554 for RPL than the expected utility value of
650.420788 forMEC. This decision of ITP increases the sat-
isfaction level of RPL from 0.083333 to 0.0% representing no
packet loss as shown inTable 4. Hence, it shows that expected
utility values that represent the autonomously tuned NFRs’

priorities has an impact on the decision of action selection
leading to better-informed priority-aware decision-making.
Given the above, it provides evidence that Pri-AwaRE sup-
ports priority-aware decision-making.

As a result of all the tuning configurations done for all
the motes at the end of timestep t1, the satisfaction of MEC
and RPL becomes 33.083955 and 0.009091, respectively.
The same procedure is repeated at each timestep leading to
achieve higher levels of satisfaction for both MEC and RPL
as shown in Fig. 7. Hence, our approach shows promising
results in terms of satisfying both MEC and RPL.

Case 2: Impact of priority-aware decisions on satisfaction lev-
els of NFRs

We have also studied the impact that the Pri-AwaRE
approach, performing priority-aware decisions, has on the
satisfaction levels of NFRs of the DELTA-IoT network as
compared to the network performing without any adaptive
approach. Furthermore, we also compare our results with
the approach ofRE-STORM[38] implemented usingPerseus
[57], a single-objective POMDP solver.

During the execution of the simulator, without adapta-
tion, for the DELTA-IoT network the simulator focuses on
the satisfaction of RPL, at the cost of high value of energy
consumption, by keeping the overall packet loss less than the
specified threshold of 20%as shown in Fig. 7. In this case, the
satisfaction forMEC ranges between 25.0 and 44.0 coulombs
which is quite higher than the satisfaction threshold. On the
other hand, by applying the adaptation mechanism offered
by our Pri-AwaRE approach, DELTA-IoT network showed
an improvement in terms of compliance to the requirements
of SATMEC <= 20.0 and SATRPL <= 0.20.

Moreover, our approach also shows better satisfaction
levels of NFRs of MEC and RPL in comparison with the net-
work working under the adaptive decision-making offered
by RE-STORM. Let us observe Fig. 7, Pri-AwaRE shows
promising results in terms of satisfaction RPL as compared to
RE-STORM. RE-STORM shows higher levels of packet
loss than Pri-AwaRE by having a packet loss above the
satisfaction threshold of 0.20% more frequently as shown
in Fig. 7. On the other hand, Pri-AwaRE shows compa-
rable results to RE-STORM in terms of satisfaction of
MEC. In case of Pri-AwaRE, the satisfaction level of MEC
remains below or closer to the satisfaction threshold at
almost all of the timesteps. The satisfaction of MEC starts
with quite high value of 33.083955 coulombs at the first
timestep. But later on, it shows an improvement in the satis-
faction ofMEC by achieving a satisfaction level of 17.226979
coulombs at second timestep and thereby complying to the
requirements specification of SATMEC <= 20 as shown in
Fig. 7.
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Fig. 7 Satisfaction of NFRs
over time without adaptation, by
applying Pri-AwaRE (using
OLSAR) and RE-STORM
(using Perseus)

Fig. 8 Average satisfaction of
NFRs
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Table 4 Experiment Results for timestep 1

Mote Id Action ValMEC ValRPL SatMEC SatRPL

2 DTP 764.171898 605.188297 33.961559 0.041667

3 ITP 650.060976 788.044468 38.485869 0.008333

4 DTP 788.335155 642.632839 36.958176 0.015385

5 ITP 650.420667 788.205516 37.720203 0.030769

6 DTP 788.338781 642.644331 29.817813 0.141667

7 ITP 650.420788 788.205554 31.967988 0.083333

8 DTP 788.338787 642.644351 33.204893 0.0

9 ITP 650.420789 788.205554 37.024339 0.030769

10 DTP 788.338787 642.644352 30.900698 0.01

11 ITP 650.420789 788.2055545 36.969265 0.146154

12 DTP 788.338787 642.644351 32.772624 0.058333

13 ITP 650.420789 788.205554 37.853066 0.046154

14 DTP 788.338787 642.644351 43.682137 0.014286

15 ITP 650.420789 788.205554 33.083955 0.009091

ValNFR represents the expected utility value of NFRi i.e. ValMEC and ValRPL
SatNFR represents satisfaction level of NFRi i.e. SatMEC and SatRPL

Table 5 Confidence intervals for average satisfaction levels of NFRs

Environmental context NFR SatAVG Confidence interval Standard error

Link interference MEC 17.860959 17.6989–18.0229 0.0826

RPL 0.141865 0.1381–0.1457 0.0019

SatAVG represents the average satisfaction level of NFR

Summary of findings in experiments

In summary, our Pri-AwaRE approach shows compliance
with the requirements specifications as evident from the aver-
age satisfaction levels ofMEC andRPL presented in Fig. 8.We
have performed a confidence interval test to test our hypothe-
ses. The reported results show a confidence level of 95% that
the average satisfaction level of MEC lies between the confi-
dence interval of 17.6989 and 18.0229 with a standard error
of 0.0826. Similarly for average satisfaction level of RPL, the
confidence interval lies between 0.1381 and 0.1457 showing
a confidence level of 95% with a standard error of 0.0019 as
shown in Table 5. As a consequence, it verifies the confor-
mance to the requirements specification of SATMEC <= 20
and SATRPL <= 0.20. We can conclude that our priority-
aware approach offers statistically sound results in terms of
meeting the satisfaction levels of NFRs. Hence, this evidence
rejects our hypothesis H0 and satisfies our hypothesis Ha .

Discussion

From the results, it can be deduced that Pri-AwaRE shows
a significant improvement in the satisfaction of NFRs as
compared to both the network operating without an adaptive

mechanism and the network having the decision-making sup-
port of RE-STORMapproach. The usage ofMR-POMDP++
helps inmaintaining compliance against the requirements (R)
for the DELTA-IoT network. The average satisfaction levels
for the NFRs MEC and RPL, generated by Pri-AwaRE, are
17.860959 and 0.141865, respectively, as shown in Fig. 8.
Hence, theDELTA-IoTnetwork is conforming to the require-
ments specification of SATMEC <= 20 and SATRPL <=
0.20. Hence, our approach shows comparable and sometimes
even better satisfaction levels for NFRs than RE-STORM,
which is representative of a single-objective approaches.

To further evaluate our results for the DELTA-IoT net-
work, we have computed the extent of satisfaction (ExS) of
the NFRs using the quantification tool of DeSiRE [14] as
shown in Fig. 9. According to the DESiRE tool, the value of
zero is considered as a satisfaction boundary between posi-
tive and negative degree of satisfaction represented by ExS
values. In case of Pri-AwaRE, theExS value forMEC remains
positive at almost all of the timesteps representing positive
degrees of satisfaction for MEC. With an exception of a few
timesteps, the ExS goes below zero. Yet, this drop in the ExS
is veryminor and is quite close to the satisfaction boundary of
zero. Moreover, Pri-AwaRE also shows promising results in
terms of satisfaction of RPL by having ExS value above zero,
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Fig. 9 Extent of satisfaction (ExS) of NFRs over time by applying Pri-AwaRE (using OLSAR)

which show positive degree of satisfaction for RPL. However,
the ExS value for RPL goes below the zero value, indicating
its negative degree of satisfaction. However, this deviation
goes below to a maximum value ranging between -1.5 to -
2.0 which is not that far from the satisfaction boundary of
ExS. The analysis of ExS values creates an opportunity for
RELAXation of a particular NFR [60] to temporarily benefit
the satisfaction of others. For example, ifMEC has a high ExS
value at a particular timestep and RPL is slightly violated hav-
ing a negative value for ExS that is closer to zero. Therefore,
in such a situation, MEC can be RELAXed at that timestep
to achieve better satisfaction level for RPL. This autonomous
RELAXation of priorities made by the system is part of our
future work.

Nevertheless, with no autonomous RELAXation at hand,
and considering the analysis of the effects of the autonomous
priority tuning on the decisions provided above, the Pri-
AwaRE approach (based on MR-POMDP++) creates oppor-
tunities for the experts to consider the refinement of the
initially defined priorities. The refinement would be done
by taking into account the new autonomously tuned pri-
orities provided by Pri-AwaRE to, therefore, improve the
current specification of the requirements. This would take
into account the newly found environmental contexts with
the new corresponding sets of priorities, which were pro-
vided by the MR-POMDP++ model. This consideration can
lead to a better assignment of initial expert defined priorities
and thereby offer a significant improvement in the decision-
making process of SASs in terms of satisfaction of NFRs.
We are currently working in such specific cases.

4.4 Example application 2: global decision-making
for RDM network

The RDM system [22] is a disaster recovery system for tol-
erating failures by maintaining multiple replicas (i.e. copies)
of data at remotely located mirrors (i.e. servers). Access to
the data can continue even if one of the copies of data is lost.
Each network link in the network has an associated opera-
tional cost4 and a measurable throughput, latency and loss
rate used to determine the reliability, performance and cost of
the RDM system. The goal here is to achieve the satisfaction
of the NFRs of Minimization of Costs (MC), Maximization
of Performance (MP)5 andMaximization of Reliability (MR)
under uncertain environmental contexts of link failures and
varying ranges of bandwidth consumption [22]. Hence,
the network is required to continuously take global adaptive
decisions of switching between the topologies of Minimum
Spanning Tree (MST) and Redundant Topology (RT) to
maintain better levels of satisfaction of NFRs. Both the topo-
logical configurations have a different impact on the levels of
satisfaction of NFRs. RT provides a higher level of reliability
than MST topology but it has a negative impact on the satis-
faction of theMC andMP as the cost of maintaining non-stop
RT topology will be high and the performance can be reduced
because of data redundancy. On the other hand, MST topol-
ogy provides better levels of satisfaction for MC and MP by
maintaining a minimum spanning tree for the network.

4 In RDM system, operational cost is measured in terms of inter-site
network traffic.
5 In the case of RDM network, we are measuring performance in terms
of total time to write the data, i.e. the sum of the time to write each copy
of data on each remote site.
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Table 6 States of priority-aware
MR-POMDP++ for RDM
network

S NFR1=MC NFR2 = MR NFR2 = MP

s1 True True True

s2 True True False

s3 True False True

s4 True False False

s5 False True True

s6 False True False

s7 False False True

s8 False False False

Table 7 Reward values for the
NFRs in the RDM network

S Action (A) Reward vector values

RNFR1 = RMC RNFR2 = RMR RNFR3 = RMP

s1 MST 39.17 39.0 40.0

s2 MST 41.0 40.0 39.0

s3 MST 39.0 38.0 38.5

s4 MST 17.0 16.0 15.0

s5 MST 44.0 43.0 43.5

s6 MST 29.0 28.0 27.0

s7 MST 14.0 13.0 13.5

s8 MST 2.0 1.0 1.0

s1 RT 41.0 43.0 41.0

s2 RT 32.0 33.0 31.0

s3 RT 28.0 29.0 27.0

s4 RT 26.0 27.0 25.0

s5 RT 28.0 29.0 27.0

s6 RT 16.0 17.0 15.0

s7 RT 23.0 24.0 22.0

s8 RT 11.0 12.0 10.0

4.4.1 Initial set-up

For experimental purposes, we consider the RDM network
[50] that is based on the operational model presented in
[22,24]. The RDM network under consideration consists of
25 RDM Mirrors with a total number of 300 physical links
used to transfer data between the mirrors [50]. Considering
this set-up of the network, the maximum number of con-
current active network links is 120 that does not affect the
assigned budget for the network [17]. For the current set of
experiments, we focus on the NFRs related to the quality and
performance attributes [19] of the RDMnetwork such asMC,
MR and MP.

Next, we discuss the initial set-up of the components pf
MR-POMDP++ model for the considered RDM network.

Components of MR-POMDP++ for RDMnetwork

The components ofMR-POMDP++model for the considered
RDM network are explained as follows:

StatesWe represent states as combinations of satisfaction
levels of NFRs. Therefore, for the three NFRs (MC, MR and
MP), eight states are identified and are shown in Table 6.

ActionsActions represent the adaptation strategies to sup-
port the satisfaction of the NFRs MC, MR and MP. For the
case of RDM network, we consider two adaptive actions in
the form of the two topological configurations of Minimum
Spanning Tree (MST) and Redundant Topology (RT).

Rewards As we are dealing with 3 NFRs of MC, MR and
MP for the RDM network, the reward vector has a size of 3
represented as:

R(s,a) = [RMC , RMR, RMP ].
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Table 8 Transition probabilities for NFR MC

NFR1 = Minimization of Cost (MC)

Action (A) MCt MRt MPt P(MCt+1 = T ) P(MCt+1 = F)

MST True True True 0.9 0.1

MST True True False 0.88 0.12

MST True False True 0.92 0.08

MST True False False 0.9 0.1

MST False True True 0.85 0.15

MST False True False 0.83 0.17

MST False False True 0.87 0.13

MST False False False 0.85 0.15

RT True True True 0.86 0.14

RT True True False 0.84 0.16

RT True False True 0.88 0.12

RT True False False 0.86 0.14

RT False True True 0.73 0.27

RT False True False 0.71 0.29

RT False False True 0.75 0.25

RT False False False 0.73 0.27

Table 9 Transition probabilities for NFR MR

NFR2 = Maximization of Reliability (MR)

Action (A) MCt MRt MPt P(MRt+1 = T ) P(MRt+1 = F)

MST True True True 0.91 0.09

MST True True False 0.93 0.07

MST True False True 0.89 0.11

MST True False False 0.91 0.09

MST False True True 0.93 0.07

MST False True False 0.95 0.05

MST False False True 0.91 0.09

MST False False False 0.93 0.07

RT True True True 0.95 0.05

RT True True False 0.97 0.03

RT True False True 0.93 0.07

RT True False False 0.95 0.05

RT False True True 0.97 0.03

RT False True False 0.99 0.01

RT False False True 0.95 0.05

RT False False False 0.97 0.03

where RMC , RMR and RMP represent the priority values for
MC,MR andMP, respectively. The reward vector values (pro-
vided by the domain experts) for NFRs in the RDM network
are shown in Table 7.

Transition Function According to Rule 1, the states are
represented as a combination of NFRs in MR-POMDP++.
Considering Rule 1 and using the property of conditional
independence and Bayes rule [38], we factor the transition

probabilities T(s,a,s’) as marginal conditional probabilities of
NFRs P(MC′ | MC, a), P(MR′ | RPL, a) and P(MP′ | MP, a)
[38] as follows:

T (s, a, s′) = P(s′|s, a)

= P(MC ′ | MC, a)

P(MR′ | MR, a)P(MP ′ | MP, a)
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Table 10 Transition probabilities for NFR MP

NFR1 = Maximization of Performance (MP)

Action(A) MCt MRt MPt P(MPt+1 = T ) P(MPt+1 = F)

MST True True True 0.9 0.1

MST True True False 0.85 0.15

MST True False True 0.92 0.08

MST True False False 0.87 0.13

MST False True True 0.88 0.12

MST False True False 0.83 0.17

MST False False True 0.9 0.1

MST False False False 0.85 0.15

RT True True True 0.82 0.18

RT True True False 0.75 0.25

RT True False True 0.84 0.16

RT True False False 0.77 0.23

RT False True True 0.8 0.2

RT False True False 0.73 0.27

RT False False True 0.82 0.18

RT False False False 0.75 0.25

The transition probabilities for the RDM network are
shown in the Tables 8, 9 and 10. These transition probabilities
are provided by the domain experts [38].

Observations In the RDM system, three monitorable vari-
ables Ranges of Bandwidth Consumption (RBC), Active
Network Links (ANL) and Total Time for Writing (TTW)
related to the NFRsMC,MR andMP, respectively, are speci-
fied. Higher the value for the ANL, higher will be satisfaction
of MR. In contrast, lower values of RBC and TTW lead to
higher levels of satisfaction forMC andMP. In the RDMSys-
tem, all of thesemonitorable variables have range boundaries
that are defined by the domain experts as shown in Table 11.

Like the transition model, we also factor the observation
model into the product of conditional probabilities [38] as
follows:

O(s′, a, z) = P(z|s′, a) = P(Mon1, ..Monn |s′, a)

Hence,

P(z|s′, a) = P(RBC, ANL, T TW |s′, a)

= P(RBC |s′, a)P(ANL|s′, a)P(T TW |s′, a)

The conditional probabilities for the observation model
are shown in Table 11.

4.4.2 Requirements specification

The initial set-up of the experiments also considers the
Requirements (R) for theRDMnetwork that reflect theNFRs’

satisfaction levels required. These requirements are defined
by the domain experts based on [17,22]. These requirements
indicate the satisfaction thresholds representing the suitable
zone of satisfaction of NFRs. For the experiments, we con-
sider the following set of requirements:

R1:The probability of satisfaction ofMinimization ofCost
shall be greater than or equal to 0.70, i.e.
P(MC=True)>=0.70.

R2: The probability of satisfaction of Maximization of
Reliability shall be greater than or equal to 0.85, i.e.
P(MR=True)>=0.85.

R3: The probability of satisfaction of Maximization of
Performance shall be greater than or equal to 0.75, i.e.
P(MP=True)>=0.75.

The NFRs are considered in their poor zone of satisfaction
if they have satisfaction levels below these thresholds.

4.4.3 Experimental scenarios

We have designed the experiments to study the unantici-
pated impacts of actions on theNFRs’ satisfaction levels. The
unmatching NFRs’ priorities due to uncertain environmen-
tal contexts may require the MR-POMDP++ to tune these
priorities. The idea is to study how priority-aware decision-
makingoffered byMR-POMDP++helps to support informed
choices of priorities concerning individual NFRs.

To study the impact of actions on the satisfaction levels of
the NFRs MC, MR and MP, we simulate dynamic situations
by introducing random changes in the environment of the
RDM network. These random changes are used to simulate
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Table 11 Observation probabilities for RDM network

Mon1 = Ranges of Bandwidth Consumption(RBC)

Action (A) MECt P(RBCt+1 < x) P(MCt+1in[x, y]) P(MCt+1 >= y)

MST True 0.8 0.15 0.05

MST False 0.72 0.18 0.1

RT True 0.78 0.16 0.06

RT False 0.68 0.2 0.12

Mon2 = Active Network Links (ANLs)

Action (A) MRt P(ANLst+1 < r) P(ANLst+1in[r , s]) P(ANLst+1 >= s)

MST True 0.06 0.16 0.78

MST False 0.12 0.2 0.68

RT True 0.05 0.15 0.8

RT False 0.1 0.18 0.72

Mon3 = Time to Write(TTW)

Action (A) MRt P(TTWt+1 < f ) P(TTWt+1in[ f , g]) P(TTWt+1 >= g)

MST True 0.83 0.13 0.04

MST False 0.67 0.23 0.1

RT True 0.8 0.15 0.05

RT False 0.63 0.25 0.12

failures in the network links during execution of the self-
adaptive RDM network. Such network link failures may be
due to problems in devices such as switches or routers. For
this purpose, deviations from the initially defined transition
probabilities (i.e. P(NFRt+1 = True|NFRt , At )) for the
topologies (MST and RT) are introduced randomly at runtime.

We consider the following detrimental contexts for the
purpose of evaluation of our results:

Detrimental Context 1 (DC1): The deviation levels are
introduced to simulate unanticipated packet loss during the
execution of the RDM network. This increase in the packet
loss during the topological configuration of RT would lead to
an unusual rate of data forwarding resulting in an increase in
bandwidth consumption and a decrease in the performance.
As a consequence, a decrease in the satisfaction levels of
MC i.e. P(MC = True) and MP i.e. P(MP = True) would be
expected.

Detrimental Context 2 (DC2): The deviation levels are
introduced in the RDM network during the execution of MST
topology to simulate an unexpected data packet loss resulting
in decrease in the reliability of the network. Data packet
loss may represent network link failures in the RDM system,
which may be caused due to problems with the equipment.
As a result, the satisfaction level of MR, i.e. P(MR = True)
would be expected to be reduced.

In order to simulate small realistic changes, we have
introduced a maximum deviation of 12% from the cur-
rent transition probabilities for a randomly selected duration

between 5 and 15 timesteps for a specific deviation level.
Considering the above detrimental contexts, next we present
the two cases for experiments:

Similar to the IoT example application, we evaluate the
Hypotheses using the following experimental cases:

Case 1: Priority-aware decisions and autonomous tuning
of NFRs’ priorities

Here,wedemonstrate priority-awaredecision-makingoffered
by our Pri-AwaRE approach and how it supports com-
pliance with the requirements specification. To perform
priority-aware decision-making, our proposed approach uses
MR-POMDP++ to represent distinct priorities ofNFRs in the
form of rewards. We study how the priorities of NFRs have
an impact on the action selection for the satisfaction of NFRs
as shown in Table 12. For example, using the initial set-up, at
timestep45,MR-POMDP++provides thebest possible trade-
off by selecting theMST as a preferred topology over RT. The
reason behind this decision is that the expected utility values
for MP and MC are 395.32709 and 392.13139, respectively,
which are higher than the expected utility value forMRwhich
is 388.21367 as shown in Table 12. This shows that the appli-
cation of MST topology on the network has a more positive
impact on the satisfaction ofMP andMC than onMR. In com-
parison with MST, at timestep 45, the expected utility values
in case of RT topology were 386.71867 for MC, 392.08584
forMR and 386.20288 forMP. Due to higher impacts offered
by MST, the system selects MST as the preferred topology,
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Table 12 Experiment results for timesteps 45–51

Time Action ValMC ValMR ValMP SatMC SatMR SatMP

45 MST 392.13139 388.21367 395.32709 0.90299 0.92395 0.91017

46 MST 391.98060 388.04530 395.15471 0.90445 0.89257 0.91361

47 MST 391.97769 388.04279 395.15358 0.9052 0.89170 0.91431

48 MST 391.71502 387.74353 394.83453 0.90532 0.83722 0.91445

49 RT 386.76743 392.13918 386.25769 0.90618 0.92089 0.91524

50 MST 392.30172 388.33157 395.31275 0.86462 0.95651 0.84732

51 MST 392.13863 388.21970 395.33160 0.90089 0.92493 0.90972

ValNFR represents the expected utility value of NFRi i.e. ValMC , ValMR and ValMP
SatNFR represents satisfaction level of NFRi i.e. SatMC , SatMR and SatMP

to support the reduction of inter-site network links cost and
improve the performance of the network. According to this
decision,MST topology is set for the network. Hence, to offer
priority-awareness, the decisions offered byMR-POMDP++
make the system aware of the explicit impacts of the deci-
sions on the satisfaction of NFRs as presented in Table 12.

On the other hand, at timestep 49, the system decides to
switch the topology from MST to RT. The reason behind it
is that the expected utility value of MR being 392.13918 is
higher than the expected utility values of MC and MP, i.e.
386.76743 and 386.25769, respectively, as shown in Table
12. As a consequence, the adaptation to RT topology shows
an improvement in the satisfaction ofMR fromP(MR=True)
= 0.83722 to P(MR = True) = 0.92089 by meeting com-
pliance to the required satisfaction threshold, i.e. P(MR =
True)>=0.85. Hence, the decision-making offered by MR-
POMDP++ takes into account these expected utility values
representing the new values for the tuned priorities of the
NFRs. This is one of the contributions of our Pri-AwaRE
approach, unlike other approaches, to offer SASs with a
priority-aware decision-making process.

During the set-up of experiments, the initial priorities for
NFRs of the RDM network were defined by the experts con-
sidering the different anticipated runtime contexts. Accord-
ing to the rules defined in Sect. 4, these initial priorities were
defined in the form of rewards for theMR-POMDP++model
(as shown in Table 7). During the decision-making process,
these pre-defined priorities were tuned autonomously by
MR-POMDP++, according to the runtime situations, using
the computation of the expected utility value for each NFR
individually (using Eq. 9). This tuning of individual priorities
by MR-POMDP++ helps in supporting the SASs to comply
to the requirements (R) by achieving higher levels of satis-
faction for NFRs. The newly tuned priorities correspondwith
the expected utility values represented in Table 12. The goal
of this autonomous tuningwith help of expected utility values
is to meet the requirements specification for the NFRs.

Case 2: Impacts of priority-aware decisions on satisfaction
levels of NFRs

We have also studied the impact of priority-aware decisions
by Pri-AwaRE on NFR satisfaction levels under different
detrimental contexts (DC1 and DC2), and have compared
its results with the existing techniques of RE-STORM [38],
implemented using DESPOT (a single objective POMDP
Solver), andRE-STORM-ARROW[39].The results reported
in Table 12 show the implications of setting the selected
topology for the network on the satisfaction levels on NFRs
at a particular timestep. This decision of topology selection
takes into account the expected utility values for individual
NFRs.

Let us observe Figs. 10, 11 and 12 which show the results
of Pri-AwaRE and RE-STORM under (i) the initial set of
pre-defined rewards, transition and observation probabilities
(stable conditions scenario), and (ii) the detrimental contexts
DC1 and DC2 where the deviation levels are introduced.
Under the stable scenario and DC1, both Pri-AwaRE and
RE-STORM show comparable results by maintaining the
NFRs ofMC,MR andMP in the suitable zone of satisfaction,
i.e. above the threshold values of P(MC = True) >= 0.70,
P(MR = True) >= 0.85 and P(MP = True) >= 0.75. Both
techniques show preference for the MST topology, with an
increase in the use of MST topology by Pri-AwaRE under
DC1 to support the satisfaction of bothMC andMP as shown
in Figs. 13 and 14. Under stable conditions, the percentage
usage of MST topology by Pri-AwaRE and RE-STORM is
95.2 and 92.9%, respectively, for the simulation duration of
the experiments. However, underDC1, the percentage usage
of MST is increased to 99.8% by Pri-AwaRE as shown in
Fig. 14.MST offers lower operational cost and improved per-
formance along with supporting minimal level of required
reliability. Therefore, application of MST to the network is
themost suitable decision to be taken both under stable condi-
tions andDC1 [37]. In contrast, underDC2, where deviations
are introduced to effect the system’s reliability, Pri-AwaRE
shows better level of satisfaction forMR as compared to RE-
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Fig. 10 Satisfaction of NFRs over time under stable conditions
by applying Pri-AwaRE (using OLSAR) and RE-STORM (using
DESPOT)

STORM as shown in Fig. 12. The satisfaction level of MR
goes below the satisfaction threshold at a number of timesteps
for DESPOT underDC2. However, inDC2 both Pri-AwaRE
and RE-STORM show comparable results in terms of satis-
faction ofMC andMP by keeping them above the satisfaction
threshold at most of the timesteps as shown in Fig.12. To sup-

Fig. 11 Satisfaction of NFRs over time under detrimental context 1
(DC1) by applying Pri-AwaRE (using OLSAR), RE-STORM (using
DESPOT) and RE-STORM-ARROW (using DESPOT-ARROW)

portMR, both Pri-AwaREand RE-STORMshowan increase
in the use of RT topology to 35.8 and 21.4%, respectively, as
shown in Figs. 13 and 15, respectively. This is the required
expected behaviour by the self-adaptive RDM network as
defined by the experts [17,37].
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Fig. 12 Satisfaction of NFRs over time under detrimental context 2
(DC2) by applying Pri-AwaRE (using OLSAR), RE-STORM (using
DESPOT) and RE-STORM-ARROW (using DESPOT-ARROW)

Furthermore, we have also compared our results with the
technique of RE-STORM-ARROW(based on P-CNP) [39],
which offers the support of updating initially defined rewards
for RE-STORM under both DC1 and DC2 as shown in
Figs. 11 and 12, respectively. However, even if the technique
RE-STORM-ARROW supports the satisfaction ofMR under

Fig. 13 Topologies selection under stable environmental context a Pri-
AwaRE and b RE-STORM

the DC1, it brings the levels of satisfaction ofMC andMP to
poor zones of satisfaction during several timesteps as shown
in Fig. 11. Furthermore, under DC2, Pri-AwaRE shows
comparable results to RE-STORM-ARROW in terms of sat-
isfaction of MC and MP but RE-STORM-ARROW shows
better satisfaction levels forMR as compared to Pri-AwaRE.
This is due to the fact that RE-STORM-ARROW with the
help of P-CNP approach provides the update of the initially
defined rewards for RE-STORM approach. This is not the
case in our approach where we are providing autonomous
tuning of priorities that uses the rewards (see Eq. 9) but
we are not updating the initially defined rewards. Moreover,
RE-STORM-ARROW, even with the update of reward val-
ues does show poor levels of satisfaction for MR and MP at
several timesteps as shown in Fig. 12. In contrast to RE-
STORM-ARROW, our approach offers higher levels of NFR
satisfaction. Further, another shortcoming of RE-STORM-
ARROW is that the update offered by the POMDP is not
autonomously executed as is the case of MR-POMDP++.
Instead, RE-STORM-ARROW needs external support from
the approach of P-CNP which creates efficiency problems.
Hence, from the results,we candeduce that the priority-aware
decision-making process by Pri-AwaRE offers higher levels
of satisfaction of NFRs even under the detrimental contexts
when compared to the existing single-objective techniques.

Summary of findings in experiments

In summary, our experimental results show that all theNFRs’
levels of satisfactionMC,MR andMP are compliant with the
requirements specification as evident from the average sat-
isfaction levels presented in Fig. 16. The reported results
show a confidence level of 95%. The confidence intervals
and standard error for average satisfaction levels of NFRs
under different experimental scenarios are presented in Table
13. Consider first the case of average satisfaction levels of
NFRs under DC1. The average satisfaction level of MC lies
between the confidence interval of 0.8649 and 0.8863 with
a standard error of 0.0054. Similarly, for average satisfac-
tion level ofMR, the confidence interval lies between 0.8948
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Fig. 14 Topologies selection
under detrimental context 1
(DC1) a Pri-AwaRE, b
RE-STORM and c
RE-STORM-ARROW

Fig. 15 Topologies selection
under detrimental context 2
(DC2) a Pri-AwaRE, b
RE-STORM and c
RE-STORM-ARROW

and 0.9137 showing a confidence level of 95% with a stan-
dard error of 0.0048. Moreover, in correspondence to MC
and MR, the average satisfaction level of MP lies between
the confidence interval of 0.8617 and 0.8878 with a stan-
dard error of 0.0066. These confidence interval values show
that the levels of satisfaction achieved for the NFRs meet the
requirements specifications P(MC = True) >= 0.70, P(MR
= True) >= 0.85 and P(MC = True) >= 0.75. Furthermore,
the Pri-AwaRE approach has also shown comparable results
under other scenarios (including stable scenario and DC2) as
shown in Table 13. Hence, from the results we can conclude
that Pri-AwaRE offers statistically sound results in terms of
fulfilment of the requirements. Hence, it rejects hypothesis
H0 and supports hypothesis Ha .

Discussion

From the results, it is evident that our Pri-AwaRE approach,
based onMR-POMDP++, comply with the requirements (R)
for the RDM network both under the stable and detrimental
environmental conditions. The average satisfaction levels for
all the NFRs of MC, MR and MP, generated by Pri-AwaRE,
under initial stable conditions are 0.8732, 0.9069 and 0.8747,
respectively. For the detrimental context scenarios, the aver-
age satisfaction levels are P(MC = True) = 0.8756, P(MR
= True) = 0.9042 and P(MP = True) = 0.8811 under DC1
and P(MC = True) = 0.8431, P(MR = True) = 0.8906 and
P(MP = True) = 0.8315 under DC2, respectively. Hence,
the system is conforming to the requirements specification
of P(MC = True) >= 0.70, P(MR = True) >= 0.85
and P(MC = True) >= 0.75 as shown in Fig. 16.

Under all the scenarios, our approach shows compara-
ble and sometimes even better satisfaction levels for NFRs
than single-objective techniques of RE-STORM and RE-
STORM-ARROW. Hence, based on the results, we can
deduce that our approach using the reward vector provides
statistically better results as compared to single-objective
approaches. Moreover, our Pri-AwaRE approach also pro-
vides more awareness to the decisions by using individual
NFRs’ priorities during the decision-making process. To
further evaluate our approach, we have also executed exper-
iments using OLS algorithm for the RDM case. The results
for OLS algorithm are reported in [48].

Furthermore, we have also compared the overall perfor-
mance of the approaches.We have performed experiments on
a Lenovo Thinkpad with intel Core i7, 8th Gen processor and
16 GB RAM. Using this hardware set-up, Pri-AwaRE, based
onMR-POMDP++, takes 1500ms to comeupwith a decision
and RE-STORM takes 1000 ms for decisions. This is due to
the fact that usage of OLSAR with the multi-reward Perseus
solver adds this additional overhead as described in Section
2.4. Considering the case studies that we have selected to
test our approach, this performance can be considered as
adequate. The adaptation process typically depends on the
frequency with which the stakeholders want to monitor the
managed system. For example, in case of Internet of Things
network, one simulation timestep represents a network activ-
ity of 15 min [21]. So the adaptation decisions are taken after
a gap of this time interval. Whereas in case of Remote Data
Mirroring network, we consider one timestep representing
an adaptation decision taken after a network activity of 1 h.
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Fig. 16 Average satisfaction of NFRs under different environmental contexts–stable (S), detrimental context 1 (DC1) and detrimental context 2
(DC2)

Table 13 Confidence intervals for average satisfaction levels of NFRs

Scenario NFR SatAVG Confidence interval Standard error

Stable MC 0.8732 0.8622–0.8842 0.0055

MR 0.9069 0.8975–0.9163 0.8975

MP 0.8747 0.8617–0.8878 0.0066

Detrimental Context 1 (DC1) MC 0.8756 0.8649–0.8863 0.0054

MR 0.9043 0.8948–0.9137 0.0048

MP 0.8811 0.8691–0.8931 0.006

Detrimental Context 2 (DC2) MC 0.8431 0.8300–0.8561 0.0066

MR 0.8906 0.8736–0.9076 0.0086

MP 0.8315 0.8163–0.8467 0.0076

*SatAVG represents the average satisfaction level of NFR

Hence, the focus of our Pri-AwaRE approach is on runtime
decision-making in SASs which is not hard real time [7].

5 Threats to validity

The threats to validity are based on the classification provided
in [15]. External validity is related to the generalization of
the outcomes outside the scope of our study. Internal validity
focuses on ensuring that the treatment used in the experi-
ments is analogous to the actual outcome that is observed.
Finally, construct validity is based on the relation between
the theory behind the experiments and the observations.

External validity A key threat to validity of our proposed
approach lies in the computational cost of MR-POMDPs.
Solving an MR-POMDP is a computationally intractable
problem in its worst case, even using the OLSAR algorithm
[44] that our implementation uses and which overcomes
scalability issues related to the “curse of history”. In the
Pri-AwaRE architecture, the states are defined in terms of
combinations of satisfaction levels of NFRs. If the number

of NFRs is 2, we would have 4 states for MR-POMDP, for
3 NFRs, it would be 8 and so on. Therefore, in practice,
it will work with small number of NFRs. It hints that the
design experts of SASs, while using our approach, must limit
their reasoning to critical NFRs that drive self-adaptation.
Hence, our approach belongs to the multi-objective sequen-
tial decision-making techniques that focus both theoretically
and practically on a few objectives, which according to [43]
includes a considerable number of applications.

We have executed experiments using example applica-
tions [21,50] that focus on a centralized setting. The approach
has not been tested in a decentralized set-up yet. More exper-
iments would be required to test the application feasibility of
our Pri-AwaRE approach in both centralized and decentral-
ized domains.

Internal validity The internal threat to validity concerns the
extent to which our approach performs in an actual environ-
mental set-up. In this paper, we have employed a case study
approach based on a simulator. Our experimental results are
based on the environmental factors presented by a simulating
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environment not an actual physical network. The example
applications [21,50] that we have selected are well-known
and provide simulations that are closer to the real settings.
Both RDM [17,50] and IoT [21] are well accepted applica-
tions in the research community and are already in use by the
other teams.

Construct validity The construct validity concerns the mir-
roring relationship between MR-POMDP++ and the man-
aged system. However, we have established reflections for
the current state of the managed system by MR-POMDP++
presented in [50] but more work is required. As part of our
future work, we plan to make more investigations towards
studying the mirroring aspect.

6 Related work

In this section, we discuss the different existing techniques
that deal with prioritization of NFRs in SASs. There are three
criteria that any such technique must satisfy: It must endow
the SASs with self-awareness [25], i.e. the ability to reason
about how well it is satisfying the required NFRs in terms of
their priorities; it must quantify uncertainty about the degree
of satisfaction of NFRs that is acceptable in any given run-
time context; and it must be sufficiently efficient to enable
adaptation decisions to be computed at runtime. We have
classified these techniques in two categories as follows:

6.1 Design time techniques

The techniques based on Multi-Criteria Decision-Making
(MCDM) approaches such as Analytic Hierarchy Process
[30] andPrimitiveCognitiveNetworkProcess [62] to support
ranking and explicit modelling of the NFRs have been pre-
sented but they aremore of design time techniques. However,
the approach of ARROW [39], based on P-CNP, provides
support to RE-STORM, which is based on a POMDP model
[18], to deal with the prioritization of NFRs. With the help
of P-CNP, ARROW supports automatic update for initially
defined priorities of NFRs at runtime but the update is not
autonomous and does not work from within the POMDP
model. Our approach tackles this limitation by improv-
ing the runtime representation of priorities of individual
NFRs underpinned by the multi-rewards support offered
by the MR-POMDP model. Hence, different from [18,39],
and supported by the results of the experiments performed,
our MR-POMDP-based approach takes it further to support
the explicit modelling of the individual NFRs’ priorities,
allowing improved runtime reasoning, tuning and awareness
during the decision-making process of a SAS at runtime.

In order to support optimization of NFRs, there are also
approaches that are based on search based techniques such

as [8,41]. These techniques perform optimization of priori-
ties at design time, while these initially optimized priorities
are further used at runtime in an off-line fashion. Therefore,
it is considered that the approaches provide an explicit rep-
resentation of priorities of NFRs but they are design time
techniques. In contrast to these techniques, our approach
supports the runtime modelling and autonomous tuning of
distinct priorities of NFRs to offer priority-aware decision-
making and the usage ofOptimistic Linear Support algorithm
[44] to solve MR-POMDP makes it more efficient.

6.2 Runtime techniques

In order to support decision-making in SASs, a number
of runtime modelling techniques have been in use to sup-
port priority-awareness. Such techniques include the usage
of probabilistic models like Dynamic Decision Networks
(DDNs) [4]. The DDNs are used to represent goal model as a
runtimemodel to support decision-making under uncertainty.
The DDNs with the help of Bayesian Theory of Surprise [6]
provides quantification of uncertainty. The approach repre-
sents the priorities of NFRs as a single scalar utility value
that represents a combined priority value for all NFRs. This
scalar utility value is then used to determine the effect (pos-
itive or negative) of the decision of an action selection on
the satisfaction of all of NFRs as a whole at runtime. More-
over, the technique based on DDNs deals with the problem
of scalability over time (i.e. the curse of history, the graph to
represent the history of observations and actions for theDDN
planning grows exponentially with the planning horizon). On
the other hand, the techniques presented in [1,9,16,33,38,59]
make use ofMarkov-based approaches such asMarkovDeci-
sion Process (MDPs), Partially ObservableMarkov Decision
Processes (POMDPs) and Discrete Time Markov Chains
(DTMCs) along with probabilistic model checking to sup-
port runtime assurance of NFRs during decision-making in
SASs. As these techniques are Markov based (similar to
our approach), they support the quantification of uncertainty
by maintaining probabilities over the state of the environ-
ment. An important limitation of these techniques is that
they lack explicit modelling of the distinct priorities of NFRs
at runtime. Furthermore, the approaches specifically based
on MDPs and POMDPs (with no multiple-reward support)
model the ranking of the NFRs as a scalar-reward value to
indicate a cumulative priority of all the NFRs hindering pri-
ority awareness. Our MR-POMDP-based approach instead
tackles these limitations using a vector-valued reward func-
tion to support modelling and reasoning about individual
priorities of NFRs. Furthermore, our approach, based on the
reward vector, also offers and exploits the built-in capability
of autonomous tuning of priorities of NFRs. Hence, our Pri-
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AwaRE approach provides the SAS with a higher degree of
awareness of priorities during decision-making.

Furthermore, control theory-based approaches such as
[32,40] have also been used to support explicit runtime con-
figuration and tuning of NFRs. However, the technique in
[32] lacks the autonomous prioritization of NFRs, while the
approach in [40] lacks the capability of dealingwith theNFRs
having the same priority rank. Therefore, in such a situation it
fails to perform trade-offs of the individual NFRs having the
same priority rank as another NFR. Moreover, the technique
in [40] also does not consider uncertainty as a quantifiable
measure.

7 Conclusion and future work

In this paper, we have presented Pri-AwaRE, a self-adaptive
architecture that usesMR-POMDP++ as a runtime specifica-
tion model (S) within the MAPE-K loop. Based on Zave and
Jackson’s principle [63], usage of MR-POMDP++ supports
priority-aware decision-making in SASs by (i) providing the
runtime modelling and reasoning of priorities of individ-
ual NFRs by taking into account the knowledge (K) about
their distinct priorities, (ii) maintaining compliance with the
requirements (R) by autonomously tuning the NFRs pri-
orities at runtime under uncertain environmental contexts.
Existing techniques typically represent the priorities ofNFRs
in the form of a single scalar utility value to show a com-
bined priority for all the NFRs. By contrast, we have shown
how Pri-AwaRE, using a reward vector, works towards non-
scalar nature of priorities offering therefore better-informed
trade-offs of NFRs at runtime. The usage of MR-POMDP++
supports the autonomous tuning of priorities of NFRs by the
computation of separate expected utility value for each NFR
under changing contexts at runtime.

For evaluation purposes, we have applied Pri-AwaRE to
two different example applications; a remote datamonitoring
network in which global adaptation decisions are taken for
thewhole system, and an IoT networkwhere local adaptation
decisions are taken for each individual sensor. These reveal
that our decision-making approach shows compliance to the
requirements (R) by achieving higher levels of satisfaction
of NFRs even when applied to two different domains.

We have also compared Pri-AwaRE with existing single-
objective techniques for both the example applications. Pri-
AwaRE offered informed adaptation decisions, taking into
account the individual priorities of NFRs, which led to the
achievement of higher levels of satisfactions for NFRs.

For future work, we plan to use this technique as a tool for
apriori-elicitation of priorities for NFRs. The idea is to per-
form simulations to learn about the environment to therefore,
uncover contexts that otherwise would not be anticipated.
The newly discovered knowledge K’would be made explicit

in a new specification S’ that would be used in the implemen-
tation of new releases of the SAS. Further, as the approach
helps enriching the decision-making mechanism in SASs
with newly discovered knowledge K’, we are exploring how
it can also be used to provide explanations for unclear adap-
tation decisions [37,51].

Finally, more research efforts are needed to explore the
evolution of the model, including priorities and their impact
on NFRs’ satisfaction levels, and new alternative actions.
This is a whole new important research line in the area of
decision-making under uncertainty.
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