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Abstract
We consider the problem of inference for nonlinear, multivariate diffusion processes, satisfying Itô stochastic differential
equations (SDEs), using data at discrete times that may be incomplete and subject to measurement error. Our starting point
is a state-of-the-art correlated pseudo-marginal Metropolis–Hastings algorithm, that uses correlated particle filters to induce
strong and positive correlation between successive likelihood estimates. However, unless the measurement error or the
dimension of the SDE is small, correlation can be eroded by the resampling steps in the particle filter. We therefore propose a
novel augmentation scheme, that allows for conditioning on values of the latent process at the observation times, completely
avoiding the need for resampling steps.We integrate over the uncertainty at the observation timeswith an additional Gibbs step.
Connections between the resulting pseudo-marginal scheme and existing inference schemes for diffusion processes are made,
giving a unified inference framework that encompasses Gibbs sampling and pseudo marginal schemes. The methodology is
applied in three examples of increasing complexity.We find that our approach offers substantial increases in overall efficiency,
compared to competing methods

Keywords Stochastic differential equation ·Bayesian inference · Pseudo-marginalMetropolis–Hastings ·Data augmentation ·
Linear noise approximation

1 Introduction

Although stochastic differential equations (SDEs) have been
ubiquitously applied in areas such as finance (see e.g.
Kalogeropoulos et al. 2010; Stramer et al. 2017,), climate
modelling (see e.g. Majda et al. 2009; Chen et al. 2014,) and
life sciences (see e.g. Golightly and Wilkinson 2011; Fuchs
2013; Wilkinson 2018; Picchini and Forman 2019,), their
widespread uptake is hindered by the significant challenge
of fitting suchmodels to partial data at discrete times.General
nonlinear, multivariate SDEs rarely admit analytic solutions,
necessitating the use of a numerical solution (such as that
obtained from the Euler–Maruyama scheme). The resulting
discretisation error can be controlled through the use of inter-
mediate time steps between observation instants. However,
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integrating over the uncertainty at these intermediate times
can be computationally expensive.

Upon resorting to discretisation, two approaches to
Bayesian inference are apparent. If learning of both the
static parameters and latent process is required, a Gibbs sam-
pler provides a natural way of exploring the joint posterior.
The well-studied dependence between the parameters and
latent process can be problematic; see Roberts and Stramer
(2001) for a discussion of the problem. Gibbs strategies that
overcome this dependence have been proposed by Roberts
and Stramer (2001) for reducible SDEs and by Golightly
and Wilkinson (2008), Fuchs (2013), Papaspiliopoulos et al.
(2013) and van der Meulen and Schauer (2017) (among
others) for irreducible SDEs. If primary interest lies in learn-
ing the parameters, pseudo-marginal Metropolis–Hastings
(PMMH) schemes (Andrieu et al. 2010; Andrieu andRoberts
2009; Stramer and Bognar 2011; Golightly and Wilkinson
2011) can be constructed to directly target the marginal
parameter posterior, or, with simple modification, the joint
posterior over both parameters and the latent process. PMMH
requires running a particle filter (conditional on a proposed
parameter value) at each iteration of the sampler to obtain
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an estimate of the marginal likelihood (henceforth referred
to simply as the likelihood). This can be computationally
costly, especially in applications involving long time series,
since the number of particles should be scaled in proportion
to the number of data points n tomaintain a desired likelihood
estimator variance (Bérard et al. 2014). To reduce the vari-
ance of the acceptance ratio (for a given number of particles),
successive likelihood estimates can be positively correlated
(Dahlin et al. 2015; Deligiannidis et al. 2018). The resulting
correlated PMMH (CPMMH) scheme has been applied in
the discretised SDE setting by Golightly et al. (2019); see
also Choppala et al. (2016) and Tran et al. (2016).

As a starting point for this work, we consider a CPMMH
scheme. A well-known problemwith this approach is the use
of resampling steps in the particle filter, which can destroy
correlation between successive likelihood estimates. This
problem can be alleviated by sorting each particle before
propagation using e.g. a Hilbert sorting procedure (Deligian-
nidis et al. 2018) or simple Euclidean sorting (Choppala et al.
2016). However, Golightly et al. (2019) find that as the level
of the noise in the observation process increases, correlation
deteriorates. Moreover, the empirical findings of Deligianni-
dis et al. (2018) suggest that the number of particles should
scale as nd/(d+1) (where d is the dimension of the state space
of the SDE), so that the advantage of CPMMH over PMMH
degrades as the state dimension increases. Our aim is to avoid
resampling altogether. A joint update of the entire latent pro-
cesswould avoid the need for resampling (as implemented by
Stramer and Bognar (2011) in the PMMH setting) but to be
computationally efficient this usually requires an extremely
accurate method for sampling the latent process.

Our novel approach is to augment the parameter vec-
tor to include the latent process at the observation times,
but not at the intermediate times between observation time
instants. Given observations y, latent values xo at obser-
vation instants and parameters θ , a Gibbs sampler is used
to update θ conditional on (xo, y), and xo conditional on
(θ, y). Both steps require estimating likelihoods of the form
p(xot+1|xot , θ) for which we obtain unbiased estimators via
importance sampling. Consequently, our approach can be
cast within the pseudo-marginal framework and we further
use correlation to improve computational efficiency. Cru-
cially, we avoid the need for resampling, thus preserving
induced positive correlation between likelihood estimates.
Furthermore, each iteration of our proposed scheme admits
steps that are embarrassingly parallel. We refer to the result-
ing sampler as augmented CPMMH (aCPMMH). It should
be noted that aCPMMH requires careful initialisation of xo

and subsequently, a suitable proposal mechanism. We pro-
vide practical advice for initialisation and tuning of proposals
for a wide class of SDEs. Special cases of aCPMMH are also
considered, and a byproduct of our approach is an inferential
framework that encompasses both the pseudo-marginal strat-

egy and Gibbs samplers described in the second paragraph
of this section. In particular, we make clear the connection
between aCPMMH and the Gibbs sampler (with reparam-
eterisation) described in Golightly and Wilkinson (2008).
We apply aCPMMH in three examples of increasing com-
plexity and compare against state-of-the-art CPMMH and
PMMH schemes. We find that the proposed approach offers
an increase in overall efficiency of over an order ofmagnitude
in several settings.

The remainder of this paper is organised as follows. Back-
ground information on the inference problem, PMMH and
CPMMH approaches is provided in Sect. 2. Our novel con-
tribution is described in Sect. 3 and we explore connections
between our proposed approach and existing samplers that
use data augmentation in Sect. 3.3. Applications are given in
Sect. 4, and conclusions are provided in Sect. 5, alongside
directions for future research.

2 Bayesian inference via time discretisation

Consider a continuous-timed-dimensional Itô process {Xt , t ≥
0} satisfying an SDE of the form

dXt = α(Xt , θ) dt +√β(Xt , θ) dWt , X0 ∼ p(x0). (1)

Here, α is a d-vector of drift functions, the diffusion coeffi-
cient β is a d × d positive definite matrix with a square-root
representation

√
β such that

√
β
√

β
T = β and Wt is a

d-vector of (uncorrelated) standard Brownian motion pro-
cesses. We assume that both α and β depend on Xt =
(X1,t , . . . , Xd,t )

T and denote the parameter vector with θ =
(θ1, . . . , θp)

T

Suppose that {Xt , t ≥ 0} cannot be observed exactly, but
observations y = (y1, . . . , yn)T are available on a regular
time grid and these are conditionally independent (given the
latent process). We link the observations to the latent process
via an observation model of the form

Yt = FT Xt + εt , εt |� indep∼ N (0, �), (2)

where Yt is a do-vector, F is a constant d × do matrix and
εt is a random do-vector. Note that this setup allows for only
observing a subset of components (do < d). In settingswhere
learning � is also of interest, the parameter vector θ can be
augmented to include the components of �.

For most problems of interest the form of the SDE in (1)
will not permit an analytic solution. We therefore work with
the Euler–Maruyama approximation

�Xt ≡ Xt+�t − Xt = α(Xt , θ)�t +√β(Xt , θ) �Wt
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where �Wt ∼ N (0, Id�t). To allow arbitrary accuracy of
this approximation, we adopt a partition of [t, t + 1] as

t = τt,0 < τt,1 < τt,2 < . . . < τt,m−1 < τt,m = t + 1

thus introducingm−1 intermediate time points with interval
widths of length

�τ ≡ τt,k+1 − τt,k = 1

m
. (3)

The Euler–Maruyama approximation is then applied over
each interval of width�τ , withm chosen by the practitioner,
to balance accuracy and computational efficiency. The tran-
sition density under the Euler–Maruyama approximation of
Xτt,k+1 |Xτt,k = xτt,k is denoted by

pe(xτt,k+1 |xτt,k , θ)

= N
(
xτt,k+1; xτt,k + α(xτt,k , θ)�τ , β(xτt,k , θ)�τ

)

where N (·;μ, V ) denotes the Gaussian density with mean
vector μ and variance matrix V .

In what follows, we adopt the shorthand notation

x[t,t+1] = (xτt,0 , . . . , xτt,m )T

for the latent process over the time interval [t, t + 1] with
an analogous notation for intervals of the form (t, t + 1] and
(t, t + 1) which ignore xτt,0 and (xτt,0 , xτt,m ), respectively.
Hence, the complete latent trajectory is given by

x = (xT[0,1], xT(1,2], . . . , x
T
(n−1,n])

T .

The joint density of the latent process over an interval of
interest is then given by a product of Gaussian densities; for
example

p(m)
e (x(t,t+1]|xt , θ) =

m−1∏

k=0

pe(xτt,k+1 |xτt,k , θ) (4)

with explicit dependence on the number of intermediate sub-
intervals made clear via the superscript (m).

2.1 Pseudo-marginal Metropolis–Hastings (PMMH)

Suppose that interest lies in the marginal parameter posterior

π(m)(θ |y) ∝ π(θ)p(m)(y|θ) (5)

where π(θ) is the prior density ascribed to θ and p(m)(y|θ)

is the (marginal) likelihood under the augmented Euler–

Maruyama approach. That is,

p(m)(y|θ) =
∫

p(m)(x |θ)p(y|x, θ)dx

where

p(m)(x |θ) = p(x0)
n−1∏

t=0

p(m)
e (x(t,t+1]|xt , θ)

and

p(y|x, θ) =
n∏

t=1

p(yt |xt , θ). (6)

Although π(m)(θ |y) is typically complicated by the
intractable likelihood term, p(m)(y|θ), the latter can be unbi-
asedly estimated using a particle filter (Del Moral 2004; Pitt
et al. 2012).Wewrite the estimator as p̂(m)

U (y|θ)with explicit
dependence on U ∼ p(u), that is, the collection of all ran-
dom variables of which a realisation u gives the estimate
p̂(m)
u (y|θ). Algorithm 1 gives the necessary steps for the gen-

eration of p̂(m)
u (y|θ), with the explicit role of u suppressed

for simplicity. A key requirement of the particle filter is the
ability to simulate latent trajectories x(t,t+1] at each time t . To
yield a reasonable particle weight, such trajectories must be
consistent with xt and yt+1 and are typically termed bridges.
In this article we generate bridges by drawing from a density
of the form

g
(
x(t,t+1]|xt , yt+1, θ

) =
m−1∏

k=0

g(xτt,k+1 |xτt,k , yt+1, θ)

where the constituent terms take the form

g(xτt,k+1 |xτt,k , yt+1, θ)

= N
(
xτt,k+1; xτt,k + μ(xτt,k , yt+1, θ)�τ , 
(xτt,k , θ)�τ

)

(7)

for suitable choices of μ(xτt,k , yt+1, θ) and 
(xτt,k , θ). The
form of (7) permits a wide choice of bridge construct and we
refer the reader to Whitaker et al. (2017) and Schauer et al.
(2017) for several options. Throughout this paper, we take

μ(xτt,k , yt+1, θ) = αk + βk F
(
FTβk F�k + �

)−1

×
{
yt+1 − FT (xτt,k + αk�k)

}
(8)

and


(xτt,k , θ) = βk − βk F
(
FTβk F�k + �

)−1
FTβk�τ

(9)
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Algorithm 1 Particle filter
Input: observations y = (y1, . . . , yn)T , parameter θ , auxiliary variable
u and the number of particles N .

1. Initialise. For i = 1, . . . , N sample particle xi0 from the initial state
distribution and assign weight wi

0 = 1/N .
2. For times t = 0, 1, . . . , n − 1:

(a) Resample. For i = 1, . . . , N , sample the index ait ∼
M(

w1:N
t

)
of the ancestor of particle i , where M(w1:N

t )

denotes a categorical distribution on {1, . . . , N } with proba-
bilities w1:N

t .

(b) Propagate. Draw xi(t,t+1] ∼ g
( · |xaitt , yt+1, θ

)
, i = 1, . . . , N .

(c) Compute weights. For i = 1, . . . , N set

w̃i
t+1 = p(yt+1|xit+1, θ)p(m)

e
(
xi(t,t+1]|xa

i
t

t , θ
)

g
(
xi(t,t+1]|xa

i
t

t , yt+1, θ
) ,

wi
t+1 = w̃i

t+1
∑N

j=1 w̃
j
t+1

.

Output: estimate p̂(m)
u (y|θ) = N−n∏n−1

t=0
∑N

i=1 w̃i
t+1 of the observed

data likelihood.

where�k = t+1−τt,k and we adopt the shorthand notation
thatαk :=α(xτt,k , θ) andβk :=β(xτt,k , θ).We note that (8) and
(9) correspond to the (extension to partial and noisy observa-
tions of the) modified diffusion bridge construct of Durham
and Gallant (2002). We may write the construct generatively
as

xτt,k+1 = xτt,k + μ(xτt,k , yt+1, θ)�τ

+
√


(xτt,k , θ)�τ uτt,k (10)

where uτt,k ∼ N (0, Id). It should then be clear that an esti-

mate of the likelihood, p̂(m)
u (y|θ), is a deterministic function

of the Gaussian innovations driving the bridge construct, and
additionally, any random variates required in the resampling
step of Algorithm 1. We use systematic resampling, which
requires a single uniform innovation per resampling step.

The pseudo-marginal Metropolis–Hastings (PMMH)
scheme (Andrieu and Roberts 2009; Andrieu et al. 2009)
is a Metropolis–Hastings (MH) scheme targeting the joint
density

π(m)(θ, u|y) ∝ π(θ) p̂(m)
u (y|θ)p(u)

for which it is easily checked (using
∫
p̂(m)
u (y|θ)p(u)du =

p(m)(y|θ)) that π(m)(θ |y) is a marginal density. Hence, for
a proposal density that factorises as q(θ ′|θ)q(u′), the MH
acceptance probability is

α(θ ′, u′|θ, u)

= min

{

1 ,
π(θ ′)
π(θ)

× p̂(m)

u′ (y|θ ′)
p̂(m)
u (y|θ)

× q(θ |θ ′)
q(θ ′|θ)

}

. (11)

The variance of p̂(m)
U (y|θ) is controlled by the number of

particles N , which should be chosen to balance both mixing
and computational efficiency. For example, as the variance of
the likelihood estimator increases, the acceptance probability
of the pseudo-marginal MH scheme decreases to 0 (Pitt et al.
2012). Increasing N results in more acceptances at increased
computational cost. Practical advice for choosing N is given
by Sherlock et al. (2015) and Doucet et al. (2015) under two
different sets of simplifying assumptions. Given a parameter
valuewith good support under the posterior (e.g. themarginal
posterior mean, estimated from a pilot run), we select N
so that the estimated log-likelihood at this parameter value
has a standard deviation of roughly 1.5. Unfortunately, the
value of N required to meet this condition is often found
to be impractically large. Therefore, we consider a variance
reduction technique which is key to our proposed approach.

2.2 Correlated pseudo-marginal
Metropolis–Hastings (CPMMH)

The correlated pseudo-marginal scheme (Deligiannidis et al.
2018; Dahlin et al. 2015) aims to reduce the variance of the
acceptance ratio in (11) by inducing strong and positive cor-
relation between successive estimates of the observed data
likelihood in the MH scheme. This can be achieved by tak-
ing a proposal q(θ ′|θ)K (u′|u) where K (u′|u) satisfies the
detailed balance equation

K (u′|u)p(u) = K (u|u′)p(u′).

Recall that u consists of the collection of Gaussian random
variates used to propagate the state particles (2(b) in Algo-
rithm 1) and any variates required in the resampling step
(2(a) in Algorithm 1). The Uniform random variate required
for systematic resampling can be obtained by applying the
inverse Gaussian cdf to a Gaussian draw. Hence, u consists
entirely of standard Gaussian variates and it is then natural
to set

K (u′|u) = N
(
u′; ρu ,

(
1 − ρ2

)
Id∗
)

(12)

where d∗ is the total number of required innovations. We
note that the density in (12) corresponds to a Crank–Nicolson
proposal density for which it is easily checked that p(u) =
N (u; 0, Id∗) is invariant. The parameter ρ is chosen by the
practitioner, with ρ ≈ 1 inducing strong and positive cor-
relation between p̂(m)

u′ (y|θ ′) and p̂(m)
u (y|θ). The correlated

pseudo-marginal Metropolis–Hastings scheme is given by
Algorithm 2, which should be used in conjunction with a
modified version of Algorithm 1 to induce the desired cor-
relation. However, the resampling step has the effect of
breaking down correlation between successive likelihood
estimates. To alleviate this problem, the particles can be
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Algorithm 2 Correlated PMMH scheme (CPMMH)

Input: parameter value θ(0), correlation parameter ρ and the number
of CPMMH iterations niters.

1. Initialise. Draw u(0) ∼ p(·) and compute p̂(m)

u(0) (y|θ(0)) by running

Algorithm 1 with (θ, u) = (θ(0), u(0)). Set the iteration counter
i = 1.

2. Update parameters.

(a) Draw θ ′ ∼ q(·|θ(i−1)) and u′ ∼ K (·|u(i−1)).
(b) Compute p̂(m)

u′ (y|θ ′) by running Algorithm 1 with (θ, u) =
(θ ′, u′).

(c) With probability α(θ ′, u′|θ(i−1), u(i−1)) given by (11), put
(θ(i), u(i)) = (θ ′, u′) otherwise store the current values
(θ(i), u(i)) = (θ(i−1), u(i−1)).

3. If i = niters, stop. Otherwise, set i :=i + 1 and go to step 2.

Output: θ(1), . . . , θ (niters).

sorted immediately after propagation e.g. using aHilbert sort-
ing procedure (Deligiannidis et al. 2018) or simple Euclidean
sorting (Choppala et al. 2016). Given a distance metric
between particles, the particles are sorted as follows: the first
particle in the sorted list is the onewhich has the smallest first
component; for j = 2, . . . , N , the j th particle in the sorted
list is chosen to be the one among the unsorted N − j + 1
particles that is closest to the j − 1th sorted particle.

Upon choosing a value of ρ (e.g. ρ = 0.99), the number of
particles N can be chosen to minimise the distance between
successive log estimates of marginal likelihood (Deligianni-
dis et al. 2018). In practice, we choose N so that the variance
of the logarithm of the ratio p̂(m)

U ′ (y|θ)/ p̂(m)
U (y|θ) is around

1, for θ set at some central posterior value.
There are a number of limitations regarding the imple-

mentation of CPMMH as described here, which motivate
the approach of Sect. 3. Although sorting particle trajecto-
ries after propagation can in theory alleviate the effect of
resampling on maintaining correlation between successive
likelihood estimates, the sorting procedure can be unsat-
isfactory in practice. For example, the Euclidean sorting
procedure described above (and implementedwithin theSDE
context in Golightly et al. (2019)) sorts trajectories x1:N(t,t+)]
between observation times by applying the procedure to the
particle states x1:Nt+1 at the observation times. Consequently,
trajectories with similar values at time t + 1 may exhibit
qualitatively different behaviour between observation times,
leading to potentially significant differences in likelihood
contributions (via the particle weights). In turn, this may
break down correlation between likelihood values at suc-
cessive iterations. The procedure is therefore likely to be
particularly ineffectual when the measurement error vari-
ance is large relative to stochasticity inherent in the latent
diffusion process, or, as the dimension of the SDE increases.
Resampling may be executed less often, although choos-
ing a resampling schedule a priori may necessarily be ad
hoc. Moreover, reducing the number of resampling steps, or

indeed omitting the resampling step altogether (so that an
importance sampler is obtained) would necessitate a bridge
construct that samples over the entire inter-observation inter-
val from an approximation that is very close to the true
(but intractable) conditioned diffusion process, otherwise the
resulting importance sampler weights are likely to have high
variance. In what follows, we derive a novel approach which
avoids resampling altogether, without recourse to importance
sampling of the entire latent process.

3 Augmented CPMMH (aCPMMH)

It will be helpful throughout this section to denote xo as the
values of x at the observation times 1, 2, . . . , n, and x L as
the values of x at the remaining intermediate times. That is

x L = (xT[0,1), x
T
(1,2), . . . , x

T
(n−1,n))

T .

It is also possible to treat xn as a latent variable. In what
follows, we include xn in xo for ease of exposition.

Rather than target the posterior in (5), we target the joint
posterior

π(m)(θ, xo|y) ∝ π(θ)p(m)(xo|θ)p(y|xo, θ) (13)

where

p(m)(xo|θ) =
∫

p(m)(x |θ)dxL (14)

and p(y|xo, θ) = p(y|x, θ) as in (6). Although the integral
in (14) will be intractable, we may estimate it unbiasedly as
follows.

3.1 Sequential importance sampling

We adopt the factorisation

p(m)(xo|θ) = p(m)(x1|θ)

n−1∏

t=1

p(m)(xt+1|xt , θ)

and note that the constituent terms can be written as

p(m)(x1|θ) =
∫

p(x0)p
(m)
e (x(0,1]|x0, θ)dx[0,1),

p(m)(xt+1|xt , θ) =
∫

p(m)
e (x(t,t+1]|xt , θ)dx(t,t+1); (15)

recall that p(m)
e (x(t,t+1]|xt , θ) is given by (4). Now, given

some suitable importance density g(x(t,t+1)|xt , xt+1, θ), we
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may write

p(m)(xt+1|xt , θ)

=
∫

p(m)
e (x(t,t+1]|xt , θ)

g(x(t,t+1)|xt , xt+1, θ)
g(x(t,t+1)|xt , xt+1, θ)dx(t,t+1)

= Ex(t,t+1)∼g

{
p(m)
e (x(t,t+1]|xt , θ)

g(x(t,t+1)|xt , xt+1, θ)

}

,

and a similar expression can be obtained for p(m)(x1|θ).
Hence, given N draws xi(t,t+1), i = 1, . . . , N from the den-
sity g(·|xt , xt+1, θ), a realisation of an unbiased estimator of
p(m)(xt+1|xt , θ) is

p̂(m)
ut (xt+1|xt , θ) = 1

N

N∑

i=1

p(m)
e (xi(t,t+1]|xt , θ)

g(xi(t,t+1)|xt , xt+1, θ)
(16)

with the convention that xit+1 = xt+1 for all i . We recog-
nise (16) as an importance sampling estimator of (15). An
unbiased importance sampling estimator of p(m)(x1|θ) can
be obtained in a similar manner, by using an importance den-
sity p(x0)g(x(0,1)|x0, x1, θ).

We take g(x(t,t+1)|xt , xt+1, θ) as a simplification of the
bridge construct used in Sect. 2.1 so that

g
(
x(t,t+1)|xt , xt+1, θ

) =
m−2∏

k=0

g(xτt,k+1 |xτt,k , xt+1, θ)

where g
(
x(t,t+1)|xt , xt+1, θ

)
has form (7) but with the exact

xt+1 taking the place of the noisy yt+1. Since� = 0, (8) and
(9) simplify to

μ(xτt,k , xt+1) = xt+1 − xτt,k

t + 1 − τt,k
,


(xτt,k , θ) = t + 1 − τt,k+1

t + 1 − τt,k
β(xτt,k , θ). (17)

We make clear the role of the of the innovation vector ut =
(ut,0, . . . , ut,m−2)

T in (16) by writing the bridge construct
generatively as in (10) but with μ and 
 given by (17).

Now, since the x(t,t+1), t = 0, . . . , n − 1 are condi-
tionally independent given xo, we may unbiasedly estimate
p(m)(xo|θ) with

p̂(m)
U (xo|θ) = p(m)

U0
(x1|θ)

n−1∏

t=1

p̂(m)
Ut

(xt+1|xt , θ), (18)

realisations ofwhichmay be computed by running the impor-
tance sampler in Algorithm 3 for each t = 0, . . . , n−1. Note
that each t-iteration of Algorithm 3 can be performed in par-
allel if desired.

Algorithm 3 Importance sampling
Input: parameter θ , latent values xt , xt+1, auxiliary variable ut and the
number of importance samples N .

(a) Sample. Draw xi(t,t+1) ∼ g
( · |xt , xt+1, θ

)
, i = 1, . . . , N .

(If t = 0, draw xi0 ∼ p(·) and xi(0,1) ∼ g
( · |xi0, x1, θ

)
, i =

1, . . . , N .)
(b) Compute weights. For i = 1, . . . , N set

w̃i
t+1 = p(m)

e
(
xi(t,t+1]|xt , θ

)

g
(
xi(t,t+1)|xt , xt+1, θ

)

Output: estimate p̂(m)
ut (xt+1|xt , θ) = 1

N

∑N
i=1 w̃i

t+1 of

p(m)(xt+1|xt , θ) (or p̂(m)
u0 (x1|θ) = 1

N

∑N
i=1 w̃i

1 of p(m)(x1|θ) if
t = 0).

3.2 Algorithm

We adopt a pseudo-marginal approach by targeting the joint
density

π(m)(θ, xo, u|y) ∝ π(θ) p̂(m)
u (xo|θ)p(y|xo, θ)p(u) (19)

for which it is easily checked that the posterior of inter-
est, π(m)(θ, xo|y) given by (13), is a marginal density. The
form of (19) immediately suggests a Gibbs sampler which
alternates between draws from the full conditional densities
(FCDs)

1. π(m)(θ |u, xo, y) ∝ π(θ) p̂(m)
u (xo|θ)p(y|xo, θ)

2. π(m)(xo, u|θ, y) ∝ p̂(m)
u (xo|θ)p(y|xo, θ)p(u).

Hence, unlike the (C)PMMHscheme, the latent process at the
observation times is no longer integrated out. Nevertheless,
the sampler targets a posterior for which the latent process
between observation instants is marginalised over, and this is
crucial for side-stepping the well-known dependence prob-
lem between the parameters and latent process. Note that as
the number of importance samples N → ∞, the scheme can
be seen as an idealised Gibbs sampler that alternates between
draws of π(m)(θ |xo, y) and π(m)(xo|θ, y). For N = 1, the
scheme is an extension of the modified innovation scheme
of Golightly and Wilkinson (2008), as discussed further in
Sect. 3.3.

Metropolis-within-Gibbs steps are necessary for gener-
ating draws from the FCDs above. To sample the FCD
π(m)(θ |u, xo, y) we use a proposal density q(θ ′|θ) so that
the acceptance probability is given by

α(θ ′|θ, u, xo)

= min

{

1 ,
π(θ ′)
π(θ)

× p̂(m)
u (xo|θ ′)
p̂(m)
u (xo|θ)

× p(y|xo, θ ′)
p(y|xo, θ)

× q(θ |θ ′)
q(θ ′|θ)

}

.

(20)
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Given that π(m)(xo, u|θ, y) may be high dimensional, we
propose to update (xo, u) in separate blocks corresponding
to each time component of xo. For t = 1, . . . , n− 1 we have
that

π(m)(xt , ut−1, ut |xt−1, xt+1, yt , θ) ∝ p̂(m)
ut−1

(xt |xt−1, θ) p̂(m)
ut

× (xt+1|xt , θ)p(yt |xt , θ)p(ut−1)p(ut )

where, for example p(ut ) = N (ut ; 0, IN (m−1)d) (assuming
N importance samples, (m − 1) intermediate time points
between observation instants and a d-dimensional latent pro-
cess). For t = 1, p̂(m)

ut−1(xt |xt−1, θ) is replaced by p̂(m)
u0 (x1|θ).

The full conditional for the remaining end-point is given by

π(m)(xn, un−1|xn−1, yn, θ)

∝ p̂(m)
un−1

(xn|xn−1, θ)p(yn|xn, θ)p(un−1).

We sample from each FCD using a Metropolis-within-Gibbs
step. For each t = 1, . . . , n − 1 we use a proposal density of
the form

q(x ′
t , u

′
(t−1,t)|xt , u(t−1,t)) = q(x ′

t |xt )K2(u
′
(t−1,t)|u(t−1,t))

where K2(u′
(t−1,t)|u(t−1,t)) = K (u′

t−1|ut−1)K (u′
t |ut ) and

we use the shorthand notation u(t−1,t) = (ut−1, ut ).
Hence, the innovations are updated using a Crank-Nicolson
kernel. The end-point proposal is defined similarly, with
q(x ′

n, u
′
n−1|xn, un−1) = q(x ′

n|xn)K (u′
n−1|un−1). We recall

that theCrank-Nicolson kernel satisfies detailed balancewith
respect to the innovation density to arrive at the acceptance
probabilities

α(x ′
t , u

′
(t−1,t)|xt , u(t−1,t), xt−1, xt+1, θ)

= min

⎧
⎨

⎩
1 ,

p̂(m)

u′
t−1

(x ′
t |xt−1, θ)

p̂(m)
ut−1(xt |xt−1, θ)

×
p̂(m)

u′
t

(xt+1|x ′
t , θ)

p̂(m)
ut (xt+1|xt , θ)

× p(yt |x ′
t , θ)

p(yt |xt , θ)
× q(xt |x ′

t )

q(x ′
t |xt )

}
(21)

for t = 1, . . . , n−1. For the end-point update, the acceptance
probability is

α(x ′
n, u

′
n−1|xn, u′

n−1, xn−1, θ) =

min

⎧
⎨

⎩
1 ,

p̂(m)

u′
n−1

(x ′
n|xn−1, θ)

p̂(m)
un−1(xn|xn−1, θ)

× p(yn|x ′
n, θ)

p(yn|xn, θ)
× q(xn |x ′

n)

q(x ′
n |xn)

⎫
⎬

⎭
.

(22)

It is evident that the innovations (u1, . . . , un−1) are updated
twice per Gibbs iteration. We note that a scheme that only
updates these innovations onceperGibbs iteration is also pos-
sible, but eschew this approach in favour of the above, which

promotes better exploration of the innovation variable space.
Further tuning considerations are discussed in Sect. 3.4.

We refer to the resulting inference scheme as augmented
CPMMH (aCPMMH). The scheme is summarised by Algo-
rithm 4. Note that the components of the latent process Xo at
the observation times and auxiliary variables u are updated in
steps 3-5; step 3 updates (xt , u(t−1,t)) for t = 1, 3, . . . , n−1
and step 4 for t = 2, 4, . . . , n−2 (assuming,WLOG, that n is
even). Step 5 updates the final value (xn, un−1). Updating in
this way allows for embarrassingly parallel operations over t
(at steps 2, 3 and 4). Note that, as presented, uncertainty for
the initial value x0 is integrated over as part of the importance
sampler (Algorithm 3). If required, aCPMMH can be modi-
fied either to treat x0 as part of the parameter vector θ or with
an extra step that updates x0 (and therefore u0) conditional
on x1 and θ .

As presented, Algorithm 4 is appropriate for the general
case of noisy and partial observation of Xt . In the special
case of data consisting of noise free observation of all SDE
components (so that � = 0 and F = Id in (2)), steps 3-5
are not required. Additionally, step 2 should propose the full
auxiliary vector u′ from K (u′|u) in (12) . Hence, this special
case corresponds to the CPMMH algorithm with p̂(m)

u′ (y|θ ′)
obtained by importance sampling and the acceptance proba-
bility is as in (11). In the case of noise free observation of a
subset of components of Xt , the scheme proceeds as in Algo-
rithm 4, with the unobserved components of Xt updated in
steps 3-5.

3.3 Connection with existing samplers for SDEs

Consider aCPMMH with N = 1 particle and ρ = 0. In this
case aCPMMH exactly coincides with the modified innova-
tion scheme introduced by Golightly and Wilkinson (2008)
(see also Golightly and Wilkinson 2010; Papaspiliopoulos
et al. 2013; Fuchs 2013; van der Meulen and Schauer 2017,).
We note that for this choice of N there is a one-to-one corre-
spondence between the innovations u and the latent path x .
Hence, step 2 of the Gibbs sampler in Section 3.2 is equiv-
alent to directly updating the latent path x in blocks of size
2m − 1. To make this clear, consider updating x(t−1,t+1).
Upon substituting (16) into the acceptance probability in (21)
we obtain

min

{

1 ,
p(m)
e (x ′

(t−1,t]|xt−1, θ)

p(m)
e (x(t−1,t]|xt−1, θ)

× p(m)
e (x ′

(t,t+1]|x ′
t , θ)

p(m)
e (x(t,t+1]|xt , θ)

× g(x(t−1,t)|xt−1, xt , θ)

g(x ′
(t−1,t)|xt−1, x ′

t , θ)
× g(x(t,t+1)|xt , xt+1, θ)

g(x ′
(t,t+1)|x ′

t , xt+1, θ)

× p(yt |x ′
t , θ)

p(yt |xt , θ)
× q(xt |x ′

t )

q(x ′
t |xt )

}
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Algorithm 4 Augmented CPMMH scheme (aCPMMH)

Input: parameter and latent values (θ(0), xo,(0)), correlation parameter
ρ, number of importance samples N and the number of iterations niters.

1. Initialise. Draw u(0) ∼ p(·) and compute p̂(m)

u(0) (x
o,(0)|θ(0)) by

running Algorithm 3 for t = 0, . . . , n−1. Set the iteration counter
i = 1.

2. Update parameters θ .

(a) Draw θ ′ ∼ q(·|θ(i−1)) and compute p̂(m)

u(i−1) (x
o,(i−1)|θ ′) by

running Algorithm 3 for t = 0, . . . , n − 1.
(b) With probability α(θ ′|θ(i−1), u(i−1), xo,(i−1)) given by (20)

put θ(i) = θ ′ otherwise store the current value θ(i) = θ(i−1).

3. Update (xt, u(t−1,t)), t = 1, 3, . . . , n− 1.

(a) Draw x ′
t ∼ q(·|x (i−1)

t ) and u′
(t−1,t) ∼ K2(·|u(i−1)

(t−1,t)). Compute

p̂(m)

u′
t−1

(x ′
t |x (i−1)

t−1 , θ(i)) and p̂(m)

u′
t

(x (i−1)
t+1 |x ′

t , θ
(i)) by running iter-

ations t − 1 and t of Algorithm 3.
(b) With probability

α(x ′
t , u

′
(t−1,t)|x (i−1)

t , u(i−1)
(t−1,t), x

(i−1)
t−1 , x (i−1)

t+1 , θ(i)) given by

(21) put x (i)
t = x ′

t and u(i)
(t−1,t) = u′

(t−1,t) otherwise store

the current value x (i)
t = x (i−1)

t and u(i)
(t−1,t) = u(i−1)

(t−1,t).

4. Update (xt, u(t−1,t)), t = 2, 4, . . . , n− 2.

(a) Draw x ′
t ∼ q(·|x (i−1)

t ) and u′
(t−1,t) ∼ K2(·|u(i)

(t−1,t)). Compute

p̂(m)

u′
t−1

(x ′
t |x (i)

t−1, θ
(i)) and p̂(m)

u′
t

(x (i)
t+1|x ′

t , θ
(i)) by running itera-

tions t − 1 and t of Algorithm 3.
(b) With probability

α(x ′
t , u

′
(t−1,t)|x (i−1)

t , u(i)
(t−1,t), x

(i)
t−1, x

(i)
t+1, θ

(i)) given by (21)

put x (i)
t = x ′

t and u
(i)
(t−1,t) = u′

(t−1,t) otherwise store the current

value x (i)
t = x (i−1)

t (and u(i)
(t−1,t) remains unchanged).

5. Update (xn, un−1).

(a) Draw x ′
n ∼ q(·|x (i−1)

n ) and u′
n−1 ∼ K (·|u(i)

n−1). Compute

p̂(m)

u′
n−1

(x ′
n |x (i)

n−1, θ
(i)) by running iteration n−1 of Algorithm 3.

(b) With probabilityα(x ′
n, u

′
n−1|x (i−1)

n , u(i)
n−1, x

(i)
n−1, θ

(i)) given by

(22) put x (i)
n = x ′

n and u
(i)
n−1 = u′

n−1 otherwise store the current

value x (i)
n = x (i−1)

n (and u(i)
n−1 remains unchanged).

6. If i = niters, stop. Otherwise, set i :=i + 1 and go to step 2.

Output: θ(1), . . . , θ (niters), xo,(1), . . . , xo,(niters).

corresponding to a MH step that uses a RWM proposal
to obtain x ′

t and then conditional on this value, uses the
bridge construct to propose x ′

(t−1,t) and x
′
(t,t+1). Step 1 of the

Gibbs sampler is equivalent to the reparameterisation used
by the modified innovation scheme. Rather than update θ

conditional on x (and y), the innovations u are the effective
components being conditioned on. The motivation for this
reparameterisation is to break down the well-known prob-
lematic dependence between θ and x (Roberts and Stramer
2001). To make the connection clear, note that upon com-
bining (18) with (16) and substituting the result into the
acceptance probability in (20), we obtain

min

{

1 ,
π(θ ′)
π(θ)

×
n−1∏

t=0

p(m)
e (x(t,t+1]|xt , θ ′)
p(m)
e (x(t,t+1]|xt , θ)

×
n−1∏

t=0

g(x(t,t+1)|xt , xt+1, θ)

g(x(t,t+1)|xt , xt+1, θ ′)
× p(y|xo, θ ′)

p(y|xo, θ)
× q(θ |θ ′)
q(θ ′|θ)

}

.

It is straightforward to show that the Jacobian associ-
ated with the change of variables (from x to u) is given
by
∏n−1

t=0 g(x(t,t+1)|xt , xt+1, θ)−1 and therefore the above
acceptance probability coincides with that obtained for the
parameter update in themodified innovation scheme (see e.g.
page 14 of Golightly and Wilkinson 2010, ).

For N = 1 and 0 < ρ < 1, aCPMMH can be seen as
an extension of the modified innovation scheme that uses a
Crank-Nicolson proposal for the innovations. A recent appli-
cation can be found in Arnaudon et al. (2020). We assess the
performance of aCPMMH for different values of ρ and N in
Sect. 4.

3.4 Initialisation and tuning choices

Recall that both CPMMH and PMMH require setting the
number of particles N and, if using a randomwalkMetropolis
(RWM) proposal, a suitable innovation variance. Practical
advice on choosing N for (C)PMMHisdiscussed at the endof
Sects. 2.1 and 2.2. For aRWMproposal of the formq(θ ′|θ) =
N (θ∗; θ,�), a rule of thumb for the innovation variance� is
to take� = 2.562

p v̂ar(θ |y) (Sherlock et al. 2015),which could
be obtained from an initial pilot run (such as that required to
find a plausible θ value for subsequently choosing N ).

For (C)PMMH, both the pilot and main monitoring runs
require careful initialisation of θ (Owen et al. 2015). The
aCPMMH scheme additionally requires initialisation of xo,
with poor choices likely to slow initial convergence of the
Gibbs sampler. One possibility is to seek an approximation
to π(m)(θ, xo|y), denoted π(a)(θ, xo|y), for which samples
can be obtained (e.g. via MCMC) at relatively low compu-
tational cost. These samples can then be used to compute
estimates Ê(θ |y) and Ê(xt |y), which can be used to initialise
aCPMMH. Further, the proposal variances for θ and xt can
bemade proportional to the estimates v̂ar(θ |y) and v̂ar(xt |y),
respectively, which can also be computed from the samples.
For SDE models of form (1), the linear noise approxima-
tion (LNA) (Stathopoulos and Girolami 2013; Fearnhead
et al. 2014) provides a tractable Gaussian approximation.We
describe the LNA, its solution and sampling of π(a)(θ, xo|y)
inAppendixA. In scenarioswhere using the LNA is not prac-
tical, we suggest initialising a pilot run of aCPMMH with
xo = y (if do = d so that all components are observed) or
sampling xo via recursive application of the bridge construct
in (7). The pilot run can be used to obtain further quanti-
ties required for tuning the proposal densities q(θ ′|θ) and
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q(x ′
t |xt ). Hence, our initialisation and tuning advice can be

summarised by the following two options:

1. Perform a short pilot run of an MCMC scheme target-
ing π(a)(θ, xo|y) (as described in Appendix A for the
LNA) to obtain the estimates Ê(θ |y), Ê(xt |y), v̂ar(θ |y)
and v̂ar(xt |y). These quantities are used to initialise the
main monitoring run of aCPMMH and in the RWM pro-
posals for θ and the components of xo.

2. Perform a short pilot run of aCPMMH with xo initialised
at the data y (if all SDE components are observed) or,
in the case of incomplete observation of all SDE com-
ponents, recursively draw from (7), retaining only those
values at the observation times. Compute estimates as in
option 1, for use in the main monitoring run.

The length of the pilot run can be set by choosing a fraction of
themainmonitoring run to fix the overall computational bud-
get. For simplicity, we use RWM proposals in the pilot runs
with diagonal innovation variances chosen to obtain (approx-
imately) a desired acceptance rate. We note that Option 2
additionally requires specifying an initial number of particles
N for the pilot run. In our experiments, we find that N = 1
is often sufficient. For either option, the number of particles
can be further tuned if desired, before the main monitoring
run.

4 Applications

We consider three applications of increasing complexity. All
algorithms are coded in R and were run on a desktop com-
puter with an Intel quad-core CPU. For all experiments, we
compare the performance of competing algorithms using
minimum (over each parameter chain and for aCPMMH, xo

chain) effective sample size per second (mESS/s). Effective
sample size (ESS) is the number of independent and identi-

cally distributed samples from the target that would produce
an estimator with the same variance as the auto-correlated
MCMC output. We computed ESS using the R coda pack-
age, details of which can be found in Plummer et al. (2006).
When running CPMMH and aCPMMH with ρ > 0 we set
ρ = 0.99. This pragmatic choice promotes good mixing in
the θ chain (for CPMMH and aCPMMH) and xo chain (for
aCPMMH) while allowing the auxiliary variables to mix on
a scale comparable to θ and xo.We report CPU time based on
the main monitoring runs and note that CPU cost of tuning
was small relative to the cost of the main run (and typically
less than 10% of the reported CPU time). For all experi-
ments (unless stated otherwise) we used a discretisation of
�τ = 0.2 which we found gave a good balance between
accuracy (in the sense of limiting discretisation bias) and
computational performance.

4.1 Square-root diffusion process

Consider a univariate diffusion process satisfying an Itô SDE
of the form

dXt = (θ1 − θ2) Xt dt +√(θ1 + θ2) Xt dWt , (23)

which can be seen as a degenerate case of a Feller square-
root diffusion (Feller 1952).We generated two synthetic data
sets consisting of 101 observations at integer times using
θ = (0.05, 0.06)T and a known initial condition of x0 = 25.
The observation model is Yt ∼ N (Xt , σ

2) where σ ∈ {1, 5}
giving data sets designated as D1 and D2, respectively (and
shown in Fig. 1). We took independent N (0, 102) priors for
each log θi , i = 1, 2, and work on the logarithmic scale when
using the random walk proposal mechanism.

We ran aCPMMH for 50K iterations with ρ fixed at 0.99.
We report results for N = 1 particle, since N > 1 gave no
increase in overall performance. Both tuning and initialisa-
tionmethods (options 1 and 2 of Sect. 3.4) were implemented
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Fig. 1 Birth–Death model. Data sets (circles) and summaries (mean and 95% credible intervals obtained from the output of aCPMMH) of the
within-sample predictive π(y|D1) (left) and π(y|D2) (right)
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Table 1 Birth–Death model.
Number of particles N ,
correlation parameter ρ, CPU
time (in seconds s), minimum
ESS (over θ and xo chains),
minimum ESS per second and
relative (to PMMH) minimum
ESS per second. All results are
based on 5 × 104 iterations of
each scheme

Data set Algorithm ρ N CPU(s) mESS (θ, xo) mESS/s Rel.

D1 (σ = 1) aCPMMH (1) 0.99 1 777 (3194, 3818) 4.11 6.0

aCPMMH (2) 0.99 1 780 (3080, 3757) 3.95 5.8

CPMMH 0.99 2 745 (1358, –) 1.82 2.7

PMMH 0.00 10 2217 (1513, –) 0.68 1.0

D2 (σ = 5) aCPMMH (1) 0.99 1 775 (829, 481) 0.62 2.5

aCPMMH (2) 0.99 1 770 (799, 450) 0.58 2.3

CPMMH 0.99 6 1684 (1050, –) 0.62 2.5

PMMH 0.00 20 4989 (1254, –) 0.25 1.0
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Fig. 2 Birth–Death model. Marginal posterior distributions using data set D2 and based on the output of aCPMMH (solid lines) and the LNA
(dashed lines). The true values of θ1, θ2 and θ1 − θ2 are indicated

and denoted “aCPMMH (1)” and “aCPMMH (2)”. We addi-
tionally include results based on the output of PMMH and
CPMMH, which were tuned in line with the guidance given
at the end of Sects. 2.1 and 2.2.

Table 1 and Fig. 2 summarise our results. The latter shows
marginal posteriors obtained from the output of aCPMMH,
and for comparison, from the LNA as an inferential model.
We note substantial differences in posteriors obtained when
using the discretised SDE in (23) as the inferential model
compared to inferences made under the LNA. This is not
surprising since for this example, the ground truth θ1 and θ2
values are similar, for which the assumption that fluctuations
about themean of Xt are small (as is necessary for an accurate
LNA), is unreasonable. Nevertheless, we were still able to
use the LNA to adequately initialise and tune aCPMMH.
We also note that both initialisation and tuning options give
comparable results.

It is evident from Table 1 that aCPMMHoffers substantial
improvements in overall efficiency compared to PMMH and,
to a lesser extent, CPMMH. Minimum effective sample size
per second for PMMH : CPMMH : aCPMMH scales as 1 :
2.7 : 6 for data set D1 and 1 : 2.5 : 2.5 for data set D2.
We found that as the measurement error variance (σ 2) is
increased, the optimal number of particles N for both PMMH
and CPMMH also increased. Although aCPMMH required

N = 1 (that is, we observed no additional improvement in
overall efficiency for N > 1), the mixing deteriorates, due
to having to integrate over the additional uncertainty in the
latent process at the observation times. Finally, although the
Euclidean sorting algorithm used in CPMMH is likely to be
effective for this simple univariate example, we anticipate its
deterioration in subsequent examples with increasing state
dimension.

4.2 Lotka–Volterra

The Lotka–Volterra system describes the time-course
behaviour of two interacting species: prey X1,t and preda-
tors X2,t . The stochastic differential equation describing the
dynamics of Xt = (X1,t , X2,t )

T is given by

d

(
X1

X2

)
=
(

θ1X1 − θ2X1X2

θ2X1X2 − θ3X2

)
dt

+
(

θ1X1 + θ2X1X2 −θ2X1X2

−θ2X1X2 θ2X1X2 + θ3X2

) 1
2

d

(
W1

W2

)

(24)

after suppressing dependence on t .
We repeated the experiments of Golightly et al. (2019)

which, for this example, involved three synthetic data sets
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Fig. 3 Lotka–Volterra model. Data set D3 (circles) and summaries (mean and 95% credible intervals obtained from the output of aCPMMH) of
the within-sample predictive π(y|D3) (left: prey component, right: predator component)
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Fig. 4 Lotka–Volterra model. Marginal posterior distributions using data set D3 and based on the output of aCPMMH (solid lines) and the LNA
(dashed lines). The true values of θ1, θ2 and θ3 are indicated

generated with θ = (0.5, 0.0025, 0.3)T and a known initial
condition of x0 = (100, 100)T. The observation model is

Yt ∼ N
(
Xt , σ

2 I2
)

where I2 is the 2 × 2 identity matrix and σ ∈ {1, 5, 10}
giving data sets designated as D1, D2 and D3, respectively.
Data setD3 is shown in Figure 3, and gives dynamics typical
of the parameter choice taken. The parameters correspond
to the rates of prey reproduction, prey death and predator
reproduction, and predator death. As the parameters must
be strictly positive, we work on the logarithmic scale with
independent N (0, 102) priors assumed for each log θi , i =
1, 2, 3. The main monitoring runs consisted of 105 iterations
of aCPMMH, CPMMH (with ρ = 0.99) and PMMH. Note
that aCPMMH used random walk proposals in the log θ and
xo updates, with variances obtained from the output of an
MCMC pilot run based on the LNA, which was also used to
initialise θ and xo.

From Figure 4we see that aCPMMHgives parameter pos-
terior output that is consistent with the ground truth (and also
with the output of PMMH and CPMMH– not shown). In this
case, the LNA gives accurate output when used as an infer-

ential model. We compare efficiency of PMMH, CPMMH
and aCPMMH in Table 2. We found that N = 1 was suf-
ficient for aCPMMH but also include results for N = 2,
which gave a small increase in minimum ESS but a decrease
in overall efficiency, due to the increase (doubling) in CPU
time. It is clear that as σ increases, PMMH and CPMMH
require an increase in N to maintain a reasonable minimum
ESS. Consequently, their performance degrades. Although
the statistical efficiency (mESS) of aCPMMH reduces as
σ increases, the reduction is gradual (compared to that of
CPMMH) and we see an increase in overall efficiency of
aCPMMH (with ρ = 0.99) of an order of magnitude over
PMMH in all experiments, and over CPMMH for data sets
D2 and D3. We also include the output of aCPMMH with
N = 1 and ρ = 0.0, corresponding to the modified inno-
vation scheme of Golightly and Wilkinson (2008) (and as
discussed in Sect. 3.3). Although this approach works well
compared to CPMMH and PMMH, and gives well-mixing
parameter chains, we see a decrease in mESS (relative to
aCPMMH with ρ = 0.99) calculated from the xo chains,
and this relative difference increases as σ increases.

Finally, we compare the performance of CPMMH and
aCPMMH when parallelised over two cores. For aCPMMH
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Table 2 Lotka–Volterra model.
Number of particles N ,
correlation parameter ρ, CPU
time (in seconds s), minimum
ESS (over θ and xo chains),
minimum ESS per second and
relative (to PMMH) minimum
ESS per second. All results are
based on 105 iterations of each
scheme

Data set Algorithm ρ N CPU(s) mESS (θ, xo) mESS/s Rel.

D1 (σ = 1) aCPMMH 0.99 1 7330 (9375, 9483) 1.279 27.8

0.99 2 12773 (9446, 12485) 0.740 16.1

0.00 1 6877 (8805, 2028) 0.299 6.5

CPMMH 0.99 3 11280 (8023, –) 0.711 16.3

PMMH 0.00 16 59730 (2771, –) 0.046 1.0

D2 (σ = 5) aCPMMH 0.99 1 6780 (7331, 6807) 1.004 25.7

0.99 2 12807 (7877, 7117) 0.556 14.2

0.00 1 6769 (8022, 1380) 0.204 5.2

CPMMH 0.99 8 29780 (3681, –) 0.124 3.2

PMMH 0.00 20 75930 (2959, –) 0.039 1.0

D3 (σ = 10) aCPMMH 0.99 1 6772 (4986, 3301) 0.487 16.8

0.99 2 12753 (5859, 3446) 0.270 9.3

0.00 1 6786 (4676, 1384) 0.203 7.0

CPMMH 0.99 19 71520 (3516, –) 0.049 1.7

PMMH 0.00 28 105770 (3031, –) 0.029 1.0
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Fig. 5 Lotka–Volterra model. Difference (2 cores vs 1 core) in log2 CPU times (� log2 CPU) against log10 �τ using aCPMMH with N = 1 (solid
lines) and CPMMH (dashed lines) with N = 3 (data set D1, left), N = 8 (data set D2, centre) and N = 18 (data set D3, right)

(and as discussed at the end of Sect. 3.2), operations over t in
steps 2,3 and 4 of Algorithm 4 can be performed in parallel.
For CPMMH, we perform the propagate step of the particle
filter (step 2(b) of Algorithm 1) in parallel. Figure 5 shows
the difference (2 cores vs 1 core) in log2 CPU times (denoted
� log2 CPU) against log10 �τ , where the discretisation level
is �τ ∈ {10−4, 10−3, 10−2, 10−1}; for a perfect speed up
from the use of two cores, this would be −1. Results based
on aCPMMH used N = 1 in all cases, whereas CPMMH
used N = 3, N = 8 and N = 18. These values correspond
to the numbers of particles required for each synthetic data
set. For aCPMMH, we see that using 2 cores is beneficial
for �τ ≤ 10−2. For CPMMH and N = 1, there is almost
no benefit in a multi-core approach (and CPU time using 2
cores is typically higher than a single core approach). This is
unsurprising given the resampling steps (performed in serial)
between the propagate steps. As N increases, the benefit of
using 2 cores can be seen.

4.3 Autoregulatory gene network

Acommonly usedmechanism for auto-regulation in prokary-
otes which has been well-studied and modelled is a negative
feedback mechanism whereby dimers of a protein repress
its own transcription (e.g. Arkin et al. 1998, ). A simpli-
fied model for such a prokaryotic auto-regulation, based on
this mechanism can be found in Golightly and Wilkinson
(2005) (see alsoGolightly andWilkinson 2011).We consider
the SDE representation of the dynamics of the key species
involved in this mechanism. These are RNA, P, P2 and DNA,
denoted as X1, X2, X3 and X4, respectively. The SDE takes
form (1) where

α(Xt , θ) = S h(Xt , θ), β(Xt , θ) = S h(Xt , θ) ST ,
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Fig. 6 Autoregulatory model. Data set (circles) and summaries (mean and 95% credible intervals obtained from the output of aCPMMH) of the
within-sample predictive π(y|D)

the stoichiometry matrix S is

S =

⎛

⎜⎜
⎝

0 0 1 0 0 0 −1 0
0 0 0 1 −2 2 0 −1

−1 1 0 0 1 −1 0 0
−1 1 0 0 0 0 0 0

⎞

⎟⎟
⎠ ,

and the hazard function h(Xt , θ) is

h(X , θ) = (0.1X4X3, θ1(10 − X4), θ2X4, 0.2X1,

0.1X2(X2 − 1)/2, θ3X3, θ4X1, θ8X2)
T

after dropping t to ease the notation. Further details regarding
the derivation of the SDE can be found in Golightly and
Wilkinson (2005).

The parameters θ = (θ1, θ2, θ3, θ4)
T correspond to the

rate of protein unbinding at an operator site, the rate of tran-
scription of a gene into mRNA, the rate at which protein
dimers disassociate and the rate at which protein molecules
degrade. We generated a single synthetic data set with
θ = (0.7, 0.35, 0.9, 0.3)T and an initial condition of x0 =
(8, 8, 8, 5)T. The observation model is

Yt ∼ N (Xt , �)

where� is a diagonal matrix with elements 1, 1, 1, 0.25. The
data are shown in Fig. 6. Independent U (−5, 5) priors were
assumed for each log θi , i = 1, 2, 3, 4. A short MH run was
performed using the LNA, to obtain estimates of var(log θ |y)
and var(xt |y) (to be used the innovation variances of the
randomwalk proposalmechanisms in (a)CPMMH) and plau-
sible values of θ and xo (to be used to initialise the main
monitoring runs of (a)CPMMH). Pilot runs of aCPMMH
and CPMMH suggested taking N = 1 and N = 20 for each
respective scheme. We then ran aCPMMH and CPMMH for
105 iterations with these tuning choices. Table 3 and Fig. 6
summarise our findings.

It is clear that aCPMMHwithρ = 0.99 results in a consid-
erable improvement in statistical efficiency over aCPMMH
with ρ = 0.0 (which is the modified innovation scheme). In
particular, minimum ESS (calculated over the xo chains) is
almost an order of magnitude higher for ρ = 0.99 (866 vs
5524). An improvement in overall efficiency of aCPMMH
over CPMMH is evident, irrespective of the choice of ρ.
Increasing N to 2 gives results in better mixing of the xo

chains, but no appreciable increase in minimum ESS over all
chains.
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Table 3 Autoregulatory model. Number of particles N , correlation parameter ρ, CPU time (in seconds s), minimum ESS (over θ and xo chains),
minimum ESS per second and relative (to PMMH) minimum ESS per second. All results are based on 105 iterations of each scheme

Algorithm ρ N CPU(s) mESS (θ, xo) mESS/s Rel.

aCPMMH 0.99 1 18248 (992, 5524) 0.054 13.5

aCPMMH 0.99 2 41578 (766, 6210) 0.018 4.6

aCPMMH 0.00 1 18252 (1358, 866) 0.028 6.9

CPMMH 0.99 20 199782 (805, –) 0.004 1.0
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Fig. 7 Autoregulatory model. Marginal posterior distributions based on the output of aCPMMH (solid lines) and the LNA (dashed lines). The true
parameter values are indicated

5 Discussion

Given observations at discrete times, performing fully
Bayesian inference for the parameters governing nonlinear,
multivariate stochastic differential equations is a challenging
problem. A discretisation approach allows inference for a
wide class of SDEmodels, at the cost of introducing an addi-
tional bias (the so-called discretisation bias). The simplest
such approach uses the Euler–Maruyama approximation in
combination with intermediate time points between obser-
vations, to allow a time step chosen by the practitioner,
that should trade off computational cost and accuracy. It is
worth emphasising that although a Gaussian transition den-
sity is assumed, themean and variance are typically nonlinear
functions of the diffusion process, and consequently, the
data likelihood (after integrating out at intermediate times)
remains intractable, even under the assumption of additive
Gaussian noise.

These remarks motivate the use of pseudo-marginal
Metropolis–Hastings (PMMH) schemes, which replace an
evaluation of the intractable likelihoodwith a realisation of an
unbiased estimator, obtained froma single runof a particle fil-
ter over dynamic states (Andrieu et al. 2010). It is crucial that
the number of particles is carefully chosen to balance com-
putational efficiency whilst allowing for reasonably accurate
likelihood estimates. Inducing strong and positive correla-
tion between successive likelihood estimates can reduce the
variance of the acceptance ratio, permitting fewer particles

(Dahlin et al. 2015;Deligiannidis et al. 2018). Essentially, the
(assumedGaussian) innovations that are used to construct the
likelihood estimates are updatedwith aCrank-Nicolson (CN)
proposal. The resampling steps in the particle filter are also
modified in order to preserve correlation; the random num-
bers used during this step are included in the CN update, and
the particle trajectories are sorted before resampling takes
place at the next time point.We followChoppala et al. (2016)
and Golightly et al. (2019) by using a simple Euclidean sort-
ing procedure based on the state of the particle trajectory at
the current observation time. We find that the effectiveness
of this correlated PMMH (CPMMH) approach degrades as
the observation variance and state dimension increases.

Our novel approach avoids the use of resampling steps,
by updating parameters conditional on the values of the
latent diffusion process at the observation times (and the
observations themselves), whilst integrating over the state
uncertainty at the intermediate times. An additional step is
then used to update the latent process at the observation
times, conditional on the parameters and data. The result-
ing algorithm can be seen as a pseudo-marginal scheme,
with unbiased estimators of the likelihood terms obtained
via importance sampling. We further block together the
updating of the latent states and the innovations used to
construct the likelihood estimates, and adopt a CN proposal
mechanism for the latter. We denote the resulting sampler
as augmented, correlated PMMH (aCPMMH). A related
approach is given by Fearnhead and Meligkotsidou (2016),
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who use particle MCMC with additional latent variables,
carefully chosen to trade-off the error in the particle fil-
ter against the mixing of the MCMC steps. We emphasise
that unlike this approach, the motivation behind aCPMMH
is to avoid use of a particle filter altogether, the benefits of
which are two-fold: positive correlation between successive
likelihood estimates is preserved and the method for obtain-
ing these likelihood estimates can be easily parallelised over
observation intervals. Section 4.2 shows that once the updat-
ing over an inter-observation interval is sufficiently costly
substantial gains can be obtained by parallelising this task
over the different inter-observation intervals: this could be
useful for stiff SDEs, high-dimensional SDEs, or if multiple
inter-observation intervals are tackled by a single importance
sampler.

In addition to the tuning choices required by CPMMH
(that is, the number of particles N , correlation parameter
ρ in the CN proposal and parameter proposal mechanism),
aCPMMH requires initialisation of the latent process at the
observation times and a suitable proposal mechanism. If a
computationally cheap approximation of the joint posterior
can be found, this may be used to initialise and tune aCP-
MMH. To this end, we found that use of a linear noise
approximation (LNA) can work well, even in settings when
inferences made under the LNA are noticeably discrepant,
compared to those obtained under the SDE. In scenarios
where use of the LNA is not practical, a pilot run of aCP-
MMH can be used instead.

We compared the performance of aCPMMH with both
PMMH and CPMMH using three examples of increasing
complexity. In terms of overall efficiency (as measured
by minimum effective sample size per second), aCPMMH
offered an increase of up to a factor of 28 over PMMH. We
obtained comparable performance with CPMMH for a uni-
variate SDE application, and an increase of up to factors of
10 and 14 in two applications involving SDEs of dimension
2 and 4, respectively. Our experiments suggest that although
the mixing efficiency of aCPMMH increases with N , the
additional computational cost results in little benefit (in terms
of overall efficiency) over using N = 1. A special case of
aCPMMH (when ρ = 0 and N = 1) is the modified inno-
vation scheme of Golightly and Wilkinson (2008), which is
typically outperformed (in terms of overall efficiency) with
ρ > 0.

5.1 Limitations and future directions

There are some limitations of aCPMMHwhich form the basis
of future research. For example, in each of our applications
the associated latent process exhibits unimodal marginal dis-
tributions and linear dynamics between observation instants
that are well approximated by the modified diffusion bridge
construct. Extension to the multimodal case would require

an important proposal that captures the multimodality of the
marginal distributions of the true bridge between observation
instants. We refer the reader to the guided proposals of van
der Meulen and Schauer (2017) and Schauer et al. (2017) for
possible candidate proposal processes.

Additional directions for future research include the use of
methods based on adaptive proposalswhichmay be of benefit
in both the parameter and latent state update steps. Proposal
mechanisms that exploit gradient information such as the
HamiltonianMonteCarlo (HMC)method (Duane et al. 1987)
may also be of interest. We note that in the case of N = 1,
it is possible to directly calculate the required log-likelihood
gradient. For N > 1, importance samples generated from
π(x L |xo, θ) could be used to estimate

∇θ logπ(xo|θ) =
∫

∇θ logπ(x |θ)π(x L |xo, θ)dxL .

For a general discussion on the use of particle filters for
estimating log-likelihood gradients we refer the reader to
Poyiadjis et al. (2011); see also Nemeth et al. (2016). A com-
parison of aCPMMH with approaches that target the joint
posterior of the parameters and latent process also warrants
further attention; see e.g. Botha (2020) for an implementation
of the latter.

Although we have focussed on updating the latent states
in separate blocks (single site updating), other blocking
schemes may offer improved mixing efficiency. Alterna-
tively, it might be possible to reduce the number of latent
variables, for example, by only explicitly including latent
states in the joint posterior at every (say) kth observation
instant. The success of such a scheme is likely to depend on
the accuracy of an importance sampler that covers k observa-
tions, and whether or not the resulting likelihood estimates
can be made sufficiently correlated. This is the subject of
ongoing work.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
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A Linear noise approximation (LNA)

The linear noise approximation (LNA) provides a tractable
approximation to the SDE in (1). We provide brief, intu-
itive details of the LNA and its implementation, and refer the
reader to Fearnhead et al. (2014) (and the references therein)
for an in-depth treatment.

A.1 Derivation and solution

Partition Xt as

Xt = ηt + Rt , (25)

where {ηt , t ≥ 0} is a deterministic process satisfying the
ODE

dηt

dt
= α(ηt , θ), η0 = x0 (26)

and {Rt , t ≥ 0} is a residual stochastic process. The residual
process (Rt ) satisfies

dRt = {α(Xt , θ) − α(ηt , θ)} dt +√β(Xt , θ) dWt (27)

whichwill typically be intractable.A tractable approximation
can be obtained by Taylor expanding α(Xt , θ) and β(Xt , θ)

about ηt . Retaining the first two terms in the expansion of α

and the first term in the expansion of β gives

d R̂t = Ht R̂t dt +√β(ηt , θ) dWt (28)

where Ht is the Jacobian matrix with (i , j)th element

(Ht )i, j = ∂αi (ηt , θ)

∂η j,t
. (29)

Themotivation for the LNA is an underlying assumption that
||Xt − ηt || is “small”, or in other words, that the drift term
α(Xt , θ) dominates the diffusion coefficient β(Xt , θ).

Given an initial condition R̂0 ∼ N (r̂0, V̂0), we obtain
R̂t as a Gaussian random variable. The solution requires the
d × d fundamental matrix Pt that satisfies the ODE

dPt
dt

= Ht Pt , P0 = Id , (30)

where Id is the d × d identity matrix. Now let Ut = P−1
t R̂t

and apply the Itô formula to obtain

dUt = P−1
t

√
β(ηt , θ) dWt .

Hence, we may write

Ut = U0 +
∫ t

0
P−1
s

√
β(ηs, θ) dWs .

Appealing to linearity and Itô isometry we obtain

Ut |U0 ∼ N

{
U0,

∫ t

0
P−1
s β(ηs, θ)

(
P−1
s

)T
ds

}
. (31)

Therefore, for the initial condition above, we have that

R̂t |R̂0 = r̂0 ∼ N
(
Pt r̂0, Ptψt P

T
t

)
,

where

ψt = V̂0 +
∫ t

0
P−1
s β(ηs, θ)

(
P−1
s

)T
ds.

Setting mt = Pt r̂0 and Vt = Ptψt PT
t gives

Xt |X0 ∼ N (ηt + mt , Vt )

where ηt , mt and Vt satisfy the coupled ODE system con-
sisting of (26) and

dmt

dt
= Htmt , m0 = r̂0, (32)

dVt
dt

= Vt H
T
t + β(ηt , θ) + HtVt , V0 = 0. (33)

In the absence of an analytic solution, this system of coupled
ODEs must be solved numerically. Note that if η0 = x0 so
that r̂0 = 0, mt = 0 for all times t ≥ 0 and (32) need not be
solved.

A.2 Inference using the LNA

Consider the LNA as an inferential model. The posterior over
parameters and the latent process (at the observation times)
is denoted by π(a)(θ, xo|y). We sample this posterior in two
steps. Firstly, aMetropolis–Hastings scheme is used to target
the marginal parameter posterior
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π(a)(θ |y) ∝ π(θ)p(a)(y|θ) (34)

where p(a)(y|θ) is the marginal likelihood under the LNA.
Then, a sample xo is drawn from p(a)(xo|θ, y) for each θ

sample from step one. Note that p(a)(y|θ) and p(a)(xo|θ, y)
are tractable under the LNA.

A forward filter is used to evaluate p(a)(y|θ). Since the
parameters θ remain fixed throughout the calculation of
p(a)(y|θ), we drop them from the notation where possible.

Define y1:t = (y1, . . . , yt )T . It will additionally be help-
ful to adopt the notational convention that p(a)(y1|y1:0) =
p(a)(y1) and set p(a)(y1:0) = 1. Now suppose that X0 ∼
N (a0,C0) a priori. The marginal likelihood p(a)(y|θ) under
the LNA can be obtained using Algorithm 5.

Hence, samples of θ can be obtained from π(a)(θ |y)
by running a Metropolis–Hastings scheme with target (34).
Then, for each (thinned) θ draw, xo can be sampled from
p(a)(xo|θ, y) using a backward sampler (see Algorithm 6).

Algorithm 5 LNA forward filter
1. For t = 0, . . . , n − 1,

(a) Prior at t + 1. Initialise the LNA with ηt = at , Vt = Ct and
Pt = Id . Integrate the ODEs (26), (33) and (30) forward to
t + 1 to obtain ηt+1, Vt+1 and Pt+1.

(b) One step forecast. Using the observation equation (2), we have
that

Yt+1|y1:t ∼ N
(
FT ηt+1, F

T Vt+1F + �
)

.

Compute the updated marginal likelihood

p(a)(y1:t+1) = p(a)(y1:t )p(a)(yt+1|y1:t )
= p(a)(y1:t )

× N
(
yt+1 ; FT ηt+1 , FT Vt+1F + �

)
.

(c) Posterior at t + 1. Combining the distributions in (a) and (b)
gives the joint distribution of Xt+1 and Yt+1 (conditional on
y1:t ) as
(
Xt+1
Yt+1

)
∼ N

{(
ηt+1

FT ηt+1

)
,

(
Vt+1 Vt+1F

FT Vt+1 FT Vt+1F + �

)}

and therefore Xt+1|y1:t+1 ∼ N (at+1,Ct+1), where

at+1 = ηt+1 + Vt+1F
(
FT Vt+1F + �

)−1

×
(
yt+1 − FT ηt+1

)

Ct+1 = Vt+1 − Vt+1F
(
FT Vt+1F + �

)−1
FT Vt+1 .

Store the values of at+1, Ct+1, ηt+1, Vt+1 and Pt+1.

Algorithm 6 LNA backward sampler
1. First draw xn from Xn |y ∼ N (an,Cn).
2. For t = n − 1, n − 2, . . . , 1,

(a) Joint distribution of Xt and Xt+1. Note that Xt |y1:t ∼
N (at ,Ct ). The joint distribution of Xt and Xt+1 (conditional
on y1:t ) is
(

Xt
Xt+1

)
∼ N

{(
at

ηt+1

)
,

(
Ct Ct PT

t+1
Pt+1Ct Vt+1

)}
.

(b) Backward distribution. The distribution of Xt |Xt+1, y1:t is
N (ât , Ĉt ), where

ât = at + Ct P
T
t+1V

−1
t+1 (xt+1 − ηt+1) ,

Ĉt = Ct − Ct P
T
t+1V

−1
t+1Pt+1Ct .

Draw xt from Xt |Xt+1, y1:t ∼ N (ât , Ĉt ).
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