1	The quest for successful Atlantic salmon restoration –
2	perspectives, priorities, and maxims
3 4	Final accepted version (accepted 8 Sept 2021), published in ICES Journal of Marine Science
5	(2021) https://doi.org/10.1093/icesjms/fsab201
6 7	Robert J. Lennox ¹ , Carlos M. Alexandre ² , Pedro R. Almeida ^{2,3} , Kevin M. Bailey ⁴ , Bjørn T.
8	Barlaup ¹ , Kristin Bøe ⁵ , André Breukelaar ⁶ , Jaakko Erkinaro ⁸ , Torbjørn Forseth ⁹ , Sven-Erik
9	Gabrielsen ¹ , Edmund Halfyard ⁷ , Erlend M. Hanssen ¹ , Sten Karlsson ⁹ , Stephanie Koch ¹ , Anders
10	Koed ¹⁰ , Roy M. Langåker ¹¹ , Håvard Lo ⁵ , Martyn C. Lucas ¹² , Shad Mahlum ¹ , Charles Perrier ¹³ ,
11	Ulrich Pulg ¹ , Timothy Sheehan ¹⁴ , Helge Skoglund ¹ , Martin Svenning ⁹ , Eva B. Thorstad ⁹ , Gaute
12	Velle ^{1,15} , Frederick G. Whoriskey ¹⁶ , & Knut Wiik Vollset ¹
13	
14	¹ Laboratory for Freshwater Ecology and Inland Fisheries at NORCE Environment, Nygårdsgaten
15	112, Bergen, Norway
16	² MARE - Marine and Environmental Sciences Centre, University of Évora, Largo dos Colegiais,
17	2, 7004-516 Évora, Portugal.
18	³ Department of Biology, School of Sciences and Technology, University of Évora, Largo dos
19	Colegiais, 2, 7004-516 Évora, Portugal.
20	⁴ Alaska Fisheries Science Centre at NOAA
21	⁵ Norwegian Veterinary Institute, P.O. Box 5695, Torgarden, Trondheim 7485, Norway
22	⁶ Rijkswaterstaat IJsselmeergebied Den Oever, Netherlands
23	⁷ Nova Scotia Salmon Association, 107 Farmers Dairy Lane, Bedford, NS, Canada, B4B 2C9
24	⁸ Natural Resources Institute, Finland (Luke), POB 412, FI-90014 Oulu, Finland

25	⁹ Norwegian Institute for Nature Research, Postboks 5685 Torgarden, 7485 Trondheim, Norway
26	¹⁰ Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources,
27	Technical University of Denmark, Vejlsøvej 39, 8600 Silkeborg, Denmark
28	¹¹ Norwegian Environmental Agency, Postboks 5672 Torgården, 7485 Trondheim.
29	¹² Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
30	¹³ CBGP, INRAe, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, Montpellier, France
31	¹⁴ NOAA Fisheries Service, Northeast Fisheries Science Center, 166 Water Street, Woods Hole,
32	MA USA 02543
33	¹⁵ Department of Biological Sciences, University of Bergen, Thormøhlens gate 53A, 5008
34	Bergen, Norway
35	¹⁶ Ocean Tracking Network, Dalhousie University, 1355 Oxford St, Halifax, NS Canada B3H
36	4R2

39 Abstract

40

41 Atlantic salmon is often a focal species of restoration efforts throughout the north Atlantic and it 42 is therefore an excellent case study for how best to design programs to address and mitigate threats 43 and correct population declines. This perspective is written to promote the work that has been 44 accomplished towards restoration of Atlantic salmon populations and synthesize how we believe 45 the lessons can be used effectively to support efforts by management agencies to restore 46 populations. We reviewed where restoration is needed for Atlantic salmon, agreed on definitions 47 for three levels of successful restoration, and then applied these criteria to 49 published papers 48 focused on Atlantic salmon restoration. We identified 16 successful examples of restoration among 49 49 papers reviewed and discussed what interventions led to success versus failure. We then 50 addressed key questions about when hatchery stocking should be used as part of a restoration 51 measure and whether local restoration efforts are enough when these wide ranging species 52 encounter broad-scale changes in the north Atlantic, specifically related to issues of climate change 53 and to marine survival. We advise to avoid restoration as much as possible by protecting and 54 managing existing populations and when restoration is necessary, problems should be identified 55 and addressed in partnership with river users. With appropriate resources and research to resolve 56 ongoing mysteries, restoration of lost Atlantic salmon populations is absolutely feasible.

57

58 Keywords- restoration, salmonidae, remediation, ecosystem services, success

60 "Nay, the salmon is not lost; for pray take notice, no man can lose what he never had" - Izaak
61 Walton (1654)
62

63 Introduction

64

65 North America and Europe have, together, thousands of rivers that historically had Atlantic salmon (Salmo salar L.) populations. Today, only a fraction of the historic strongholds 66 67 still maintains wild populations and throughout much of its natural distribution, the species is 68 considered to be at risk (WWF 2001; ICES 2020). Archeozoological records and historical 69 market data revealed salmon population declines had been ongoing since the early Middle Ages 70 (450 A.D) and were linked to the rise of water mills, small hydropower, the blocking of 71 spawning tributaries, and later damming, straightening, channelization, and pollution of large 72 rivers (Lenders et al. 2016). These population declines occurred despite the adoption of 73 mitigation measures that were intended to protect the species (Dunfield 1985; Lenders et al 74 2016). Already in 1215, the Magna Carta legislated the removal of weirs and dams that 75 obstructed migrating salmon in English rivers. In North America, the depletion of Atlantic 76 salmon by European colonists triggered treaties to prevent overexploitation of stocks in Quebec 77 (Lower Canada; Nettle 1857) and to halt (unsuccessfully) the extirpation of Lake Ontario's stock 78 of landlocked salmon (Huntsman 1944).

The cumulative decline of salmon has been geographically widespread and is well documented. In Lake Ontario, the bountiful runs of Atlantic salmon that could initially be harvested by the shovelful entirely disappeared by the end of the 19th century (Webster 1982; Bogue 2001). In Portugal, the southern limit of the species distribution in Europe, salmon abundance has declined by an estimated 90% from historic levels over the past 50-60 years

(Cabral et al. 2005). In the Rhine River, catches in the lower river during the late 19th century
reached over 100,000 individuals, but had dropped to zero within 50 years (Lenders et al. 2016).
Further, the southern extent of the North American range of the species shifted northward by 2°
latitude by the early to mid-1800's with the extirpation of the southernmost USA populations
(Fay et al. 2006).

89 Restoration ecology is replete with efforts to reintroduce, recolonize, and/or replenish 90 native fish stocks in the historic range (Hobbs and Harris 2001; Zimmerman and Kruger 2009) in 91 order to restore ecosystem and related cultural services of substantial value (Butler et al. 2009; 92 Childress et al. 2014). Improvements to the quality and quantity of degraded habitat are generally 93 the first and most critical steps to reestablish indigenous fish stocks (Giller 2005; Einum et al. 94 2008). Many rivers have therefore undergone extensive work to undo damage resulting from 95 habitat modification, pollution, dam building and restriction of movement, siltation, 96 eutrophication, channelization, acidification, and other human impacts that have contributed to 97 the collapse or extirpation of fish stocks (Palmer et al. 2005; Erkinaro et al. 2011; Tummers et al. 98 2016). At some sites, fish and river restoration programs have been ongoing for decades and new 99 programs continue to be implemented, as urgency in preserving or restoring species accelerates 100 while stressors multiply. Stakeholders devote a large amount of limited resources every year to 101 study and restore Atlantic salmon and related habitat, and this species presents an excellent case 102 study for restoration ecology (Birnie-Gauvin et al. 2018).

103 This perspective draws on the experience of an international team of experts that have 104 worked on the restoration of Atlantic salmon in the fields of conservation genetics, ecology, 105 physiology, behavioural sciences, fisheries biology, and ecoepidemiology, throughout most of 106 the north Atlantic and Arctic range of Atlantic salmon. We start by reviewing how different

stressors operate in different parts of the salmon's distribution, continue with a discussion of how to define successful restoration action, and provide examples of success, failure, and unintended consequences of restoration. Finally, we review the controversial use of hatcheries for restoration, which we found to be a polarizing point of discussion when considering restoration issues throughout the range and the relative utility of local efforts in the face of ongoing global environmental change.

- 113
- 114 In what situations is restoration needed?
- 115

116 Regional differences exist in the urgency of different threats to salmon, which guide 117 evaluations of what the likely problems are that need to be addressed by a restoration program. 118 Although the ICES Working Group on Effectiveness of Recovery Actions for Atlantic Salmon 119 carried out a ranking-based evaluation of the stressors limiting wild Atlantic salmon restoration, 120 which generated detailed catchment-specific information (ICES 2017a), it had only partial 121 coverage across the species' natural range. The evaluation was also broad with respect to some 122 stressors. For example, the category 'pollutants' (ICES 2017a) can be divided into functional 123 subtypes such as hazardous chemical substances, urban organic pollutants (e.g. sewage), 124 excessive silt and nutrients, and acidification (Champion 2003; Hesthagen et al. 2011). To fill 125 gaps and provide some prior information about the regionality of key challenges, we asked 126 experts from 23 regions to rank the importance of 15 stressors to Atlantic salmon. Instructions 127 were to provide an integer value from zero to three indicating zero, minor, moderate, or major 128 impact of a stressor on salmon populations in a given region. For biogeographic convenience, 129 Portugal and Spain were combined to "Iberia"; Ireland and Northern Ireland were combined; and England and Wales were combined. We were unfortunately unable to receive a response from a
Russian representative, so we made an evaluation for this country based on NASCO reports and
expert inference from scientists familiar with the situation in Russia (Figure 1).

133 Switzerland and the United States ranked highest among nations for stressor scores, with 134 a total score of 31 and 30 respectively out of a possible total of 45 (fifteen categories multiplied 135 by a maximum score of three). Greenland, The Netherlands, and Iceland scored low at 3, 5, and 136 6, respectively. Migration barriers were the most urgent stressor, ranked everywhere except for 137 Greenland (where there is only one river system with a population of Atlantic salmon) and 138 Iceland. Acidification was regionally important in Norway and Canada. Norway, Canada, and 139 Scotland are the main producers of farmed Atlantic salmon within the species natural range and 140 were the regions that scored high on impacts from farmed escapes and pathogens from salmon 141 aquaculture (Figure 1). Some variation occurred among landlocked countries in how they scored 142 their stressor scores. Switzerland ranked highest whereas Czech Republic was eighth lowest on 143 the ranking. In these countries, particularly urgent threats related to damming and river 144 channelization were identified that, if remedied, could be immensely impactful for salmon 145 restoration. Another interesting contrast was Belgium compared to the Netherlands. These 146 neighbouring nations ranked third worst and second best, respectively, with the experts clearly 147 perceiving the threats to their salmon populations differently. The management directives, river 148 productivity, and other factors may change on small spatial scales, possibly causing such stark 149 contrasts between nations. However, it might also reflect large individual differences in the 150 perception of important impacts between experts. Our question sheet is included as an appendix 151 (Appendix 1) and may be adapted to future efforts to score, rank, and prioritize restoration 152 efforts for Atlantic salmon or other species at different scales.

154 How can we evaluate salmon restoration initiatives?

155

156 The ultimate goal of restoration is to increase a population size to a biological reference 157 point (Table 1) via natural reproduction, which can be defined in terms of genetic (e.g. effective 158 population size; Horreo et al. 2011a), reproductive (e.g. number of eggs deposited; Forseth et al. 159 2013), demographic (e.g. carrying capacity), or social (e.g. harvestable surplus) conceptions of a 160 sustainable population (Figure 3). Different metrics are used in different places to evaluate the 161 past, present, and future status of a population, and changes to the population after restoration 162 interventions can be used to establish whether efforts were successful. Restoration therefore 163 requires knowledge of how many fish exist compared to how many are needed for a healthy 164 population, which is the biological reference point. For Atlantic salmon, the biological reference 165 point is often derived from the census number of adult spawners (see Ferchaud et al. 2016). The 166 biological reference point for a river is ideally defined by historic abundance data or theoretical 167 maximum suitable spawning area and egg deposition and perhaps adjusted to present 168 environmental conditions, for example if spawning grounds have been lost or water temperatures 169 have changed such that historic baselines are no longer attainable. In the Swedish river Vindel, 170 historic photos helped identify a reference state for the river and guide restoration objectives 171 (Hellström et al. 2019). Progress towards the biological reference point using census numbers 172 can be tracked by counting large (i.e. not mature male parr, which are cryptic and impossible to 173 visually identify) adults based on fishing catches, mark-recapture, counting 174 fences/weirs/cameras, or spawning counts (fish seen breeding at spawning sites; Skoglund et al.

175 2021). Because the definition of success is crucial for the evaluation of restoration, and no single176 definition meets the expectation of all stakeholders for salmon, we define success at three levels:

177 i) Level 1 success: self-sustaining wild population Following restoration intervention 178 (Table 1), the first level of success is achieved if the population is self-sustaining in the absence 179 of stocking. The population may remain small or depleted compared to historic levels, but the 180 number of spawners would be expected to increase in subsequent years assuming that adequate 181 habitat is available for reproduction. Small populations may be vulnerable to unforeseen 182 perturbations and stochastic and changing environmental conditions that can undermine 183 restoration efforts and push the population back below replacement levels (Palstra et al. 2007), 184 particularly due to variability in marine survival.

185 ii) Level 2 success: Robust self-sustaining population The second level of success is 186 reaching a population abundance level that reaches the biological reference point and is therefore 187 sufficiently large such that the population remains resilient (self-sustaining) to environmental 188 perturbations and variation. In restoration efforts, this level would presumably occur several 189 years after interventions have finished and follow multiple years of increasing numbers towards 190 or beyond the biological reference point established for the population. This level is often chosen 191 as the objective of restoration projects and is monitored by census number with spawning counts 192 or counting fences. In such populations, biological reference points may be achieved, but the 193 number of breeders could still be suboptimal due to skewed sex ratios (Perrier et al. 2016).

194 iii) Level 3 success: Harvestable surplus Robust self-sustaining populations providing
195 harvestable surplus beyond the biological reference point. Populations can be considered to have
196 fully realized their potential following restoration when more spawners are returning than needed
197 for replacement, yielding a harvestable surplus. In Norway and Canada, each salmon river is

assigned a carrying capacity for the number of eggs needed to reach river-specific biological
reference points, which quantifies the biological reference points targeted for attaining Level II
and Level III success (O'Connell et al. 1997; Forseth et al. 2013). At this stage, the population is
robust, and managers can set fishing quotas to remove part of the population down to a safe level
and still allow to achieve complete replacement.

203

204 Which restoration actions are successful?

205

206 To understand the success and evaluate failures of actions taken to restore Atlantic 207 salmon populations, we conducted a focused literature search using the Web of Science search 208 engine. The search covered all years up to the beginning of 2020 for TOPIC=atlantic salmon OR 209 salmo salar AND TOPIC=restor* OR remed* to capture papers focusing on Atlantic salmon 210 restoration. We acknowledge that this search would not capture potentially relevant papers 211 focused on other salmonids or studies that did not include restoration in the topic of the paper 212 (title, abstract, keywords), but we consider that our search yielded sufficient data for our 213 analysis. The search yielded 681 results that were manually screened for relevance. Papers that 214 did not focus on Atlantic salmon or did not attempt any intervention to investigate restoration 215 were excluded. Additional papers were added by expert opinion and through the review of 216 reference lists of the publications our search had missed, this effort resulted in 49 papers. 217 Metadata from each study were extracted including the problem being investigated, the 218 intervention being tested, and an evaluation of whether the intervention was successful or not at 219 the three levels of success defined *a priori*.

220 We present a table of key examples of success and failure to restore Atlantic salmon 221 populations (Table 2). Based on the 49 studies, we identified restoration projects in 95 salmon 222 populations, of which 18 did not reach any level of success as defined above, 39 reached a self-223 sustaining wild population (Level 1), zero attained a robust self-sustaining wild population 224 (Level 2), 26 reached a population with harvestable surplus (Level 3); success was uncertain due 225 to lacking information in 13 rivers from the 49 papers. The main method used in the rivers where 226 restoration failed was hatchery supplementation (stocking) without addressing the threats that 227 originally contributed to population decline. Methods used in rivers reaching Level 1 (self-228 sustaining population) were habitat and water quality improvement, reconnection of river 229 segments, and measures to eliminate the parasite Gyrodactylus salaris. In rivers reaching Level 3 230 (harvestable surplus), habitat and water quality improvement, dam removal and liming were 231 applied (Table 2; Figure 3). Among 19 papers reporting stocking Atlantic salmon, only two 232 achieved any level of success: Saltveit et al. (2019) reported that catches in Suldalslagen, 233 Norway were enhanced by stocking and Perrier et al. (2014) reported recolonization of upstream 234 reaches by hatchery reared salmon following reconnection of the Adour River, France. 235 236 Success 237 238 Success was elusive in the literature, but we identified several key examples. From the 239 review, seven salmon populations achieved a self-sustaining population (Level 1, Figure 3). 240 Typically, these efforts evaluated success based on juvenile densities surveyed around the treated 241 areas and it was not known whether the action directly enhanced progress towards biological

reference points at the population scale. Four studies were successful based on improvements to

243 habitat and connectivity. Marttila et al. (2019) added instream structures and reconnected 244 spawning channels in 28 Finnish rivers, de Jong et al. (1997) added boulders, logs, and V-dams 245 to Newfoundland rivers, and Calles et al. (2005) built nature-like bypass channels for salmon to 246 pass barriers in Sweden. Additionally, Hogg et al. (2015) confirmed that dam removal in a Maine 247 tributary contributed to improved fish abundance by comparing to a reference site not affected by 248 dam removal. When habitat is limiting and resulting in extreme juvenile density dependent 249 mortality, providing access to additional habitat therefore has potential to enhance production. 250 The case of *Gyrodactylus salaris* emergency measures in Norway has been successful so far at 251 achieving Level 1 success (Sandodden et al. 2018). Complete removal of the spawning stock to 252 eliminate the parasite from the river, followed by restocking the population using a gene bank 253 (Table 1) implemented prior to treatment that preserved the native genetic diversity, has so far 254 been successful, and may soon achieve Level 3 success once stocking is ceased. Some successes 255 reported stocking of fish, but in conjunction with other restoration efforts that addressed 256 problems, such as Koed et al. (2020) where integrated efforts were made to improve habitat in 257 Denmark and Perrier et al. (2014) where connectivity with upstream reaches was reestablished in 258 the French river Adour, allowing the cultivated salmon to access previously unavailable habitat 259 to increase production. Romakkaniemi et al. (2003) also suggested that rebounding of Finnish 260 salmon populations, partly addressed by stocking rivers, coincided with a dramatic decline in 261 marine fishing mortality in the Baltic Sea, which catalyzed stronger spawning stocks and a 262 restoration success.

Among nine salmon populations where harvestable populations were restored (Level 3 success), eight did so by addressing habitat quality issues. Water quality issues that can be identified and remediated, for example, point source pollution, revealed good potential for

266 recovery when spawning habitat and sufficient river connectivity were available but not fully 267 used because of poor recruitment linked to pollution. Champion (2003) presented the case of the 268 Type River in England, which is now among the best salmon producing river in the country 269 following improvement of water quality (we note that there is debate about the role of hatcheries 270 in restoring the river as well). Similarly, Hesthagen et al. (2011) presented the case for liming 271 acidified rivers to restore water quality, resulting in level 3 success for 13 Norwegian rivers 272 where fisheries are now active and able to draw from the harvestable surplus. Direct 273 improvements to spawning habitat by addition of gravel were highly successful (Barlaup et al. 274 2008), as were instream enhancements to create shelter for juveniles (MacInnis et al. 2008; Floyd 275 et al. 2009), including de Jong and Cowx (2016) where benefits persisted for at least 20 years 276 following addition of boulders and V-dams in Newfoundland, Canada. In a highly integrated 277 effort, Koed et al. (2020) removed weirs and barriers, enhanced spawning grounds, and regulated 278 fisheries in Denmark and achieved sustained Level 3 success, an example of an approach when 279 the exact stressor could not be isolated resulted in implementation of a thorough suite of 280 interventions implemented simultaneously.

281

282 <u>Failure</u>

283

Many studies failed to demonstrate a consistent response to restoration measures in salmon populations. At times, this was an artifact of sampling design and not necessarily an indication that the approach was ill-conceived or unlikely to succeed. Some studies had limited follow up intervals after intervention, making it difficult to evaluate success. There were also studies that described changes to habitat quality but not in salmon populations, making it

impossible to evaluate whether a biological response occurred following intervention (e.g.
Collins et al. 2010). Alternatively, measurements can be made at too narrow a spatial or temporal
scope for an evaluation to be made about success. Local enhancements to pools may increase
local fry densities soon after intervention but be ineffective at a larger reach or along a longer
timescale at actually enhancing the population. We categorized failures into two bins, for which
examples are discussed below: (1) the problem was not addressed; (2) the intervention had
unintended consequences.

296

297 The problem was not addressed

298

299 In some cases, key drivers of mortality have been identified but interventions do not 300 address them because they are too large in scale or due to a political decision. Climate change is 301 affecting every Atlantic salmon population, especially at the southern range edge, but emissions 302 are not being curbed enough to abate warming and the impacts on salmon populations (see 303 Jonsson and Jonsson 2007; Todd et al. 2011). More proximately, hydropower structures in rivers 304 markedly affect salmon movement, survival, growth, and demography and their impacts are not 305 always directly addressed in restoration efforts (Rivinoja et al. 2001; McCarthy et al. 2009; Izzo 306 et al. 2016). Mitigations, such as fish passage, to damming can be considered restoration, but 307 have provided variable results. Rivinoja et al. (2001) observed only 26 % of wild Baltic salmon, 308 and no hatchery salmon, using a newly installed fish ladder in Sweden. Lundqvist et al. (2008) 309 observed a similar lack of success, with an inefficient fish ladder passing only about 30% of 310 potential spawners upstream across years up a Swedish river.

311 Restoration efforts may also fail when the causes of a decline are misidentified, and 312 interventions do not address the right problem. Though over €600 million were spent in the 313 Rhine drainage to improve habitat conditions, especially connectivity (IKSR 2020), the 314 ecological capability of the Rhine system to support salmon still remains poor or moderate 315 throughout the species' original range in the river. In this case, the loss of connectivity restricting 316 passage of the salmon were not addressed and therefore the interventions were not successful. In 317 Newfoundland, Cote et al. (2021) found that illegal fishing was actually a driving force limiting 318 recovery of the population in the Northwest River and community engagement helped curb 319 illegal fishing and contributed to restoration. In Sweden, gaining trust from river landowners was 320 critical for gaining access to the river and having acceptance from over 4000 rightsholders 321 (Hellström et al. 2019). Poor marine survival of salmon can operate similarly; spawning habitat, 322 juvenile shelter, and smolt abundance can be increased by restoration but to no avail for 323 returning spawners if marine mortality is not addressed (Nicola et al. 2018); this problem exists 324 for many North American rivers where freshwater restoration is insufficient to achieve a Level 325 III success.

326

327 Unintended consequences

328

Efforts to restore salmon populations are often met by unintended consequences that undermine conservation efforts. Reconnecting rivers with fishways around dams can be successful but even slight imperfections in design can be damaging. Fish ladders that have poor attractive flows or are difficult to navigate can delay or stop migration, favour certain phenotypes (e.g. small fish; Sigourney et al. 2015; Maynard et al. 2017), or enhance exposure to predators 334 (Boulêtreau et al. 2018). Removal of natural barriers by adding ladders around natural waterfalls 335 or breaking beaver dams may also favour certain phenotypes or facilitate upstream penetration of 336 escaped farmed salmon (Johnsen et al. 1998). Restoration has also enhanced predation of some 337 populations. Natural restoration of a Danish river created perfect habitat for the recolonization of 338 cormorants and increasing predation pressure on Atlantic salmon smolts that may have offset the 339 benefits of restoration afforded to the salmon (Koed et al. 2006; Pedersen et al. 2007). 340 Restoration efforts may also enhance habitat for invasive species that negatively impact Atlantic 341 salmon populations (Korsu et al. 2010). Control or removal of predators may have similar 342 perverse effects. Predators often select slow, weak, or sick prey such that predation is 343 compensatory and not additive. Predator suppression may not affect survival where mortality is 344 compensatory and in some cases may allow disease to spread, in instances where predation of 345 diseased animals is more frequent (e.g. sockeye salmon Oncorhynchus nerka smolts; Miller et al. 346 2014; Furey et al. 2021).

347 Stocking fish reared in hatcheries is frequently reverted to as a solution to compensate for 348 uncertainty and buy time for more decisive action to address the causes of population declines. 349 Unfortunately, stocking is the solution most wrought with failure. Studies revealed that stocking 350 eroded genetic diversity in a major Spanish river (Ayllon et al. 2016) and selected for 351 mismatched phenology (Bailey et al. 2010). Recent studies show that hatchery fish lose their 352 fitness in natural systems over just a few generations, which results in a strain of salmon which 353 are less fit in wild rivers, and which can outbreed with the natural populations (Fleming et al. 354 1997; McGinnity et al. 2009; Hagen et al. 2019). Horreo et al. (2011b) observed null or negative 355 impacts of stocking a Spanish river, which was attributed to importing foreign salmon causing 356 introgression and loss of local adaptation (see also Almodóvar et al. 2020). An extensive

evaluation of genetic effects from stocking at five sites revealed a strong reduction of effective
population size (Ryman-Laikre effect) in three out of five stocked populations of Atlantic salmon
in Norway (Hagen et al. 2020). Hagen et al. (2019) additionally showed that stocking in
restoration programs may facilitate introgression of farmed genes into wild populations.

- 362 When should hatchery stocking be applied?
- 363

364 Although documentation of potential negative effects of stocking are well known (Myers 365 et al. 2004), whether situations exist in which the use of hatcheries is the only viable option has 366 not been established. Stocking has been successful at restoring populations when initial threats 367 are addressed. For example, in Finland where stocking may have played a role in kick-starting 368 population recovery combined with reductions in fishing mortality and other enhancements, 369 while maintaining measures of genetic diversity (Miettinen et al. 2021). In the following text we 370 therefore outline our perspectives on when to use hatchery stocking as an emergency measure 371 specifically for restoring (i.e. not enhancing) salmon populations.

372 Despite being widely used, hatcheries can only possibly address a few salmon 373 conservation problems when the scarcity of wild breeders is driving depensation. Why, then, do 374 hatcheries remain such a common approach to addressing salmon restoration troubles? Young 375 (2017) outlined seven reasons (called the "seven Hs") why stocking persists despite 376 overwhelming evidence against the practice. Many rivers have a habit of stocking, local 377 communities get a **high** from working with fish, there is **hubris** believing that humans can 378 improve on natural processes, and there are **honour** and **h-index** rewards for researchers that are 379 involved in hatchery work. There is also **hope** that this may resolve troubling problems and an

380	overall hesitance to accept the science (heresy). Per our definitions of success, stocking must end
381	in order for at least Level 1 to be attained in a restoration program and the population should then
382	not decline when stocking ends. Yet, hatcheries are actually more likely to do harm than good for
383	a population owing to domestication selection, which causes a loss of fitness for fish released to
384	the wild (e.g. McGinnity et al. 2009; Bolstad et al. 2017). Stocked rivers consistently undergo a
385	reduction in effective population size (Ryman-Laikre effect; Ryman & Laikre 1991; Hagen et al.
386	2020) due to stocking of a large number of offspring produced from a small number of broodfish
387	(Christie et al. 2012; Hagen et al. 2020). Young (2017) suggests that in populations where there
388	are enough wild spawners to support removal of broodstock for hatcheries, that population is
389	probably not close enough to the conservation limit (Table 2; Figure 2) to justify a hatchery, but
390	perhaps a gene bank should be made available in case of further declines and emergency
391	measures are deemed appropriate.
571	
392	Recommendations
	Recommendations
392	<u>Recommendations</u> The following are our collective recommendations for consideration when considering
392 393	
392 393 394	The following are our collective recommendations for consideration when considering
392 393 394 395	The following are our collective recommendations for consideration when considering
 392 393 394 395 396 	The following are our collective recommendations for consideration when considering the use of hatcheries as part of restoration programs (Figure 4):
 392 393 394 395 396 397 	The following are our collective recommendations for consideration when considering the use of hatcheries as part of restoration programs (Figure 4): • Thorough analyses of the extinction probability of a population should be conducted to
 392 393 394 395 396 397 398 	The following are our collective recommendations for consideration when considering the use of hatcheries as part of restoration programs (Figure 4): • Thorough analyses of the extinction probability of a population should be conducted to decide whether hatchery supplementation is needed to preserve the genetic integrity and
 392 393 394 395 396 397 398 399 	The following are our collective recommendations for consideration when considering the use of hatcheries as part of restoration programs (Figure 4): • Thorough analyses of the extinction probability of a population should be conducted to decide whether hatchery supplementation is needed to preserve the genetic integrity and genetic variation of the population (Figure 3).

403	•	Biological reference points should be established based on historical baselines and
404		present environmental conditions, along with intermediate objectives and timelines for
405		moving the present population back to that reference point.
406	•	Hatcheries should be operated in conjunction with investment in efforts to address threat
407		or threats responsible for the population's decline.
408	•	Alternatives to hatcheries should be considered, which might have similar demographic
409		effects without altering genetic integrity. For example, capturing and moving fry around
410		the river to reduce density-dependent thinning (Young 2017) or facilitated kelt
411		reconditioning to improve overwinter survival and repeat spawning rates could be studied
412		as possible alternatives.
413	•	If stocking of hatchery fish is initiated, efforts must mitigate the risks of an
414		overrepresentation of a small number of parents in the F1 generation leading to a
415		reduction of the total effective population size in the subsequent generation (Ryman and
416		Laikre 1991). Ryman-Laikre effects can be addressed by finding the correct relationship
417		between the effective number of hatchery broodfish, the proportion of stocked fish in the
418		population, and the effective number of natural breeders (Hagen et al. 2020).
419	•	The smallest possible ratio between the number of broodfish and the effective number of
420		broodfish should be sought, i.e. make the highest effective number of broodfish from the
421		available broodfish. Optimisation of the effective number of broodfish starts with an
422		equal number of males and females, by producing an equal number of offspring from
423		each broodfish, and by ensuring the hatchery produced fish are released in a manner that
424		provides each family with an equal opportunity to survive until the act of natural
425		selection;

426	• Hatchery mortality should be minimized to avoid any selective effects.
427	• Rearing in a protected artificial environment postpones natural selection until fish are
428	released in the natural environment and this may lead to genetic differences between the
429	natural and the hatchery raised fish. Given the lack of natural selection in the hatchery,
430	hatchery residence should be as short a period as possible, meaning stocking as eggs or
431	fry rather than as parr or smolts when feasible.
432	• Work with locals in a conservation behaviour framework is key to help catalyze a shift
433	away from hatcheries while maintaining the local engagement and passion for rivers and
434	the salmon populations that motivates many hatcheries to persist.
435	
436	Critical considerations for gene banks
437	
437 438	• The gene bank (Table 1) should preserve the genetic integrity and as much of the genetic
	• The gene bank (Table 1) should preserve the genetic integrity and as much of the genetic variation of the population as possible.
438	
438 439	variation of the population as possible.
438 439 440	variation of the population as possible.Broodfish should be collected from a variety of phenotypes, including fish of different
438 439 440 441	 variation of the population as possible. Broodfish should be collected from a variety of phenotypes, including fish of different sizes and ages, and at different time periods in the spawning run-year, and over many
438 439 440 441 442	 variation of the population as possible. Broodfish should be collected from a variety of phenotypes, including fish of different sizes and ages, and at different time periods in the spawning run-year, and over many years. With molecular genetic markers, stray fish from foreign populations and in
 438 439 440 441 442 443 	 variation of the population as possible. Broodfish should be collected from a variety of phenotypes, including fish of different sizes and ages, and at different time periods in the spawning run-year, and over many years. With molecular genetic markers, stray fish from foreign populations and in particular salmon of escaped farmed origin, should be excluded. Broodfish should be
 438 439 440 441 442 443 444 	 variation of the population as possible. Broodfish should be collected from a variety of phenotypes, including fish of different sizes and ages, and at different time periods in the spawning run-year, and over many years. With molecular genetic markers, stray fish from foreign populations and in particular salmon of escaped farmed origin, should be excluded. Broodfish should be selected using analyses of relatedness and a low-kinship criterion to obtain as many
 438 439 440 441 442 443 444 445 	 variation of the population as possible. Broodfish should be collected from a variety of phenotypes, including fish of different sizes and ages, and at different time periods in the spawning run-year, and over many years. With molecular genetic markers, stray fish from foreign populations and in particular salmon of escaped farmed origin, should be excluded. Broodfish should be selected using analyses of relatedness and a low-kinship criterion to obtain as many unrelated individuals as possible and to avoid crossings of closely related fish.

449 • Strict control of diseases should occur by implementing biosafety measures that minimize 450 the risk of introduction, establishment, and transmission of disease between wild and 451 captive populations. All broodstock fish must be screened for diseases and the only 452 external materials that should be introduced to the hatchery should be disinfected eggs to 453 minimize any possible transfer of pathogens. 454 For biosecurity reasons, where possible "duplicates" of the offspring of families produced 455 for restoration purposes should be kept at separate sites. 456 If the gene bank will need to operate over multiple generations, the mating and stocking • 457 plans that are developed need to be designed to ensure that as much as possible of the 458 genetic variation is being maintained and used. 459 The survival of stocked fish from the gene bank should be monitored at different life ۲ 460 stages (parr, smolt, returning adult, repeat spawner) and stocking plans adjusted to ensure 461 an appropriate representation of the different families from the gene bank in the 462 developing wild population; 463 464 *When the hatchery production is not stopped* 465 466 Sometimes populations cannot recover to above Critically Endangered levels despite the 467 best attempts to address the threats (e.g., all spawning habitat has been eliminated due to the 468 construction of a hydropower facility and it is not possible to construct artificial spawning sites). 469 In these scenarios, the endpoint for terminating the hatchery production is unclear and may be 470 governed by legal constraints, political considerations, genetic objectives, social pressures, etc. 471 In such cases, the population has not been restored, but rather is a progressively domesticated

472 population and should be managed as such when considering the conservation status of the473 species in the region.

474

475 Are local efforts enough?

476

477 Population sizes of salmon on both sides of the Atlantic have declined since the 1980s, 478 not only because of human impacts in rivers and coastal areas, but in many areas also because of 479 ecosystem effects on marine mortality (Otero et al. 2011, Forseth et al. 2017, ICES 2017b). 480 Broad-scale changes in marine ecosystems are considered prominent contributors to the recent 481 increases in marine mortality. Climate driven changes in marine ecosystems may play a part, and 482 region-specific hypotheses are beginning to be developed describing the causal mechanisms of 483 the increased marine mortality experienced by stocks on both sides of the Atlantic Ocean (Todd 484 et al. 2011; Beaugrand & Reid 2012; Chaput 2012; Mills et al. 2013; Beaugrand et al. 2014; 485 Renkawitz et al. 2015; Jonsson et al. 2016). Management actions to directly counteract declines 486 due to climate and ecosystem changes in the ocean are presently not resolved because we know 487 little about where salmon are exactly and what stressors they may even be encountering at a 488 given time. However, mortality at sea seems to be density-independent for Atlantic salmon 489 (Jonsson et al. 1998). Furthermore, there are no recognized compensatory mechanisms exist for 490 additional mortality at the smolt stage (Milner et al., 2003; Einum and Nislow 2011). Hence, in a 491 situation with a reduced oceanic survival occurs, it is even more important to ensure the number 492 of smolts migrating to the ocean and that their condition is maximized, emphasizing the 493 importance of freshwater restoration efforts that occur in freshwater (see Thorstad et al. 2021).

494 Another overarching impact on salmon populations is climate change. Climate change is 495 expected to modify thermal and hydrological regimes of rivers and in the northern hemisphere 496 adding an indiscriminate challenge to restoration efforts in terms of salmon thermal performance 497 (Karcher et al. 2021), behaviour (Baisez et al. 2011; Frechette et al. 2018), and life history 498 (Lennox et al. 2018). Climate models have predicted a warming of air temperature and a 499 decrease in summer precipitation in extensive portions of the wild Atlantic salmon's range 500 (Schneider et al. 2013). Given future climate change scenarios, more extreme weather (higher 501 frequencies of violent storms, or conversely extended droughts) may severely alter natural 502 patterns of river flow in the entire distributional range of Atlantic salmon. In Europe, strong 503 impacts on river flow regimes are expected in the boreal climate zone over the distribution range 504 of Atlantic salmon (Schneider et al. 2013). Impacted rivers, especially smaller ones, will likely 505 undergo extinctions of local populations when waters become too warm. By combining 506 biological, hydrological, and hydraulic models, Sundt-Hansen et al. (2018) simulated how future 507 climate change would impact the River Mandalselva in southern Norway, where discharge 508 during summer was predicted to decline and result in reduced Atlantic salmon abundance. They 509 found that the wetted areas will be strongly reduced during the summer and projected increased 510 density-dependent juvenile mortality and reductions in river carrying capacity, leading to low 511 parr abundances and reduced abundance of smolts that would ultimately shift the spawning 512 targets (Sundt-Hansen et al. 2018). Low river flows, predicted to increase in frequency with 513 climate change, have been shown to reduce smolt migration success in rivers with instream 514 barriers such as weirs (Gauld et al. 2013). Climate change is expected to be accompanied by a 515 loss in biodiversity as rare or specialised species become extinct and new competitors or invasive 516 species begin to dominate (Schneider et al. 2013). River restoration efforts must be mindful of

517 the future needs of local populations as the climate changes; Beechie et al. (2013) suggested that 518 many local restoration efforts focus on small scale rehabilitation but that a focus on connectivity 519 and flow regimes is needed to ensure efforts prepare populations for long-term changes of 520 warming and hydrological variability.

521 Conclusions and Maxims

522 When a specific stressor is identified, when political desire to resolve it exists, and where 523 a nucleus of the original population's genetic structure remains intact, successful restoration of 524 Atlantic salmon populations is feasible. Successful restoration of self-sustaining populations 525 (Level 1) and populations with harvestable surplus (Level 3) have been documented and attained. 526 However, many failures have also occurred, especially where multiple stressors have been 527 severe, catastrophic impacts have occurred, or efforts have relied heavily on hatchery production. 528 Broad-scale stressors such as climate change and marine dynamics may be especially 529 challenging to resolve. This paper was written to promote the work that has been accomplished 530 towards the restoration of Atlantic salmon populations and synthesize how we believe these 531 experiences can be used effectively to support future efforts by management agencies to restore 532 populations. In many areas we now know enough to implement effective and evidence-based 533 restoration efforts for salmon. Further research should be focused alongside efforts by managers 534 and politicians to restore populations to test whether plans are working using appropriate 535 controlled comparisons, advance new strategies such as alternatives to hatchery production, and 536 develop evidence-based assessments of success that build on our framework and on the 537 following maxims upon which we conclude:

538

539 1. Avoid the need for restoration in the first place. Preserve wild stocks and manage

them well. Restoration of degraded populations is difficult and very expensive and will
often fail. It is becoming harder with increasing pressure on this species especially as the
climate changes and marine survival becomes more stochastic. It is incredibly

challenging to restore extirpated wild populations and restoration should be prevented as
much as possible. Prevention is preferred by proactively providing protection to pristine
populations as much as possible (Roni et al. 2002).

546 2. Restoration efforts need to be relevant to resource users. Scientific evaluation and 547 monitoring of restoration actions should take place in collaboration with knowledge 548 users. Depending on the jurisdiction, resource users may be Indigenous nations that are 549 rightsholders on rivers, key land claim holders, and decision makers; public servants (i.e. 550 managers) that make financial allocations to restoration projects based on knowledge; or 551 local communities where rivers form an essential part of the landscape, aesthetic, 552 recreation, and society. Involving river users has been promising to gain acceptance and 553 catalyze positive outcomes from restoration and is a vital part of the process (Hellström et 554 al. 2019; Cote et al. 2021). Conservation behaviour research is needed to better 555 understand how to understand how to better involve and empower river users.

3. If the goal is for a population to be restored, we first need to identify the problems,

and then take action to solve them. Beechie et al. (2010) emphasize that restoration
actions must resolve problems in order to be successful. Identifying the problems is often
challenging, but it is apparent from the literature that when problems are identified and
resolved, salmon populations can respond well, and sometimes fast. The resolution of
freshwater acidification in Norway by liming rivers is a very clear example of this

562 (Hesthagen et al. 2011), as are habitat measures when, for example, spawning gravel 563 availability limits production (Barlaup et al. 2008). Salmon are good colonizers and do 564 not necessarily need help from hatchery sources to re-establish populations if there are 565 sources of wild genetically similar populations nearby, albeit at the expense of local 566 genetic specialization (Perrier et al. 2009). We reiterate the importance of preserving 567 salmon populations' genetic structure, but also emphasize that genetic variability is 568 important to protect in populations as they continue to evolve traits to adapt to a changing 569 hydrosphere. Hatcheries are largely unnecessary and can be hindrances given the plethora 570 of genetic problems that may arise from them (Hagen et al. 2020). Hatcheries should only 571 be used as a last resort to forestall extinction and where efforts are being made to identify 572 and resolve stressors that are affecting the production of the population. All hatchery 573 activities should be of the gene bank type with a focus of preserving the genetic variation 574 and integrity before it is lost. Traditional ecological knowledge can be a valuable 575 resource for identifying the causes of key problems and working towards resolutions with 576 a collaborative approach that considers the role of multiple knowledge systems in 577 restoration.

578
4. Success is often possible. Challenging problems have been resolved to restore Atlantic
579 salmon and we can continue to overcome them with appropriate investments into
580 research, intervention, and monitoring (especially follow-up). Roni et al. (2008)
581 emphasized that brief monitoring intervals after restoration generally challenges strong
582 conclusions about restoration success. In Norway, the parasite *Gyrodactylus salaris* has
583 been eradicated from more than 40 salmon rivers that were otherwise doomed to
584 extinction by taking swift, albeit expensive, action to preserve the genetic integrity of the

population, eradicate the parasite, and restock the population from the native gene pool.
Some populations in rivers that are too heavily degraded may not be salvageable, but
many Atlantic salmon populations are within the capacity of managers and river
stakeholders to restore with appropriate resources to identify and address underlying
causes of mortality.
Mysteries remain to be solved. Although we know a lot about Atlantic salmon, perhaps

591more than almost any other fish species, there are still mysteries remaining to be resolved592about the species and its habitat. Often, we are working to restore populations at593exceptional speed compared to the natural processes that support recolonization and594evolution required of stocks that have gone through genetic changes due to bottlenecks595(e.g. depensation, introgression). Patience and a dedication to evidence-based596implementation, scientific evaluation of success, sharing lessons of success and failure,597and supporting adaptive approaches to salmon restoration are necessary to maintain a

long-term vision of restoration for this iconic fish species.

599

598

600 Data availability

601 Data are available at Zenodo.org for the regional assessments.

602 Acknowledgments

The workshop on salmon restoration was hosted by NORCE Norwegian Research Centre with
support from the Norwegian Environmental Directorate. Input from national representatives was
crucial to score the restoration priorities by region, and we are very grateful to each respondent.
We thank Michael Ovidio, Ondrej Slavik, Martin Kesler, Jean-Luc Balgliniere, Jan Davidsen,
Pablo Caballero, Gudni Gudbergsson, Phil McGinnity, Janis Birzaks, Vytautas Kesminas, Rafal

608	Bernaś, Armin Peter, David Aldvern, and Dan Kircheis for contibutions to ranking national
609	threat levels. Lennox was supported by the Research Council of Norway (LaKES Project
610	#320726). Vollset was supported by the Research Council of Norway (PaCE Project #303301).
611 612	

613 Referenc	es
--------------	----

615	Almodóvar, A.	, Leal, S.	, Nicola, G	G.,	Hórreo, J. L.,	García-Vázo	quez, E., &	& Elvira, B.	(2020).
-----	---------------	------------	-------------	-----	----------------	-------------	-------------	--------------	---------

- 616 Long-term stocking practices threaten the original genetic diversity of the southernmost
- European populations of Atlantic salmon *Salmo salar*. Endangered Species Research, 41,303-317.
- Ayllon, F., Martinez, J. L., & Garcia-Vazquez, E. (2006). Loss of regional population structure
 in Atlantic salmon, *Salmo salar* L., following stocking. ICES Journal of Marine Science,
 63(7), 1269-1273.
- Bailey, M. M., Lachapelle, K. A., & Kinnison, M. T. (2010). Ontogenetic selection on hatchery
 salmon in the wild: natural selection on artificial phenotypes. Evolutionary Applications,
 3(4), 340-351.
- Baisez, A., Bach, J. M., Leon, C., Parouty, T., Terrade, R., Hoffmann, M., & Laffaille, P. (2011).

626 Migration delays and mortality of adult Atlantic salmon *Salmo salar* en route to

- 627 spawning grounds on the River Allier, France. Endangered Species Research, 15(3), 265-628 270.
- 629 Barlaup, B. T., Gabrielsen, S. E., Skoglund, H., & Wiers, T. (2008). Addition of spawning
- 630 gravel—a means to restore spawning habitat of Atlantic salmon (*Salmo salar* L.), and
- 631 Anadromous and resident brown trout (*Salmo trutta* L.) in regulated rivers. River
- 632 Research and Applications, 24(5), 543-550.
- Beaugrand, G., Goberville, E., Luczak, C., & Kirby, R. R. (2014). Marine biological shifts and
- 634 climate. Proceedings of the Royal Society B: Biological Sciences, 281(1783), 20133350.

635	Beaugrand, G., & Reid, P. C. (2012). Relationships between North Atlantic salmon, plankton,
636	and hydroclimatic change in the Northeast Atlantic. ICES Journal of Marine Science,
637	69(9), 1549-1562.
638	
639	Beechie, T. J., Sear, D. A., Olden, J. D., Pess, G. R., Buffington, J. M., Moir, H., & Pollock,
640	M. M. (2010). Process-based principles for restoring river ecosystems. BioScience, 60(3),
641	209-222.
642	Beechie, T., Imaki, H., Greene, J., Wade, A., Wu, H., Pess, G., & Mantua, N. (2013).
643	Restoring salmon habitat for a changing climate. River research and applications, 29(8),
644	939-960.
645	Birnie-Gauvin, K., Candee, M. M., Baktoft, H., Larsen, M. H., Koed, A., & Aarestrup, K.
646	(2018). River connectivity reestablished: Effects and implications of six weir removals on
647	brown trout smolt migration. River research and applications, 34(6), 548-554.
648	Bogue, M. B. (2001). Fishing the Great Lakes: an environmental history, 1783–1933. Univ of
649	Wisconsin Press.
650	Bolstad, G. H., Hindar, K., Robertsen, G., Jonsson, B., Sægrov, H., Diserud, O. H., &
651	Karlsson, S. (2017). Gene flow from domesticated escapes alters the life history of wild
652	Atlantic salmon. Nature Ecology & Evolution, 1(5), 1-5.
653	Boulêtreau, S., Gaillagot, A., Carry, L., Tétard, S., De Oliveira, E., & Santoul, F. (2018). Adult
654	Atlantic salmon have a new freshwater predator. PloS one, 13(4), e0196046.
655	Butler, J. R., Radford, A., Riddington, G., & Laughton, R. (2009). Evaluating an ecosystem
656	service provided by Atlantic salmon, sea trout and other fish species in the River Spey,

- 657 Scotland: the economic impact of recreational rod fisheries. Fisheries Research, 96(2-3),
 658 259-266.
- 659 Cabral, M.J. (coord.), Almeida, J., Almeida, P.R., Dellinger, T., Ferrand De Almeida, N.,
- 660 Oliveira, M.E., Palmeirim, J.M., Queiroz, L.M., Rogado, L. & Santos-Reis, M. (eds.)
- 661 (2005). Livro Vermelho dos Vertebrados de Portugal. Instituto da Conservação da
- 662 Natureza. Lisboa, 586 pp.
- Calles, E. O., & Greenberg, L. A. (2005). Evaluation of nature-like fishways for re-establishing
 connectivity in fragmented salmonid populations in the river Emån. River Research and
 Applications, 21(9), 951-960.
- 666 Champion, A. (2003) The Tyne fishery. In: Archer, D. (2003) Tyne and Tide, pp. 73-89. Daryan
 667 Press, England.
- 668 Chaput, G. (2012). Overview of the status of Atlantic salmon (Salmo salar) in the North Atlantic
 669 and trends in marine mortality. ICES Journal of Marine Science, 69, 1538-1548.
- 670 Childress, E. S., Allan, J. D., & McIntyre, P. B. (2014). Nutrient subsidies from iteroparous fish
 671 migrations can enhance stream productivity. Ecosystems, 17(3), 522-534.
- 672 Christie, M. R., Marine, M. L., French, R. A., Waples, R. S., and Blouin, M. S. 2012. Effective

size of a wild salmonid population is greatly reduced by hatchery supplementation.

- 674 Heredity, 109: 254–260
- 675 Collins, A. L., Walling, D. E., McMellin, G. K., Zhang, Y., Gray, J., McGonigle, D., &
- 676 Cherrington, R. (2010). A preliminary investigation of the efficacy of riparian fencing
- 677 schemes for reducing contributions from eroding channel banks to the siltation of
- 678 salmonid spawning gravels across the south west UK. Journal of Environmental
- 679 Management, 91(6), 1341-1349.

- 680 Cote, D., Van Leeuwen, T. E., Bath, A. J., Gonzales, E. K., & Cote, A. L. (2021). Social-
- 681 ecological management results in sustained recovery of an imperiled salmon population.682 Restoration Ecology, e13401.
- de Jong, M. V. Z., & Cowx, I. G. (2016). Long-term response of salmonid populations to habitat
 restoration in a boreal forest stream. Ecological Engineering, 91, 148-157.
- de Jong M. V. Z., Cowx, I. G., & Scruton, D. A. (1997). An evaluation of instream habitat
- 686 restoration techniques on salmonid populations in a Newfoundland stream. Regulated
- 687 Rivers: Research & Management: An International Journal Devoted to River Research
- 688 and Management, 13(6), 603-614.
- Dunfield R. W. (1985). The Atlantic salmon in the history of North America. Canadian Special
 Publication of Fisheries and Aquatic Sciences, 80pg. 181 pp
- Einum, S. & K. H. Nislow, 2011. Variation in population size through time and space: theory
- and recent empirical advances from Atlantic salmon. In Aas, Ø., S. Einum, A. Klemetsen
- 693 & J. Skurdal (eds), Atlantic Salmon Ecology. Wiley-Blackwell, Oxford: 277–298.
- Einum, S., Nislow, K. H., Reynolds, J. D., & Sutherland, W. J. (2008). Predicting population
- responses to restoration of breeding habitat in Atlantic salmon. Journal of AppliedEcology, 45(3), 930-938.
- 697 Erkinaro, J., Laine, A., Mäki-Petäys, A., Karjalainen, T., Laajala, E., Hirvonen, A., Orell, P., &
- 698 Yrjänä, T. 2011. Restoring migratory salmonid populations in regulated rivers in the
- 699 northernmost Baltic Sea area, Northern Finland biological, technical and social
- challenges. Journal of Applied Ichthyology 27 (Suppl 3): 45–52.
- Fay, C., M. Bartron, S. Craig, A. Hecht, J. Pruden, R. Saunders, T. Sheehan, and J. Trial. 2006.
- 702 Status Review for Anadromous Atlantic Salmon (*Salmo salar*) in the United States.

- Report to the National Marine Fisheries Service and U.S. Fish and Wildlife Service. 294
 pages.
- Ferchaud, A. L., Perrier, C., April, J., Hernandez, C., Dionne, M., & Bernatchez, L. (2016).
- Making sense of the relationships between Ne, Nb and Nc towards defining conservation
 thresholds in Atlantic salmon (*Salmo salar*). Heredity, 117(4), 268-278.
- Fleming, I.A., Lamberg, A. & Jonsson, B. 1997. Effects of early experience on the reproductive
 performance of Atlantic salmon. Behavioural Ecology 8:470-480.
- 710 Floyd, T. A., MacInnis, C., & Taylor, B. R. (2009). Effects of artificial woody structures on
- Atlantic salmon habitat and populations in a Nova Scotia stream. River Research and
 Applications, 25(3), 272-282.
- 713 Forseth, T., Barlaup, B. T., Finstad, B., Fiske, P., Gjøsæter, H., Falkegård, M., ... & Wennevik,
- V. (2017). The major threats to Atlantic salmon in Norway. ICES Journal of Marine
 Science, 74(6), 1496-1513.
- 716 Forseth, T., Fiske, P., Barlaup, B., Gjøsæter, H., Hindar, K., & Diserud, O. H. (2013). Reference
- point based management of Norwegian Atlantic salmon populations. Environmental
 conservation, 40(4), 356-366.
- 719 Furey, N. B., Bass, A. L., Miller, K. M., Li, S., Lotto, A. G., Healy, S. J., ... & Hinch, S. G.
- (2021). Infected juvenile salmon can experience increased predation during freshwater
 migration. Royal Society Open Science, 8(3), 201522.
- Gauld, N.R., Campbell, R. & Lucas, M.C. (2013) Reduced flows impact salmonid smolt
- emigration in a river with low-head weirs. Science of the Total Environment 458-460,
- 724 435-443. DOI: 10.1016/j.scitotenv.2013.04.063.

- Giller, P. S. (2005). River restoration: seeking ecological standards. Editor's introduction. Journal
 of Applied Ecology, 42(2), 201-207.
- Hagen, I.J., Jensen, A.J., Bolstad, G.H. et al. Supplementary stocking selects for domesticated
 genotypes. Nat Commun 10, 199 (2019).
- Hagen, IJ, Ugedal, O., Jensen, AJ, Lo, H., Holthe, E., Bjøru, B., ... & Karlsson, S. (2020).
- 730 Evaluation of genetic effects on wild salmon populations from stock enhancement. ICES731 Journal of Marine Science.
- Hellström, G., C. Nilsson, S. Westbergh, D. Palm, K. Leonardsson, D. Holmqvist, S. Agren, J.
- Gardestrom, A. Alanara, and H. Lundqvist. (2019). Restoring the Vindel River, Sweden
- for Atlantic salmon and brown trout. Pages 125-156 in C.C. Krueger, W.W. Taylor, and
- 735 S. Youn, editors. From Catastrophe to recovery: stories of fishery management success.

American Fisheries Society, Bethesda, Maryland.

- Hesthagen, T., Larsen, B. M., & Fiske, P. (2011). Liming restores Atlantic salmon (*Salmo salar*)
 populations in acidified Norwegian rivers. Canadian Journal of Fisheries and Aquatic
 Sciences, 68(2), 224-231.
- Hobbs, R. J., & Harris, J. A. (2001). Restoration ecology: repairing the earth's ecosystems in the
 new millennium. Restoration ecology, 9(2), 239-246.

Hogg, R. S., Coghlan Jr, S. M., Zydlewski, J., & Gardner, C. (2015). Fish community response

- to a small-stream dam removal in a maine coastal river tributary. Transactions of theAmerican Fisheries Society, 144(3), 467-479.
- Horreo, J. L., De La Hoz, J., Machado-Schiaffino, G., Pola, I. G., & Garcia-Vazquez, E. (2011a).

746 Restoration and enhancement of Atlantic salmon populations: what we have learned from

747 North Iberian rivers. Knowledge and Management of Aquatic Ecosystems, (402), 23.

748	Horreo, J. L., Machado-Schiaffino, G., Griffiths, A. M., Bright, D., Stevens, J. R., & Garcia-
749	Vazquez, E. (2011a). Atlantic salmon at risk: apparent rapid declines in effective
750	population size in southern European populations. Transactions of the American
751	Fisheries Society, 140(3), 605-610.
752	Huntsman, A. G. (1944). Why did Ontario salmon disappear. Transactions of the Royal Society
753	of Canada, 68, 82-102.
754	ICES. (2017b). Report of the Working Group on North Atlantic Salmon (WGNAS). 29 Mars -7
755	April 2017. Copenhagen, Denmark. ICES CM 2017/ACOM:20. 296 pp.
756	ICES. (2017a). Report of the Working Group on Effectiveness of Recovery Actions for Atlantic
757	Salmon (WGERAAS), 9–13 November 2015, ICES Headquarters, Copenhagen,
758	Denmark. ICES CM 2015/SSGEPD:03. 115 pp.
759	ICES. (2020). Working Group on North Atlantic Salmon (WGNAS). ICES Scientific Reports.
760	2:21. 358 pp. http://doi.org/10.17895/ices.pub.5973
761	IKSR. (2020). Bericht über die Ergebnisse der IKSR-Projektgruppe "Oberrhein" 2015-2019.
762	Bericht Nr. 262. Internationale Kommission zum Schutz des Rheins (IKSR), Koblenz. 33
763	р.
764	Johnsen, B. O., A. J. Jensen, F. Økland, A. Lamberg and E. B. Thorstad. 1998. The use of radio
765	telemetry for identifying migratory behavior in wild and farmed Atlantic salmon
766	Jonsson, B., Jonsson, N., & Albretsen, J. (2016). Environmental change influences the life
767	history of salmon Salmo salar in the North Atlantic Ocean. Journal of Fish Biology,
768	88(2), 618-637.

769	Jonsson, N., Jonsson, B., & Hansen, L. P. (1998). The relative role of density-dependent and
770	density-independent survival in the life cycle of Atlantic salmon Salmo salar. Journal of
771	Animal Ecology, 67(5), 751-762.
772	Jutila, E. & Pruuki, V. (1988). The enhancement of the salmon stocks in the Simojoki and
773	Tornionjoki rivers by stocking parr in the rapids. Aqua Fennica, 18, 93-99.
774	Koed, A., Birnie-Gauvin, K., Sivebæk, F., & Aarestrup, K. (2020). From endangered to
775	sustainable: Multi-faceted management in rivers and coasts improves Atlantic salmon
776	(Salmo salar) populations in Denmark. Fisheries Management and Ecology, 27(1), 64-76.
777	Koed, A., Baktoft, H., & Bak, B. D. (2006). Causes of mortality of Atlantic salmon (Salmo
778	salar) and brown trout (Salmo trutta) smolts in a restored river and its estuary. River
779	research and applications, 22(1), 69-78.
780	Korsu, K., Huusko, A., Korhonen, P. K., & Yrjänä, T. (2010). The potential role of stream
781	habitat restoration in facilitating salmonid invasions: a habitat-hydraulic modeling
782	approach. Restoration Ecology, 18, 158-165.
783	Lenders, H. J. R., Chamuleau, T. P. M., Hendriks, A. J., Lauwerier, R. C. G. M., Leuven, R. S.
784	E. W., & Verberk, W. C. E. P. (2016). Historical rise of waterpower initiated the collapse
785	of salmon stocks. Scientific Reports, 6(1), 1-9.
786	Lennox, R. J., Eliason, E. J., Havn, T. B., Johansen, M. R., Thorstad, E. B., Cooke, S. J., &
787	Uglem, I. (2018). Bioenergetic consequences of warming rivers to adult Atlantic salmon
788	Salmo salar during their spawning migration. Freshwater Biology, 63(11), 1381-1393.
789	Lundqvist, H., Rivinoja, P., Leonardsson, K., & McKinnell, S. (2008). Upstream passage
790	problems for wild Atlantic salmon (Salmo salar L.) in a regulated river and its effect on

- the population. In Fish and Diadromy in Europe (ecology, management, conservation)
 (pp. 111-127). Springer, Dordrecht.
- 793 MacInnis, C., Floyd, T. A., & Taylor, B. R. (2008). Large woody debris structures and their
- influence on Atlantic salmon spawning in a stream in Nova Scotia, Canada. North
- American Journal of Fisheries Management, 28(3), 781-791.
- 796 Marttila, M., Louhi, P., Huusko, A., Vehanen, T., Mäki-Petäys, A., Erkinaro, J., ... & Muotka, T.
- 797 (2019). Synthesis of habitat restoration impacts on young-of-the-year salmonids in boreal
 798 rivers. Reviews in Fish Biology and Fisheries, 29(3), 513-527.
- 799 Maynard, G. A., Kinnison, M. T., & Zydlewski, J. D. (2017). Size selection from fishways and
- potential evolutionary responses in a threatened Atlantic salmon population. River
 Research and Applications, 33(7), 1004-1015.
- 802 McGinnity, P., Jennings, E., DeEyto, E., Allott, N., Samuelsson, P., Rogan, G., ... & Cross, T.
- 803 (2009). Impact of naturally spawning captive-bred Atlantic salmon on wild populations:
- 804 depressed recruitment and increased risk of climate-mediated extinction. Proceedings of

the Royal Society B: Biological Sciences, 276 (1673), 3601-3610.

- 806 Miettinen, A., Palm, S., Dannewitz, J., Lind, E., Primmer, C. R., Romakkaniemi, A., ... &
- 807 Pritchard, V. L. (2021). A large wild salmon stock shows genetic and life history
- differentiation within, but not between, rivers. Conservation Genetics, 22(1), 35-51.
- 809 Miller, K. M., Teffer, A., Tucker, S., Li, S., Schulze, A. D., Trudel, M., ... & Hinch, S. G. (2014).
- 810 Infectious disease, shifting climates, and opportunistic predators: cumulative factors
- 811 potentially impacting wild salmon declines. Evolutionary Applications, 7(7), 812-855.

812	Mills, K.E., Pershing, A., Sheehan, T.F. and Mountain, D. 2013. Climate and ecosystem linkages
813	explain widespread declines in North American Atlantic salmon populations. Global
814	Change Biology. 19: 3046-3061.
815	Milner, N. J., J. M. Elliott, J. D. Armstrong, R. Gardiner, J. S. Welton &M. Ladle, 2003. The
816	natural control of salmon and trout populations in streams. Fisheries Research 62: 111-
817	125.
818	Myers, R. A., Levin, S. A., Lande, R., James, F. C., Murdoch, W. W., & Paine, R. T. (2004).
819	Hatcheries and endangered salmon. Science, 303: 5666, 1980-1980.
820	Nettle, R. (1857). The Salmon Fisheries of the St. Lawrence and its Tributaries. Printed by J.
821	Lovell (1857), p. 144
822	Nicola, G. G., Elvira, B., Jonsson, B., Ayllón, D., & Almodóvar, A. (2018). Local and global
823	climatic drivers of Atlantic salmon decline in southern Europe. Fisheries Research, 198,
824	78-85.
825	O'Connell, M. F., Reddin, D. G., Amiro, P. G., Caron, F., Marshall, T. L., Chaput, G., &
826	Cairns, D. K. (1997). Estimates of conservation spawner requirements for Atlantic
827	salmon (Salmo salar L.) for Canada. DFO Can. Stock. Assess. Sec. Res. Doc, 97, 100.
828	Otero, J., Jensen, A. J., L'Abée-Lund, J. H., Stenseth, N. C., Storvik, G. O., & Vøllestad, L. A.
829	(2011). Quantifying the ocean, freshwater and human effects on year-to-year variability
830	of one-sea-winter Atlantic salmon angled in multiple Norwegian rivers. PLoS One, 6(8),
831	e24005.
832	Palmer, M. A., Bernhardt, E. S., Allan, J. D., Lake, P. S., Alexander, G., Brooks, S., & Galat,
833	D. L. (2005). Standards for ecologically successful river restoration. Journal of Applied
834	Ecology, 42(2), 208-217.

835	Palstra, F. P., O'Connell, M. F., & Ruzzante, D. E. (2007). Population structure and gene flow
836	reversals in Atlantic salmon (Salmo salar) over contemporary and long-term temporal
837	scales: Effects of population size and life history. Molecular Ecology, 16, 4504–4522.
838	Pedersen, M. L., Andersen, J. M., Nielsen, K., & Linnemann, M. (2007). Restoration of Skjern
839	River and its valley: project description and general ecological changes in the project
840	area. Ecological Engineering, 30(2), 131-144.
841	Perrier, C., April, J., Cote, G., Bernatchez, L., & Dionne, M. (2016). Effective number of
842	breeders in relation to census size as management tools for Atlantic salmon conservation
843	in a context of stocked populations. Conservation genetics, 17(1), 31-44.
844	Perrier, C., Evanno, G., Belliard, J., Guyomard, R., & Bagliniere, J. L. (2009). Natural
845	recolonization of the Seine River by Atlantic salmon (Salmo salar) of multiple origins.
846	Canadian Journal of Fisheries and Aquatic Sciences, 67(1), 1-4.
847	Perrier, C., Le Gentil, J., Ravigne, V., Gaudin, P., & Salvado, J. C. (2014). Origins and genetic
848	diversity among Atlantic salmon recolonizing upstream areas of a large South European
849	river following restoration of connectivity and stocking. Conservation Genetics, 15(5),
850	1095-1109.
851	Renkawitz, M. D., Sheehan, T. F., Dixon, H. J., & Nygaard, R. (2015). Changing trophic
852	structure and energy dynamics in the Northwest Atlantic: implications for Atlantic
853	salmon feeding at West Greenland. Marine Ecology Progress Series, 538, 197-211.
854	Rivinoja, P., McKinnell, S., & Lundqvist, H. (2001). Hindrances to upstream migration of
855	Atlantic salmon (Salmo salar) in a northern Swedish river caused by a hydroelectric
856	power-station. Regulated Rivers: Research & Management: An International Journal
857	Devoted to River Research and Management, 17(2), 101-115.

858	Romakkaniemi, A., Perä, I., Karlsson, L., Jutila, E., Carlsson, U., & Pakarinen, T. (2003).
859	Development of wild Atlantic salmon stocks in the rivers of the northern Baltic Sea in
860	response to management measures. ICES Journal of Marine Science, 60(2), 329-342.
861	Roni, P., Beechie, T. J., Bilby, R. E., Leonetti, F. E., Pollock, M. M., & Pess, G. R. (2002). A
862	review of stream restoration techniques and a hierarchical strategy for prioritizing
863	restoration in Pacific Northwest watersheds. North American Journal of Fisheries
864	Management, 22(1), 1-20.
865	Roni, P., Hanson, K., & Beechie, T. (2008). Global review of the physical and biological
866	effectiveness of stream habitat rehabilitation techniques. North American Journal of
867	Fisheries Management, 28(3), 856-890.
868	Ryman, N., & Laikre, L. (1991). Effects of supportive breeding on the genetically effective
869	population size. Conservation Biology, 5(3), 325-329.
870	Saltveit, S. J., Brabrand, Å., & Brittain, J. E. (2019). Rivers need floods: Management lessons
871	learnt from the regulation of the Norwegian salmon river, Suldalslågen. River Research
872	and Applications, 35(8), 1181-1191.
873	Sandodden, R., Brazier, M., Sandvik, M., Moen, A., Wist, A. N., & Adolfsen, P. (2018).
874	Eradication of Gyrodactylus salaris infested Atlantic salmon (Salmo salar) in the Rauma
875	River, Norway, using rotenone. Management of Biological Invasions, 9(1), 67.
876	Schneider, C., Laizé, C. L. R., Acreman, M. C., & Florke, M. (2013). How will climate change
877	modify river flow regimes in Europe? Hydrology and Earth System Sciences, 17(1), 325-
878	339.

879	Sigourney, D. B., Zydlewski, J. D., Hughes, E., & Cox, O. (2015). Transport, dam passage, and
880	size selection of adult Atlantic Salmon in the Penobscot River, Maine. North American
881	Journal of Fisheries Management, 35(6), 1164-1176.

- 882 Skoglund, H., Vollset, K. W., Lennox, R., Skaala, Ø., & Barlaup, B. T. (2021). Drift diving: A
- quick and accurate method for assessment of anadromous salmonid spawningpopulations. Fisheries Management and Ecology.
- 885 Sundt-Hansen, L. E., Hedger, R. D., Ugedal, O., Diserud, O. H., Finstad, A. G., Sauterleute, J.
- 886 F., ... & Forseth, T. (2018). Modelling climate change effects on Atlantic salmon:
- 887 Implications for mitigation in regulated rivers. Science of the total environment, 631,888 1005-1017.
- 889 Thorstad, E.B., Bliss, D., Breau, C., Damon-Randall, K., Sundt-Hansen, L.E., Hatfield, E.M.,
- Horsburgh, G., Hansen, H., Maoiléidigh, N.Ó., Sheehan, T. and Sutton, S.G. (2021).
- 891 Atlantic salmon in a rapidly changing environment—Facing the challenges of reduced
- 892 marine survival and climate change. Aquatic Conservation: Marine and Freshwater893 Ecosystems.
- Kärcher, O., Flörke, M., & Markovic, D. (2021). Different life stage, different risks: Thermal
 performance across the life cycle of *Salmo trutta* and *Salmo salar* in the face of climate
 change. Ecology and Evolution.
- Todd, C. D., Friedland, K. D., MacLean, J. C., Hazon, N., & Jensen, A. J. (2011). Getting into
 hot water? Atlantic salmon responses to climate change in freshwater and marine
 environments. In Atlantic Salmon Ecology (Aas Ø et al. eds.), pp. 409-443. Wiley-
- 900 Blackwell.

901	Tummers, J.S.	, Hudson, S. &	Lucas, M.C.	(2016)	. Evaluating t	the effectiveness	of restoring

- 902 longitudinal connectivity for stream fish communities: towards a more holistic approach.
 903 Science of the Total Environment, 569-570, 850-860.
- Webster, D.W. (1982). Early history of Atlantic salmon in New York. New York Fish and Game
 Journal, 29, 26-44.
- WWF (2001). The Status of Wild Atlantic Salmon: A River by River Assessment. (28 October
 2009; http://assets.panda.org/downloads/salmon2.pdf)
- 908 Young, K. A. (2017). Approaches to minimising unintended negative consequences to wild
- Atlantic salmon populations from hatchery and stocking activities. In: Report of a
- 910 Theme-based Special Session of the Council of NASCO, edited by Chaput, G., Knight,
- 911 P., Russell, I., Sivertsen, A., Hutchinson, P. and Forero Segovia, S. L. NASCO Council
- 912 document CNL(17)61. 116pp
- 913 Zimmerman, M. S., & Krueger, C. C. (2009). An ecosystem perspective on re-establishing native
- 914 deepwater fishes in the Laurentian Great Lakes. North American Journal of Fisheries
- 915 Management, 29(5), 1352-1371.

917 Tables

918 Table 1. Glossary of key terms

919	

Term	Definition	Example
Intervention	Any action taken as part of a restoration	Addition of spawning gravel is an
	program that is intended to have a positive	intervention that may be used by
	effect on the salmon biological reference	managers to improve conditions
	point. Synonymous with a treatment,	for salmon spawning in a river.
	manipulation, or management action in a	
	river.	
Biological	A quantitative measure of a salmon	Before and after addition of
reference point	population, against which success of a	spawning gravel to a river, the
	restoration intervention is to be measured,	census number of adult salmon is
	relative to a baseline established prior to	determined by spawning count to
	intervention. A biological reference point	evaluate whether the intervention
	may be the number of spawners, the	could be related to an increase in
	number of eggs deposited by females, or	the census number, relative to a
	the effective population size.	biological reference point
Hatchery	A facility for controlled mating of	Broodstock male and female
	broodstock salmon taken from the river	salmon are stored in hatchery
	(or sometimes a foreign stock) where	tanks until gonads are ripe and
	eggs are planted in the gravel or reared to	then stripped of gametes to
	fry, parr, or smolt before release.	produce F1 offspring.
Gene bank	A specialized genetic repository and	During a concerning decline in a
	reproductive facility for evolutionarily	salmon population, genetic
	enlightened artificial rearing of salmon.	material is stored in a gene bank in
	Gene banks harvest and store genetic	case the population falls below a
	material from salmon and supplement it	conservation limit. Gene banks
	annually to maintain genetic diversity.	are prudent to have in case of
	Offspring are produced from carefully	emergency and can be used to
	selected genetic combinations of eggs and	resupply a struggling population.
	sperm to limit inbreeding depression and	
	maximize genetic diversity. Gene banks	
	may never be used but maintained if	
Conconnection	needed for replenishing threatened stocks.	When a colmon nonviotion falls
Conservation	A threshold used to establish whether a	When a salmon population falls
limit	population is threatened with extinction. There are many possible conservation	below the biological reference point, continued declines will
	limits that may be used based on metrics	1 '
	such as spawning stock, eggs deposited,	eventually surpass the conservation limit that is used to
	effective population size, etc. The limits	trigger some action. The
	may be conservative or liberal depending	conservation limit should be
	on the management risk tolerance level.	conservation mint should be conservative enough not to
	The conservation limit lies somewhere	overreact to stochasticity, but not
	below the biological reference point.	too conservative such that the
	below the biblogical feletence point.	too conservative such that the

		population has approached
		extinction too rapidly to intervene.
Harvestable	A harvestable surplus is a number or	Level 3 success is achieved when
surplus	biomass of salmon beyond the biological	the population exceeds the
	reference point that can be harvested	biological reference point and
	while allowing the population to still	there is a harvestable surplus
	achieve replacement.	available to fisheries.

921 Table 2. A review of Atlantic salmon restoration papers identified by a structured literature search 922 and expert review revealed 49 relevant studies covering 95 rivers. Papers were graded based on 923 the levels of success that we derived, from Level 1 to Level 3, or failure (0). Uncertainties are left 924 blank. Cases are sorted from Level 3 to Level 1, uncertainties, and then failures, with first author 925 alphabetical organization within success categories.

Article	Category	Problem	Intervention	Result	Explanation	Succe ss	Populati ons (N)
				Level 3	High		
				Success;	spawning		
				Juvenile	success (egg		
		Regulation		production	survival		
		of rivers		can be	>80%), but		
		impacts		enhanced by	gravel		
Barlaup		spawning	Addition of	adding gravel	displacemen		
et al.	Habitat and	habitats and	spawning	to supply-	ts due to		
2008	water quality	recruitment	gravel	limited rivers	floods	3	3

							I
		Salmon					
		population					
		almost					
		became					
		extinct					
		(negligible					
		catches	Industrial				
		~1940 -	decline &		Predominan		
		~1940 - ~1970) due	cleanup of		t cause of		
			industrial		strong		
		to poor	effluent.		•		
		water			recovery is concluded		
		quality in	Interceptor				
		estuary and	sewer		as due to		
		lower river	system and		pollution		
		due to	sewage	1	abatement		
		untreated	treatment	Level 3	and		
		human	for nearly	Success; The	treatment		
		sewage	1M people	Tyne is now	actions. In		
		(BOD	in lower	the best	early years		
		impact, low	Tyne online	English	of stocking,		
		O2) and due	1980.	salmon river	returning		
		to intense	Juvenile	with declared	hatchery		
		industrial	stocking	rod catch of	fish		
		pollution	(160K-360K	adult salmon	contributed		
		–	fry/parr per	peaking at	20%		
		cokeworks	year)	5630 in 2011.	spawning,		
		etc (esp.	commences	Adult river	wild 80%.		
		ammonia,	due to	stock est.	Declined as		
Champi	Habitat and	phenols,	Kielder dam	7000-18000	recolonizati		
on 2003	water quality	cyanide)	in 1981.	2004-2016.	on occurred.	3	1
					Increase of		
					salmon		
					density and		
				Level 3	biomass		
				success;	after		
		Salmon	Addition of	Sustained	structure		
		habitat	boulder	improvement	addition and		
		complexity	clusters, V-	in salmon	remaining		
de Jong		lost in a	dams, and	abundance	high levels		
et al.	Habitat and	Newfoundla	half-log	across 21	20 years		
2017	water quality	nd river	covers	years	thereafter	3	1

Fjeldsta d et al. 2012	Connectivity and habitat quality	Habitat fragmentati on, siltation, and habitat	Enhanced connectivity and improved sediment conditions after removal of two weirs	Level 3 success. Spawning sites were re- created, pike and cyprinids were displaced, and juvenile density increased		3	1
Floyd et al. 2009	Habitat and water quality	Decreased abundance of salmon and degraded habitats	Addition of artificial woody structures	Level 3 Success; Higher spawning densities in reaches with addition of woody debris	Presumably higher spawning densities improved overall salmon production	3	1
Hesthag en et al. 2011	Habitat and water quality	Acidification of rivers	Liming program	Level 3 Success; Increasing fish density, liming as important restoration factor of formerly acidified Norwegian rivers	more than 20 years of liming suggested for successful restoration of self- sustaining salmon populations in Norway	3	13

		Declining populations	Habitat restorations , spawning ground additions, weir removals, fishing regulations/ bans population	Level 3 Success; Rehabilitation of salmon populations with significant	Success through multi- faceted managemen t and focusing on several		
Koed et	Habitat and	of Atlantic salmon in	genetics and barrier	increase in population	problems simultaneou		
al. 2020	water quality	Denmark	removals	densities	sly	3	4
MacInni s et al. 2008	Habitat and water quality	Habitat degradation seems to be driving poor salmon abundance	Create pools and shelter with woody debris	Level 3 Success; exponential increase in spawning with sustained high levels in subsequent years		3	1
Saltveit et al. 2014	Habitat and water quality	Water pollution and extirpation of Atlantic salmon in Akerselva, Norway	Water quality improveme nt program via limitation of industrial discharges, pollution, and urban runoff into the river	Level 3 Success; improved water quality and return of Atlantic salmon and sea trout to lower reaches	Further ecological improvemen t is limited due to several obstacles in urban environmen t	З	1

Calles et al. 2005	Connectivity and habitat quality	Power plant restricting passability	Constructio n of nature- like bypass channels	Level 1 Success; salmon ascended the fishway to colonize upstream and descended as kelts to recondition at sea. Recolonizatio n was, however, slower than expected	90-100% passage of fish that entered the fishways	1	1
De Jong et al. 1997	Habitat and water quality	Decline in salmon abundance due to environment al perturbation s	Three types of habitat improveme nts: boulder clusters, V- dams, and half-log covers and evaluation	Level 1 Success; restoration led to increased habitat heterogeneity , habitat complexity, and salmon production and decreased competition	Boulder clusters were most effective as they increased densities of 0+, 1+ and 3+ juveniles, but also V- dams and half-log covers positively affected salmons	1	1
Hogg et al. 2015	Connectivity and habitat quality	River connectivity reduced by dams and salmon population declining	Addition of new habitat following dam removal	Level 1 Success; Increased density, biomass and diversity of fish assemblage upstream of dam removal	Multiple age classes of juvenile salmon abundant at all test sites after dam removal	1	1

Marttila et al. 2019	Habitat and water quality	Channelizati on and removal of boulders reduced habitat complexity in 28 Finnish rivers	Instream structure added and connectivity to side channels restored	Level 1 success; Young-of-the- year salmon in increasing	Challenging to ascribe change in YOY densities directly to restoration efforts, but a good sign	1	28
Perrier et al.	Stocking/ Fish	Erosion of genetic diversity in French salmon populations caused by fragmentati	Restoration of connectivity	Level 1 Success; recolonizatio n and reproduction of upstream areas from downstream	majority of genotyped individuals in recolonized sites originated from downstream areas, but also prominent share from more distant sites		
2014	Passage	on	and stocking	habitats	or hybrids	1	1

T	l						
Saltveit et al	Fish passage/ hydropower/st	River Suldalslagen was regulated for hydropower, resulting in flow reduction, sedimentati on, and	New flow regime implemente d to offset changes caused by regulation, stocking based on gene bank	Level 1 success reached; Increase of catches of salmon >7kg since 2010, but fishing and harvest based on	No pre regulation data on fish catches known, hatchery fish contributed to increase of large salmon catches, no conclusion possible if goal of sustaining naturally reproducing wild large salmon has been		
2019	ocking	carpet moss	method Rotenone to kill salmon	stocking.	achieved Reintroducti on of native stocks in controlled removal of damaging invasive species is an extreme but effective	1	1
Sandod den et	Biological	Gyrodactylu	stock, eliminate invasive parasite, followed by reintroducti on of native	Level 1 Success: Gyrodactylus was eliminated and salmon were	measure when stocks face catastrophic mortality. Level 3 is supposed to		

Collins et al. 2010	Habitat and water quality	Excessive sedimentati on due to eroding channel banks	Evaluation of riparian fencing schemes to reduce siltation of salmon spawning gravel	Uncertain; Riparian fencing schemes are recommende d to reduce spawning site siltation, but no measure of effects on salmon production directly	Findings based on limited sample material and sample period, need follow up on how salmon production is affected	NA	1
Guyette et al. 2013	Habitat and water quality	Decline in abundance and condition of juvenile salmon	Carcass analog nutrient addition with optimized timing for juvenile Atlantic salmons in headwater streams	Uncertain; Increased growth of juvenile salmon and potential increased overwinter survival and younger smolt age, but unclear how this influences overall population production	Heavier individual mass and longer standard length in juvenile salmon at treatment sites compared to control reaches for 4 months after treatment	NA	1
Hill et al. 2019	Fish passage/ hydropower	Migration of Lake Champlain salmon disconnecte d by dam	Removal of Willsboro dam in Boquet River, NY	Uncertain; Rapid improvement s in habitat quality after dam removal	Habitat improved, remains to be seen whether salmon production improves	NA	1

Hvidste n & Johnsen 1992	Habitat and water quality	River Soya, Norway, was canalized for agricultural purposes which affected the natural dynamic of sediment transport, reduced sediment granulometr y and decreased the habitat quality for salmon juveniles.	Several small weirs were built on these rivers, covering the riverbank and entire river bottom with blasted stones.	Uncertain; population effect unclear. Restoration of the river bottom with blasted stones provided salmon with more substrate spaces. Densities of trout increased after the river bank was covered with stones.	Sediments transported downstream from the canalized river stretch decreased the densities of juvenile salmon and trout.	0	1	
Izzo et al. 2016	Fish passage/ hydropower	River connectivity reduced by dams and salmon population declining	Dam removal and installation of fish lifts	Uncertain; salmon easily passed sites where dams were removed but experienced prolonged delays at the fish lift	Need to investigate why passage was so poor at the fish lift	NA	1	L

ji	Fish passage/ hydropower/st ocking	Historically renowned major salmon rivers have been harnessed for hydropower for 40–60â€fy ears without provisions for fish passage.	Hydropower companies are obliged to compensate for the losses caused by dam construction by annual fish releases. Also, fishways were constructed in two rivers and more are planned to restore river connectivity	Uncertain; Successful first years of the fishway operation with 150â€"500 salmon and trout annually entering the river provoked public pressure for restoring runs of fish. no actual results of the restoration success are available yet, although background investigations and pilot studies have been carried out or are underway.	Projects have proved successful in bringing together authorities, hydropower companies, local organization s, and expertise from various institutions for a joint effort to tackle these multifaceted and multidiscipli nary problems. Short-term benefits of stocking could not be extrapolated to restoration success (i.e. without further	ΝΑ	1
Jutila and Pruuki 1988	Stocking	Decreasing wild production in Simojoki River	Stocking parr		further stocking) from the data presented	1	1
1300				measurea	presenteu	-	-

Kenned y et al. 2012	Stocking	Decline of escapement	Stocking of 0+ fry to maintain recruitment near historical levels. Habitat degradation noted but not addressed.	Uncertain; population effects unclear. Stocking of both unfed and fed-fry contributed to smolt production	Differences in the biological characteristi cs of wild vs. stocked salmon were noted and the fitness of offspring was questioned by authors. The long- term effect was not examined.	0	1
Kenned y et al. 2014	Habitat and water quality	Salmon disappearing in Northern Ireland	Installation of flow deflectors and boulder addition	Uncertain; increased juvenile salmon habitat with greater biomass of salmon on improved sites but fry recruitment unchanged	no change in overall salmon fry recruitment index,, around 30% of boulders got buried by fine sediments and limited the efficacy	NA	1
McCart hy et al. 2009	Habitat and water quality	Loss of spawning habitats due to hydropower developmen t	Constructio n of a fish habitat compensati on channel	Uncertain; population effects unclear. Successful mitigation of habitat loss may lead to improved salmon populations	Survey showed good habitat stability, a typical mean standing stock and verified spawning	NA	1

	1	NA	Positive effects on early life stages but does not report effects on spawning production	Uncertain; Quintupling of macroinverte brate biomass compared to reference sites, faster growth of juvenile salmon and earlier smolt age	Simulation of Atlantic salmon carcasses by deposition at the end of spawning period	Loss of migratory fish reduced nutrient subsidies and resulted in oligotrophic ation	Habitat and water quality	McLenn an et al. 2019
Pederse n et al.Channelisati not attVincertain; Enhanced biodiversity attributable to higher quality habitat. Total predation mortality increased dueCormorants atrived in to atrived in to the newlyPederse n et al.Chaining, high nutrientriver with meadows and shallowSalmon the predation the newlyPederse n et al.Habitat andloading toand shallowby hatchery			arrived in the newly restored area and increased the predation	Enhanced biodiversity attributable to higher quality habitat. Total predation mortality increased due to colonization of birds, but overall salmon population confounded	of the river valley into a meandering river with wetlands, meadows	on, artificial draining, high nutrient	Habitat and	

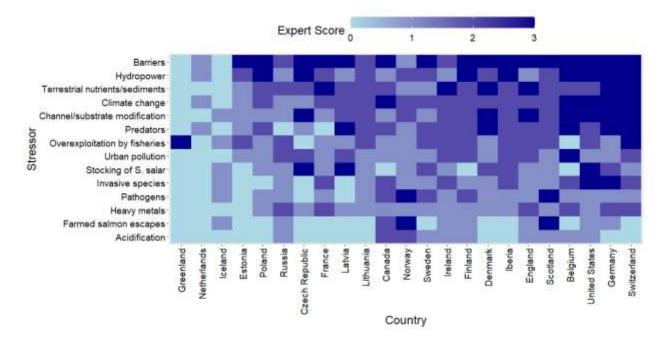
		Migration barriers,					
		canalization		Uncertain;			
		and		low number			
		degrading		of spawners			
		water	No direct	in a big river;			
		quality in	intervention	Natural	Video		
		River Seine led to	s to reestablish	recolonizatio	counting of salmon in		
		extinction of	Atlantic	n from long- distance	2008		
		Atlantic	salmon but	straying and	resulted in		
		salmon in	progressive	nearby	162		
Perrier		the Seine	remediation	stocked	individuals		
et al.	Habitat and	River,	of water	Atlantic	recolonizing		
2010	water quality	France	quality	salmon	the Seine	NA	1
					_		
					Dense colonisation		
					of suitable		
					habitats,		
					promising		
			Evaluating		survival and		
			the		growth		
			potential of	Uncertain;	rates,		
		Extinction of	salmon restoration	Promising results on re-	smoltificatio n and		
		Atlantic	via smolt	establishmen	migration;		
		salmon due	production	t of salmon	but water		
		to pollution,	in	population,	quality and		
Philippa		weirs, and	tributaries,	but remaining	fish passes		
rt et al.		overexploita	experimenta	problems to	need to be		
1994	Stocking	tion	l stocking	be solved	improved	NA	1

		Regulation of rivers impacting	Habitat adjustment, building of rearing channel system, stocking, introducing dead organic	Uncertain; increased density of macrobentho s and	Preliminary results given at early		
		survival and	material to	promising	stage of		
Raastad		growth of	enrich	survival rate	project; 30%		
et al. 1993	Habitat and	young salmon	benthic fauna	of young salmon	survival of 1+ salmon	NA	1
1332	water quality	Saimon	idulid	Saimon	11 20111011	INA	1
Saavedr a- Nieves		Decline of salmon abundances in Ulla river due to fragmentati on and low	Stocking actions, obstacle removal and	Uncertain; Based on long-term data set (1992 - 2018) from fish trap, a gradual population increase to the early 1990s was observed, then remained relatively stable until 2007 and increased thereafter due to an increase in the number of wild salmon	Increase in the number of returning salmons in the Ulla River achieved over this period is due to salmon stocking, the connectivity restoration in the river and to a higher marine		
et al.	Stocking/ Fish	marine	fishway	entering the	survival		1
2020	Passage	survival	construction	river	rate.	0	1

Bacon et al. 2015	Stocking	Decline of adult returns between 1966-1999. Presumed low over- winter ova survival and high within- cohort competition	Stock- recruit modelling of 33-year dataset to investigate whether ova-stocking program led to more smolts being produced	Failure; ova- stocking failed to increase freshwater production	Separated effects of natural production and ova- stocking intervention s using native stock fish.	NA	NA	
Bailey et al. 2010	Stocking	Density dependent effects on populations	Stocking and tagging of fry and assessment of growth, survival, and movement in relation to density	Failure; Level 1 not reached. Density dependent effects were apparent on growth but not movement or mortality	Additional research needed to understand density effects of stocking	0		1
Barlaup et al. 2009	Stocking	Decline in salmon due to acidification and hydropower developmen t	Roe planting, restoration of spawning habitats, limited fishing for salmon	Failure; Level 1 Not reached Increased natural recruitment, but further measures needed for self maintaining population	Only about 10 % natural recruitment	0		1

Bolsche r et al. 2013	Habitat and water quality, stocking	Extinction of Atlantic salmon in river Rhine	Rhine Action Plan for improveme nt of the Rhine river ecosystem and to reestablish salmon and sea trout	Failure; Level 1 not reached reintroductio n is threatened due to climate change and warming water temperature	Migration of Rhine salmon reduces above 23 ° C, projections prognose up to 100 days per year of exceeding this temperature	0	1
Brunsdo n et al. 2017	Stocking	Releases of hatchery fish yielding density- dependent mortality	Experimenta I comparison of growth between two stocking practices- releasing fish in groups or dispersing them along the river	Failure; No clear benefits of spreading out releases of hatchery stockings	Mobility in fish that were clump- stocked was greater than expected	0	1
Carr et al. 2004	Stocking	Decline in abundance of wild salmon	Releasing captive reared adult salmon to spawn	Failure; Level 1 not reached Method not effective, released adults didn't move upwards to spawning sites	Very few salmon fry were found the next year and these didn't seem to be offspring of the released salmons	0	1

Donadi et al. 2019	Habitat and water quality	Loss of exogenous shelter from wood affecting production of Atlantic salmon in rivers	Addition of large woody debris in river	Failure; No correlation between salmon abundance and woody debris in >3000 streams in Sweden	Stream width most important driver for salmon abundance	0	1
2019		110013	TIVET	Sweden	abunuance	0	
Dymond et al. 2019	Stocking	Extinction of Lake Ontario Atlantic salmon in 1800s	Release of hatchery- reared salmon	Failure; Small increase in salmon returns supported by hatchery, level 1 not reached	Failure to reestablish self- sustaining salmon population from hatchery releases	0	1
Glover et al.		Conservatio n stocking ongoing in Girnock Burn, Scotland to compensate for poor	Conservatio	Failure; No overall benefit of	long time monitoring was used for the comparison of natural population regulation and stocking managemen t and showed that conservatio n stocking was not		
2018	Stocking	production	n stocking	stocking	effective	0	1


Horreo et al. 2011	Habitat and water quality	Decline in abundance of salmon	Foreign stocking, supportive breeding, and restoration of habitat connectivity	Failure; Level 1 not reached . Habitat restoration was promising, but supportive breeding and foreign stocking had null or negative impacts on the population	High abundance increase after barrier removal, lower than 10% abundance increase due to supportive breeding, and adverse effects of foreign stocking on local adaptability	0	1
Koed et al. 2006	Habitat and water quality	Channelisati on, degraded habitats, forming of lake caused by subsiding soils	Restoration project with removal of dykes and meandering of river, monitoring the mortality of smolt before and after project	Failure; level 1 not reached Naturalizatio n of the river doubled the smolt mortality owing to bird predation. An example of unintended consequences	Newly formed lake was prime habitat for piscivorous cormorants to settle	0	1
Koljone n et al. 2013	Habitat and water quality	Channelizati on limiting salmon habitat resulting in low abundance	In-stream restoration project to increase available fish habitat	Failure; Level 1 not reached. Juvenile habitat improved but no response of age-1 salmon	Wintertime discharge was limiting habitat availability	0	1

Larocqu e et al. 2020	Stocking	Extinction of Lake Ontario Atlantic salmon in 1800s	Compare wild and hatchery smolt survival	Failure; wild smolts were 13.9 times more likely to survive the migration	Mortality for hatchery reared smolt was highest at release site and indicated high pre- migration mortality and stocking related mortality	0	1
Prignon et al. 1999	Stocking	Extinction of Atlantic salmon due to pollution, weirs, and overexploita tion	Rearing, stocking, migration study and establishing improveme nt proposals	Failure; Level 1 not reached Good adaptation of stocked parr in river Ourthe basin, most smolts migrating at age 2, hydropower plants cause mortality	Efficiency of stocking: minimum of 2% for eggs, 3.0% for parr and 19.0% for pre-smolts; new fish passes are required	0	1

				Failure; Level	The lack of positive		
		Chaolying is		1 not	response to		
		Stocking is undertaken		reached. Only between 6	stocking is possibly due		
		in the River Suldalslåge		and 10 (<0.005%)	to lesser age, smaller		
		n, western		were	size and		
		Norway, to compensate		recaptured as adults in the	later migration of		
		for an		river.	hatchery		
		estimated		Recaptured	smolts, and		
		annual loss	Between	stocked fish	that		
		of 20â€f000	160â€f000	never	seawater		
		Atlantic	and	exceeded	tolerance of		
		salmon	250â€f000	0.03% by	hatchery		
		smolts,	oneâ€∙ sum	number,	smolts is		
		Salmo salar	mer old fish	despite	poorly		
		L., caused by	were	smolts	developed,		
		regulating	experimenta	dominating	all factors		
Saltveit		the river for	lly stocked	the stocking	increasing		
et al.		hydropower	in the study	material in	mortality at	_	
2006	Stocking	production	area	recent years	sea.	0	1

		Decreasing		Failure; Level 1 not reached No overall	Parr densities were lower than predicted (relative to wild parr) at sites previously stocked. Did not account for the population-		
		Decreasing		-			
		wild		No overall	population-		
Wallace		production		benefit of	level effect		
and		in Miramichi	Enhanceme	stocking on	of brood		
Curry		River,	nt stocking	site density of	stock		
2017	Stocking	Canada	of 0+ fry	parr	removal.	0	1

Figures

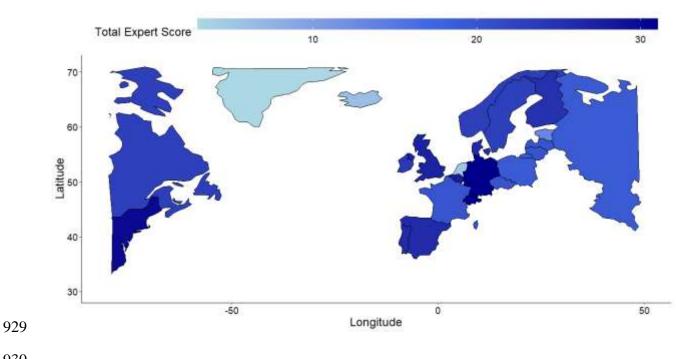


Figure 1. Expert assessments of the risks posed by 15 stressors to salmon populations in salmon-bearing regions. A small number of experts from each country contributed to the assessment and were asked to assign and integers from 0 (no threat) to 3 (major threat) to categorically score rank

the threat posed by each stressor. Scores are displayed for each country and each threat (top).
Countries are sorted left to right from lowest to highest total score and stressors are sorted from
bottom to top from lowest to highest total score. Summed scores are also displayed (bottom).

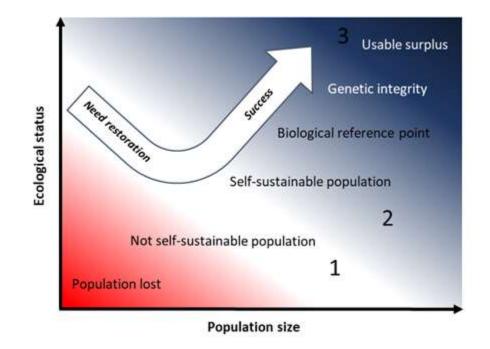


Figure 2. Conceptual diagram of restoration for Atlantic salmon (*Salmo salar*). The figure provides a guide towards achieving success in restoration. As managers approach small populations with poor status (e.g. threatened, Endangered, Critically Endangered, Extinct), restoration is needed to work towards a self-sustaining population. A usable surplus, defined as a population size with more individuals than are needed to replace the population (i.e. beyond spawning target or carrying capacity), can provide provisioning ecosystem services in the form of valuable fisheries. Numbers correspond to levels of success.

938

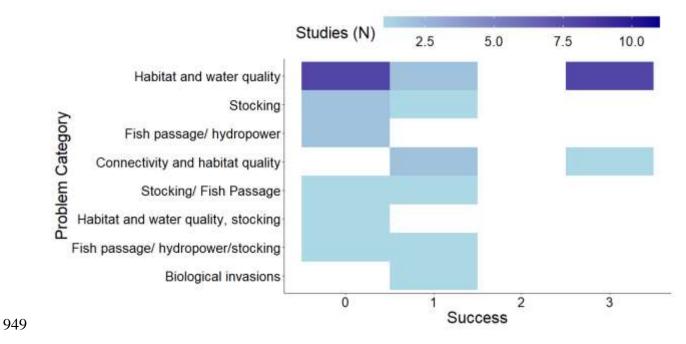


Figure 3. Illustration of successful Atlantic salmon restoration initiatives. Success levels
correspond to our evaluation, with Level 1 indicating a self-sustaining population, Level 2 a robust
self-sustaining population, and Level 3 a population with a harvestable surplus. Figure is based on
data available in Table 2.

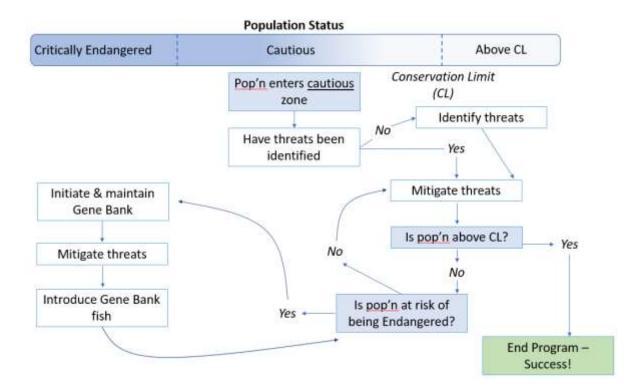


Figure 4. A schematic diagram of considerations as to when and if, when, and how to use hatcheries
for conservation. Critically Endangered populations may be defined differently depending on
jurisdiction, but in general should be relative to biological reference points defined for a population
relative to conservation limits (CR; i.e. extinction risk).

964 Appendix A: Geographical context of salmon restoration pressures

- 965 Please grade the following pressures, with regard to the need to solve them in order to restore
- 966 populations of wild Atlantic salmon in your country (PLEASE NOTE, EVEN IF YOU AWARE
- 967 OF SOME REGIONALITY FOR A PRESSURE IN YOUR COUNTRY, STILL SCORE THE
- 968 PRESSURE AS A SINGLE VALUE FOR THE WHOLE COUNTRY).
- 969 Please score each stressor as 0, no impact; 1, minor impact; 2 moderate impact; 3 major impact -
- 970 use only integers, give your best estimate FOR EVERY PRESSURE LISTED!
- 971 The order of listing of stressors does NOT imply any importance of one over another
- 972

973 Pressure

- 974 Acidification
- 975 Migration and dispersal barriers (dams etc)
- 976 Impacts of hydropower other than barriers (hydropeaking, thermal effects,
- 977 hydropower-related abstraction and habitat alteration)
- 978 Other water abstraction (non-hydropower)
- 979 Overexploitation by fisheries
- 980 Channelisation, dredging (including gravel extraction) and flood control
- 981 Sewage and organic pollution from urban sources
- 982 Excessive nutrients and/or fine sediment from poor land management
- 983 Hazardous chemical substances (heavy metals, pesticides etc)
- 984 Excessive predator stress due to human
- 985 influence (e.g. cormorant, seal, sawbill duck, stocked trout)
- 986 Farmed salmon escapes

Score

- 987 Salmon pathogens/parasites facilitated by human action (e.g. viruses,
- 988 bacteria, flukes, salmon lice)
- 989 Invasive species
- 990 Climate change
- 991 Stocking of S. salar
- 992 Other (please list:)