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ABSTRACT

We study mean equicontinuous actions of locally compact σ-compact

amenable groups on compact metric spaces. In this setting, we estab-

lish the equivalence of mean equicontinuity and topo-isomorphy to the

maximal equicontinuous factor and provide a characterization of mean

equicontinuity of an action via properties of its product. This characteri-

zation enables us to show the equivalence of mean equicontinuity and the

weaker notion of Besicovitch-mean equicontinuity in fairly high generality,

including actions of abelian groups as well as minimal actions of general

groups. In the minimal case, we further conclude that mean equiconti-

nuity is equivalent to discrete spectrum with continuous eigenfunctions.

Applications of our results yield a new class of non-abelian mean equicon-

tinuous examples as well as a characterization of those extensions of mean

equicontinuous actions which are still mean equicontinuous.

1. Introduction

Isometric actions on compact metric spaces constitute fundamental objects of

study in the field of dynamical systems. In fact, despite possessing structurally

simple dynamics, they relate to deep problems of general mathematical inter-

est. Already rigid rotations on the circle have close connections to continued

fraction expansions (see, for example, [Ser85]), the rich theory of discrepancy

of sequences (see, e.g., [DT97] and references therein), or the Three Distance

Problem and its versatile generalizations (see, for instance, [AB98]), to name

but a few. With their dynamical simplicity on the one hand and the relevance

of such problems on the other hand, it is natural to take actions by isometries

as a point of departure in the endeavor to understand topological dynamical

systems in general.

Actually, a substantial part of the abstract theory of topological dynamics

can be understood as dealing with the following issue: given a general action

which is not isometric, how close is this action to an isometric one? An essential

tool in answering this question is the so-called maximal equicontinuous factor

(or, topologically equivalent, the maximal isometric factor) of a given action.

Now, with this canonical factor at hand, we may restate the above question in

the following way: what is the regularity of the corresponding factor map?

Of course, various regularity features can be (and have been) considered. On

the topological side, it is natural to investigate the existence of points where

this factor map is one-to-one and this leads to the notion of almost automorphic
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actions [Vee65]. Once an invariant measure μ is given, one can also ask for

injectivity of the factor map for almost all points with respect to μ and in many

contexts this is referred to as regularity of the system.

With a more measure-theoretical flavor, we may study factor maps that es-

tablish a measure isomorphy with respect to all invariant measures and their

push-forward on the maximal equicontinuous factor. This is the starting point

of the current article and we present a comprehensive treatment of actions

which allow for such factor maps. Our first main result gives a characterization

of these actions in terms of a weakening of isometry known as mean equicon-

tinuity (Theorem 1.1). Our subsequent results then unfold the notion of mean

equicontinuity in terms of product systems (Theorem 1.2) and provide a spec-

tral characterization of mean equicontinuity (Theorem 1.4) for minimal actions.

A priori, the concept of mean equicontinuity comes in two variants, one known

as Weyl-mean equicontinuity and the other as Besicovitch-mean equicontinuity.

Along the way, we derive sufficient conditions for these two notions to agree

(Theorem 1.3).

The concepts of Weyl- and Besicovitch-mean equicontinuity were introduced

in [LTY15] for integer actions. In fact, in this case the notion of Besicovitch-

mean equicontinuity is immediately seen to be equivalent to the concept of mean

Lyapunov-stability which was already introduced in 1951 by Fomin [Fom51]

in the context of Z-actions with discrete spectrum. Later, a first systematic

treatment was carried out by Auslander [Aus59].

Our results tie in with various recent streaks of investigations: for Z-actions,

there is the fundamental work of Downarowicz and Glasner on mean equicon-

tinuity [DG16], providing a detailed study in the minimal case. Our results

generalize these results from the group of integers to general locally compact

σ-compact amenable groups. In the main structural characterization given in

Theorem 1.1, we can also completely remove the minimality condition. Further,

in our treatment of the relation between Weyl- and Besicovitch-mean equiconti-

nuity, we can remove the minimality condition in many cases as well and thereby

generalize [QZ20] which treats the case of general (that is, not necessarily min-

imal) Z-actions.

Concerning abelian groups, mean equicontinuity and its relation to the spec-

tral theory of dynamical systems (in particular, to discrete spectrum) has been

studied by various groups [GR17, Len19, GRM19]. Indeed, these works fea-

ture weaker versions of mean equicontinuity in order to characterize discrete
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spectrum. So, the restriction of our spectral result to the abelian case, given

in Corollary 1.6, can be seen as a natural complement to these works. More

specifically, our spectral characterization shows –in the minimal case– that mean

equicontinuity is equivalent to unique ergodicity and discrete spectrum together

with the continuity of eigenfunctions (see also [DG16] for the case of Z-actions).

Discrete spectrum is particularly relevant in the context of aperiodic order.

This field has attracted substantial attention in the last decades due to the

discovery of substances—later called quasicrystals—featuring this type of order

(see the recent survey collection [KLS15] and the monograph [BG13] for back-

ground and further details). A basic quantity in the study of aperiodic order

is the diffraction measure of an aperiodic configuration and a key task is to

understand when the diffraction measure is a pure point measure. Due to a

collective effort over the last twenty years, this turns out to be equivalent to

discrete spectrum of an associated dynamical systems; see, for instance, [BL17]

for a recent survey.

There is no axiomatic framework for aperiodic order (yet). However, typ-

ical systems studied in the context of aperiodic order have further regularity

properties such as minimality and unique ergodicity. As discussed below (see

Remark 6.4), one may argue that our spectral characterization shows that mean

equicontinuous systems are the “right” systems to model minimal systems with

aperiodic order.

1.1. Basic notation and definitions. We call a triple (X,G, α) a

(topological) dynamical system if X is a compact metric space (endowed

with a metric d), G is a topological group and α is a continuous action of G

on X by homeomorphisms. Here, continuity of α is understood as continuity of

the map

G×X � (g, x) �→ α(g)(x) ∈ X.

Most of the time, we will keep the action α implicit and simply refer to (X,G) as

a dynamical system. In a similar fashion, we mostly write gx instead of α(g)(x)

(g ∈ G, x ∈ X). For Z-actions, which are uniquely determined by f := α(1), we

also refer by (X, f) to the dynamical system (X,Z, α).

A dynamical system (Y,G) is a (topological) factor of another dynamical

system (X,G) if there exists a continuous surjection h : X −→ Y with

h(gx) = gh(x)
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for all g ∈ G and x ∈ X . In this case, h is called a factor map and (X,G)

is referred to as a (topological) extension of (Y,G). If h is further injective

(and hence, a homeomorphism), we say (X,G) and (Y,G) are conjugate and

call h a conjugacy.

We say (X,G) is transitive if there is x ∈ X whose orbit Gx is dense. In

this case, also the point x is called transitive. We say (X,G) is minimal if

every x ∈ X is transitive. A set A ⊆ X is invariant under G (or G-invariant)

if gA = A for all g ∈ G. We call a non-empty, closed and G-invariant set

A ⊆ X transitive if (A,G) is transitive; we call such a set minimal if (A,G) is

minimal. It is a well-known consequence of Zorn’s Lemma that every dynamical

system (X,G) has a minimal set A ⊆ X . Clearly, distinct minimal sets are

disjoint. Observe that invariance, transitivity and minimality are preserved

under factor maps.

A system (X,G) is equicontinuous if for every ε > 0 there exists δε > 0

such that d(x, y) < δε implies d(gx, gy) < ε for all g ∈ G. If δε can be chosen

to equal ε, then (X,G) is called isometric. Observe that if (X,G) is equicon-

tinuous, then

d̂(x, y) = sup
g∈G

d(gx, gy)

defines a metric that induces the same topology on X as d. Clearly,

d̂(gx, gy) = d̂(x, y)

for all g ∈ G and x, y ∈ X which implies that we can use the terms equicontin-

uous system and isometric system synonymously.

It is well known that every topological dynamical system (X,G) has a unique

(up to conjugacy) maximal equicontinuous factor (MEF), denoted by

(T, G). That is, (T, G) is an equicontinuous factor of (X,G) and moreover

an extension of every other equicontinuous factor of (X,G). For our consider-

ations, the following simple consequence of the defining property of (T, G) will

be sufficient: If (T′, G) is an equicontinuous factor of (X,G) with factor map π′

such that π′(x) = π′(y) implies

inf
g∈G

d(gx, gy) = 0,

then (T′, G) is conjugate to (T, G). For a detailed discussion of the above facts,

we refer to [Aus88].
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Throughout this work, we consider G to be a locally compact σ-compact

amenable group. Recall that a locally compact σ-compact group G is called

amenable if there exists a sequence (Fn)n∈N, called a (left) Følner sequence,

of non-empty compact sets in G of positive Haar measure such that

lim
n→∞

m(gFn�Fn)

m(Fn)
= 0 for all g ∈ G,

where� denotes the symmetric difference and m is a (left) Haar measure of G

(we may synonymously write |F | for the Haar measure m(F ) of a measurable

set F ⊆ G).

Since G acts by homeomorphisms, for each g ∈ G the map g : X � x �→ gx

is Borel bi-measurable. We call a Borel probability measure μ on X invariant

under G (or G-invariant) if μ(A) = μ(gA) for every Borel measurable subset

A ⊆ X and g ∈ G. We say a G-invariant measure μ is ergodic if all Borel

sets A with μ(A� gA) = 0 (g ∈ G) verify μ(A) = 0 or μ(A) = 1. It is well

known that the amenability of G ensures the existence of a G-invariant measure

for (X,G). Further, the set of invariant measures is convex and an invariant

measure is ergodic if and only if it is an extremal point of the set of invariant

measures. In particular, if (X,G) has a unique invariant measure, this measure

is necessarily ergodic and (X,G) is referred to as uniquely ergodic. Finally,

we call a closed invariant set A ⊆ X uniquely ergodic if (A,G) is uniquely

ergodic. For further information of measure-theoretic properties of dynamical

systems, see also [EW11].

1.2. Main results. Given a dynamical system (X,G) and a Følner se-

quence F = (Fn)n∈N, we call (X,G) Besicovitch-F-mean equicontinuous or

just F-mean equicontinuous if for all ε > 0 there exists δε > 0 such that

DF(x, y) := lim
n→∞

1

|Fn|

∫
Fn

d(tx, ty)dm(t) < ε,(1)

for all x, y ∈ X with d(x, y) < δε. The dependence on the Følner sequence

immediately motivates the next definition which will also be the integral notion

in this article. We say (X,G) is Weyl-mean equicontinuous or just mean

equicontinuous if for all ε > 0 there is δε > 0 such that for all x, y ∈ X

with d(x, y) < δε we have

D(x, y) := sup{DF(x, y) | F is a Følner sequence} < ε.
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Before we can proceed, a few comments are in order. First, note that DF
and D are pseudometrics. Moreover, as is not hard to see, D is G-invariant,

that is, D(gx, gy) = D(x, y) for all x, y ∈ X and g ∈ G (for the convenience

of the reader, we provide a proof of this fact, see Proposition 3.12). Indeed,

if G is abelian, it is immediately seen that (1) already defines a G-invariant

pseudometric (simply for algebraic reasons) which simplifies many proofs for

abelian G. In the non-abelian situation, this does not hold anymore in general.

Yet, it turns out that under fairly general assumptions on (X,G) it actually is

true if (X,G) is mean equicontinuous (see Theorem 1.3). It is an interesting

observation that in this case, however, the reason behind the invariance of DF
is not so much algebraic but ergodic in nature (see Section 5).

In the following main structural result, we will see that mean equicontinuity

of a system (X,G) is intimately linked to a regularity property of the topolog-

ical factor map π : X → T onto its maximal equicontinuous factor (T, G). For

the definition of this regularity property, we need to introduce the following

notion. Two probability spaces (X,BX , μ) and (Y,BY , ν) are called isomor-

phic (mod 0) if there are measurable sets M ⊆ X and N ⊆ Y with

μ(M) = ν(N) = 1

and a bi-measurable bijection h′ : M → N which is measure preserving, that is,

μ(h′−1
(A)) = ν(A)

for all measurable A ⊆ N . In this case, we call h′ an isomorphism (mod 0)

with respect to μ and ν. We also refer to an everywhere defined measur-

able map h : X → Y as an isomorphism (mod 0) with respect to μ and ν

if h(x) = h′(x) with x ∈M for some h′ and M as above.

Suppose now that (X,G) is a topological extension of (Y,G) via a factor

map h : X → Y and let μ be a G-invariant measure on X . We say (X,G)

is a topo-isomorphic extension of (Y,G) with respect to μ if h is also an

isomorphism with respect to μ and h(μ) where h(μ) denotes the push-forward

of μ. In this case, we call h a topo-isomorphy with respect to μ. In case

that no measure is specified, (X,G) is called a topo-isomorphic extension

of (Y,G) and h a topo-isomorphy if h : X → Y is a topo-isomorphy with

respect to every G-invariant measure μ on X . Observe that the push-forward

of an invariant measure μ under a topo-isomorphy is ergodic if and only if μ is

ergodic.
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Theorem 1.1 (Mean equicontinuity and topo-isomorphy): The topological dy-

namical system (X,G) is (Weyl-) mean equicontinuous if and only if it is a

topo-isomorphic extension of its maximal equicontinuous factor (T, G).

Let us point out that the proof of this theorem also shows that the maximal

equicontinuous factor of a mean equicontinuous system is in a natural sense

the quotient of X by the pseudometric D (see the corresponding discussion in

Section 3.3).

The concept of topo-isomorphy is at the interface of topological and measure-

theoretical aspects of dynamical systems. This kind of “hybrid” notion was

also recently studied by Downarowicz and Glasner in [DG16] where a similar

statement to the above is proven for minimal dynamical systems with G = Z.

We would like to mention that the direction from topo-isomorphy to mean

equicontinuity (Theorem 3.7) is proven in a completely different way than in

[DG16], while the proof that mean equicontinuity implies topo-isomorphy is

close to the ones of [LTY15, Theorem 3.8] and [DG16, Proposition 2.5]; see

Section 3.

It is very worth noting that Theorem 1.1 is by far not only of abstract impor-

tance but actually offers a direct way to establish the mean equicontinuity of

many well-known minimal group actions. To emphasize this, we briefly present

a (non-exhaustive) list of minimal group actions where mean equicontinuity

can always be derived by using the structural characterization provided in The-

orem 1.1. Starting with Z-actions, two very common example classes which

are well known to be mean equicontinuous are Sturmian subshifts and regular

Toeplitz subshifts; see, for instance, [Fog02, Ků03, Dow05] for further infor-

mation and references. Non-symbolic examples can be found in the class of

so-called Auslander systems (see [Aus88] and [HJ97]).

Before we go beyond Z-actions, we want to stress that minimal mean equicon-

tinuous systems are always uniquely ergodic; see Corollary 1.5 (iii). For G = Z,

this is a classical observation which is due to Oxtoby [Oxt52]; see also [Aus59].

To present the reader a non-minimal and moreover, intrinsically non-uniquely

ergodic system, we provide a symbolic Z-action which has infinitely many er-

godic measures in Example 5.11.

Concerning actions by more general groups, Theorem 1.1 also constitutes a

basis for providing a novel and straightforward construction method for a class of

non-abelian minimal mean equicontinuous systems (outlined in Subsection 7.1).
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Moreover, we can continue the list of examples from above: higher-dimensional

subshifts, i.e., Zn-actions, which are mean equicontinuous can for instance be

obtained from regular Toeplitz arrays; see [Cor06]. Furthermore, the theory

of quasicrystals contains many natural examples of mean equicontinuous Rn-

actions, like the R2-actions obtained from Penrose tilings [Rob96] or the chair

tiling [Rob99]. For more information concerning tilings and Delone sets in Rn,

see [BG13]. It is also possible to consider Delone sets (and canonical actions

induced by them) in more general groups than Rn. Especially, so-called regular

model sets immediately yield mean equicontinuous group actions; see [Sch99].

Moreover, as recently shown in [GL20] and motivated by [Vor12], there ex-

ists a rich class of mean equicontinuous systems in the context of actions of

self-similar groups on spherically homogeneous trees. One can associate canon-

ical extensions to this kind of actions and in [GL20] natural conditions are

established which ensure that these extensions act mean equicontinuously. In

particular, all actions on d-ary trees of groups generated by bounded automata

fulfil these conditions and many well-known groups belong to this class, includ-

ing the Basilica and Grigorchuk group, as well as iterated monodromy groups

associated to quadratic post-critically finite polynomials.

Finally, we would like to mention that according to [Gla18, Corollary 5.4 (2)],

minimal tame systems are always topo-isomorphic extensions of their maximal

equicontinuous factor if the corresponding acting group is amenable (see also

the short discussion at the end of Section 7.3). Systems belonging to this fam-

ily are Sturmian-like Zn-actions [GM18a] or tame generalized Toeplitz shifts

[FK20] (see also [LS18] for not necessarily tame but still mean equicontinuous

examples). In fact, in [FK20] it is shown that every countable maximally al-

most periodic amenable group allows for effective mean equicontinuous minimal

actions which are not equicontinuous (see also Section 7.3).

Our next main result gives a characterization of mean equicontinuity of a

system in terms of its product system (see Section 4 for details). It is to be

seen as a generalization of [LTY15, Theorem 3.3] and thereby well in line with

a plethora of results on characterizing properties of a dynamical system via

properties of its product. We need the following notion: a system (X,G) is

pointwise uniquely ergodic if the orbit closure Gx of every point x ∈ X is

uniquely ergodic. For such systems we denote by μx the unique ergodic measure

supported on the orbit closure of x ∈ X .
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Theorem 1.2 (Mean equicontinuity and the product system): The system

(X,G) is mean equicontinuous if and only if

• the product system (X ×X,G) is pointwise uniquely ergodic,

• and the map (x, y) �→ μ(x,y) is continuous (with respect to the weak-

*topology).

As the metric d is continuous on X ×X , the previous theorem together with

the standard result on the existence of averages of continuous functions for

uniquely ergodic dynamical systems implies for mean equicontinuous systems

that the lim sup in (1) is actually a limit and does not depend on the cho-

sen Følner sequence, whence, in particular, it follows that D = DF for any left

Følner sequence F (see also Section 4 for a related discussion).

Moreover, the previous result allows us to derive the following theorem on

the independence of Følner sequences.

Theorem 1.3 (Mean equicontinuity and F -mean equicontinuity): Let (X,G)

be a dynamical system and assume that

• there is an invariant measure μ with full support, i.e., supp(μ) = X ,
or that

• the group G is abelian.

Then (X,G) is mean equicontinuous if and only if (X,G) is F -mean equicon-

tinuous for some left Følner sequence F .

Observe that if (X,G) is minimal, the extra assumption of a measure with

full support is evidently fulfilled. It is noteworthy that the extra effort needed

to overcome the lack of commutativity in this work is most visible in the proof

of the above statement. We would also like to remark that in the recent article

[QZ20], a similar statement has independently (and by different means) been

proven to hold if G = Z. Under the assumption of a minimal Z-action, it is

known due to [DG16].

In the minimal case we can provide another characterization of mean equicon-

tinuity. This is a characterization in terms of spectral theory, or more specif-

ically, in terms of a decomposition of the space L2(X,μ). The corresponding

proof can be found in Section 6.

Theorem 1.4 (Mean equicontinuity and spectral theory): Assume (X,G) is

minimal. Then (X,G) is mean equicontinuous if and only if (X,G) has a unique

invariant measure μ and L2(X,μ) can be written as an orthogonal sum of finite-

dimensional, G-invariant subspaces consisting of continuous functions.
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Now, for minimal systems we may combine all the previous theorems to obtain

a slightly simplified list of equivalent characterizations of mean equicontinuity

(note that the statements (i)–(iii) are a generalization of Theorem 2.1 in [DG16]

which is treating Z-actions).

Corollary 1.5: Let (X,G) be a minimal system. Then the following are

equivalent:

(i) (X,G) is mean equicontinuous.

(ii) (X,G) is F -mean equicontinuous for some (left) Følner sequence F .
(iii) (X,G) is uniquely ergodic and topo-isomorphic to its MEF with respect

to its unique invariant measure μ.

(iv) (X ×X,G) is pointwise uniquely ergodic and (x, y) �→ μ(x,y) is contin-

uous.

(v) (X,G) has a unique invariant measure μ and L2(X,μ) can be writ-

ten as an orthogonal sum of finite-dimensional, G-invariant subspaces

consisting of continuous functions.

It is worth mentioning that the last point of the above statement reflects the

close connection between discrete spectrum and properties of certain averaging

pseudometrics; see also [GR17, HLT+21, YZZ19] for recent investigations in this

direction. Given the relevance of this connection, we finish the present section

with a discussion of the spectral characterization of mean equicontinuity for

abelian G. This case is particularly important due to its relevance for the study

of aperiodic order. Let Ĝ be the dual group of G, i.e., the group of all continuous

group homomorphisms from G to the unit circle and let (X,G) be a dynamical

system with an invariant probability measure μ. Then f ∈ L2(X,μ) with f �= 0

is called an eigenfunction to the eigenvalue ξ ∈ Ĝ if

f(g·) = ξ(g)f(·)

for all g ∈ G. Here, the equality is understood in the sense of L2 functions. If

such an f is continuous with

f(gx) = ξ(g)f(x),

for all x ∈ X and g ∈ G it is called a continuous eigenfunction. The

dynamical system (X,G) with G-invariant measure μ is said to have discrete

spectrum with continuous eigenfunctions if there exists an orthonormal

basis for L2(X,μ) of continuous eigenfunctions.
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Corollary 1.6: Let G be abelian. A minimal system (X,G) is mean equicon-

tinuous if and only if it is uniquely ergodic and has discrete spectrum with

continuous eigenfunctions.

For subshifts associated to non-periodic primitive substitutions, a classical

result by Host [Hos86] states that all eigenvalues possess a continuous eigen-

function. Hence, the previous corollary implies that these subshifts are mean

equicontinuous if and only if they have pure point spectrum (since they are

always minimal). This yields, for instance, that the subshifts associated to the

Fibonacci and Tribonacci substitution are mean equicontinuous. For more in-

formation, see for instance [Fog02] and [Que10]. Further, a generalization of

Host’s result to primitive tiling substitutions of Rn with finite local complexity

can be found in [Sol07].
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2. Some basic preliminaries on ergodic theory

In this section, we discuss some definitions and statements of the ergodic theory

of general actions by locally compact σ-compact amenable groups. To a large

extent, we will be concerned with averages along Følner sequences where we

pay special attention to an exposition which only requires a very fundamental

set of tools. In particular, we will only make use of the Mean Ergodic Theorem

in the following and avoid the more sophisticated Pointwise Ergodic Theorem

by Lindenstrauss [Lin01].

In order to provide an alternative characterization of topo-isomorphic exten-

sions, let us make the following classical measure-theoretic observation whose

proof is provided for the convenience of the reader.
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Proposition 2.1: Suppose X and Y are compact metric spaces, μ is a Borel

probability measure on X and h : X → Y is measurable. Then, the operator

Uμ : L2(Y, h(μ))→ L2(X,μ) : f �→ f ◦ h(2)

is unitary if and only if h is an isomorphism (mod 0) with respect to μ and h(μ).

Proof. We only show that unitarity implies isomorphy (mod 0) the “if”-part is

obvious.

First, we have to fix some notation. For a compact metric space (Z, d)

we denote by B(Z) the Borel σ-algebra and by B̃(Z) the associated mea-

sure algebra (see, for example, [Wal82] for the notion of measure algebras).

Since Uμ : L2(Y, h(μ))→ L2(X,μ) is unitary, we can define an invertible map

Φ̃ : B̃(Y )→ B̃(X) by setting Φ̃(Ã) to be the equivalence class of Φ(A) in B̃(X),

where

Uμ(1A) = 1Φ(A),

for A ∈ Ã ∈ B̃(Y ). Note that Φ(A) = h−1(A) (this also proves the well-

definition of Φ̃). One can check directly that Φ̃ is a measure algebra isomor-

phism. Further, by [Wal82, Theorem 2.2] we conclude that there exist sets

M ⊆ X , N ⊆ Y with μ(M) = h(μ)(N) = 1 and a Borel measurable invertible

measure preserving map ϕ : M → N which induces Φ̃, i.e.,

Φ̃(Ã) = (ϕ−1(A ∩N))∼

for all A ∈ B(Y ), and coincides with h on M . This proves the statement.

Recall that any locally compact group G admits a left (right) Haar measure

(defined uniquely up to a positive multiplicative constant) denoted by m (mr)

which is left (right) invariant, that is, for all ϕ ∈ L1(G,m) and g ∈ G we have∫
ϕ(gs)dm(s) =

∫
ϕ(s)dm(s)

(
∫
ϕ(sg)dmr(s) =

∫
ϕ(s)dmr(s)), where L1(G,m) is the space of all Haar in-

tegrable functions on G. Note that from time to time we will also refer to the

left/right Haar measure by using the notation | · | if there is no risk of ambiguity.

In the introduction we have already encountered the notion of a left Følner

sequence (Fn)n∈N in G consisting of non-empty compact sets in G such that

lim
n→∞

m(gFn�Fn)

m(Fn)
= 0 for all g ∈ G.(3)
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There are also right Følner sequences which fulfill an analogous condition to (3)

where the left Haar measure and the multiplication from the left is replaced by

the right Haar measure and multiplication from the right, respectively. From

now on, the standard assumption is that we deal with left Haar measures and

left Følner sequences if not stated otherwise.

Let (X, d) be a compact metric space. By C(X) we denote the set of all

complex-valued continuous functions on X equipped with the uniform topology

which is induced by the sup norm ‖ · ‖∞. Given a Borel probability measure μ

on X and ϕ ∈ C(X), we set

μ(ϕ) =

∫
ϕdμ.

The next theorem is well known for Z-actions and can be proven for the

group actions considered in this article by adapting the corresponding argu-

ments from [Wal82] and [Fur81]; see also the short discussion regarding Theo-

rem 2.16 in [MR13].

Theorem 2.2: Let (X,G) be a dynamical system. The following statements

are equivalent:

(i) (X,G) has a unique G-invariant measure μ.

(ii) For each continuous function ϕ on X there is a Følner sequence (Fn)n∈N

with

lim
n→∞

1

|Fn|

∫
Fn

ϕ(tx) dm(t) = c,

where c is a constant independent of x ∈ X .

Further, if one of the above conditions holds, then the convergence in (ii) is

uniform in x ∈ X , independent of the left Følner sequence (Fn)n∈N, and we

have

c = μ(ϕ).

For the sake of completeness, we provide a proof of the next statement.

Proposition 2.3: Let (X,G) be a dynamical system. Suppose that for each

ϕ ∈ C(X) there is a right Følner sequence (Fn)n∈N and a constant c ∈ R with

lim
n→∞

1

|Fn|

∫
Fn

ϕ(tx) dmr(t) = c,

for all x ∈ X . Then (X,G) has a unique G-invariant measure μ and μ(ϕ) = c.
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Proof. As mentioned in the introduction, (X,G) allows for a G-invariant mea-

sure μ on X . Now, using Fubini and dominated convergence, we have∫
X

ϕdμ =
1

|Fn|

∫
Fn

∫
X

ϕ(tx) dμ(x)dmr(t)

=

∫
X

1

|Fn|

∫
Fn

ϕ(tx) dmr(t)dμ(x)
n→∞−→ c.

Since finite Borel measures on compact metric spaces are uniquely determined

by integrating continuous functions, we obtain that μ is the only G-invariant

measure on X .

Throughout this work, we will encounter Birkhoff averages of continuous func-

tions, i.e., limits of the above kind, at several places. For that reason, we intro-

duce the following notation: given a left Følner sequence F and a continuous

function ϕ on X , we set

An(F , ϕ)(x) :=
1

|Fn|

∫
Fn

ϕ(tx) dm(t)

for x ∈ X and n ∈ N. Furthermore, we introduce the following functions on X

A(F , ϕ) : x �→ lim sup
n→∞

An(F , ϕ)(x)

and

A(F , ϕ) : x �→ lim inf
n→∞ An(F , ϕ)(x).

We simply write A(F , ϕ)(x) for the above limits, provided they coincide (as

in the previous statements). If F is a right Følner sequence, we refer to the

analogous quantities (where the left Haar measure is replaced by the right Haar

measure) by the same symbols.

For a dynamical system (X,G) with an ergodic measure μ and a left Følner

sequence F in G, we say a point x ∈ X is (μ-)generic with respect to F if for

every continuous function ϕ on X the limit A(F , ϕ)(x) exists and equals μ(ϕ).

It is worth noting and easy to see that every μ-generic point has a dense orbit

in the support of μ. For the purpose of being self-contained, we provide a

proof of the next well-known statement. Note that a direct consequence of this

statement is the well-known singularity of ergodic measures.

Theorem 2.4: Let (X,G) be a topological dynamical system with an ergodic

measure μ. Then every left Følner sequence F = (Fn)n∈N allows for a subse-

quence F ′ = (F ′
n)n∈N with respect to which μ-almost every point is generic.
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Proof. Let F be a left Følner sequence and (ϕ�)�∈N be a dense sequence

in C(X) (which exists due to Stone–Weierstrass). By the Mean Ergodic Theo-

rem, An(F , ϕ1)(x)
L1−→ μ(ϕ1). There is hence a subsequence Fϕ1 = (Fϕ1

n )n∈N

of F such that

An(Fϕ1 , ϕ1)(x)→ μ(ϕ1)

for all x in a full measure set Xϕ1 ⊆ X . By inductively repeating the above

argument, we get that for each 
 ∈ N there is a subsequence Fϕ�+1 of Fϕ� such

that An(Fϕ�+1 , ϕ�+1)(x) → μ(ϕ�+1) for all x in a full measure set Xϕ�+1
⊆ X .

Set

XC(X) =
⋂
�∈N

Xϕ�
and F ′ = (Fϕn

n )n∈N.

Clearly, we have

μ(XC(X)) = 1.

Moreover,

A(F ′, ϕ�)(x) = A(F ′, ϕ�)(x) = μ(ϕ�)

for all 
 ∈ N and x ∈ XC(X). Note that for every fixed x ∈ X we have

that A(F ′, ϕ)(x), A(F ′, ϕ)(x), and μ(ϕ) depend continuously on ϕ ∈ C(X).

Altogether, we thus have for every ϕ ∈ C(X) and every x ∈ XC(X) that

A(F ′, ϕ)(x) = lim
j→∞

A(F ′, ϕ�j )(x) = lim
j→∞

A(F ′, ϕ�j )(x)

= A(F ′, ϕ)(x)

= lim
j→∞

μ(ϕ�j ) = μ(ϕ),

where (ϕ�j )j∈N is a subsequence of (ϕ�)�∈N with ϕ�j → ϕ.

We will need the following auxiliary statement which is immediately linked

to the ergodic representation of invariant measures; see, for instance, [Far62]

for more information.

Lemma 2.5 ([Far62, Lemma 6]): Let μ be a G-invariant measure. If μ(A) > 0

for some Borel measurable set A ⊆ X , then there is an ergodic G-invariant

measure ν with ν(A) > 0.
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3. Topo-isomorphic extensions

In the following we establish the equivalence of (Weyl-) mean equicontinuity

and topo-isomorphy and thus prove our main structural result (Theorem 1.1).

To that end, we first gather some basics on topo-isomorphic extensions in Sub-

section 3.1. Then Theorem 3.7 (in Subsection 3.2) yields one direction of the

main theorem. Theorem 3.15 (in Subsection 3.3) yields the other direction.

Theorem 1.1 naturally suggests to also look at the relation between mean

equicontinuous systems and their topo-isomorphic extensions. We show that

the preservation of the maximal equicontinuous factor is a characteristic of

such extensions (see Subsection 3.4).

3.1. Basics on topo-isomorphic extensions. In this section we explain the

structure of topo-isomorphic extensions over equicontinuous systems. Roughly

speaking, such systems are partitioned into uniquely ergodic components and

this will be relevant in our considerations hereafter.

Proposition 3.1: Suppose (X,G) is a topo-isomorphic extension of (Y,G) via

the factor map h : X → Y . If μ1 and μ2 are two distinct ergodic G-invariant

measures on X , then the image measures h(μ1) and h(μ2) differ as well.

Proof. Assume for a contradiction that there exist distinct ergodic G-invariant

measures μ1 and μ2 such that h(μ1) = h(μ2). Since h is a topo-isomorphy,

h(μ1) is ergodic. Now, consider μ = 1/2 · (μ1 + μ2). Clearly, μ is not ergodic,

since it is a convex combination of two distinct ergodic measures. Since h is a

topo-isomorphy, h(μ) is not ergodic, too. This contradicts

h(μ) = 1/2 · (h(μ1) + h(μ2)) = h(μ1).

We will make use of the following classical lemma (see, for example, [Aus88])

which gives that the notions of transitivity and minimality coincide for equicon-

tinuous systems.

Lemma 3.2: If (X,G) is equicontinuous, then for each x ∈ X we have that Gx

is minimal.

Regarding the next statements, see also Theorem 14 (Decomposition Theo-

rem) in [Aus59] for the case of Z-actions.
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Proposition 3.3: Assume that (X,G) is a topo-isomorphic extension of an

equicontinuous system (Y,G) with factor map h.

(a) If A ⊆ X is transitive, then h(A) is minimal. In particular, if B is an-

other transitive subset ofX , then either h(A)=h(B) or h(A) ∩ h(B)=∅.
(b) Let A be a closed G-invariant subset of X . The set h(A) is minimal if

and only if A is uniquely ergodic.

Proof. (a) Since factor maps preserve transitivity, this follows from Lemma 3.2.

(b) Suppose h(A) is minimal. Since (Y,G) is equicontinuous, minimal subsets

are uniquely ergodic (this classical fact also follows from Theorem 5.6 below).

Hence, h maps every invariant measure on A to the same invariant measure

on h(A). By Proposition 3.1, A is uniquely ergodic.

Conversely, suppose A is uniquely ergodic. As any orbit closure carries an

invariant measure, Gx and Gy have a non-empty intersection for x, y ∈ A.

Now, (a) yields

h(Gx) = h(Gy) (x, y ∈ A).

As x and y are arbitrary elements of A, this shows that h(A) coincides with the

image of the transitive set Gx under h. Due to (a), h(A) is hence minimal.

Theorem 3.4: Assume that (X,G) is a topo-isomorphic extension of an equi-

continuous system (Y,G) with factor map h : X → Y . Then the following

statements are true.

(a) (X,G) is pointwise uniquely ergodic.

(b) If μ and ν are distinct ergodic measures on X supported on transitive

sets Aμ and Aν , respectively, then

h(Aμ) ∩ h(Aν) = ∅.

Proof. (a) Clearly Gx is a transitive subset of X for any x ∈ X . The statement

follows from (a) and (b) of the previous proposition.

(b) By (a) of the previous proposition, we either have h(Aμ) = h(Aν) or

h(Aμ) ∩ h(Aν) = ∅. So, it remains to show that h(Aμ) = h(Aν) is not possible.

To that end, assume the contrary. Then,

C := h−1(h(Aμ)) = h−1(h(Aν))

is a closed invariant subset of X that contains Aμ and Aν . Hence, it is not

uniquely ergodic. This contradicts the previous proposition.
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As a consequence of the preceding theorem we can decompose topo-isomorphic

extensions of equicontinuous systems into uniquely ergodic components. Let us

introduce the following notation: whenever (X,G) is a dynamical system and μ

an ergodic measure, Xμ denotes the set of all x ∈ X whose orbit closure Gx

supports μ and no other invariant measure. In other words, Xμ comprises the

set of all points which are μ-generic with respect to each Følner sequence.

Corollary 3.5: Let (X,G) be a topo-isomorphic extension of an equicontinu-

ous system (Y,G). Then the sets Xμ partition X , that is X =
⊔

μ Xμ, where μ

runs over all ergodic measures on X . Further, each Xμ is the preimage of a

minimal subset of Y and any such preimage coincides with an Xμ.

Proof. According to the previous theorem, (X,G) is pointwise uniquely ergodic

which immediately gives that the sets Xμ partition X .

For the second part, Lemma 3.2 yields that it suffices to show that to

each minimal set M ⊆ Y there is a unique ergodic measure μ on X such

that h−1(M) = Xμ, with h the factor map from X to Y . Proposition 3.3 (b)

yields that there is a unique ergodic measure μ on X with h−1(M)⊆Xμ. Clearly,

for any x ∈ X whose orbit closure supports μ, we must have Gx ∩ h−1(M) �= ∅.
Now, due to Proposition 3.3 (a), h(Gx) is minimal which necessarily yields

x ∈ h−1(M).

Corollary 3.6: Suppose (X, d) is a compact, connected metric space and

(X,G) is mean equicontinuous. Then (X,G) has either a unique ergodic mea-

sure (minimal set) or uncountably many ergodic measures (minimal sets).

Proof. Recall that the support of an ergodic measure is always transitive (due

to the generic points) and that every minimal set supports an ergodic measure.

Due to the pointwise unique ergodicity of mean equicontinuous systems (see

Theorem 3.15 and Theorem 3.4 (a)), this implies that there is a one-to-one

correspondence between minimal sets and ergodic measures. Hence, it suffices

to show the statement for ergodic measures.

Due to Corollary 3.5, we have a bijection between the ergodic measures of

(X,G) and the minimal sets of its maximal equicontinuous factor (T, G). By

Lemma 3.2, T allows for a partition by minimal sets which are clearly compact

and pairwise disjoint. Since T is connected (as the continuous image of X),

a classical result by Sierpinski [Sie18] yields that such a partition consists of

either one or uncountably many partition elements.
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3.2. Topo-isomorphy implies mean equicontinuity. Now, we show one

direction of our main structural result. To that end, we make use of Proposi-

tion 2.1 and rephrase the assertion that topo-isomorphy implies mean equicon-

tinuity as follows.

Theorem 3.7: Let (X,G) be a dynamical system and (T′, G) an equicontin-

uous factor with factor map π′ such that for every G-invariant measure μ the

operator

Uμ : L2(T′, π(μ))→ L2(X,μ) : f �→ f ◦ π′

is unitary. Then (X,G) is mean equicontinuous and (T′, G) is the associated

MEF.

Before we can turn to the proof of Theorem 3.7, we need two further ingre-

dients. The first ingredient is another characterization of mean equicontinuity

which makes use of the continuous functions on X . For that purpose we define

the pseudometric Df associated to a function f ∈ C(X) by

Df (x, y) :=sup

{
lim
n→∞

1

|Fn|

∫
Fn

|f(tx)−f(ty)|dm(t) | (Fn)n∈N a Følner sequence

}
.

The following statement is well-known; see [DI88, Proposition 1] and [GRM19,

Theorem 2.14]. We include a proof for the convenience of the reader.

Proposition 3.8: The following assertions are equivalent:

(i) (X,G) is mean equicontinuous.

(ii) For every f ∈ C(X) the pseudometric Df is continuous.

Moreover, if one of the equivalent assertions (i) and (ii) holds, then D(x, y) = 0

if and only if Df (x, y) = 0 for all continuous f .

Proof. It is not hard to see that the topology generated on X by D as well as

the mean equicontinuity of (X,G) is independent of the particular choice of the

metric d (provided d generates the original topology on X). This will be used

throughout the proof.

(i)⇒(ii): Observe that

d′(x, y) := d(x, y) + |f(x)− f(y)|
is a metric equivalent to d. We can hence assume w.l.o.g. that

|f(x)− f(y)| ≤ d(x, y).

This implies Df ≤ D. As D is continuous, this implies (ii).
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(ii)⇒(i): Choose a sequence (fn)n∈N of continuous functions on X which

separate points and satisfy ‖fn‖∞ ≤ 1 for all n ∈ N. Then for any cn > 0

with
∑

n cn <∞ we have that∑
n

cn|fn(x)− fn(y)|(4)

defines a metric equivalent to d. We can hence assume w.l.o.g. that d is given

by (4). Now, clearly

D ≤
∑

cnDfn =: D̃,

where D̃ is continuous by (ii) and the summability of (cn)n∈N.

The last statement has been shown along the proof.

Remark 3.9: The above shows that the topology on X generated by D agrees

with the topology generated by the collection of Df ’s with f ∈ C(X).

The other ingredient needed for the proof of Theorem 3.7 –and in some sense

the main insight of the present section– is the following lemma.

Lemma 3.10: Let (X,G) be a dynamical system and (T′, G) an equicontinuous

factor with factor map π′. Suppose that for every G-invariant measure μ the

operator

Uμ : L2(T′, π′(μ))→ L2(X,μ) : f �→ f ◦ π′

is unitary. Then, for any f ∈ C(X) and any ε > 0 we have Df (x1, x2) < ε

provided π′(x1) and π′(x2) are sufficiently close.

Proof. By (a) of Theorem 3.4 the orbit closure of xi (i = 1, 2) supports a

unique ergodic measure μi. W.l.o.g. we may assume that μ1 �= μ2 (if μ1 = μ2,

the following argument works in an analogous and slightly simplified way). By

unitarity of the Uμi ’s and denseness of continuous functions in L2(T
′, π′(μi)),

we can find gi ∈ C(T′) with

‖f − gi ◦ π′‖L2(X,μi) = ‖f − Uμigi‖L2(X,μi) ≤ ε/3.

By Cauchy–Schwarz, we then obtain

‖f − gi ◦ π′‖L1(X,μi) ≤ ‖f − gi ◦ π′‖L2(X,μi) ≤ ε/3.

Set Mi = π′(Gxi

)
. Then M1 and M2 are disjoint by Theorem 3.4 (b) since

μ1 �= μ2. Let Si (i = 1, 2) be continuous functions on T′ with Si|Mi = 1 and

S1|M2 = S2|M1 = 0. Set g = S1g1 + S2g2.
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Now, for any t ∈ G we have

|f(tx1)− f(tx2)| ≤ |f(tx1)− g1 ◦ π′(tx1)|+ |g ◦ π′(tx1)− g ◦ π′(tx2)|
+ |g2 ◦ π′(tx2)− f(tx2)|.

Consequently, we obtain

Df (x1, x2) ≤ T1(x1) + Dg◦π′(x1, x2) + T2(x2),

where

Ti(xi) := sup

{
lim
n→∞

1

|Fn|

∫
Fn

|f(txi)−gi ◦ π′(txi)|dm(t)

| (Fn)n∈N a Følner sequence

}
.

We show that all three terms become small for x1 sufficiently close to x2. By

unique ergodicity on orbit closures and Theorem 2.2, we obtain

Ti(xi) = ‖f − gi ◦ π′‖L1(X,μi) ≤ ε/3.

The term Dg◦π′ can be treated as follows. If π′(x1) is close to π′(x2), we

obtain that tπ′(x1) is close to tπ′(x2) for all t ∈ G (by equicontinuity). As g

is continuous (and hence uniformly continuous) on T′, this implies that

g ◦ π′(tx1) = g(tπ′(x1)) is close to g ◦ π′(tx2) = g(tπ′(x2)) for all t ∈ G and

we are done.

Proof of Theorem 3.7. We first show that (X,G) is mean equicontinuous. By

Proposition 3.8, it suffices to show that Df is continuous for any f ∈ C(X).

Let such an f be given and consider an arbitrary ε > 0. We have to show

that if x1, x2 ∈ X are close, then Df (x1, x2) < ε. This, however, is clear from

Lemma 3.10 as for x1 close to x2 we clearly have π′(x1) close to π′(x2) due to

the continuity of π′.
It remains to show that (T′, G) is the MEF. As discussed in Subsection 1.1,

it suffices to show that inft∈G d(tx, ty) = 0 whenever π′(x) = π′(y). Now,

π′(x) = π′(y) implies Df (x, y) = 0 for all continuous f on X (by Lemma 3.10)

and hence D(x, y) = 0 due to Proposition 3.8. From this and the definition

of D we easily find

inf
t∈G

d(tx, ty) = 0.
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Figure 1. A sketch of a Z-action which is not mean equicon-

tinuous but at the same time a pointwise uniquely ergodic

topo-isomorphic extension of its trivial MEF with respect to

all ergodic (delta) measures. The continuous dynamics are as

follows: points on the bold outer circle are fixed. Further,

there are infinitely many inner circles attached to the south

pole which accumulate at the outer circle and all points on the

inner circles get attracted by the south pole.

Remark 3.11: We defined a topo-isomorphy h to be a topological factor map

which is an isomorphism (mod 0) with respect to μ and h(μ) for every invariant

measure μ. It is natural to ask whether Theorem 3.7 still remains true if we

relax the assumptions on h by considering h to be a factor map which is only an

isomorphism (mod 0) with respect to μ and h(μ) for every ergodic measure μ.

In the proof of Lemma 3.10, the topo-isomorphy with respect to every invariant

measure was (implicitly) used twice: once, to ensure pointwise unique ergodicity

and once, to ensure that the supports of two distinct ergodic measures have

disjoint images under h (see also Theorem 3.4). In fact, the latter implies the

former and hence implies mean equicontinuity if we additionally assume h to be

a topo-isomorphy onto an equicontinuous factor with respect to every ergodic

measure. However, it is not true that pointwise unique ergodicity and topo-

isomorphy to an equicontinuous factor with respect to ergodic measures only

yields that the supports of distinct ergodic measures have distinct images, as

can be seen in Figure 1.
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3.3. Mean equicontinuity implies topo-isomorphy. In this section we

establish that mean equicontinuity implies topo-isomorphy of the dynamical

system to its MEF. Together with Theorem 3.7 from the previous subsection,

this proves our main structural result Theorem 1.1. We first note that D is

actually G-invariant.

Proposition 3.12 (Invariance of D): Let (X,G) be a dynamical system.

Then D satisfies

D(tx, ty) = D(x, y)

for all x, y ∈ X and t ∈ G.

Proof. Recall that there exists a unique Δ : G → (0,∞) (called modular

function) whose defining property is that∫
h(ts)dm(t) = Δ(s)

∫
h(t)dm(t),

for all Haar measurable h : G→ [0,∞). A short computation and canceling of

modular functions then gives that

1

|Fs|

∫
Fs

g(t)dm(t) =
1

|F |

∫
F

g(ts)dm(t),

for all s ∈ G and all Haar measurable bounded g : G→ [0,∞) whenever F is a

compact subset of G with positive Haar measure. This shows that

DF(sx, sy) = DFs(x, y),

where Fs denotes the sequence (Fns)n∈N. Now, (Fns)n∈N is clearly a Følner

sequence as well. Hence, the desired statement follows as the definition of D

involves all Følner sequences.

Remark 3.13: For later reference, recall that the group G is referred to as uni-

modular if the modular function Δ is identically 1, that is, G is unimodular if

and only if left Haar measures are also right Haar measures (and vice versa).

Let a dynamical system (X,G) be given. For x, y∈X write x∼y if D(x, y)=0.

If (X,G) is mean equicontinuous, then clearly the quotient map β : X → X/∼
is continuous. By the invariance of D due to Proposition 3.12, the action of G

on X/∼ given by gβ(x) := β(gx) is well defined and isometric. Hence, (X/∼, G)

is an equicontinuous factor of (X,G).
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Proposition 3.14: If (X,G) is mean equicontinuous, then (X/∼, G) is its

MEF.

Proof. As discussed in Section 1.1 it suffices to show that inft∈G d(tx, ty) = 0

whenever β(x) = β(y). This, however, is clear.

As pointed out in the introduction, the proof of the next statement is

inspired—and to a large extent similar—to the proof of [LTY15, Theorem 3.8].

Theorem 3.15: Suppose (X,G) is mean equicontinuous. Then (X,G) is topo-

isomorphic to its maximal equicontinuous factor (T, G).

Proof. Fix a G-invariant measure μ and let μ =
∫
μzdν(z) be the disintegration

of μ over its image measure ν := π(μ) (see, e.g., [Fur81]). We consider the

relative product measure μ×ν μ supported in the relative product of X

over T

X ×T X := {(x, y) ∈ X ×X | π(x) = π(y)}
which is defined by

μ×ν μ :=

∫
μz × μzdν(z).

Recall that μ×ν μ is invariant under the action of G on X ×T X given by

g(x, y) := (gx, gy)

for each (x, y) ∈ X ×T X and g ∈ G; see Proposition 5.14 in [Fur81].

We claim that μ×ν μ is only supported on the diagonal

{(x, x) ∈ X ×X | x ∈ X} ⊆ X ×T X.

For a contradiction assume this is not the case. Then there exists an open set A

in X ×T X which has a positive distance to the diagonal and fulfills

(μ×ν μ)(A) > 0.

Using Lemma 2.5, this yields that there is an ergodic measure μ̃ on X ×T X

with μ̃(A) > 0. According to Theorem 2.4, μ̃-almost every point is μ̃-generic

with respect to some Følner sequence F . Now, for every such (x, y) ∈ X ×T X

we have

D(x, y) ≥ DF(x, y) =

∫
d(z, w)dμ̃(z, w) > 0.

This is in contradiction to the previous proposition because

π(x) = π(y)⇔ D(x, y) = 0

in case that (X,G) is mean equicontinuous.
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Now, observe that the only measures supported in π−1(z) whose Cartesian

squares are supported in the diagonal of X ×T X are delta measures. Thus, μz

is a delta measure for ν-almost every z ∈ T. Finally, the map which assigns

to each z the support of μz is an isomorphism with respect to ν and μ whose

inverse coincides with π for μ-a.e. point.

3.4. Further properties and first non-minimal examples. Here, we dis-

cuss first consequences of the results of the previous subsections. In particular,

we show that the preservation of the maximal equicontinuous factor is a charac-

teristic feature of topo-isomorphic extensions of mean equicontinuous systems.

Furthermore, we discuss some examples of non-minimal mean equicontinuous

systems for G = Z.

Theorem 3.16 (Characterization of mean equicontinuous extensions): Let

(X,G) be an extension of a mean equicontinuous system (Y,G). Then, (X,G)

is topo-isomorphic to (Y,G) if and only if it is mean equicontinuous and its

MEF agrees with that of (Y,G).

Proof. Assume first that (X,G) is a topo-isomorphic extension of (Y,G). By

Theorem 3.15, (Y,G) is a topo-isomorphic extension of its MEF (T, G). Clearly,

(X,G) is also a topo-isomorphic extension of (T, G). The statement now follows

from Theorem 3.7.

Consider now the situation that (X,G) is mean equicontinuous and the MEFs

of (Y,G) and (X,G) agree. Let h be the factor map from X to Y and π a

factor map from Y to T (the MEF of both systems). Note that both π and

π ◦ h : X → T are topo-isomorphies, according to Theorem 3.15. This implies

that h is a topo-isomorphy, too.

Corollary 3.17: If two equicontinuous dynamical systems (X,G) and (Y,G)

are topo-isomorphic, then they are in fact topological conjugate.

Proof. By the previous theorem such systems share the same MEF. By equicon-

tinuity, however, they agree with their MEF.

Remark 3.18: The corollary is reminiscent of the rigidity phenomenon which is

well known for ergodic abelian equicontinuous group actions, see for instance

[FK02].

In order to state another consequence of Theorem 3.16 we need the following

observation.
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Proposition 3.19: Any topological factor of a mean equicontinuous system is

mean equicontinuous as well.

Proof. Let (Y,G) be a factor of a mean equicontinuous system (X,G) with

factor map h. By Proposition 3.8, it suffices to show that Df is continuous for

any continuous f on Y .

First, observe that Proposition 3.8 ensures continuity of Df◦h. Now, continu-

ity of Df follows from continuity of Df◦h. For a contradiction, suppose we are

given some ε > 0 and a sequence (yn)n∈N in Y which converges to some y ∈ Y

while Df (yn, y) > ε. Since h is surjective (by the definition of factor maps),

we find a sequence (xn)n∈N in X with h(xn) = yn for each n ∈ N. As X is

compact, we may assume without loss of generality that (xn)n∈N converges to

some x ∈ X . By continuity of h, h(x) = y. The continuity of Df◦h hence gives

Df(yn, y) = Df (h(xn), h(x)) = Df◦h(xn, x)→ 0

which contradicts Df (yn, y) > ε. The statement follows.

Given this proposition, Theorem 3.16 has the following immediate conse-

quence (systems fitting into the setting of the following statement can be found

in [DD02, Section 5]).

Corollary 3.20: If (X,G) is mean equicontinuous and an extension of (Y,G)

with the same MEF, then (X,G) is a topo-isomorphic extension of (Y,G).

Much of the previous work on mean equicontinuity is concerned with minimal

Z-actions. Therefore, we would like to close this section with a discussion of two

simple kinds of examples of well-known systems which are mean equicontinuous

but not minimal. The first example will be still transitive (in fact, as we will see,

all but one point have a dense orbit) and the second kind of examples will have

no dense orbits but will still be uniquely ergodic. For a non-uniquely ergodic

system, see Example 5.11.

Example 3.21: Consider the Cantor substitution

0 �→ 010 and 1 �→ 111.

For a general introduction to substitution systems, see for example [Ků03].

There are two infinite sequences in {0, 1}N which are invariant with respect to

the Cantor substitution: the constant sequence (111 . . .) and the sequence ω
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obtained by applying the substitution successively to the letter 0 and its im-

ages, i.e.,

0 �→ 010 �→ 010111010 �→ 010111010111111111010111010 �→ · · · .

Now, there is a standard method to obtain a two-sided subshift (Σω , σ)

from ω; see, for instance, [Ků03, Proposition 3.71]. That is, Σω is a closed

subset of {0, 1}Z (equipped with the product topology) which is invariant under

the action of the left shift σ : {0, 1}Z → {0, 1}Z. By making use of the concrete

structure of ω, it is not difficult to see that all points in Σω, except the constant

sequence (. . . 111 . . .), have a dense orbit and that the letter 0 occurs with zero

density in each sequence of Σω. The former implies that Σω is uncountable

and the latter that (Σω, σ) is uniquely ergodic, with the unique invariant mea-

sure the delta measure supported on (. . . 111 . . .). Thus (Σω, σ) is a non-trivial

topo-isomorphic extension of its trivial MEF and hence, mean equicontinuous.

Example 3.22: By a classical result of Denjoy [Den32], there exist examples

of C1 circle diffeomorphisms which have a rigid rotation (S1, Rα), with α ∈ R

irrational, as a factor but are not conjugate to it. Herman [Her79] showed later

that these examples can even be made C1+ε for any ε < 1. We will refer to

these kind of systems as Denjoy examples.

All Denjoy examples have a unique minimal set C ⊂ S1 and a unique in-

variant measure μ supported on C. We claim that any Denjoy system (S1, f)

is mean equicontinuous because of the following reason. Since the factor map

π : S1 → S1, extending (S1, Rα) to (S1, f), is monotone, we have that π−1(θ)

for θ ∈ S1 is either a singleton or an interval. This immediately implies that

the set of non-invertible points

{θ ∈ S1 : #π−1(θ) > 1}

is countable. Accordingly, we get that π is invertible on a full measure set with

respect to μ (since π(μ) is the Lebesgue measure on S1, the unique invariant

measure of Rα).

McSwiggen has shown that there are Denjoy homeomorphisms on higher-

dimensional tori that share the same properties just mentioned, in particular,

that the set of non-invertible points is countable. This means these systems are

mean equicontinuous, too. For examples on the two-torus, see [McS93] as well

as [NV94, NS96] for more information concerning these systems. For examples

defined on general k-tori, k ≥ 2, see [McS95].
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4. Mean equicontinuity via product systems

In Theorem 3.4 we have seen that any mean equicontinuous system is pointwise

uniquely ergodic. Here, we show that pointwise unique ergodicity of the product

system together with a continuity property is an equivalent characterization of

mean equicontinuity.

Proposition 4.1: If there is a left (or right) Følner sequence F = (Fn)n∈N

so that (X,G) is F -mean equicontinuous, then for each ϕ ∈ C(X), A(F , ϕ)(·)
and A(F , ϕ)(·) are continuous.

Proof. Similarly as in the proof of Proposition 3.8 (i)⇒(ii), we see that for each

ε > 0 there is δ > 0 such that

lim
n→∞

1

|Fn|

∫
Fn

|ϕ(tx) − ϕ(ty)|dm(t) < ε,

whenever d(x, y) < δ. This immediately gives the continuity of A(F , ϕ)

and A(F , ϕ).

In the following, if (X,G) is pointwise uniquely ergodic, then the map x �→ μx

from X into the space of all Borel probability measures on X (equipped with

the weak-*topology) is defined to send each x ∈ X to the unique G-invariant

measure μx supported on Gx. The next statement provides an extension of

[LTY15, Theorem 3.3].

Theorem 4.2: For a system (X,G) the following conditions are equivalent:

(i) (X,G) is mean equicontinuous.

(i) (X ×X,G) is pointwise uniquely ergodic and the map (x, y) �→ μ(x,y)

is continuous.

Proof. First, assume that (X,G) is mean equicontinuous. This easily implies

that the product system (X ×X,G) is also mean equicontinuous. According to

Theorem 3.4 (a), this in turn yields that (X × X,G) is pointwise uniquely

ergodic. Now, consider some left Følner sequence F . From the previous

proposition we have that for every ϕ ∈ C(X × X) the functions A(F , ϕ)(·)
and A(F , ϕ)(·) are continuous on X × X . Hence, using Theorem 2.2, for a

sequence of points (xn, yn) ∈ X ×X converging to (x, y) as n→∞ we have

lim
n→∞

∫
ϕdμ(xn,yn) = lim

n→∞A(F , ϕ)(xn, yn) = A(F , ϕ)(x, y) =

∫
ϕdμ(x,y).

Since ϕ ∈ C(X×X) was arbitrary, μ(xn,yn) converges weakly to μ(x,y) as n→∞
.
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Regarding the opposite direction, observe that Theorem 2.2 gives that for

each left Følner sequence F and all (x, y) ∈ X ×X , we have

DF (x, y) =

∫
d(z, w) dμ(x,y)(z, w).

Now, consider (xn, yn) ∈ X ×X , n ∈ N converging to (x, y) as n→∞. Then

lim
n→∞D(xn, yn) = lim

n→∞ sup{DF(xn, yn) : F is a left Følner sequence}

= lim
n→∞

∫
d(z, w) dμ(xn,yn)(z, w)

=

∫
d(z, w) dμ(x,y)(z, w) = D(x, y).

Thus, (X,G) is mean equicontinuous.

Let us conclude with a few comments on the natural question of why we

have to formulate the assumptions of Theorem 4.2 (ii) for the product system.

Obviously, a system is automatically pointwise uniquely ergodic if its product

system has this property (if additionally (x, y) �→ μ(x,y) is continuous, then

x �→ μx is continuous as well). However, the converse is not true. For example,

the product of a uniquely ergodic weakly mixing system with itself is ergodic

with respect to the product measure. Hence, there are points whose orbit is

dense in the full product and hence supports the product measure as well as

the diagonal measure.

Furthermore, the next example shows that pointwise unique ergodicity of the

product system (and hence, of the original system) and continuous dependence

of the map x �→ μx does not imply continuity of the map (x, y) �→ μ(x,y).

Example 4.3: Let C ⊆ S1 be a Cantor set which does not contain rationals1 and

consider the skew-product F : C × S1 → C × S1 : (x, θ) �→ (x, θ + x). Clearly,

the corresponding Z-action is pointwise uniquely ergodic (the unique invariant

measure supported on the orbit closure of (x, θ) is given by μ(x,θ) = δx ×mS1)

and the map (x, θ) �→ μ(x,θ) is continuous. Furthermore, the product system is

1 For example, one may take a sufficiently small cover U of the rationals (e.g., a cover U

with mS1 (U) < 1) and set C = Uc \ I where

I = {x ∈ Uc : there is ε > 0 such that Bε(x) ∩ Uc is at most countable}.
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topologically conjugate to

F̂ : C×C×S1×S1 → C×C×S1×S1 : (x1, x2, θ1, θ2) �→ (x1, x2, θ1+x1, θ2+x2)

and still pointwise uniquely ergodic. However, the map

(x1, x2, θ1, θ2) �→ μ(x1,x2,θ1,θ2)

cannot be continuous as this would imply mean equicontinuity (due to Theo-

rem 4.2) while the MEF of (C × S1, F ) coincides with the identity on C so that

the corresponding factor map is not a topo-isomorphy.

In fact, this can be seen explicitly: if x1, x2 ∈ C are rationally independent,

then μ(x1,x2,θ1,θ2) = δx1 × δx2 × mS2 (independently of θ1 and θ2). This is,

of course, true for a dense set of points in C × C × S1 × S1. However, given

any x0 ∈ C, we clearly have

μ(x0,x0,θ1,θ2) = δx0 × δx0 ×mθ1,θ2 ,

where mθ1,θ2 denotes the (one-dimensional) Lebesgue measure on the set

{(x + θ1, x + θ2) : x ∈ S1} ⊆ S2.

Obviously, (x1, x2, θ1, θ2) �→ μ(x1,x2,θ1,θ2) is not continuous in (x0, x0, θ1, θ2)

for θ1, θ2 ∈ S1.

5. Relating Besicovitch- and Weyl-mean equicontinuity

By its very definition, Weyl-mean equicontinuity is a stronger assumption than

Besicovitch-F -mean equicontinuity. Quite remarkably, it turns out that

Besicovitch-F -mean equicontinuity, i.e., control over one Følner sequence F ,

suffices to conclude Weyl-mean equicontinuity in many situations. A detailed

study is given in this section and the presented results yield a proof of Theo-

rem 1.3. By means of this result, we provide a non-trivial non-uniquely ergodic

mean equicontinuous systems at the end of this section.

In the following, we will also speak of F -mean equicontinuity with respect to

a right Følner sequence F , where the definition is completely analogous to the

definition using left Følner sequences given in (1).

Theorem 5.1: Let (X,G) be F -mean equicontinuous for some left Følner se-

quence F and let there be a G-invariant measure μ with supp(μ) = X . Then

(X,G) is mean equicontinuous.
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Remark 5.2: A comment on the assumption supp(μ) = X may be in order. As is

well known, every dynamical system (X,G) possesses a G-invariant measure μ

of maximal support, that is, a measure μ such that supp(μ) contains the

support of any other G-invariant measure. This support is clearly unique and

coincides with the closure of the union of all supports of ergodic measures.

While in general, supp(μ) may not fill the whole space X , we can, of course,

restrict attention to the maximal support and then apply the above theorem.

By the Poicaré Recurrence Theorem, one may think of this as restricting to the

recurrent dynamics of the system (X,G).

Recall that for minimal dynamical systems every invariant measure has full

support.

Corollary 5.3: If (X,G) is minimal, then F -mean equicontinuity for some

left Følner sequence F implies mean equicontinuity.

Next we will collect some further assertions needed for the proof of Theo-

rem 5.1. The following elementary lemma makes up for the (possible) lack of

separability of G. Recall that G is assumed to be σ-compact.

Lemma 5.4: Let (X,G) be a dynamical system. Then there exists a countable

subgroup T ≤ G such that Tx = Gx for every x ∈ X .

Proof. Since G is σ-compact, there exists an exhausting sequence (Kn)n∈N of

compact subsets of G. Given ε > 0, set Tn ⊆ Kn to be a finite subset such

that for each s ∈ Kn there is t ∈ Tn with supx∈X d(sx, tx) < ε. Note that Tn

is well defined due to the continuity of the defining action of (X,G) as well as

the compactness of Kn and X . Set

T ε :=
⋃
n∈N

Tn.

Then

T ′ :=
⋃
n∈N

T 1/n

is countable and verifies T ′x = Gx for every x ∈ X . Letting T be the group

generated by T ′ proves the statement.
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Proposition 5.5: Suppose (X,G) is F -mean equicontinuous with respect to

some left Følner sequence F . Then the support of each ergodic measure μ is

uniquely ergodic.

Proof. By possibly restricting to the support of μ, we may assume without loss

of generality that X = supp(μ). By possibly going over to a subsequence of F ,

we may further assume without loss of generality that there is a full measure

set Xμ of μ-generic points with respect to F (see Theorem 2.4).

From Proposition 4.1 we know that for each ϕ ∈ C(X) the maps A(F , ϕ)(·)
and A(F , ϕ)(·) are continuous. Hence, with T as in Lemma 5.4 and

x0 ∈
⋂
t∈T

tXμ

we have that

A(F , ϕ)(x) = A(F , ϕ)(x) = μ(ϕ),

for all x from the set Tx0 ⊆ Xμ. Note that Tx0 is dense because of Lemma 5.4

and the fact that μ-generic points are transitive. By the continuity of A(F , ϕ)(·)
and A(F , ϕ)(·), we get that A(F , ϕ)(x), in fact, exists and coincides with μ(ϕ)

for all x ∈ X . As ϕ ∈ C(X) was arbitrary, Theorem 2.2 yields the unique

ergodicity of (X,G).

Theorem 5.6: Suppose (X,G) is F -mean equicontinuous with respect to some

left Følner sequence F . Consider a point x ∈ supp(μ) where μ is an arbitrary

G-invariant measure. Then the orbit closure Gx is uniquely ergodic.

Proof. By Theorem 2.2, it suffices to show that A(F , ϕ)(·) exists and is constant

on Gx for each ϕ ∈ C
(
Gx

)
. In fact, by Tietze’s Extension Theorem, it is enough

to consider ϕ ∈ C(X). Observe that by Lemma 2.5 there is a sequence (xn)n∈N

in X with xn → x for n → ∞ such that each xn lies in the support of an

ergodic measure. By Proposition 4.1, the functions A(F , ϕ)(·) and A(F , ϕ)(·),
and hence A(F , ϕ)(g ·) and A(F , ϕ)(g ·), are continuous for every g ∈ G, so that

A(F , ϕ)(gx) = lim
n→∞A(F , ϕ)(gxn) = lim

n→∞A(F , ϕ)(gxn) = A(F , ϕ)(gx),

where we used the unique ergodicity on ergodic components (Proposition 5.5)

in the second equality. This proves equality of A(F , ϕ)(·) and A(F , ϕ)(·) on Gx.

Similarly, we see that A(F , ϕ)(·) and A(F , ϕ)(·) are constant on Gx. As both

functions are continuous, this shows that A(F , ϕ)(·) exists and is constant on Gx

for each ϕ ∈ C(X).
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Proof of Theorem 5.1. By Theorem 4.2, it suffices to show that (X ×X,G) is

pointwise uniquely ergodic and that the map (x, y) �→ μ(x,y) is continuous. To

that end, we first note that with (X,G) the product system (X ×X,G) is F -

mean equicontinuous as well. Moreover, by the assumptions, the measure μ×μ

has full support on X ×X which implies that (X ×X,G) is pointwise uniquely

ergodic, by Theorem 5.6.

It remains to show the continuity of the map (x, y) �→ μ(x,y). By pointwise

unique ergodicity and Theorem 2.2, we have for any ϕ ∈ C(X ×X) that

μ(x,y)(ϕ) = A(F , ϕ)(x, y).

Hence, the continuity follows from Proposition 4.1 applied to (X ×X,G).

In Theorem 5.1 we had to assume full support of the measure to deduce mean

equicontinuity from F -mean equicontinuity for some left Følner sequence F .

This is not needed if we know that a system is F -mean equicontinuous for a

right Følner sequence F . Details are discussed next.

Proposition 5.7: Let F = (Fn)n∈N be a right Følner sequence so that (X,G)

is F -mean equicontinuous. If (X,G) is transitive, then it has a unique G-

invariant measure μ and there is a subsequence F ′ = (F ′
n)n∈N of F such that

lim
n→∞

1

|F ′
n|

∫
F ′

n

ϕ(tx) dmr(t) = μ(ϕ) (x ∈ X),

for each ϕ ∈ C(X).

Proof. Given ϕ ∈ C(X), we know by Proposition 4.1 that the maps A(F , ϕ)(·)
and A(F , ϕ)(·) are continuous. Moreover, as F is a right Følner sequence,

A(F , ϕ) and A(F , ϕ) are invariant and hence, due to the transitivity of (X,G),

constant.

Now, by the Stone–Weierstrass Theorem, C(X) is separable so that there

exists a dense sequence of functions (ϕn)n∈N in C(X). Observe that there is

a subsequence F1 of F with A(F1, ϕ1) = A(F1, ϕ1). Recursively, we obtain a

subsequence Fn+1 of Fn with

A(Fn+1, ϕn+1) = A(Fn+1, ϕn+1)

for each n ∈ N. By setting F ′ = (Fn
n )n∈N, where Fn

n is the n-th entry

in Fn, we eventually have a right Følner sequence F ′ with respect to which
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A(F ′, ϕn) = A(F ′, ϕn) for all n ∈ N. As A(F , ϕ) and A(F , ϕ) depend continu-

ously on ϕ, we have

A(F ′, ϕ) = A(F ′, ϕ) = const,

for all ϕ∈C(X). By using Proposition 2.3, we obtain the desired statement.

Theorem 5.8: If (X,G) is F -mean equicontinuous for some right Følner se-

quence F , then (X,G) is mean equicontinuous.

Proof. Given the preceding result, the proof is almost literally the same as that

of Theorem 5.1.

Recall that a Følner sequence F is two-sided if it is a left and right Følner

sequence. If G is unimodular, there always exists a two-sided Følner sequence;

see [Eme74, Theorem 1”]. In particular (and trivially), if G is abelian, every

Følner sequence is two-sided. We immediately obtain the following corollaries.

Corollary 5.9: Suppose G is unimodular and let (X,G) be F -mean equicon-

tinuous for a two-sided Følner sequence F . Then (X,G) is mean equicontinuous.

Corollary 5.10: If G is abelian and (X,G) is F -mean equicontinuous for

some Følner sequence F , then (X,G) is mean equicontinuous.

Proof of Theorem 1.3. This theorem is now an immediate consequence of The-

orem 5.1 and Corollary 5.10.

Last, we would like to address the question of whether there are non-trivial

non-uniquely ergodic mean equicontinuous systems (that is, non-uniquely er-

godic mean equicontinuous systems which are neither finite unions of uniquely

ergodic systems nor products of such). The following example demonstrates

that such non-trivial neither minimal nor uniquely ergodic systems exist.

Example 5.11: Given a sequence x = (xk)k∈Z ∈ {0, 1}Z and p ∈ N, let us set

the p-periodic part of x to be

Per(x, p) := {k ∈ Z | xk = xk+np (n ∈ Z)}.

We put T to be the closure of

T ′ := {x ∈ {0, 1}Z | ∅ �= Per(x, 2n) � Per(x, 2n+1) (n ∈ N)}

in {0, 1}Z (equipped with the product topology). Observe that for every x ∈ T ′

and each n ∈ N, we have that there is exactly one k ∈ [0, 2n − 1] \ Per(x, 2n).
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Clearly, T is σ-invariant where σ : {0, 1}Z → {0, 1}Z denotes the left shift. We

show that (T , σ) is mean equicontinuous by proving that it is F -mean equicon-

tinuous for F = ([0, 2n − 1])n∈N; see Corollary 5.10. To that end, define Dn to

be the pseudometric given by

Dn(x, y) := 1/2n ·
2n−1∑
�=0

d(σ�(x), σ�(y)),

where we consider d to be the Cantor metric with

d(x, y) := 2−min{|k||k∈Z and xk �=yk}.

By definition,

lim sup
n→∞

Dn(x, y) = DF(x, y)

for x, y ∈ {0, 1}Z.

Now, given x1, x2 ∈ T ′ with d(x1, x2) ≤ 2−2n , observe that there are at most

two elements in [0, 2n − 1] \ (Per(x1, 2
n) ∩ Per(x2, 2

n)) so that

Dk(x1, x2) = 1/2k−n ·
2k−n−1∑
m=0

Dn(σm·2n(x1), σm·2n(x2))

≤ max
m=0,...,2k−n−1

Dn(σm·2n(x1), σm·2n(x2))

≤ 1/2n · 4 ·
∞∑
�=0

2−� = 2−n+3,

for all k ≥ n. Now, given y ∈ T , let (xn)n∈N be a sequence in T ′ with

d(xn, y) ≤ 2−2n . Observe that

Dn(xn, y) ≤ 1/2n ·
2n∑
�=1

2−� ≤ 2−n

as well as d(xn, xk) ≤ 2−2n for k ≥ n. Hence,

Dk(xn, y) ≤ Dk(xn, xk) + Dk(xk, y) ≤ 2−n+3 + 2−k for all k ≥ n

so that DF(xn, y) ≤ 2−n+3. This yields the F -mean equicontinuity of (T , σ).

Observe that T contains a dense set of points which are periodic with respect

to σ as well as a dense set of infinite (i.e., non-periodic) subshifts (in fact, regular

Toeplitz subshifts).
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6. Mean equicontinuity and discrete spectrum

In this section, we establish a relation between mean equicontinuity and dis-

crete spectrum, see also [GR17, HLT+21, YZZ19] for related discussions. A

dynamical system (X,G) together with an invariant measure μ is said to have

discrete spectrum if L2(X,μ) can be written as an orthogonal sum of finite-

dimensional, G-invariant subspaces Vα, where α runs through some index set;

see [Mac64] for further details. As before, we will denote by (T, G) the maximal

equicontinuous factor of (X,G) and by π : X → T a corresponding factor map.

We will need the following well-known fact which follows from the general

theory of Ellis semigroups of equicontinuous systems (see, for example, [Aus88,

pp. 52–53]): if (T′, G) is minimal and equicontinuous, then T′ is homeomorphic

to a homogeneous space, that is, there is a compact group E(T′) and a closed

subgroup F ≤ E(T′) (in general not normal) such that T′ is homeomorphic to

the set of left cosets E(T′)/F . If G is abelian, then E(T′) is abelian and T′ is

homeomorphic to E(T′).

Theorem 6.1: Suppose (X,G) is minimal. Then, the following assertions are

equivalent:

(i) The system (X,G) is mean equicontinuous.

(ii) (X,G) is uniquely ergodic and, if μ denotes the unique invariant prob-

ability measure, then L2(X,μ) can be written as an orthogonal sum of

finite dimensional, G-invariant subspaces Vα, consisting of continuous

functions (α runs through some index set I).

Proof. (i)⇒(ii): Several results of the previous sections imply that every mini-

mal mean equicontinuous system is uniquely ergodic. Let us hence denote by μ

the unique G-invariant measure on X . Now, observe that if L2(T, π(μ)) can be

decomposed as an orthogonal sum of finite-dimensional G-invariant subspaces

consisting of continuous functions, then this holds true for L2(X,μ) as well.

This follows from the unitarity of Uμ (defined as in (2); see also Theorem 3.7

and Proposition 2.1) and the fact that Uμ maps continuous functions to contin-

uous functions (due to the continuity of π).

Therefore, it suffices to find a corresponding decomposition of L2(T, π(μ)).

If T is homeomorphic to the compact group E(T) from above, this decom-

position is provided by the classical Peter–Weyl Theorem. In case that T is

homeomorphic to a homogeneous space, the decomposition is obtained by a

standard extension of the Peter–Weyl Theorem to homogeneous spaces.
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(ii)⇒(i): For each α ∈ I we define the pseudometric dα on X via

dα(x, y) := sup{|f(x)− f(y)| | f ∈ Vα, ‖f‖∞ = 1}.

As Vα is finite-dimensional and consists of continuous functions, each dα is

continuous. As Vα is G-invariant, each dα is G-invariant. Further, observe that

the separability of L2(X,μ) implies that I is countable. Thus, we may consider

the pseudometric

D′ =
∑
α

cα · dα,

where (cα)α∈I is some summable sequence of positive numbers.

We can hence introduce an invariant and closed equivalence relation on X by

x ∼ y :⇐⇒ dα(x, y) = 0 for all α ∈ I (⇐⇒ D′(x, y) = 0).

Then

Y := X/∼

is a compact space which we may consider equipped with the metric D′ in the

obvious way. Further, (Y,G) (where the action of G on Y is defined in the canon-

ical way) is an isometric and hence equicontinuous factor, as D′ is G-invariant.

Let h : X → Y be the factor map and note that V : L2(Y, h(μ))→ L2(X,μ)

with

V f = f ◦ h

is unitary (as we only identify points which can not be distinguished by elements

of the Vα). Now, the application of Theorem 3.7 yields (i).

Remark 6.2:

(a) The assumption of minimality of (X,G) can be slightly weakened to

unique ergodicity or transitivity, where the latter implies the former

due to Theorem 3.4. In fact, for (ii)⇒(i) we did not need the min-

imality of (X,G). For (i)⇒(ii) note that (T, G) is still minimal (see

Proposition 3.3).

(b) The Peter–Weyl Theorem used in the proof of (i)⇒(ii) actually gives one

more feature of the finite-dimensional subspaces appearing in (ii). They

can be assumed to be irreducible. Here, a G-invariant subspace V of

L2(X,μ) is called irreducible if it can not be written as an orthogonal

sum of two non-trivial G-invariant subspaces.



Vol. TBD, 2022 MEAN EQUICONTINUOUS GROUP ACTIONS 39

In the case of abelian G, we obtain a somewhat stronger statement. As this

is of interest in various contexts, we include a discussion.

Corollary 6.3: Let G be abelian. Suppose (X,G) is minimal. Then, the

following assertions are equivalent:

(i) The system (X,G) is mean equicontinuous.

(ii) The system (X,G) is uniquely ergodic and, if μ denotes the unique

invariant probability measure, then L2(X,μ) has an orthonormal basis

of continuous eigenfunctions.

Proof. Clearly, condition (ii) of the present corollary is stronger than condi-

tion (ii) of the previous theorem. Thus, it suffices to show (i)⇒(ii). This can be

seen as in the proof of the previous theorem after noting that T is homeomor-

phic to the compact group E(T). With this in mind, statement (ii) is a direct

consequence of the duality theory for compact abelian groups. Alternatively,

one may also argue that the irreducible subspaces appearing in Theorem 6.1(ii)

must be one-dimensional in the abelian case.

Remark 6.4: The last three decades have seen tremendous interest in the field of

aperiodic order, also known as mathematical quasicrystals (see [BG13, KLS15]

for extensive discussions). The common way to model aperiodic order is via

dynamical systems over the group Rn. In typical examples, these systems will

be uniquely ergodic and minimal. In any case, such a system comes with a

diffraction measure. As mentioned in the introduction, a key effort is to show

that the diffraction measure is a pure point measure. This in turn has been

proven to be equivalent to discrete spectrum of the underlying dynamical sys-

tem. Hence, discrete spectrum is at the core of aperiodic order. In the further

analysis of the diffraction measure, continuity of the eigenfunctions turns out

to play a role. Indeed, it is exactly under this condition that a convincing pos-

itive answer to the so-called Bombieri–Tayler Conjecture can be given [Len09]

(see [Rob99] for related earlier results as well.) Given this situation, the class of

minimal uniquely ergodic systems with discrete spectrum and continuous eigen-

functions (which is characterized in the preceding corollary) presents itself as a

very natural candidate for models of aperiodic order.
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7. Non-abelian examples and conclusions

7.1. Isometric subgroups of topological full groups. In this section,

we provide means to construct new examples of (in particular, non-abelian)

mean equicontinuous group actions by using suitable subgroups of the topolog-

ical full group of known mean equicontinuous systems. Recall that the topo-

logical full group [[(Z,G)]] of a dynamical system (Z,G) is the group of all

homeomorphisms on Z which locally coincide with an element of G equipped

with the uniform topology. For simplicity, let us restrict to systems where Z

is a Cantor space. In this case, a homeomorphism s : Z → Z is an element

of [[(Z,G)]] if and only if for every z0 ∈ Z there is a clopen neighborhood U

of z0 and an element g ∈ G such that sz = gz for all z ∈ U .

We make use of the following structural result. Recall that a group G acts

freely on Z if gz = z for some z ∈ Z and g ∈ G implies that g is the identity.

Theorem 7.1 ([CM16, Corollary 4.9]): Suppose Z is a Cantor space and G

is countable. Further, assume G acts minimally, equicontinuously and freely

on Z. Then the topological full group [[(Z,G)]] is amenable if and only if G is

amenable.

Suppose we are in the situation of the previous statement, in particular, G

acts equicontinuously on (Z, d). Without loss of generality we may assume

that G acts isometrically with respect to d (see Section 1.1). We define the

isometric subgroup [[(Z,G)]]I ≤ [[(Z,G)]] to be that subgroup which com-

prises all elements of [[(Z,G)]] that act isometrically on Z with respect to d.

Clearly, [[(Z,G)]]I is a closed subgroup of [[(Z,G)]] and hence amenable due to

Theorem 7.1.

Now, if (X,G) is an extension of (Z,G) via the factor map h : X → Z with Z

a Cantor space, then [[(Z,G)]]I acts naturally on X : given s ∈ [[(Z,G)]]I with a

(finite) clopen partition {Zi} of Z and elements {gi} ⊆ G such that s|Zi = gi|Zi ,

then let sx = gix whenever x ∈ h−1(Zi). Furthermore, we immediately see

that h still is a factor map from (X, [[(Z,G)]]I) to (Z, [[(Z,G)]]I).

Theorem 7.2: Suppose (X,G) is mean equicontinuous and uniquely ergodic

with a maximal equicontinuous factor (T, G) where T is a Cantor space. If G

is countable and acts freely on T, then we have that (X, [[(T, G)]]I) is mean

equicontinuous with MEF (T, [[(T, G)]]I ).
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Proof. Since (X,G) is uniquely ergodic, Proposition 3.3 yields that (T, G) is

minimal. Hence, (T, G) verifies the assumptions of Theorem 7.1. Clearly, ev-

ery [[(T, G)]]I -invariant measure on X (on T) necessarily is also a G-invariant

measure on X (on T). Therefore, (X, [[(T, G)]]I) is a topo-isomorphic extension

of the equicontinuous system (T, [[(T, G)]]I ). By Theorem 3.7, the statement

follows.

Last, we present a straightforward instructive application of Theorem 7.2.

Let us point out that all the considerations in the following example directly

generalize to higher-dimensional odometers and associated regular Toeplitz con-

figurations; see [Cor06].

Example 7.3: We assume that the reader is familiar with the theory of odo-

meters/adding machines; see, for instance, [Ků03, Dow05] for further informa-

tion. We consider the dyadic odometer (2N,Z). That is, 2N is the compact

group obtained as the inverse limit

2N := lim←−
�∈N

Z/2�Z,

and n∈Z acts on θ∈2N by

θ �→ θ + n,

where we consider n as an element of 2N.

Now, the isometric subgroup [[(2N,Z)]]I contains, among others, the element s

given by

sθ = s(θ0, θ1, . . .) :=

⎧⎨
⎩θ if θ0 = 0,

θ + 2 if θ0 = 1.

Obviously,

s(θ + 1) �= 1 + sθ.

Hence, [[(2N,Z)]]I is a non-abelian amenable group which acts mean equicontinu-

ously (according to Theorem 7.2) on, in particular, the shift orbit closure of any

regular Toeplitz sequence whose MEF is given by (2N,Z) (for concrete exam-

ples, see also [Ků03, Dow05]). Obviously, these orbit closures are Cantor spaces

as well. To obtain examples where the domain is not totally disconnected, we

can consider Auslander systems, see [HJ97], which also have odometers as their

MEF and are mean equicontinuous.
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7.2. Irregular extensions. Suppose (X,G) is an extension of (Y,G) via the

factor map h : X → Y . We say (X,G) is a regular extension of (Y,G) if for

every G-invariant measure μ on X we have that

h(μ)({y ∈ h(X) : #h−1(y) > 1}) = 0;

otherwise we say (X,G) is an irregular extension. Given y ∈ Y , we refer

to h−1(y) as its fiber.

Note that a regular extension is automatically a topo-isomorphic extension

(see also [GJY21] for a recent and in-depth discussion of the relation between

regularity and mean equicontinuity of Z+-actions). Examples of regular ex-

tensions of equicontinuous systems are Sturmian subshifts, regular Toeplitz

subshifts and the Denjoy systems described in Example 3.22. There are also

irregular topo-isomorphic extensions of equicontinuous systems. The Cantor

substitution subshift in Example 3.21 is a transitive irregular extension of the

trivial system. Minimal examples can be found in [DK15, DG16, FGJO18],

where [DK15, Example 5.1] and the example in [FGJO18, Section 5.4] have

almost surely (with respect to the unique invariant measure of their MEFs)

countable fibers but still a residual set of points whose fibers are singletons.

In contrast, in the examples constructed in [DG16, Section 3], every fiber is

uncountable. Indeed, in this subsection, we will show that almost every fiber of

an irregular extension must be at least countable. For the convenience of the

reader, we provide a proof of the next statement.

Lemma 7.4: Let (X,G) be an extension of (Y,G) via the factor map h : X → Y

and let μ be an ergodic G-invariant measure on Y . Suppose h−1(y) is finite for

μ-almost every y ∈ Y . Then there is n0 ∈ N such that μ-almost everywhere we

have #h−1 = n0.

Proof. Observe that h gives rise to an upper semi-continuous and hence Borel

measurable map γ from Y to the space of compact subsets of X (endowed with

the Hausdorff metric), defined by γ(y) = π−1(y) for each y ∈ Y . By Lusin’s

Theorem, there is a compact set K ′ ⊆ Y with μ(K ′) > 0 such that γ|K′ is

continuous. Set

Y ′ := {y ∈ Y : #h−1(y) <∞}.
By the assumptions, μ(Y ′) = 1. Since μ is an inner regular measure, we may

assume w.l.o.g. that K ′ ⊆ Y ′. Let K ⊆ K ′ be the support of the measure μ|K′ .

Clearly, μ(K) > 0.
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Pick some y0 ∈ K and set n0 := #h−1(y0). By continuity of γ on K, there

is δ > 0 such that for all y ∈ Bδ(y0) ∩K we have

d(γ(y), γ(y0)) <
1

2
· min
x1 �=x2∈h−1(y0)

d(x1, x2)

and hence #h−1(y) ≥ n0. Since G acts on X by homeomorphisms, we actually

have #h−1(y) ≥ n0 for each y in the invariant set

A =
⋃
g∈G

g (Bδ(y0) ∩K).

By definition of K, μ(Bδ(y0) ∩K) > 0 so that A is of full measure, since μ is

ergodic.

Set

N (K) := {n ∈ N : there is y ∈ K such that #h−1(y) = n}.

If we can show that N (K) is bounded, the above proves the statement. As-

sume for a contradiction that N (K) is unbounded. The above shows: for all

n ∈ N (K), we have μ({y ∈ Y : #h−1(y) ≥ n}) = 1 or, in other words,

μ({y ∈ Y : #h−1(y) < n}) = 0.

Hence, μ(Y ′) = μ(
⋃

n∈N (K){y ∈ Y : #h−1(y) < n}) = 0 which is an obvious

contradiction.

Theorem 7.5: Let (X,G) be an irregular extension of (Y,G) via the factor

map h : X → Y , that is,

h(μ)({y ∈ h(X) : #h−1(y) > 1}) > 0

for some G-invariant measure μ on X . If h(μ)-almost all fibers of h are finite,

then h is not a topo-isomorphy.

Proof. We may assume without loss of generality that μ is ergodic, because

of Lemma 2.5. For a contradiction, assume that (X,G) is a topo-isomorphic

extension of (Y,G) via h.

By definition of topo-isomorphy, there is a Borel measurable map γ : Y → X

such that for all g ∈ G we have γ(gy) = gγ(y) for h(μ)-almost all y and∫
ϕdμ =

∫
ϕ ◦ γ dh(μ)
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for every ϕ ∈ C(X). By Lemma 7.4, we further have that h(μ)-almost all fibers

are of equal cardinality n0 > 1. By the Riesz Representation Theorem, we can

define a probability measure ν on X by

ϕ �−→
∫
Y

1

n0 − 1
·
∑

x∈h−1(y)
x �=γ(y)

ϕ(x) dh(μ)(y) (ϕ ∈ C(X)).

Observe that ν is G-invariant and ν �= μ. Moreover, h(ν) = h(μ) and this

implies ν is ergodic since h is assumed to be a topo-isomorphy. However, this

yields a contradiction, according to Proposition 3.1.

We immediately obtain the next two statements, using Corollary 3.20 for the

second one.

Corollary 7.6: Assume (X,G) has a unique G-invariant measure μ and is

an irregular topo-isomorphic extension of a system (Y,G) via a factor map

h : X → Y . Then for h(μ)-almost every y ∈ Y we have that h−1(y) is infinite.

Corollary 7.7: Suppose that (X,G) is an irregular extension of (Y,G) via

the factor map h : X → Y and suppose the MEF of (X,G) and (Y,G) coincide.

If the fibers of h are finite, then (X,G) can not be mean equicontinuous.

An example fitting into the setting of the second corollary is the Thue–Morse

subshift which is a 2-1 extension of a regular Toeplitz subshift with the same

maximal equicontinuous factor (see, for instance, [BG13] for more information).

In particular, we get that the Thue–Morse system is not mean equicontinuous.

7.3. Maximally almost periodic groups. In this last section we show that

if a group G acts minimally, mean equicontinuously and effectively on a compact

metric space (X, d), then it is necessarily maximally almost periodic.

Recall that G acts effectively on X if for each g ∈ G which is different from

the neutral element e ∈ G, there is x ∈ X with gx �= x. Recall further that

a topological group G is maximally almost periodic (MAP) if G admits a

continuous and injective homomorphism into a compact Hausdorff group; see,

for instance, [vN34]. Note that a locally compact MAP group is necessarily

unimodular [LR68]. We will make use of the following characterization of max-

imal almost periodicity [Hua79]: a topological group G is MAP if and only if G

admits an equicontinuous and effective action on a compact Hausdorff space.
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Theorem 7.8: Let (X,G) be a dynamical system and denote by (T, G) its

maximal equicontinuous factor. If (X,G) is mean equicontinuous, allows for an

invariant measure of full support and G acts effectively on X , then G also acts

effectively on T. In particular, this implies that G is maximal almost periodic

and unimodular.

Proof. As before, we denote by π a factor map from X to T. Let μ be an

invariant measure with full support. Since π is a topo-isomorphy, there are

subsets M ⊆ X and N ⊆ T of full μ- and π(μ)-measure, respectively, such that

the restriction of π to M is a bijection from M onto π(M) = N .

Now, assume there is g ∈ G with gy = y for all y ∈ T. Observe that such g

has to verify gx = x for μ-almost all x ∈M , since π restricted to M is injective

and since –by the invariance of μ– almost every point of M is mapped into M

under the action of g. As μ is of full support, every full-measure set is dense

in X . Thus, the continuity of g implies gx = x for all x ∈ X . As G acts

effectively on X , this gives g = e.

Recall that for a minimal dynamical system all measures have full support.

Corollary 7.9: If G acts minimally, mean equicontinuously and effectively

on X , then G is maximal almost periodic and unimodular.

We would like to close with a partial answer to the following question [GM18b,

Question 18.60]: which discrete countable groups G have effective tame mini-

mal actions? Here, the term tame refers to a certain low dynamical complexity

of a dynamical system (see, e.g., [Gla18]). Now, according to [Gla18, Corol-

lary 5.4 (2)], if (X,G) is tame and G amenable, then (X,G) is a topo-isomorphic

extension of its MEF and hence mean equicontinuous, due to Theorem 3.7 (for

Z-actions, see also [Gla18, Corollary 5.10]). Thus, from Theorem 7.8 we obtain

that among the amenable, discrete countable groups exactly the maximally

almost periodic ones allow for an effective tame minimal action.
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