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Ensemble MCMC: Accelerating
Pseudo-Marginal MCMC for State Space
Models using the Ensemble Kalman Filter

Christopher Drovandi∗,†,‡,∗∗, Richard G. Everitt§, Andrew Golightly¶,
and Dennis Prangle‖

Abstract. Particle Markov chain Monte Carlo (pMCMC) is now a popular meth-
od for performing Bayesian statistical inference on challenging state space models
(SSMs) with unknown static parameters. It uses a particle filter (PF) at each it-
eration of an MCMC algorithm to unbiasedly estimate the likelihood for a given
static parameter value. However, pMCMC can be computationally intensive when
a large number of particles in the PF is required, such as when the data are
highly informative, the model is misspecified and/or the time series is long. In
this paper we exploit the ensemble Kalman filter (EnKF) developed in the data
assimilation literature to speed up pMCMC. We replace the unbiased PF likeli-
hood with the biased EnKF likelihood estimate within MCMC to sample over the
space of the static parameter. On a wide class of different non-linear SSM mod-
els, we demonstrate that our extended ensemble MCMC (eMCMC) methods can
significantly reduce the computational cost whilst maintaining reasonable accu-
racy. We also propose several extensions of the vanilla eMCMC algorithm to fur-
ther improve computational efficiency. Computer code to implement our methods
on all the examples can be downloaded from https://github.com/cdrovandi/

Ensemble-MCMC.

Keywords: data assimilation, ensemble Kalman filter, particle filter, particle
MCMC, pseudo-marginal MCMC, state space models.

1 Introduction

Particle Markov chain Monte Carlo (pMCMC, Andrieu et al., 2010) is now a popular
method for performing Bayesian statistical inference on challenging state space models
(SSMs) with unknown static parameters. The appeal of pMCMC is that it is a pseudo-
marginal method (Andrieu and Roberts, 2009), which attempts to mimic the ideal
sampler that proposes directly over the space of the static parameters and integrates
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out the hidden states. Furthermore it is an exact approximation, exactly targeting the
true posterior distribution.

Each static parameter proposal in pMCMC is evaluated using a particle filter (Gor-
don et al., 1993). Particle filters were originally proposed to solve the state space filtering
problem: inferring the state parameters at a given time under known static parameters.
To do so they propagate a set of particles through the state space model, and use a
weighting and resampling process to concentrate on the particles with significant pos-
terior weights. Using particle filters in pMCMC is costly. Firstly, each particle filter
involves processing the entire dataset. Secondly, a particle filter can require a large
number of particles, especially when the data are highly informative and/or the model
is misspecified. This is because there must be enough particles to randomly propagate
forwards to produce good matches to unlikely data. Thus, despite the popularity of
pMCMC, it is generally a highly computationally intensive method.

Data assimilation (DA) is a field of research originating in the geosciences, initially
based on the problem of numerical weather prediction. The task most commonly ad-
dressed in this field is the estimation of the state of a dynamical system, based on a
dynamic model (usually a system of partial differential equations) and noisy and/or
indirect measurements of this state. In this paper we take inspiration from the DA
literature to propose a new approach to estimating the posterior distribution of static
parameters in SSMs.

The field of DA has evolved in parallel to other fields in which SSMs play an impor-
tant role, such as target tracking, economics and statistical ecology. The distinguishing
feature of problems in DA is the large dimension of the state space. For example, in
numerical weather prediction the state space consists of a representation of the state
of the atmosphere across the globe, which for modern applications can have dimension
dx of the order of 109 (van Leeuwen, 2015). The traditional approach to estimating the
dynamic state in DA is to use approaches that solely estimate the mode of the state
posterior (e.g. 4DVar) or Kalman filters that make use of approximations so as to avoid
storing the full state covariance, whose size scales quadratically in the state dimension.
Such methods have huge practical importance and are still deployed in DA applica-
tions, but more recent research has focussed on methods that improve the accuracy of
state estimation when using nonlinear dynamics. As in other fields where this the case,
particle filters are an important methodology.

Particle filters are not the usual method of choice in DA. The reason is their de-
generacy when used on states of high dimension (Snyder et al., 2008). This degeneracy
arises due to the limitations of importance sampling in high dimensions: the variance
of importance sampling estimators depends on the distance between the target and
proposal distributions, and this distance grows with dimension such that the variance
is only controlled by using a number of importance samples that is exponential in the
dimension (see Agapiou et al., 2017 for a review). To combat this degeneracy, the ap-
proach usually taken in the particle filtering literature is to introduce diversity into the
sample through MCMC updates of the state (Beskos et al., 2014). However, in many
problems in DA, MCMC updates are often not available due to the use of an intractable
dynamic model, and where available may have a low acceptance rate. In this case of an
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intractable dynamic model, most advanced particle filtering techniques are not available,
and hence the class of models to which pMCMC is practicable for inferring the posterior
distribution of static parameters is relatively limited: roughly speaking the dimension
of both the state space and the static parameter must be less than 10, the length of
the observed data must be less than 100,000, and simulations from the model cannot
be radically different from the observed data. In such situations approximate Bayesian
computation (Sisson et al., 2018) or Bayesian synthetic likelihood (Price et al., 2018)
can be used as an alternative, but this approach necessarily conditions the inference on
summary statistics of the data which can result in posterior distributions that are very
different to the truth (see Fasiolo et al., 2016 for an introduction to these alternative
methods and a comparison of their performance with pMCMC). The focus in the cur-
rent paper is on estimating the posterior distribution of static parameters in situations
where pMCMC, for the reasons outlined above, becomes too computationally demand-
ing when implemented on a desktop or laptop computer, and when we wish to avoid
reducing the full dataset to a set of summary statistics.

An alternative means of maintaining diversity to using MCMC updates in a particle
filter is given by the ensemble Kalman filter (EnKF) (Evensen, 1994; see Katzfuss et al.,
2016 for a tutorial). This approach propagates a set of particles (often referred to as
“ensemble members”) through the dynamic model in the same way as the bootstrap
particle filter, but instead uses these particles to approximate a Gaussian representation
of the state distribution. This method approximates the Kalman filter and provides
a means to avoid storing and manipulating the state covariance matrix. Further, it
has also been shown to perform well when applied to nonlinear dynamic models. Its
performance is often superior to the particle filter in cases where the particle filter
suffers from degeneracy, including but not limited to the case of a state space of high
dimension.

Methods from DA have also been applied to the situation of inferring an unknown
static parameter simultaneously with the state. The standard approach is to augment
the state vector with the static parameter, then to apply one of the previously men-
tioned filters to this augmented state (see, for example, Evensen, 2007). In this case, the
EnKF assumes that both parameters and states follow a linear Gaussian state space
model. When this assumption is unreasonable, another approach is to combine the
EnKF likelihood with a particle representation of the static parameter (Stroud et al.,
2018; Katzfuss et al., 2019). To mitigate degeneracy, the static parameter is allowed to
dynamically vary, by adding Gaussian noise to each parameter particle. This step can
be further refined via the kernel resampling strategy of Liu and West (2001). However,
additional tuning parameters must be specified (e.g. to control the smoothness of the
kernel) and the particle approximation can be sensitive to these choices, and in particu-
lar, the number of particles used (Vieira and Wilkinson, 2016). We note that maximum
likelihood methods are also possible (see e.g. Mitchell and Houtekamer, 2000; Stroud
et al., 2010; Carrassi et al., 2017).

Katzfuss et al. (2019) propose the use of the EnKF as a substitute for the particle
filter in pMCMC, where the filter in each case is run with fixed static parameters to
produce a likelihood estimate, which is used within a Metropolis-Hastings algorithm
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(Minvielle et al., 2014 developed a similar approach in the Physics literature). By anal-
ogy with pMCMC we refer to this approach as “ensemble MCMC” (eMCMC). The
contributions of this paper are: several extensions of eMCMC to further improve com-
putational efficiency and reduce the bias in the EnKF estimate of the likelihood; and a
more extensive empirical study than that of Katzfuss et al. (2019) where the focus is
mainly on other EnKF-based approaches. This demonstrates that the method can be
successful on a wider variety of more challenging applications. Moreover, we compare
pMCMC with eMCMC, investigating the reduction in the number of particles/members
required and the ability of eMCMC to cope better with informative or surprising data.
We find that eMCMC exhibits a reduced computational cost relative to pMCMC and
also improves the accuracy relative to a state augmentation approach using the EnKF
where static parameters are treated as time-varying.

The rest of this article is structured as follows. In Section 2 we provide the necessary
background on state space models, pMCMC and EnKF to understand our method. The
eMCMC approach together with extensions is described in Section 3. Section 4 shows
the results of our approach on a wide class of different models. We discuss limitations,
further extensions and possible future research in Section 5.

2 Background

This section describes relevant existing work. Section 2.1 defines state space models.
Section 2.2 describes pseudo-marginal Metropolis Hastings and the bootstrap particle
filter, which can be used to perform inference for these models. Section 2.3 introduces
the EnKF.

2.1 State Space Models

A state space model is a model for sequential data. It introduces a Markov chain of
latent states x1, . . . , xT . Independent noisy observations yt are available that depend
on the state xt. Let x = (x1, . . . , xT ) denote the collection of all latent states and
y = (y1, . . . , yT ) the collection of all observations. The model can be defined using an
evolution distribution for xt+1|xt, θ and an observation distribution yt|xt, θ. Here θ is a
vector of parameters controlling the model’s behaviour. We also specify a distribution
for an initial state x0. For more background on state space models see for example
Särkkä (2013).

Throughout the paper we will make some standard assumptions about state space
models. We will assume that each xt and yt are random vectors with support R

dx

and R
dy respectively. In this section we assume the distributions above – evolution,

observation and initial state – have densities p(xt+1|xt, θ), p(yt|xt, θ) and p(x0). The
material immediately generalises to the case where some or all of these distributions
have probability mass functions instead (by interpreting these as densities with respect
to the counting measure). This is required in several of our examples. A point mass can
be used for the initial state distribution if the initial state is known.
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As we shall see, the EnKF is restricted to certain observation models. Hence in this
paper we focus on one particular case,

yt|xt, θ ∼ N (Pxt, S) (1)

where P is a dy × dx matrix and S is a variance matrix, possibly a function of θ. (We
assume conditional independence of the yt’s given x and θ.) The EnKF can also be
used where P is replaced by a time dependent matrix Pt. The case where P = I gives a
complete observation regime, in the sense that all components of xt have a corresponding
noisy observation. In contrast, a partial observation regime only allows observation of a
subset of the components e.g. by taking P to be a projection matrix.

In practice we may wish to model states at a finer time discretisation than that
at which the observation data are available. For example, consider the case where we
only have observations yt at t = k, 2k, . . . , kL. This can easily be converted into the
framework described above, by defining a state space model with x∗

τ = xτk and y∗τ = yτk
for τ = 1, 2, . . . , L.

The joint density of the latent states and observations in a state space model is:

p(x, y|θ) = p(x0)

T∏
t=1

[
p(xt|xt−1, θ)p(yt|xt, θ)

]
. (2)

The likelihood can be found by marginalisation i.e. integrating out the latent states x,

L(θ) =

∫
p(x0)

T∏
t=1

[
p(xt|xt−1, θ)p(yt|xt, θ)

]
dx. (3)

(If there is an observation y0, a factor p(y0|x0, θ) can easily be included in (2) and (3).)

Bayesian inference assigns a prior p(θ) to the parameters and targets the poste-
rior p(θ|y) ∝ p(θ)L(θ). The likelihood L(θ) typically cannot be evaluated as it is a
high dimensional integral. One strategy to perform inference is to instead consider
an augmented target density (often of interest in its own right), the joint posterior
p(θ, x|y) ∝ p(θ)p(x, y|θ). The posterior for θ can then be obtained by marginalisa-
tion.

2.2 Pseudo-marginal MCMC, Particle Filters, and Particle MCMC

Monte Carlo algorithms are designed to sample from a target distribution, often a
Bayesian posterior distribution. Markov chain Monte Carlo (MCMC) does so using a
Markov chain which converges to the target distribution in the long run. Performing
each update in MCMC typically requires likelihood calculations, which are not possible
for models with intractable likelihoods. However it is often possible to produce unbi-
ased likelihood estimates. Algorithm 1, pseudo-marginal Metropolis Hastings (PMMH)
(Andrieu and Roberts, 2009), makes use of these to perform parameter inference. Un-
biased likelihood estimates for state space models can be produced by particle filter
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algorithms. Algorithm 2 presents the basic bootstrap particle filter (BPF) used in this

paper, but there are many variations. For more details see for example Doucet and

Johansen (2011), Särkkä (2013) and Fearnhead and Künsch (2018). For proof that the

particle filter likelihood estimate is indeed unbiased see Del Moral (2004) and Pitt et al.

(2010).

Combining the PMMH algorithm with a particle filter can target p(θ|y) for state

space models. Andrieu et al. (2010) extend this approach to give particle MCMC (pM-

CMC), which targets the joint posterior p(θ, x|y); we refer the reader to this paper for

a full description of pMCMC.

Algorithm 1 Pseudo-marginal Metropolis Hastings.

Input: initial state θ0 and likelihood estimate L̂0, proposal density q(θ∗|θ)
for i = 1, 2, . . . do

1. Sample proposal θ∗ from q(θ∗|θi−1).
2. Calculate L̂∗, an estimate of L(θ∗).
3. Accept proposal with probability min(1, r) where

r =
L̂∗π(θ∗)q(θi−1|θ∗)

L̂i−1π(θi−1)q(θ∗|θi−1)
.

Upon acceptance let θi = θ∗ and L̂i = L̂∗. Otherwise let θi = θi−1 and L̂i = L̂i−1.
end for
Output: θ1, θ2, . . .

Algorithm 2 Bootstrap particle filter. (This algorithm drops θ from the conditioning
for notational simplicity.)

Input: number of particles N

Initialise. For i = 1, 2, . . . , N sample particle x
(i)
0 from the initial state distribution

and assign weight w
(i)
0 = 1/N (or, if a y0 observation is available, compute weights

as in step 3.).
for t = 1, 2, . . . , T do

1. Resample. For i = 1, 2, . . . , N sample x̃
(i)
t from the x

(j)
t−1 particles with prob-

abilities w
(j)
t−1. (This step can be omitted for t = 1 if there is no y0 observation.)

2. Propagate. For i = 1, 2, . . . , N sample x
(i)
t from p(·|x̃(i)

t ).

3. Weight. For i = 1, 2, . . . , N compute weight w̃
(i)
t = p(yt|x(i)

t ) and normalised

weight w
(i)
t = w̃

(i)
t /St where St =

∑N
j=1 w̃

(j)
t .

end for
Output: likelihood estimate L̂ =

∏T
t=1

St

N (or, if a y0 observation is available, take the
product from t = 0.).
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PMMH Tuning

PMMH using BPF likelihood estimates has several tuning choices. This section sets out
the approach we use to make these choices in this paper. Our choices are consistent with
the theoretical analyses of Sherlock et al. (2015) and Doucet et al. (2015), who derive
tuning recommendations under two different sets of simplifying assumptions.

We select the number of particles N for the BPF prior to running Algorithm 1 so
that the estimated log-likelihood at a representative parameter value has a standard
deviation of roughly 1.5. The parameter value used should have good support under the
posterior; we typically use marginal posterior medians from exploratory analyses.

We use a normal random walk proposal distribution: θ∗ ∼ N (θi−1,ΣRW). We take
ΣRW to be an estimate of the posterior variance, again taken from exploratory anal-
yses. Sherlock et al. (2015) and Doucet et al. (2015) provide guidance for scaling the
variance matrix by a scalar to improve performance, finding that this was helpful for
high dimensional target distributions for instance. We did not find this necessary for
our analyses of low dimensional targets, but make use of this approach in Section 4.6
where an 11-dimensional target is considered.

2.3 Ensemble Kalman Filter

Here, we give a brief overview of the ensemble Kalman filter (Evensen, 1994) and refer
the reader to Katzfuss et al. (2016) and the references therein for further details.

Consider the task of generating samples according to the filtering density p(xt|y1:t)
where y1:t = (y1, . . . , yt). (We omit explicit conditioning on the parameter vector θ
throughout this section.) The EnKF generates approximate draws from p(xt|y1:t) via

a sequence of forecasting and updating steps. Suppose that a sample {x(1)
t−1, . . . , x

(N)
t−1}

(known as the filtering ensemble) is available at time t − 1 from p(xt−1|y1:t−1). The

forecast ensemble {x̃(1)
t , . . . , x̃

(N)
t } is obtained by drawing x̃

(i)
t ∼ p(·|x(i)

t−1), i = 1, . . . , N .
The forecast density p(xt|y1:t−1) is then approximated by

penkf(xt|y1:t−1) = N (xt ; μ̂t|t−1 , Σ̂t|t−1)

where N (·;μ,Σ) denotes the multivariate Gaussian density with mean μ and variance
matrix Σ. The quantities μ̂t|t−1 and Σ̂t|t−1 are typically taken to be the sample mean
and variance computed from the forecast ensemble (some extensions of the EnKF use
alternative estimates; see Katzfuss et al., 2016 for some common approaches). Now,
given the linear Gaussian form of (1), the joint distribution of Xt and Yt (given y1:t−1)
can be obtained approximately as(

Xt

Yt

)
∼ N

{(
μ̂t|t−1

Pμ̂t|t−1

)
,

(
Σ̂t|t−1 Σ̂t|t−1P

′

P Σ̂t|t−1 P Σ̂t|t−1P
′ + S

)}
. (4)

Hence, conditioning on Yt = yt gives

penkf(xt|y1:t) = N (xt ; μ̂t|t , Σ̂t|t) (5)
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where μ̂t|t = μ̂t|t−1 + K̂t(yt −Pμ̂t|t−1), Σ̂t|t = (Idx − K̂tP )Σ̂t|t−1 and K̂t is an estimate
of the Kalman gain, that is

K̂t = Σ̂t|t−1P
′(P Σ̂t|t−1P

′ + S)−1. (6)

It is then straightforward to generate samples from (5) to be used as the filtering ensem-
ble at the next time point. However, rather than explicitly calculate the filtering density
in (5), the standard implementation of the EnKF (see e.g. Katzfuss et al., 2016) per-
forms a shifting step, which is equivalent under the Gaussianity assumption (4) (and a
Gaussian prior for x0). For each particle (known in this context as an ensemble member),

we compute x
(i)
t = x̃

(i)
t +K̂t(yt− ỹ

(i)
t ), where ỹ

(i)
t ∼ N (Px̃

(i)
t , S) is a pseudo-observation.

Note that the shifting step only requires a draw from a dy variate Gaussian distribution
per particle, rather than a draw from a dx variate Gaussian if (5) is sampled directly.
Moreover, the shifting approach does not make the strong assumption that the forecast
ensemble is Gaussian distributed. We note that there are other schemes for performing
the shifting, but we do not consider these here.

Given a sample {x(1)
0 , . . . , x

(N)
0 } from the state prior, the EnKF recursively alternates

between computing the forecast ensemble and shifting each ensemble member, giving
approximate draws from the filtering density p(xt|y1:t) for t = 1, . . . , T . We state a
version of the EnKF based on the shifting step described above as Algorithm 3.

The EnKF is most easily understood in the context of a linear Gaussian state space
model. In this special case, the filtering distribution penkf(xt|y1:t−1) converges to the
true filtering distribution as the number of ensemble members N → ∞. Essentially,
the EnKF converges to the Kalman filter. For finite N and a linear state space model,
the EnKF approximates the Kalman filter by replacing the mean and variance of the
forecast distribution with their sample equivalents. The resulting dimension reduction
(that only requires storing and manipulating dx-vectors) avoids the potentially expensive
calculation and storage of the forecast variance matrix. Moreover, several studies (e.g.
Lei et al., 2010; Houtekamer et al., 2014; Katzfuss et al., 2019) have found that the EnKF
shifting step works well for non-Gaussian evolution densities. We therefore consider
the use of the EnKF likelihood inside a Metropolis-Hastings scheme. We provide a
motivation and give details of the proposed approach in the next section.

3 Ensemble MCMC

It is well known that as the variance of the likelihood estimator increases, the acceptance
probability of the pseudo-marginal MH scheme rapidly decreases to 0 (Pitt et al., 2012),
resulting in slow mixing behaviour of the parameter chains. As discussed in Section 2.2,
a value of N (the number of particles) can be chosen to balance mixing performance
and computational cost. Nevertheless, in scenarios where the stochasticity inherent in
the state process dominates the observation variance, the number of particles required
to maintain a reasonable likelihood variance is likely to render BPF-driven PMMH
computationally infeasible. Methods that aim to alleviate this problem include the use
of an auxiliary particle filter (see e.g. Golightly and Wilkinson, 2015), which requires
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careful exploitation of the model structure in order to propagate particles conditional
on the observations. By comparison, the algorithm studied here is simple to implement
and, for the simplest implementation, does not require the specification of any additional
tuning parameters.

Here we outline the ensemble MCMC (eMCMC) algorithm proposed in Katzfuss
et al. (2019). In essence, this is PMMH using the EnKF as a fast replacement for
the BPF to estimate the likelihood L(θ). In the following subsections we discuss some
extensions to improve its efficiency.

First we derive a likelihood estimate based on EnKF calculations. Recall that the
(marginal) likelihood can be factorised as

L(θ) = p(y1|θ)
T∏

t=2

p(yt|y1:t−1, θ). (7)

From (4) it follows that an EnKF approximation of p(yt|y1:t−1, θ) is

pNenkf(yt|y1:t−1, θ) = N (yt ; Pμ̂t|t−1 , P Σ̂t|t−1P
′ + S)

which can easily be computed for each t = 1, . . . , T , with the notational convention that
p(y1|θ) = p(y1|y1:0, θ). The need for the explicit dependence on N for this likelihood
estimate will become clearer later in this section. The overall approximation to the
likelihood is given by

L̂N
enkf(θ) =

T∏
t=1

pNenkf(yt|y1:t−1, θ). (8)

The EnKF including likelihood estimation is given by Algorithm 3. The eMCMC scheme
is then implemented by running Algorithm 1 with L̂ replaced by L̂N

enkf. One issue in
implementing eMCMC is how to perform tuning. Due to the absence of specialised
theory, we use the same tuning guidance as for PMMH with BPF likelihood estimates,
described above in Section 2.2.

It is worth emphasising that, unlike pMCMC, the eMCMC posterior

pNenkf(θ|y) ∝ L̂N
enkf(θ)p(θ),

does not in general equal the posterior π(θ|y) exactly. The reason is that, unlike the
BPF, the EnKF gives a biased estimator of L(θ), precluding its use for exact approx-
imate inference. Nevertheless, as noted by Stroud et al. (2010), Stroud et al. (2018)
and Katzfuss et al. (2019) among others, the variance of the likelihood estimator under
the EnKF can be relatively small, suggesting that use of EnKF inside a Metropolis-
Hastings scheme is likely to be of practical use, particularly in scenarios when the BPF
is computationally prohibitive.

In fact, even when the forecast ensemble is exactly Gaussian distributed for all t, the
EnKF posterior still does not target the exact posterior, sinceN (yt;Pμ̂t|t−1, P Σ̂t|t−1P

′+
S) is a biased estimate of the idealised normal density should we be able to take N → ∞.
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Algorithm 3 Ensemble Kalman filter.

Input: number of ensemble members N

Initialise. For i = 1, 2, . . . , N sample x
(i)
0 from the initial state distribution.

for t = 1, 2, . . . , T do

1. Forecast ensemble. For i = 1, 2, . . . , N sample x̃
(i)
t ∼ p(·|x(i)

t−1).
2. Likelihood calculation. Compute estimates of the forecast mean
and variance: μ̂t|t−1 and Σ̂t|t−1. Compute likelihood component L̂N

enkf,t =

N (yt ; Pμ̂t|t−1 , P Σ̂t|t−1P
′ + S).

3. Shift ensemble. Compute the approximate Kalman gain, K̂t, given by (6).

For i = 1, 2, . . . , N , set x
(i)
t = x̃

(i)
t + K̂t(yt − ỹ

(i)
t ), where ỹ

(i)
t ∼ N (Px̃

(i)
t , S) is a

pseudo-observation.
end for
Output: likelihood estimate L̂N

enkf =
∏T

t=1 L̂
N
enkf,t.

Thus, for finite N , the eMCMC target is not the idealised eMCMC target, p∞enkf(θ|y).
However, we find empirically that our method appears to be weakly dependent on N .
Given this, we suggest to choose N to maximise the computational efficiency by bor-
rowing similar advice from the pseudo-marginal literature (as described in Section 2.2).
Interestingly, there is an exactly unbiased estimator of a normal density given a sample
from it, and we exploit this in Section 3.3. We discuss the unbiased version and other
extensions below.

3.1 Randomised Quasi-Monte Carlo

For this subsection, all quantities are conditioned on θ so we drop it for notational
convenience. At iteration t of the EnKF we estimate μt|t−1 and Σt|t−1, so that we can
approximate the conditional likelihood p(yt|y1:t−1) with a Gaussian density. These mo-
ments are estimated via firstly performing the shifting step at t− 1 and conditional on
the result simulating from the forward evolution density. This is effectively an approx-
imate sample from the joint distribution p(xt, xt−1|y1:t−1) = p(xt|xt−1)p(xt−1|y1:t−1).
Then μt|t−1 and Σt|t−1 are estimated from the N ensemble members.

Often it is possible to write the simulation from a standard statistical distribution
as a function of a uniform random number. For example, to simulate a random draw y
from a normal distribution, N (μ, σ2), we can compute the following, y = μ+σ ·Φ−1(u)
where u ∼ U(0, 1) and Φ−1(u) is the quantile function of the standard normal density.
Assume that we can write the evolution density as a function of m uniform random
variates. Then, we require dy +m uniform random numbers to approximately simulate
from xt, xt−1|y1:t−1 (dy for the shifting step and m for simulating the evolution density).
Given N particles, we use N × (dy +m) uniform random numbers for estimating μt|t−1

and Σt|t−1. The naive approach is to draw these via pseudo-random numbers. How-
ever, significant variance reduction could be achieved by simulating from the (dy +m)-
dimensional object N times using randomised quasi-Monte Carlo (RQMC, e.g. L’Ecuyer
and Lemieux, 2005). QMC is well known to generate a sequence of numbers that have
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superior space filling properties in the unit hypercube compared to pseudo-random
numbers. The randomised component ensures that expectations can be estimated un-
biasedly. Random numbers from the joint distribution of interest, xt, xt−1|y1:t−1, can
be achieved via transforming the RQMC numbers as recently discussed. We use this
approach to bring down the variance of the estimators of μt|t−1 and Σt|t−1, which hope-
fully reduces the variance of the estimator for p(yt|y1:t−1). For generating the RQMC
numbers in this paper, we use the scrambled Sobol’s net, i.e. the scrambled (t,m, s)-net
in base b = 2.

RQMC has recently received increasing attention in the statistics community. Tran
et al. (2017) document a faster convergence in their variational Bayes updating pro-
cedure when the noisy gradient is computed using RQMC, Drovandi and Tran (2018)
use it to reduce the variance of expected utility estimation within Bayesian optimal
design and Gerber and Chopin (2015) show the efficiency of RQMC in particle filtering.
However their application to particle filtering requires considerable ingenuity (using a
Hilbert curve method to perform resampling). It is interesting to note the ease with
which RQMC can be exploited in the EnKF in comparison.

3.2 Correlated eMCMC

As mentioned above, the EnKF requires generating random numbers for the shifting
step and simulating the evolution density. The former can be generated by standard
normal random variates and the Cholesky factorisation of the covariance matrix. We
assume in this section that the evolution density can be simulated either directly or
indirectly via a suitable transformation with standard normal random numbers. Denote
the collection of these random numbers required in the EnKF as u.

Deligiannidis et al. (2018) and Dahlin et al. (2015) develop the correlated pseudo-
marginal MCMC method where they consider the joint target density p(θ, u|y) where u
are random numbers required to estimate the likelihood unbiasedly, p(y|θ, u). It is easy
to show that the θ-marginal of the joint distribution is the posterior of interest, p(θ|y).
Assume that u are independent standard normal random variates. The idea of the corre-
lated pseudo-marginal method is to induce correlation in successive likelihood estimates
in MCMC by correlating the u random numbers. This can have the effect of mitigating
“sticky” behaviour often seen in pseudo-marginal chains since, in the correlated scheme,
if the likelihood is overestimated at the current iteration, it is also likely to be overes-
timated at the next. The joint proposal distribution of the correlated pseudo-marginal
method is given by q(θ∗, u∗|θ, u) = q(θ∗|θ)N (u∗;

√
1− σ2

uu, σ
2
uI), where I is the iden-

tity matrix. The proposal for u is the Crank-Nicolson proposal and it is invariant with
respect to the marginal distribution of u. σ2

u is an additional tuning parameter that is
typically set to be small so that u∗ is highly correlated with u.

Here we consider applying this correlated pseudo-marginal approach to our eMCMC
method, with the motivation that a smaller ensemble size N can be used, reducing
computational cost. Note that BPF driven pMCMC requires additional modification
to accommodate this approach, as it did for RQMC. Essentially, the resampling step
has the effect of breaking down correlation between successive likelihood estimates. To
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alleviate this problem, the particles can be sorted before propagation e.g. using a Hilbert
sorting procedure (Deligiannidis et al., 2018) or simple Euclidean sorting (Choppala
et al., 2016). The random numbers used in the resampling step itself should also be
updated using the Crank-Nicolson proposal. Since the eMCMC scheme does not use
resampling, incorporating correlation is straightforward.

3.3 Unbiased Ensemble Kalman Filter Likelihood

As mentioned earlier, even if the sample from the forecast distribution was exactly
Gaussian for some t, the corresponding EnKF likelihood estimate for yt would not
be unbiased. In general, for some data y and a sample of size N from a Gaussian
distribution, x = x1, . . . , xN ∼ N (μ,Σ), the density estimator N (y;μN ,ΣN ) is not an
unbiased estimator of N (y;μ,Σ) where μN and ΣN are the sample mean and covariance
computed from the sample x. Given the bias present in the EnKF likelihood estimate,
even when the Gaussian assumption is correct, the EnKF posterior, unlike standard
pseudo-marginal, theoretically depends on N .

Even though we demonstrate empirically in Section 4 that the eMCMC posterior
seems to be only weakly dependent on N , we present a new approach now that will
likely be less sensitive to N . Interestingly, there does exist an unbiased estimator of a
Gaussian density given only an iid sample from the same Gaussian density. Using the
notation of Ghurye and Olkin (1969), let

c(k, v) =
2−kv/2π−k(k−1)/4∏k
i=1 Γ

(
1
2 (v − i+ 1)

) ,
and for a square matrix A write ψ(A) = |A| if A > 0 and ψ(A) = 0 otherwise, where
|A| is the determinant of A and A > 0 means that A is positive definite. The result of
Ghurye and Olkin (1969) shows that an exactly unbiased estimator of N (y;μ,Σ) is (in
the case where y is Gaussian and N > d+ 3 where d is the dimension of y)

N̂ (y;μ,Σ) = (2π)−d/2 c(d,N − 2)

c(d,N − 1)(1− 1/N)d/2
|MN |−(N−d−2)/2

ψ
(
MN − (y − μN )(y − μN )�/(1− 1/N)

)(N−d−3)/2
,

where MN = (N − 1)ΣN . We propose to replace the standard Gaussian density es-
timator in the EnKF likelihood estimator with this alternative estimator. Note that
this estimator has also been used in Price et al. (2018) for approximating intractable
likelihoods in simulation-based likelihood-free estimation problems.

We refer to the method when we use the unbiased Gaussian density estimator in
the EnKF likelihood estimator as ueMCMC. We stress that this approach still does not
target the true posterior, but at least it will not depend on the number of ensemble
members N when the Gaussian assumption is correct, i.e. the target is exactly the
idealised approximation, p∞enkf(θ|y). Even though the forecast density is unlikely to be
exactly Gaussian in practice, we do expect ueMCMC to be less sensitive to N compared
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with eMCMC. We note that this method might be particularly useful when combined
with the correlated approach in Section 3.2, since it might be sufficient to use a very
small N to achieve reasonable computational efficiency, but the small N may produce
bias in the eMCMC posterior compared to the idealised eMCMC posterior.

3.4 Early Rejection

Prangle et al. (2018) apply pMCMC in the setting of approximate Bayesian compu-
tation (ABC). They outline a method for rejecting proposed values of θ that have a
small estimated likelihood without running the whole particle filter. In Everitt and
Sibly (2019) it is shown that this approach can be extended to pMCMC when using
the BPF. A similar approach may be used in eMCMC. Suppose that the likelihood
estimate from the EnKF is implemented sequentially, as the EnKF is running. Recall
from (8) that the EnKF likelihood estimate is a product, L̂N

enkf(θ) =
∏T

t=1 αt. Here
αt = N

(
yt;Pμ̂t|t−1, PΣt|t−1P

′ + S
)
is calculated in iteration t of the EnKF. We are

guaranteed that an upper bound on αt is given by B(θ∗) := N (0; 0, S(θ∗)), where 0
represents a vector of zeros of appropriate dimension. (See Algorithm 4 for more details

on notation.) Thus αt/B ≤ 1. This fact ensures that r̂
(τ)
enkf :=

∏τ
t=1 αt/B is an upper

bound on L̂N
enkf(θ)/B

T which can be calculated at iteration τ of the EnKF.

We use this property to propose an “early rejection” algorithm. The idea is that
during an EnKF run, as soon as r̂enkf drops below a certain threshold, we are sure that
the MCMC proposal θ∗ will not be accepted. Hence we can save time by immediately
terminating the EnKF run. No time is saved for an accepted proposal; only for those
that are rejected. Therefore the computational savings are largest in cases where the
acceptance probability is low, as we would find, for example: in a higher dimensional
parameter space when the proposal variance is not reduced accordingly; or when the
likelihood estimate has a high variance. Algorithm 4 describes a single iteration of the
resultant MCMC algorithm, which involves reorganising the order of calculation of the
acceptance probability and likelihood estimate from our standard eMCMC algorithm.
This early rejection approach is employed in Section 4.6, where a computationally ex-
pensive model is studied.

4 Results

Here we demonstrate the potential of our method on several examples with different
kinds of complexity. We select the number of particles N and MCMC proposal vari-
ance as described in Section 2.2. Given that the different methods have different target
distributions, we tune the random walk covariance matrix individually for each method.

In terms of accuracy we compare the approximate eMCMC and the ‘exact’ pMCMC
approach visually. We note that in many applications it might not be critical to obtain
samples from the exact posterior given the potential for model misspecification and/or
high accuracy not being important for the analysis aims. When we deem the eMCMC
approximation to be reasonable enough, we compare the statistical efficiency of the
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Algorithm 4 An iteration of early-rejection eMCMC.

Input: θ, the current value of the parameter and L̂N
enkf (θ), the estimate of the like-

lihood for this parameter.
Simulate θ∗ ∼ q (· | θ), and let S (θ∗) be the measurement noise matrix for this pro-
posed parameter.
Let B (θ∗) = N (0; 0, S (θ∗)).
Simulate u ∼ U (0, 1).

Initial EnKF step: for i = 1 . . . N , simulate x
(i)
0 from the initial state distribution.

Initialise estimate r̂enkf = 1, then perform first early rejection step:

if r̂enkf < u
p(θ)L̂N

enkf (θ)
p(θ∗)

q(θ∗|θ)
q(θ|θ∗)

1
BT (θ∗) then

reject θ∗ and break.
end if
for t = 1 . . . T do

1. Forecast ensemble. For i = 1, . . . , N sample x̃
(i)
t ∼ p(·|x(i)

t−1).
2. Likelihood update. Compute estimates of the forecast mean and variance:

μ̂t|t−1 and Σ̂t|t−1. Set r̂enkf := r̂enkf×N
(
yt ; Pμ̂t|t−1 , P Σ̂t|t−1P

′ + S (θ∗)
)
/B (θ∗).

3. Early rejection.

if r̂enkf < u
p(θ)L̂N

enkf (θ)
p(θ∗)

q(θ∗|θ)
q(θ|θ∗)

1
BT (θ∗) then

reject θ∗ and break.
end if
4. Shift ensemble. Compute the approximate Kalman gain, K̂t, given by (6).

For i = 1, . . . , N , set x
(i)
t = x̃

(i)
t + K̂t(yt − ỹ

(i)
t ), where ỹ

(i)
t ∼ N

(
Px̃

(i)
t , S (θ∗)

)
is

a pseudo-observation.
end for
Accept θ∗ and let L̂N

enkf (θ∗) = r̂enkfB
T (θ∗).

two methods using effective sample size (ESS). ESS is the number of independent and
identically distributed samples from the target that would produce an estimate with the
same variance as the autocorrelated MCMC output. We generally use the multivariate

ESS estimate of Vats et al. (2019) which takes posterior dependence into account (in
one case where this performs poorly we instead use the univariate ESS of Plummer

et al. 2006). We also consider overall efficiency – ESS per second – which incorporates
both statistical efficiency and computing time.

In Section 5 we provide suggestions on how ‘exact’ posterior sampling can be achieved

whilst still using the EnKF. However, the statistical efficiency gains of these approaches
will be reduced compared to eMCMC.

Unless otherwise stated, we use the standard normal density estimator in eMCMC
as opposed to the unbiased version in Section 3.3. We find empirically they produce
similar results and there is a small amount of overhead and implementation effort with

the unbiased normal density estimator. However, practitioners may decide to use the
unbiased version given the theoretical benefit it brings.



C. Drovandi, R. G. Everitt, A. Golightly, and D. Prangle 237

4.1 Population Ecology Example

Model and Inference Task

Peters et al. (2010) consider a set of competing nonlinear state space population models
in ecology and apply them to several datasets. Denoting the observation at time t as
yt and the corresponding hidden state as nt, the four models we consider are defined
below:

1. Ricker model: lognt+1 = lognt + β0 + β1nt + εt.

2. Theta-logistic model: lognt+1 = lognt + β0 + β2n
β3

t + εt.

3. Mate-limited model: lognt+1 = 2 lognt + β0 + β1nt − log(β4 + nt) + εt.

4. Flexible-Allee model: lognt+1 = log nt + β0 + β1nt + β5n
2
t + εt.

Here εt ∼ N (0, σ2
w). The observation process is assumed to be Gaussian, yt|nt ∼

N (lognt, σ
2
e). See Peters et al. (2010) for a justification and some qualitative analy-

ses of these models. The parameters are assumed independent a priori and have the
following specifications: β0, β1, β3, β5 ∼ N (0, 1), β4, σw, σe ∼ Exp(1) and log n0 has an
improper uniform prior over the real line.

Here we re-analyse the nutria dataset, a time series of female nutria abundance in
East Anglia at monthly intervals, considered in Peters et al. (2010) and some references
therein. The data is shown in Figure 1.

Figure 1: The nutria dataset. The observations are shown as crosses and the solid line
is a linear interpolation between observations.

It is useful to consider this class of models since various quantities of the model are
tractable to compute, permitting more advanced particle filters to compare with. For
example, the fully adapted auxiliary particle filter (see e.g. Pitt et al., 2010) pre-weights
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the particles by (using generic notation) p(yt|xt−1, θ) =
∫
xt

p(yt|xt, θ)p(xt|xt−1, θ)dxt

and propagates resampled particles by p(xt|yt, xt−1, θ). This particle filter results in
particle weights that remain uniform throughout the algorithm. It is the optimal one-
step look-ahead particle filter. The fully adapted particle filter works extremely well in
this application. It requires only N = 5 particles for superior performance compared to
the bootstrap filter using N = 50,000 particles.

Although the quantities required for the fully adapted auxiliary particle filter can
be obtained for this example, they cannot for a wide class of complex models. For
many state space models, the transition density p(xt|xt−1, θ) cannot be evaluated. In
these cases, it is convenient to propagate particles according to the transition law so
that intractable terms cancel in the importance weights. Thus we consider another
particle filter for comparison, referred to here as the partially adapted particle filter,
where p(yt|xt−1, θ) is used to pre-weight particles and the transition density is used to
propagate the resampled particles. However, in many models evaluating p(yt|xt−1, θ) is
also intractable. Often it is approximated with p(yt|μt|t−1, θ) where μt|t−1 is given by
some location measure of the xt|xt−1, θ (e.g. mean). We find that the partially adapted
approach produces similar results to the standard bootstrap filter.

For the results presented below, we assume that it is only feasible to simulate the
transition density, and thus compare with pMCMC using the bootstrap filter, given
that the partially adapted filter produces similar results.

Inference

It is likely that all the considered models are misspecified but we would like a robust
method for fitting them in order to compare the models and investigate possibilities for
extending the models. We find that all models have particular difficulty in capturing
the sudden drop in abundance between months 107 and 108. Further, there appears
to be only small observation error. The consequence for the bootstrap filter is a very
small ESS and high variance estimates of the likelihood unless a very large number of
particles is used.

For eMCMC, we only require N = 250 (Ricker, Flexible-Allee, theta-logistic) and
N = 200 (mate-limited) particles. In contrast, we use N = 50,000 for pMCMC. For
some of the models, the standard deviation of the estimated log likelihood is still larger
than 1.5 even with this large number of particles. However, we find that when these
occur the distribution of the log-likelihood estimator with the BPF has a skew-left
distribution, which is less problematic for pMCMC getting stuck at overestimated log
likelihood values. We find that the pMCMC acceptance rates remain reasonable with
N = 50,000 particles.

The MCMC acceptance rates for the four models are 15%, 4%, 11% and 10% (eM-
CMC), and 8%, 3%, 6% and 5% (pMCMC), respectively. The acceptance rates are lower
for the theta-logistic model as the posterior distribution is far more irregular compared
to the other three models (see Figure 3).

Based on Figures 2, 4 and 5, eMCMC obtains estimated univariate posterior dis-
tributions that are remarkably similar to pMCMC. There is more difference for the
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theta-logistic model (Figure 3) but they remain broadly similar. Further, the Monte
Carlo error is greater for this model, potentially exaggerating the differences.

Figure 2: Estimated univariate posterior distributions for the parameters of the Ricker
model based on pMCMC (blue solid) and eMCMC (red dash).

The two methods are compared in terms of computational efficiency on the four
models in Table 1. It is evident that the eMCMC approach produces a two order of
magnitude improvement in terms of computational efficiency and still produces reason-
able approximations of the posterior.

We test eMCMC for a range of N values in 100–1000 and find the univariate pos-
teriors to show little sensitivity to N (results not shown). For N = 100, the MCMC
acceptance rate drops substantially and reducing N further is likely to significantly re-
duce the statistical efficiency of MCMC due to the high-variance likelihood estimates.
Therefore, it is difficult to test the sensitivity of the results to small N .

However, using the correlated extension (with σu = 0.1) allows us to use small N and
maintain statistically efficient results. Similar MCMC acceptance rates as eMCMC with
250 particles can be achieved using only N = 25 particles. The efficiency results can be
seen in Table 1. It is evident that the correlation further improves the computational
efficiency in this example. The resulting approximate marginal posteriors compared to
eMCMC with N = 1000 are shown for the four models in the figures of Appendix A of
the Supplementary Materials (Drovandi et al., 2020). It is clear that similar approximate
posteriors are obtained even with vastly different N values. However, for all models there
is a noticeable bias in the approximate posterior for σw. We also run the unbiased version
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Figure 3: Estimated univariate posterior distributions for the parameters of the theta-
logistic model based on pMCMC (blue solid) and eMCMC (red dash).

Figure 4: Estimated univariate posterior distributions for the parameters of the mate-
limited model based on pMCMC (blue solid) and eMCMC (red dash).
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Figure 5: Estimated univariate posterior distributions for the parameters of the flexible-
allee model based on pMCMC (blue solid) and eMCMC (red dash).

Model filter N ESS Time (h) ESS/Time
Ricker BPF 50000 920 36.8 25
Ricker EnKF 250 2400 0.14 17000
Ricker EnKF + correlation 25 2100 0.07 30000

theta-logistic BPF 50000 410 40.8 10
theta-logistic EnKF 250 500 0.48 1040
theta-logistic EnKF + correlation 25 540 0.06 9000
mate-limited BPF 50000 770 37.6 20
mated-limited EnKF 200 1460 0.35 4200
mated-limited EnKF + correlation 25 1800 0.07 25700
flexible-allee BPF 50000 750 37.0 20
flexible-allee EnKF 250 1750 0.26 6700
flexible-allee EnKF + correlation 25 1600 0.08 20000

Table 1: Efficiency comparisons for the four non-linear population ecology models.

of Section 3.3 with the correlated extension, again for N = 25. The same figures in the
appendix demonstrate that ueMCMC is able to reduce the bias in the approximate
posterior for σw. The largest difference between the results for N = 1000 and N = 25
occurs for the theta-logistic model. For N = 25, the unbiased version seems to offer some
correction for θw and θe but produces similar results to the biased version for the other
parameters. We find that with the unbiased version the ESS remains similar, but the
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overall efficiency is slightly reduced. The reduction in computational efficiency mainly
comes here from the extra time to compute the unbiased multivariate normal density
estimator (the ESS is roughly the same). We note that for applications where simulating
the transition density consumes the majority of the computation, the additional time
associated with computing the unbiased estimator will be significantly less noticeable.

Finally, we investigate improvements that can be obtained in this example when
using the RQMC extension. Here we use N = 50 ensemble members for each model. It
is evident that the RQMC extension produces similar marginal posteriors compared to
eMCMC with N = 1000 particles (see Appendix B of the Supplementary Materials).
The ESS values for the four models are roughly 2500, 450, 1700, and 2100, which are
competitive with standard eMCMC using a significantly larger, N = 200–250, number
of particles (see Table 1). However, the ESS/Time scores for the four models are only
roughly 900, 130, 500 and 620 with the RQMC extension. Given that simulation of
the transition density is trivial in this example, the cost associated with generating the
RQMC samples is significant and consequently the ESS/Time score with the RQMC
extension is substantially reduced. However, in complex examples where simulating
the transition density is expensive, the cost associated with RQMC will be far less
noticeable.

4.2 Lorenz 63 Example

Model and Inference Task

The Lorenz 63 dynamical system (Lorenz, 1963) is a classic low dimensional example of
chaotic behaviour. An Itô stochastic differential equation (SDE) version from Vrettas
et al. (2015) is

dXt = α(Xt, θ)dt+Σ1/2dWt, (9)

α(Xt, θ) =

⎛
⎝ θ1(X2,t −X1,t)
θ2X1,t −X2,t −X1,tX3,t

X1,tX2,t − θ3X3,t

⎞
⎠ ,

Σ =

⎛
⎝σ2

1 0 0
0 σ2

2 0
0 0 σ2

3

⎞
⎠ .

Here Xt is a vector of the random variables X1,t, X2,t, X3,t, and Wt is a vector of stan-
dard uncorrelated Brownian motion processes of the same length as Xt. Note that Σ

1/2

is interpreted as a matrix square root. We assume each Xi,t at a grid of prespecified
t values has a corresponding observation Yi,t ∼ N (Xi,t, σ

2
obs), and that these are inde-

pendent.

Exact simulation of SDEs is extremely challenging, so it is common to work with an
Euler-Maruyama discretisation (see e.g. Wilkinson, 2018). For the Lorenz model above
this gives,

xi+1 = xi + α(xi, θ)Δt+Σ1/2
√
Δtzi+1, (10)
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where each zi+1 is an independent N (0, I3) realisation. Then xi is an approximation to
Xt for t = iΔt.

Following Vrettas et al. (2015) we simulate data from this discretised model under
θ = (10, 28, 8/3), σ2

i = 10 for i = 1, 2, 3, σ2
obs = 2 and Δt = 0.01. The initial conditions

are specified by x0, which we take to be a vector of zeros. We make observations at
i = 20, 40, . . . , 600, corresponding to t = 0.2, 0.4, . . . , 6. Figure 6 shows our data.

Figure 6: Simulated Lorenz 63 data. The lines show simulated xi values from the dis-
cretised SDE, and the points noisy yi observations. Component x1,i is represented by
red circles, x2,i by blue diamonds and x3,i by green squares.

Log Likelihoods

First we compare log likelihood estimates produced by the EnKF and BPF. We run
each method 5 times for θ1 = 1, 2, . . . , 20. The other parameters are held constant at
their true values. We use 100 particles for both filtering methods. The average run-times
were roughly half as long for EnKF – 0.019 s – compared to BPF 0.046 s. Appendix C
of the Supplementary Materials shows the results. For any θ1 value, the log likelihood
estimates are more variable under BPF than EnKF. Variability becomes particularly
large under BPF when θ1 is far from its true value. Such high variance is problematic
in PMMH, as it is likely to cause chains to become stuck. The figure suggests that the
EnKF and BPF produce similar expected likelihood estimates when θ1 is close to its
true value. It is hard to draw any conclusions for other θ1 values, as the BPF expected
likelihood will be strongly driven by the upper tail of its log-likelihood estimates, and
this would take a very large number of simulations to estimate well.

Inference

Here we assume σobs is known, and attempt to infer θi and σi for i = 1, 2, 3. We assume
these parameters have independent exponential prior distributions with rate 0.1. We
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ran the EnKF and BPF at the true parameter 30 times for each of various choices of

N and calculated empirical log-likelihood variances. Based on these values we select

N = 500 for eMCMC and N = 2500 for pMCMC.

We ran our algorithms targeting the log transformed parameters. Both pMCMC

and eMCMC achieve acceptance rates in the range 10% to 20% indicating reasonable

mixing. Trace plots also suggested good mixing, with no evidence of chains becoming

stuck in the same state for a large number of iterations. The ESS values for the MCMC

outputs were 390 (eMCMC) and 197 (pMCMC). Run times were 689 s and 10,992 s for

eMCMC and pMCMC respectively. Interestingly, the pMCMC run time is roughly 15

times that of eMCMC despite using only 5 times as many particles.

Figure 7 shows the resulting marginal posterior estimates. The eMCMC posterior

approximation is similar to the gold standard pMCMC results, but there are some

noticeable differences for some parameters e.g. the θ1 and θ3 posterior marginals are

shifted downwards. Posterior correlations were small for both MCMCmethods (all below

0.35 in magnitude).

To validate our ensemble size, we ran eMCMC again using N = 25, 50, . . . , 600, with

other tuning choices unchanged. ESS per second was maximised by N = 125 and was

62% larger than using N = 500 as above. This shows that our tuning diagnostic was

reasonably accurate. (We found multivariate ESS behaved poorly for MCMC output

with low acceptance rates e.g. when N = 25. So here we used the univariate ESS of

Plummer et al. 2006 instead, averaged over parameters.)

We also ran RQMC and correlated variants of eMCMC (using σu = 0.1 for the

latter). For RQMC, initial tuning based on variance of the log likelihood selected N =

500, as for eMCMC. For correlated eMCMC we used a reduced number of particles,

N = 100. Posterior marginals are shown in Figure 7 and are extremely similar to

eMCMC results. RQMC eMCMC produced a similar acceptance rate and ESS value

(305) to eMCMC, but the cost of QMC sampling increased the run time to 3,073 s

(roughly a 5 times increase). Correlated eMCMC increased the acceptance rate (to

26%) and ESS (to 417) while also reducing the run time (to 195 s).

Finally, we implemented the particle EnKF (pEnKF) method of Katzfuss et al.

(2019) (see their Algorithm 4). This algorithm avoids the need for MCMC. Instead, it

evolves a population of static parameters (particles) over time, where each particle has

an associated ensemble for the hidden state. The approach uses the EnKF approximation

of the likelihood to re-weight the particles. The ensemble of latent states is propagated

by the transition density and the particles are propagated via resampling and a jittering

step. Our implementation used 10,000 particles, each with 100 ensemble members, which

we found gave reasonable performance. However a difficulty of this algorithm is that it

is unclear how to make these tuning choices optimally. Our run time was 2,529 s, slower

than eMCMC. Figure 7 shows that the resulting posterior marginal approximations are

significantly less accurate than eMCMC.
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Figure 7: Estimated Lorenz 63 marginal parameter posteriors using pMCMC (blue
solid), eMCMC (red dashed), RQMC eMCMC (magenta dotted), correlated eMCMC
(green dot-dash), and pEnKF (cyan thin solid). The lines are kernel density estimates
based on Monte Carlo samples. True parameter values are shown as black vertical lines.

4.3 Lorenz 96 Example

The Lorenz 96 dynamical system (Lorenz, 1996) is often used to test the performance
of data assimilation methods in high dimensions, and we use it for this purpose here
to test the eMCMC algorithm. We introduce an SDE version. This again follows the
general SDE (9), but now the ith entry of α(Xt, θ) is defined as

αi(Xt, θ) = θ1(Xi+1,t −Xi−2,t)Xi−1,t − θ2Xi,t + θ3,
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for i = 1, 2, . . . , dx, and Σ = σ2I. Here Xt is a vector of the dx random variables
X1,t, X2,t, . . . , Xdx,t. Addition and subtraction of indices above are interpreted modulo
dx so that, for example, when i = 1 then Xi−1,t is Xdx,t. We work with the discretised
SDE (10). We simulated a dataset with dx = 50, θ = (1, 1, 8), σ2 = 10, σ2

obs = 25 and
performed inference on θ and σ. Other details are as in the Section 4.2.

Our tuning diagnostic for the number of particles suggested using N = 5,000 for
EnKF. We ran eMCMC for 10,000 iterations. We got an acceptance rate of 18% indi-
cating good mixing. The ESS was 321 and the compute time was 79,097 s. We could
not compare with gold standard pMCMC results here, as this algorithm was not com-
putationally feasible for this high dimensional example (as even with 10,000 particles,
log likelihood estimates had standard deviations far above our diagnostic target of 1.5,
while MCMC runtimes were in the order of days). However, Appendix D of the Supple-
mentary Materials shows that the approximate posterior marginals from eMCMC are
consistent with the true parameter values. This demonstrates that eMCMC can produce
sensible results for problems where the state has (moderately) high dimension.

4.4 Lotka Volterra Example

Model and Inference Task

The Lotka-Volterra predator-prey model (e.g. Boys et al., 2008) describes the con-
tinuous time evolution of a non-negative integer-valued process Xt = (X1,t, X2,t)

′

where X1,t denotes prey and X2,t denotes predator. Starting from an initial value,
Xt evolves according to a Markov jump process (MJP) parameterised by rate con-
stants c = (c1, c2, c3)

′ and characterised by the instantaneous rate or hazard function
h(xt, c) = (h1(xt, c1), h2(xt, c2), h3(xt, c3))

′. Transitions over (t, t+ dt] take the form of
one of three types (prey reproduction, prey death / predator reproduction, predator
death) with associated probabilities given by

Pr {X1,t+dt = x1,t + 1, X2,t+dt = x2,t|xt} = h1(xt, c1)dt+ o(dt),

Pr {X1,t+dt = x1,t − 1, X2,t+dt = x2,t + 1|xt} = h2(xt, c2)dt+ o(dt),

Pr {X1,t+dt = x1,t, X2,t+dt = x2,t − 1|xt} = h3(xt, c3)dt+ o(dt).

The hazard function for this system is

h(Xt, c) = (c1x1,t, c2x1,tx2,t, c3x2,t)
′.

It is then relatively simple to generate realisations of this process via Gillespie’s direct
method (Gillespie, 1977), where at time t, the dwell time between transition events is

drawn from an exponential distribution with rate h0(xt, c) =
∑3

i=1 hi(xt, ci) and the
transition is type i with probability proportional to hi(xt, ci).

We assume that the MJP is observed with Gaussian error so that

Yt|Xt ∼ N
{(

x1,t

x2,t

)
,

(
σ2
1 0
0 σ2

2

)}
.
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As all parameters of interest must be strictly positive, we consider inference for

θ = (log c1, log c2, log c3, log σ1, log σ2)
′
.

We consider two synthetic data sets (D1 and D2) simulated with rate parameters c =
(0.5, 0.0025, 0.3)′ and initial condition x0 = (71, 79)′. We further assume σ1 = σ2 = 1
to be unknown. To allow the analysis of two data-poor scenarios, dataset D1 has 51
equally spaced observations on [0, 50] and dataset D2 is constructed by thinning D1 to
give 26 equally spaced observations on [0, 25].

Inference

We compare the performance of EnKF to the gold standard auxiliary particle filter
(APF) driven pMCMC scheme described in Golightly and Wilkinson (2015). In brief,
state particles are propagated using Gillespie’s direct method, with the hazard func-
tion replaced by an approximate conditioned hazard, derived from a linear Gaussian
approximation to the MJP. Full details of this approach, including the calculation of
the particle filter weights can be found in Golightly and Wilkinson (2015).

We follow the practical advice given in Section 2.2 to choose the number of particles
/ ensemble members N and the scaling of the innovation variance in the random walk
proposal distribution. We assumed independent uniform U(−8, 8) priors for the com-
ponents of θ and ran both eMCMC and pMCMC for 105 iterations. Since the EnKF
treats the state as continuous, eMCMC used a reflecting barrier at 0 to avoid the state
of the system going negative.

The results are summarised by Table 2 and Figure 8, with additional results shown
in Appendix E of the Supplementary Materials. We see that for both data sets, the
output of eMCMC is consistent with the true values that produced the data and, more
importantly, the ground truth posterior based on the output of pMCMC. For dataset
D1, eMCMC required more particles than pMCMC but gives better overall efficiency
(as measured by the ESS per second) since sampling from the propagation construct in
the auxiliary particle filter is relatively expensive. We see an increase of about a factor
of 3. For dataset D2, the number of particles required by pMCMC must be increased,
since the propagation construct is based on a linear Gaussian approximation of the true
(but unknown) hazard function of the conditioned MJP. The construct breaks down as
observations are made sparsely in time (and the dynamics of the conditioned process are
nonlinear between observations). Ensemble MCMC on the other hand seems to work
well, requiring even fewer particles than for D1. We see an increase in overall efficiency
(compared to pMCMC) of a factor of around 55.

4.5 Autoregulatory Network Example

Model and Inference Task

A commonly used mechanism for auto-regulation in prokaryotes which has been well-
studied and modelled is a negative feedback mechanism whereby dimers of a protein
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Filter N τ Acc. rate ESS Time (s) ESS/Time
D1 (51 obs. every 1 time unit)

APF 55 1.4 0.11 1117 26298 0.042
EnKF 150 1.4 0.11 1762 12299 0.143

D2 (26 obs. every 2 time units)
APF 350 1.4 0.08 1156 165015 0.007
EnKF 65 1.4 0.11 2054 5282 0.389

Table 2: Summaries for the Lotka Volterra application: number of particles N , standard
deviation of the noise in the log-posterior (τ) at the posterior median, acceptance rate,
multivariate ESS, wall clock time in seconds and ESS per second.

repress its own transcription (e.g. Arkin et al., 1998). A simplified model for such a
prokaryotic auto-regulation, based on this mechanism of dimers of a protein coded for
by a gene repressing its own transcription into RNA, can be found in Golightly and
Wilkinson (2005) (see also Golightly and Wilkinson, 2011).

Let Xt = (X1,t, X2,t, X3,t, X4,t, X5,t)
′ denote the number of copies of the unbound

gene X1,t, bound gene X2,t, RNA X3,t, protein X4,t and dimers of the protein X5,t. We
assume that Xt evolves according to a Markov jump process. The possible transitions
can be succinctly described by the pseudo-reaction list

R1 : X1 +X5 −→ X2 R2 : X2 −→ X1 +X5

R3 : X1 −→ X1 +X3 R4 : X3 −→ X3 +X4

R5 : 2X4 −→ X5 R6 : X5 −→ 2X4

R7 : X3 −→ ∅ R8 : X4 −→ ∅

where, for example, occurrence of R1 at time t reduces X1,t and X5,t by 1, increases X2,t

by 1, and leaves the remaining components unchanged. The associated hazard function
is

h(xt, c) = (c1x1,tx5,t, c2x2,t, c3x1,t, c4x3,t, c5x4,t(x4,t − 1)/2, c6x5,t, c7x3,t, c8x4,t)
′.

We consider here two challenging synthetic datasets, each consisting of 101 observa-
tions at integer times on X3,t (RNA) and total protein counts, X4,5+2X5,t so that X1,t,
X2,t, X4,t and X5,t are not observed exactly. Moreover, as in Section 4.4, we corrupt the
observations by adding independent, Gaussian N{0, diag(σ2

1 , σ
2
2)} innovations to each

count. We fix σ1 = σ2 = 1 for dataset D1 and σ1 = σ2 = 0 for dataset D2. These
variance components are assumed known. Following Golightly and Wilkinson (2005),
we use the rate constants

c = (0.1, 0.7, 0.35, 0.2, 0.1, 0.9, 0.3, 0.1)′.

We assume that the initial condition x0 = (5, 5, 8, 8, 8)′, the measurement error variances
and the rate constants of the reversible dimerisation reactions (c5 and c6) are known
leaving θi = log ci, i = 1, 2, 3, 4, 7, 8 as the object of inference.
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Figure 8: Lotka Volterra dataset D1. Marginal posterior densities based on the output
of pMCMC (solid) and eMCMC (dashed).

Inference

We again compare the performance of eMCMC to the gold standard auxiliary particle
filter driven pMCMC scheme described in Golightly and Wilkinson (2015). The number
of particles / ensemble members N was chosen as in Section 2.2. We assigned indepen-
dent Gamma Ga(1, 0.5) priors to each unknown rate constant and ran eMCMC and
pMCMC for 2 × 105 iterations. Note that when running eMCMC for dataset D2, the
(assumed known) values of σ1 and σ2 result in no shifting of the ensemble members,
rendering this step ineffectual. We therefore ran eMCMC for this scenario by setting the
measurement error variance to be “small” throughout the algorithm’s execution. Specif-
ically, we found that setting σ2

1 = σ2
2 = 0.01 gave reasonable mixing, at the expense of

introducing additional bias into the eMCMC posterior.

Table 3 and Figure 9 summarise the results. Appendix F of the Supplementary
Materials shows posterior estimates for dataset D2. It is clear that eMCMC gives output
that is consistent with the true values that produced the data and output from pMCMC,
which exactly targets the posterior of interest. We therefore compare overall efficiency
of eMCMC and pMCMC in terms of ESS per second, as reported in Table 3. For dataset
D1, eMCMC requires half the number of particles of pMCMC and gives a comparable
ESS value. In terms of overall efficiency, eMCMC outperforms pMCMC by around a
factor of 4. For dataset D2, pMCMC requires around 2000 particles, due to the strict
requirement of particle trajectories having to “hit” the observations to receive a non
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Filter N τ Acc. rate ESS Time (s) ESS/Time
D1 (σ1 = σ2 = 1)

APF 400 1.3 0.15 3348 72081 0.046
EnKF 200 1.5 0.13 2972 15862 0.187

D2 (σ1 = σ2 = 0)
APF 2000 1.4 0.11 3314 403456 0.0082
EnKF 370 1.4 0.11 3176 34112 0.0931

Table 3: Summaries for the autoregulatory example: number of particles N , standard
deviation of the noise in the log-posterior (τ) at the posterior median, acceptance rate,
multivariate ESS, wall clock time in seconds and ESS per second.

zero weight. Ensemble MCMC on the other hand is able to give a comparable ESS value
with just 370 particles. Consequently, for this example, eMCMC outperforms pMCMC
by around a factor of 11.

4.6 Neuroscience Example

Model

We investigate the following realistic Neural Population Model (NPM) for brain activity.
This model (see e.g. Bojak and Liley, 2005) is known as the Liley model, and Bayesian
inference for the parameters of this model has previously been described by Maybank
et al. (2017). Here a high-level description of the model is presented; more detail can
be found in this latter paper. The model is of two neural populations: one population
that has an excitatory effect on the activity of connected neurons, the other that has
an inhibitory effect. The model consists of the following differential equations, where
k = e, i for excitatory and inhibitory contributions:(

d

dt
+ γek

)(
d

dt
+ γ̄ek

)
Iek(t) = exp (γekdek) Γekγ̃ek

×
[
Nβ

ekSe (he(t)) + Φek(t) + p̄ek + δekp(t)
]
, (11)(

d

dt
+ γik

)(
d

dt
+ γ̄ik

)
Iik(t) = exp (γikdik) Γikγ̃ik

[
Nβ

ikSi (hi(t))
]
, (12)

(
d

dt
+ vΛ

)2

Φek(t) = v2Λ2Nα
ekSe (he(t)) , (13)

Φek(t) = 0, (14)

where the Kronecker delta δek admits only excitatory noise input p (white noise with
zero mean and fixed standard deviation) to this stochastic differential equation sys-
tem, and where S is a sigmoidal activation function. The 14 state variables are time-
evolving properties of the two populations: he, hi (the mean soma membrane poten-
tials); Iee, Iei, Iii, Iii (local reaction to synaptic inputs) and their differentials; and
Φee,Φei (long-range propagation of activity) and their differentials. The parameters
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Figure 9: Autoregulatory dataset D1. Marginal posterior densities based on the output
of pMCMC (blue solid) and eMCMC (red dash).

are Γee,Γei,Γie,Γii (the synaptic input peak amplitude) γee, γei, γie, γii (shape param-

eters of the post synaptic potentials) and p̄ee = 6603.4, p̄ei = 2625.7, σ = 0.01 (the

mean rate of the extracortical inputs). The parameters Λ (decay scale of long-range

connectivity) v (axonal conduction velocity) and dee, dei, die, dii (rise times to peak of

the post synaptic potentials) are fixed.

We model an electroencephalogram (EEG) time-series as noisy observations of the

he variable of this NPM, assuming that the EEG observations are linearly proportional

to he with some added observational noise:

yi = he(i ·Δt) + zi (15)

where Δt is some constant time-step and the zi are iid normal random variables zi ∼
N

(
0, σ2

)
for i = 0, . . . , n− 1.

In this paper an input noise of variance 108 was used to simulate data, and the

dynamics were simulated using the Euler-Maruyama method with step size 2.5× 10−3.

Appendix G of the Supplementary Materials gives the prior distributions for the pa-

rameters that were treated as unknown, giving the uniform priors that restrict the

parameters to ranges found to be plausible in Bojak and Liley (2005); other parameters

were fixed to values chosen from the ranges given by Bojak and Liley (2005).
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Results

We compared the performance of eMCMC and pMCMC on data simulated from the
Liley model for parameters that result in quasi-linear dynamics about a stable fixed
point. The work in Maybank et al. (2017) suggests that the accuracy of the parameter
posterior is likely to be improved by using a method that is suitable for non-linear sys-
tems (such as pMCMC) compared to using a linearised approach such as the extended
Kalman filter or the approach introduced in Maybank et al. (2017). Both MCMC ap-
proaches are forms of Metropolis-Hastings, with a truncated multivariate normal pro-
posal for the 11 parameters and covariance chosen to be 2.5622/11 times the estimated
posterior covariance from pilot runs (this scaling being recommended by Sherlock et al.,
2015). We considered a situation that is challenging for a particle filter, with a relatively
small measurement noise of σ = 0.01.

We study a simulated data set, generated from the model using Euler-Maruyama ap-
proximation. The data, shown in Figure 10 has a length of 4 s and a sampling frequency
of 50 Hz, and was generated for the parameters (Γee = 0.10631,Γei = 0.64105,Γie =
0.46477,Γii = 0.28663, γee = 291.5, γei = 697.76, γie = 458.67, γii = 82.33, p̄ee =
6603.4, p̄ei = 2625.7, σ = 0.01).

We ran 40 chains of 1000 iterations of pMCMC and eMCMC on this data. All were
initialised from the parameters at which the data was generated and used a burn in of 500
iterations. Based on the scheme described in Section 2.2, we chose 1000 particles for the
BPF in pMCMC, and 100 ensemble members for the EnKF in eMCMC. Both algorithms
were implemented with early rejection schemes, as detailed in Section 3.4. In both cases
the early rejection results in a reduction in computational cost of approximately a
factor of two; with this scheme each iteration of pMCMC took an average of 1415 s,
compared to the average of 91 s for eMCMC. The mean acceptance rate for pMCMC was
0.33%, compared to 0.93% for eMCMC, indicating that eMCMC is (by this measure)
is approximately three times as efficient whilst being more than 15 times faster. Pilot
runs on longer simulated time series suggest that the efficiency of eMCMC (relative to
pMCMC) improves as the length of the time series increases, but in these cases the
computational cost of pMCMC was too large to permit a rigorous comparison. Kernel
density estimates of the marginal posterior of each parameter are shown in Figure 10:
we observe that the posteriors obtained by both methods are similar.

5 Discussion

In this paper we replace the BPF with the EnKF within a pMCMC algorithm. We
have demonstrated on a variety of examples that significant computational gains can
be achieved without sacrificing much on posterior accuracy.

We expect eMCMC to work relatively well on applications with characteristics that
may reduce the performance of particle filters such as: intractable transition densities
for complex models, sparse observations, small observation variance, surprising obser-
vations and/or model misspecification. Our methods may perform comparatively less
well for models that have some level of tractability that permit more advanced particle
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Figure 10: Top left: simulated data from the Liley model with added measurement noise.
Other plots: estimated marginal posterior distributions for the parameters of the Liley
model based on pMCMC (blue solid) and eMCMC (red dash).

filters. However, for the Markov jump process applications we obtained competitive re-
sults even when particle filters exploited cleverly-designed guided proposals and where
eMCMC simply simulated directly according to the evolution density. In some sense,
eMCMC is a middle ground between exact-approximate particle MCMC and pure data
assimilation methods; we attempt to gain speed improvements over pMCMC via some
data assimilation ideas and obtain more accurate posterior approximations compared
to pure data assimilation by using a similar algorithm structure to pMCMC.

If exact posterior inferences are essential, there are likely to be ways to exploit our
EnKF approach to improve computational performance. For example, it could be used
as the cheap approximate likelihood within a delayed-acceptance MCMC algorithm
(e.g. Sherlock et al., 2017 and Golightly et al., 2015) or importance sampling scheme
(Franks and Vihola, 2017). Alternatively, we might bridge our approximate posterior
with the true posterior using sequential Monte Carlo. Further, our approach could be
used in pilot MCMC runs to more quickly identify the regions of the parameter space
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with non-negligible posterior support and assist MCMC tuning generally. Particularly
in the posterior tails we find that the EnKF likelihood estimator has significantly lower
variance than the BPF likelihood estimator.

It is important to note that there will likely be many applications where the EnKF
approximation may not be appropriate. The approach relies on being able to approx-
imate the filtering distribution reasonably well with a Gaussian density. However, our
paper illustrates that there are a wide class of models where our approach can provide
reasonable accuracy. Further, Katzfuss et al. (2019) present a hierarchical approach for
allowing non-Gaussian observation densities with EnKF methods, which would also be
applicable to our approach.

We chose the EnKF to approximate the likelihood in this paper since it respects
non-linear evolution models. However, we note that other approximate KF methods
could be adopted. For example, the extended KF and its variations/extensions (see,
for example, Law et al., 2015, chap. 4 and Asch et al., 2016, chap. 6). Further, for
problems with higher state space dimensions, innovations in the EnKF literature such
as localisation and inflation could be considered (see, for example, Evensen, 2009, chap.
15). Investigating these different approximate filters is an avenue for future research.

An alternative to MCMC is state augmentation: processing the data once to infer
both θ and x. In Section 4.2 we implemented one such method, particle EnKF, and
found that eMCMC performed better in terms of speed and accuracy. Nonetheless,
this or other versions of state augmentation may well perform better in other settings.
Further, our method is strictly an offline method whereas particle EnKF can also be
applied in an online setting (see Table 1 of Katzfuss et al. (2019)). Alternatively, we
suggest that our approach could be incorporated into the SMC2 algorithm of Chopin
et al. (2013), which uses an MCMC kernel for jittering particles and thus preserves the
current target. We leave that for further research.

We did not consider posterior inference for the hidden states in this paper. It is
possible to combine our method with the ensemble Kalman smoother of van Leeuwen
and Evensen (1996), as proposed in Katzfuss et al. (2019). The framework described in
Katzfuss et al. (2019) may also be used to extend the methods in this paper to nonlinear
non-Gaussian measurement models through the use of a transformation.

In this paper we compared the most commonly used particle filter (the BPF, except
in the Markov jump process examples) and EnKF (the stochastic EnKF) within MCMC
algorithms. In future work it would be interesting to compare extensions to both ap-
proaches. Extensions to the BPF are familiar to many in computational statistics (e.g.
adaptive resampling, MCMC rejuvenation moves, the auxiliary PF) and the improve-
ments they can bring to particle MCMC algorithms are relatively well understood. In
the paper we have seen how ideas previously used in the pMCMC context (i.e. using
Quasi Monte Carlo, and the correlated approach) can also be exploited in the EnKF
case. Other extensions and alternatives to the stochastic EnKF from the DA literature
are also possible and have the potential to provide further improvements in the pM-
CMC setting. Examples are: the deterministic EnKF (Tippett et al., 2003), which uses
a deterministic rather than a stochastic transformation in the shift step, which may
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further reduce the variance of the likelihood estimates (but which may introduce fur-
ther bias for nonlinear models); or the equivalent weights particle filter (van Leeuwen,
2010), which uses a deterministic transform in each step of a PF to avoid degeneracy
(but which may, again, introduce bias).

Supplementary Material

Ensemble MCMC: Accelerating Pseudo-Marginal MCMC for State Space Models using
the Ensemble Kalman Filter (DOI: 10.1214/20-BA1251SUPP; .pdf).
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