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ABSTRACT
Reconnection involving magnetic separators is known to lead to
the spontaneous generation of new separator pairs. In this work,
we explore the bifurcation process for a system composed of a pair
of null points with a joining separator. We begin with a simplified
analytical model to derive the basic principles of bifurcation in this
system and then considermodels withmore general separator curve
geometry and generic localised null structure. We demonstrate that
the maximum pairwise linking (net-winding) of the separator and
the local fan plane always approaches a multiple of 0.25 just before
bifurcation. Additionally, we show the integrated twisting along the
separator (the field strength normalised parallel current) can be used
to determine when this limit will definitely lead to bifurcation. We
present step-by-stepalgorithms toassesshowclose such systemsare
to bifurcation.
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1. Introduction

Magnetic reconnection, the process whereby magnetic field lines change their connec-
tivity within regions of intense electric current, is a fundamental plasma process that
underpins many astrophysical phenomena (Priest and Forbes 2000). Although a great
deal of effort has been dedicated to understanding reconnection in two dimensions (2D)
(e.g.Zweibel and Yamada 2009), in many scenarios, the three-dimensional (3D) nature
of reconnection cannot be ignored and in fact in 3D reconnection is fundamentally
different from 2D, occurring continuously throughout the volume of a current sheet
(Hesse and Schindler 1988, Hornig and Priest 2003, Wyper and Hesse 2015). The key
to understanding reconnection in three dimensions is understanding the 3D topological
features of a magnetic field where current sheets naturally form; 3D null points, sepa-
rators and Quasi-Separatrix Layers (e.g. Aulanier et al. 2005, Parnell et al. 2008, Priest
and Pontin 2009), and how they evolve in response to reconnection within these current
layers.

In this work, we focus on the problem of separator reconnection. Magnetic separators
are field lines that connect two three-dimensional magnetic null points, lying at the inter-
section of each null’s separatrix surface or “fan plane” (Priest and Titov 1996). Separators
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are known to be preferential sites of current sheet formation and magnetic reconnec-
tion in astrophysical plasmas (e.g. Parnell et al. 2008). In the magnetosphere, separator
reconnection plays an important role in dayside reconnection (Glocer et al. 2016). While
in the solar corona interchange reconnection at separators may be an important source
of the slow solar wind (e.g.Aslanyan et al. 2021) and could also be important in trigger-
ing certain coronal mass ejections (Wyper et al. 2021). Separator reconnection is also
known to play a prominent role in many flux emergence experiments, occurring at the
interface of emerging and pre-existing magnetic field (Parnell et al. 2010, MacTaggart and
Haynes 2014).

Simulation and analytical studies have revealed that beyond some threshold apparently
related to the current along a given separator, new pairs of separators can form via a bifur-
cation process (Haynes et al. 2007). As part of the process new flux domains are also
formed bounded by the fan planes of each null and the new separators (Wilmot-Smith and
Hornig 2011). These new flux domains can have important consequences. During day-
side reconnection at the magnetopause these new flux domains in involved in flux transfer
events, creating a direct pathway for particles in the solar wind to stream along field lines
towards the Earth (Dorelli and Bhattacharjee 2009). In the context of interchange recon-
nection and the slow wind the formation of these new flux domains provides a direct route
for closed field plasma to flow out along open field lines, feeding and modulating the slow
solar wind (Pontin and Wyper 2015). Being able to predict the threshold at which the ini-
tial (and subsequent) bifurcations occur would, therefore, be beneficial in understanding
these dynamic events.

The 3D null points that separator field lines connect also undergo a similar bifurcation
process, with nulls forming or annihilating in pairs. Being point structures nulls can be
well characterised by the their local behaviour. In Parnell et al. (1996) the linear structure
of 3D nulls was fully characterised via the eigenvalues and eigenvectors of the Jacbobian
matrix of the magnetic field vector around the null point. The null bifurcation process
is inherently nonlinear at the point of bifurcation (Priest et al. 1996), however their lin-
ear behaviour can still capture the behaviour on either side of the transition (e.g. Wyper
and Pontin 2014, figure 3). Separators are, however, non-local structures and although
previous studies have considered (via the Jacobian) the linear behaviour of the in-plane
components normal to the separator, showing a transition from hyperbolic to elliptical
local structure along the separator (Parnell et al. 2010), no generic condition for bifur-
cation has been constructed. Nevertheless, the fact that separator pairs are known to
form and annihilate along the curve of a pre-existing separator suggests this behaviour
can be captured and quantified by linearising the magnetic field about this curve while
still keeping the nonlinear behaviour of the field along the separator. This approach pre-
serves the non-local nature of the field and is the approach we take initially in this work.
In what follows we apply this methodology to the analytical model of separator bifurca-
tion presented by Wilmot-Smith and Hornig (2011), before exploring more general field
examples. Our analysis shows that the separator bifurcation process is related to a fixed
increase in field line linking in the vicinity of the separator. Based on this we introduce
two complimentary measures for assessing how close to bifurcation a given pre-existing
separator is.
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2. The baselinemodel

Asimplifiedmodel for a null-separatormagnetic structureBn introduced inWilmot-Smith
and Hornig (2011) can be represented in a Cartesian coordinate system as

Bn = b0
L2

[x(z − 3z0)x̂ + y(z + 3z0)ŷ + (z20 − z2 + x2 + y2)ẑ], (1)

where b0 and L2 a give the characteristic strength and length scaling of the field, respec-
tively. The null points of this field, B = 0, are at x = y = 0, z = ±z0. The separator is the
field line following the curve x = y = 0, z ∈ (−z0, z0), which joins these null points. The
field Bn is divergence-free, but it has current (a non-vanishing curl) away from the nulls
and separator lines. The null Jacobians are (up to a factor b0/L2)⎛

⎝−4z0 0 0
0 2z0 0
0 0 2z0

⎞
⎠ and

⎛
⎝−2z0 0 0

0 4z0 0
0 0 −2z0

⎞
⎠ .

So (up to a scaling factor) the local field structure of these nulls is

B−z0
0 = −2xx̂ + yŷ + (z − z0)ẑ and Bz0

0 = −xx̂ + 2yŷ − (z − z0)ẑ.

As shown in figure 1(a), this means the spine field lines point inwards towards the null at
−z0. Field lines traced forward fromapoint just in front of this null, z = −z0 + δ then trace
towards the other null at z = z0, with their z coordinate tending monotonically towards
the plane z = z0. The spine field lines of the null at z = z0 are directed away from the null
towards s+ = (0,∞, z0) and s− = (0,−∞, z0). Any field lines traced forward from just in-
front of the z = −z0 null, with a negative y coordinate, will, as its z coordinate increases,
tend towards s−, this is indicated by the Red field lines in figure 1(a). Those for which y>0
will tend towards s+ and are shown in blue in figure 1(a).While those with y = 0 form part
of the fan plane of the null at z = z0. This directed topology, splitting towards s+ and s−
will be crucial in the development of additional separator structures, which arise as we add
current to the model in what follows.

2.1. Twist induced reconnection

To model the reconnective process (Wilmot-Smith and Hornig 2011) added an additional
twisting field Bt centred at z = 0 and given by the expression

Bt = 2b1
m

(−yx̂ + xŷ) exp
(

− (x2 + y2)
m2 − z2

l2

)
. (2)

The parameter b1 controls the maximum twist rate of the field,m controls the decay of the
twisting radially away from the separatrix line (this was labelled a in Wilmot-Smith and
Hornig 2011) and l determines the localisation of the twisting along the separatrix line. The
parameters l andm are typically to be chosen so that the twisting is localised in-between the
two null points, resistive simulations of the evolution of such structures indicate this often
occurs (Stevenson et al. 2015). As discussed in Wilmot-Smith and Hornig (2011), one can
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Figure 1. Illustrations of the field line structure of the standard null-separator structure used to derive
the basic result. Panel (a) shows field lines of the field Bn. The purple field lines indicate the spine/fan
plane structure of the two null points at ±z0. The spine lines are shown to tend in towards the null at
z = −z0. Field lines in the fan plane just in front of null tend towards the null point at z = z0. At the
z = z0 null the spine tends towards two limits s+ and s−. The blue field lines start at z = −z0 + δ, just
in front of the null with a positive y coordinate, the red field lines have a negative y coordinate. They tend
respectively to the spline limits s+ and s−. In panel (b) we see example field lines of Bn + Bt with the
additional twisted field core centred at z = 0. The positive chirality of the twisting is indicated. These
field lines have the same start points as those shown in (a). The effect of the twisted at the core is shown
to reconnect blue lines to s+ and red lines to s−, as indicated. (Colour online)

think of the evolution of the field as b1 is increased as being a kinematic time-dependent
reconnective evolution with b1 parameterising time.

An indication of the effect of this twisting on the field line topology of the sum Bn + Bt
due to a non-zero b1 is given in figure 1(b). The twist at the centre of the separator means
that there is an alteration of the connectivity of the fan planes of the two nulls. After twist-
ing, a subset of field lines traced forward from near the null at −z0, with a negative y
coordinate, develop a positive y coordinate value at some z < z0, due to being twisted
around the separator, and end up being directed to s+. That is, they have reconnected
across the fan plane of the null at z = z0. The example shown in the figure has a posi-
tive twisting chirality b1 > 0, if a negative twist is applied (b1 < 0) then the same altering
of connectivity will occur, i.e. negative y initial points to s+ and vice versa. But, by contrast,
the blue (positive initial y) field lines would approach s− with positive x coordinate rather
than a negative one (which is the case for the positive twisting figure).

2.1.1. Using polar coordinates to quantify the reconnection.
This reconnection occurs for any positive b1 but for certain critical values, we will see it
leads to separator bifurcation and a distinct topological change. To understand the bifurca-
tion process, we introduce a cylindrical coordinate system (r, θ , z), centred on the separator
at r = 0 and with θ = arctan(y/x) meaning the branch cut in θ is at x = 0.

Thus θ < π corresponds to y>0 and, for b1 = 0 (no twist) all field lines with start
points such that 0 < θ0 < π and z > −z0 tend towards s+ and all field lines with start
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points such thatπ < θ0 < 2π (and z > −z0) tend to s−. The field lines whose initial angles
are θ0 = 0 and θ0 = π tend to the null at z0 as they lie in the fan plane of the z0 null point
(figure 1(a)). As b1 is increased the twisting induces a map

θ(z) → θ(z) + φ(r, b1, z).

The function φ(r, b1, z) represents the rotation of the field line around the separator line.
It is zero for b1 = 0 and increases monotonically with b1. The r dependence is due to the
fact that the twisting decays with radius from the initial separator. We can characterise the
function φ more precisely as follows. The field line equation for field lines in between the
two nulls is

dr
dz

= B
Bz

.

If we write x = r cos θ and y = r sin θ and insert this into B0 + Bt (see (1) and (2)), then
the component parts of these equations become

dθ
dz

= Bθ

rBz
= (3b0/L2)z0 sin(2θ) + (2b1/m) exp(−r2/a2 − z2/l2)

(b0/L2)(z20 − z2 + r2)
, (3)

dr
dz

= Br
Bz

= r(z − 3z0 cos(2θ))

z20 − z2 + r2
.

If b1 = 0 we obtain the form of the functions (r(z), θ(z)) from some initial condition z =
−z0 + δ by solving these equations (numerically in this case). The function φ results from
solving the same equations with b1 �= 0 and comparing to the b1 = 0 case, but it is not
simple to characterise as this is a coupled nonlinear system.

2.1.2. Rotation about the initial separator
Some insight into this system can be obtained by considering the rotation about the sepa-
rator when r = ε � 1. In this case we can expand (3) in r, about r = 0, to find that the θ

equation decouples from r at leading order

dθ
dz

= 3z0 sin(2θ) + (2b1/m) exp(−z2/l2)
z20 − z2

. (4)

This will be the crucial equation in what follows. Consider first the case for which b1 =
0. We label the initial condition zi = −z0 + δ, where δ > 0. If θ(zi) = 0,π/2,π or 3π/2,
this equation has a fixed point representing the field lines in the fan plane of the −z0 null
(θ(zi) = π/2, 3π/2), which also correspond the to the angle of the spine curves of the z0
null. If θ(zi) = 0,π then the field line is in the fan plane of the z0 null (and aligned with
spine direction of the−z0 null). Various plots in figure 2(a) illustrate the general behaviour
of the system. If θ(zi) ∈ (0,π/2) then sin(2θ) is positive and θ will increase with z. Then,
since the denominator tends to zero as z → z0, the rate of increase blows up so that θ will
tend to the stable fixed point θ = π/2. A similar argument for θ(zi) ∈ (3π/2, 2π) has θ(z)
tending to 3π/2 as z → z0, so θ = 0 is an unstable fixed point. By a similar argument, we
see θ = π is an unstable fixed point with all θ(zi) ∈ (π/2,π) tending towards π/2 (a stable
fixed point) and all θ(zi) ∈ (π , 3π/2) tending to the fixed point θ = 3π/2. This behaviour
is seen in figure 1(a) where the field lines either tend to s+ (θ = π/2) or s− (θ = 3π/2).
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Figure 2. Example solutions of the linearised angle function (5) with z0 = −4.999 + 0.4. Except where
otherwise stated the parameters are b0 = 1, m = 0.5, l = 1, L = 1, z0 = 5 (the same as used in
Wilmot-Smith and Hornig 2011). Panel (a), the case with no twist (b1 = 0). Initial conditions are θ(zi) =
±0.001,π ± 0.001, either side of the unstable equilibria θ = 0,π . They tend towards the stable equi-
libira π/2 and 3π/2, respectively. Panel (b), solutions with increased twisting with the initial condi-
tion π/2 (the fan plane of the −z0 null), respectively, b1 = 3, 7, 13, 20, as the twist is increased the
solutions pass from tending to the π/2 to 3π/2 and then 5π/2. Panel (c) a plot of �θ for increas-
ing b1 from an initial condition θ(zi) = π/2. Panel (d) the same plot as in (c) with z0 = 2.5. (Colour
online)

On increasing b1 we pass through various critical values where the θ(zi) = π/2 field
lines in the fan plane of the −z0 null will tend towards 3π/2 and then 5π/2, as illustrated
in figure 1(b). The dual equilibrium stability is what leads to this topological change in this
model. If we consider the points initially in the −z0 fan plane θ(zi) = π/2, and plot the
net change in angle �θ = θ(z0) − π/2 as a function b1, we obtain a discontinuous struc-
ture that jumps after the parameter b1 passes critical values as shown in figure 1(c), these
values depend on the various system parameters (cf. figure 1(c,d)). We shall see later that
this jump coincides with the separator bifurcation detailed in (Wilmot-Smith and Hornig
2011).

The solutions shown in figure 2(a,b) use δ = 0.4 for the initial conditions θ(zi) with
zi = −z0 + δ, whilst the bifurcation plots use δ = 0.00001, so that (essentially) the whole
domain is accounted for. The choice of δ = 0.4 was for visual convenience. When δ =
0.00001 is used the (z20 − z2) term in the equation’s denominator ensures all solutions
almost immediately tend towards θ = π/2, 3π/2.
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Figure 3. Plots of the map of the two fan planes from−z0 + δ to z = 0 (red) and z = z0 − δ to z = 0
(blue), for parameters b0 = 1,m = 0.5, l = 1, L = 1, z0 = 5 for b1 = 4, 8.796, 15, 25. Slices of the vector
field Bn + Bt are shown for comparison to the figures in Wilmot-Smith and Hornig (2011). In panel (b)
b1 = 8.796 the two fanplane intersections are locally parallel at the separator x = y = 0. In panel (c) the
separator bifurcation has occurred (note the two new intersections of the curves). In panel (d) a second
bifurcation has occurred so there are now 5 separators. (Colour online)

2.2. Fan planemaps, separator bifurcation and linking changes.

As discussed in Wilmot-Smith and Hornig (2011), there is a bifurcation in the system as
b1 is increased, which becomes apparent when the two fan plane surfaces are mapped to
z = 0 (from −z0 and z0), respectively. In such plots, the intersection of the two fan planes
shows the position of the separators, this is illustrated in figure 3, the projection of the
vector field Bn + Bt is also superimposed. The exponential twist decay with radius from
the separator causes the fan plane intersection curves to adopt sigmoidal shapes as b1 is
increased (panel (a)). We see at b1 = 8.796, panel (b), this distortion causes the curves to
be locally parallel in the neighbourhood of the origin. As b1 is increased past this point,
the separator bifurcation occurs as the curve’s sigmoidal shape further develops leading to
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Figure 4. Plots of the map of the two fan planes from−z0 + δ to z = 0 (red) and z = z0 − δ to z = 0
(blue), for parameters b0 = 1, m = 0.5, l = 1, L = 1, z0 = 2.5 for b1 = 2, 3.5, 5, 6. We see the first
separator bifurcation between (a) and (b) then the second between (c) and (d). (Colour online)

two further intersections. By b1 = 25 there has been one further bifurcation and there are
now 5 separators. These plots recreate results found in Wilmot-Smith and Hornig (2011)
where the parameter b1 was modelled as 20t, with t = 0.41 (b1 = 8.2) given as when the
first bifurcation occurred. Hereafter we omit the vector fields for clarity when we construct
similar plots.

In fact we canmake amore accurate estimate here as we note that b1 = 8.796 is the value
in figure 2(c) where the linearised system, a relatively simple uncoupled O.D.E registers a
jump in the angle θ(z0) when θ(zi) = π/2, which as we have seen means field lines from
the fan plane of the−z0 null close to the original separator reconnect from tending towards
s+ to s−. The plot in figure 2(d) suggests that if we keep the same parameters but halve the
value of z0, we should see similar bifurcations between b1 = 2 and 3.4, at b1 = 3.064 and
then 5 and 6, at b1 = 5.46. This is confirmed in figure 4 and corresponds to a twist region
spread over a relatively longer distance along the length of the separator.
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The critical point from this analysis, which we will use to generalise, is that, because the
twisting peaks at the separator, the linear approximation predicts the bifurcation.

2.2.1. Field line linking
A means of characterising the change in field topology, which has been noted in previous
studies (e.g. Pontin and Wyper 2015) but not quantified as such, is the observation from
the linear θ equation (5) that the separator bifurcation coincides with the reconnection
and change in linking of the local fan plane curves. One can see this in figure 5. For a field
with parameters b0 = 1, m = 0.5, l = 1, L = 1, z0 = 5, we have seen the first bifurcation
occurs at b1 ≈ 8.796, in figure 5we see plots of θ(z)with θ(zi) = π/2 and θ(zi) = 3π/2 for
b1 = 8.7, before the bifurcation and b1 = 8.9 after it. We see the difference θ(z0) − θ(zi)
jumps from being zero in (a) to being π in (b). This also implies a jump in rotation in π of
the two field lines, as illustrated in figure 5(c). The secondary bifurcation, which occurs for
b1 = 19.116, can be seen to induce an additional π winding of these field lines so that now
they complete one full rotation with respect to each other. This winding is a well-known
topological quantity L (Berger and Prior 2006), which in this case would be defined as

L = �θ

2π
+ n. (5)

Where n is a full integer number of turns of the fan plane around the separator. It is a
topological invariant in that it is unchanged if the field lines deformwithout crossing while
keeping their ends fixed. The sub-domains created by the intersection of the fan plane
maps shown in figures 3 and 4 can then be seen to represent regions where the field lines
intersecting the z = 0 surface which have distinct winding values with the separator. In
effect, the system reconnects to develop a field with regions of inter-wound topology (as
shown in Figure 5). The quantityLwould be well defined even if the separator curve has a
general geometry and this observation that the separator bifurcation coincides with jumps
in L for subsets of the field will be utilised to deal with more general separator structures
in sections 3 and 4.

2.3. Twisting as a predictor of the bifurcation

2.3.1. Twist
The linking L is related to a second quantity, the twistTw (Berger and Prior 2006). This will
be crucial in deriving practical bifurcation criteria in what follows, so we briefly sidetrack
to define it clearly. The general definition applies to a ribbon structure. Consider a field line
x and a unit vector field V which lies in the normal plane of x, that is to say it is normal
to the unit tangent curve of the axis: Tx = dx/ds. We can then define a second field line y
through

y(s) = x(s) + εV(s),

with ε the width of separation. The pair (x, y) form the ribbon structure. In solar physics,
it could represent a flux rope localised on the curve x. The twist represents the rotation of
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Figure 5. Depictions of the jump in net winding which accompanies the separator bifurcation process.
Panel (a) shows solutions to (5) with θ(zi) = π/2, 3π/2 (points in the fan plane) with b1 = 8.7, panel
(b) for b1 = 8.9. We see the change in angle for each solution jump from 0 toπ . Panel (c) compares field
lines for b1 = 8 (opaque) and b1 = 9 solid) which begin in the fan plane of the−z0 null. The change in
mutual angle is clear. Panel (d) compares field lines for b1 = 8 (opaque) and b1 = 20 solid) which begin
in the fan plane of the −z0 null. Here two of the bifurcations have occurred and now the end angles of
the two curve sets are the same, but there is a clear twist in the core of the field for the b1 = 20 curves.
(Colour online)

the field V (the number of times which y rotates around x)

Tw(x,V) = 1
2π

∫
x
Tx(s) · V(s) × dV(s)

ds
ds. (6)

In the case that the field line x is our separator T = (0, 0, 1) and the vector V given by
(cos(θ(z)), sin(θ(z)), 0) and one can see that

Tw = 1
2π

∫ z0

−z0

dθ
dz

dz = L.
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2.3.2. Mean twist
A second crucial quantity related to the twisting is the mean axial Tw twisting of a field
line x

Tw(x) = 1
2π

∫
x

B · ∇ × B
B · B ds, (7)

where the curve is x. This is the non-dimensionalised parallel current, for force free fields
∇ × B = αB it is the parameter α and it is regularly calculated to characterise the devel-
oping topology of coronal force-free magnetic field extrapolations (e.g. Liu et al. 2016, Zhu
and Wiegelmann 2019, Yang et al. 2020).

The similar notation to (6) indicates that (7) is, under certain circumstances, the average
of (6) for all field lines forming the local flux surface surrounding the curve (Berger and
Prior 2006, Liu et al. 2016). In particular, in the appendix of Liu et al. (2016), it is shown
that the local asymmetric linear structure of the field determines the mean twist and the
symmetric part the deviation of individual field line twist from the mean. We will see this
clearly in our example. A critical caveat to this is that the effective comparison between the
two quantities requires that the local field lines y remain in the neighbourhood of x. This
is generally a reasonable assumption for the fields considered in this study, except in the
direct neighbourhood of the null where field lines diverge rapidly. For the case at hand this
will not be a problem as there is no twist in the vicinity of the null, but it will become an
issue in a later more general model.

2.4. Application to the case at hand

Using B = Bc + Bt and setting x to be the separator it can be checked that the mean twist
is determined by Bt

Tw(x) = 1
2π

∫
γ

Bt · ∇ × Bt

Bt · Bt
ds = 1

2π
(2b1/m) exp(−z2/l2)

z20 − z2
. (8)

However the field line twisting/linking L around separator is

L = Tw(γ ) = 1
2π

∫ z0

−z0

dθ
dz

dz = 1
2π

∫ z0

−z0

Bθ (γ (z))
rBZ

dz,

where the γ (z) dependence of Bθ reflects the fact it depends on the θ value of the local
field line wrapping around the separator. As discussed above this includes the nonlinear
effect of the sin(2θ) term. In this model, we can solve (4) for a given initial condition θ(zi),
with each θ0 = θ(zi) ∈ [0, 2π) representing a field line, i.e. Tw(γ ) ≡ Tw(θ0). As one can
see in figure 2(a), if b1 = 0, then most field lines have a net twisting as they tend towards
eitherπ/2 or 3π/2, due to the symmetric component ofBc. But the symmetry of the system
means there is as much positive as negative twisting and one can see that

∫ 2π

0
Tw(θ0) dθ0 = Tw(γ ) = 0, if b1 = 0,

as the general theory predicts.
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Figure 6. Comparisons of the variation in mean twisting Tw. and the linking L of the fan plane curves
with the separator, Parameters used are b0 = 1, m = 0.5, L = 1, z0 = 5 and l = √

2 (a), l = 1 (b), l =
1/

√
2 (c) and l = 1/

√
4 (d). (Colour online)

2.5. Predictive criteria

2.5.1. Mean twist Tw
If the mean twist Tw (8) could provide a good approximate prediction of the bifurcation
it would be beneficial. In figure 6 we see the comparison of this quantity, evaluated as a
function of b1, overlaid on the critical value of L = Tw for the field line beginning at the
−z0 fan plane (θ0 = π/2), We vary the relative spatial extent of the twist distribution by
using b0 = 1,m = 0.5, L = 1, z0 = 5 and various values of the parameter l which controls
the exponential decay of Bt about z = 0. For l = √

2 the twist is significant for most the
domain, while at the other end with l = 1/

√
4 is only significant on ≈ z ∈ [−1.7, 1.7]. We

see the estimate is very good when the twist is spread out on the whole domain, but less
so when the twist is highly localised. Even in the case of l = 1/

√
4 it is consistently true

that when Tw reaches a multiple of 0.5 then L will have that value. Therefore, Tw could
potentially provide a threshold for bifurcation but is generally an underestimate.

To further test the strength of Tw and Tw as predictors, in figure 7(a), we see various
solutions to the equation

dθ
dz

= 3z0 sin(2θ) + (2b1/m)(sin(3πz) + 1
2 ) exp(−z2/l2)

z20 − z2
, (9)

which includes a sinusoidal variation in the current along the separator’s length. We see
this sinusoidmanifest in the variation in angle. In panel (b) we see the plot of the change in
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Figure 7. Plots the fan plane twisting bifurcation (local to the separator) of a sinusoidally varying cur-
rent. Panel (a), solutions to (9) for b0 = 1, m = 0.5, L = 1, z0 = 5 for various b1 values. Panel (b),
comparisons of the variation in mean twisting Tw and the linking L of the fan plane curves with the
separator in this sinusoidally varying twist model. (Colour online)

linking with b1 (�L) from the initial value (zero here). Also shown is the increase in mean
twist with b1, we see a similar quality of prediction to the purely exponential case (Panel
(b) of figure 6 has the same parameters).

2.5.2. Themaximum linkageLM

We observe that the first bifurcation occurs when the angle θ , initially π/2, reaches, π

(figure 5(b)). After this the sin(2θ) term of (2) will ensure the angle tends to 3π/2. As
shown in figure 5(a), if it just fails to reach π , the sin(2θ) eventually sends it back to π/2.
If we define the linking as a function of the integration domain z ∈ (−z0, z]:

L(z) = 1
2π

∫ z

−z0

dθ
dz

dz, (10)

then the angle change π/2 to π represents a linkingL(z) of 0.25 for some z ∈ [−z0, z0], So
the critical criteria is that the maximum value ofL(z) reaches a multiple of 0.25,We define
this quantity LM as:

LM = max
z∈[−z0,z0]

L(z),

where L(z) is given by (10).
We see in figure 8 that LM has exactly the predictive properties we require as LM tends

continuously to a multiple of 0.25 just before bifurcation, for each bifurcation. Thus one
could have predicted how close the systemwas to bifurcation in advance, One caveat to this
observation is that it is possible for a current model which reverses sign to obtain a value
ofLM above 0.25 then, if the twisting caused by this current is reversed, the angle θ , drops
back below π before reaching z = z0 and the null structure at z = z0 will then ensure it
tends to π/2, so the bifurcation does not occur. An explicit example of this is a linearised
system in the form

dθ
dz

= 3z0 sin(2θ) − (2b1z/(ml2)) exp(−z2/l2) cos((z + 5)/8)
z20 − z2

, (11)

whose axial twist reverses sign around z = 0, but which reaches a higher peak rate when
z<0 owing to the cos function. This imbalance means it eventually bifurcates for a high
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Figure 8. Demonstrations that the maximum achieved linking Lm can be used as a bifurcation criteria.
Panel (a) a comparison ofLM andL for l = 1/

√
2, the case shown in figure 6(d). Panel (b), the same plot

for the sinusoidally varying twist whose bifurcation staircase is shown in figure 7. (Colour online)

enough b1 value but the maximum linking Lm increases much more quickly, as shown in
figure 9(a). In fact this model highlights a second interesting possibility, which we might
call temporary or intermittent bifurcation. At about b1 ≈ 62, we see in figure 9(a) that there
is a bifurcation which then persists until b1 ≈ 69 when the bifurcation is reversed. Then
at b1 ≈ 78 a more permanent bifurcation occurs. We see in figure 9(b) example solutions
indicating what causes the intermittent bifurcation. All solutions (for various b1) show the
expected rise then decay of θ due to twist reversal. As b1 is increased, the peak value of θ

increases as expected. Comparing the solutions during the intermittent bifurcation b1 =
63 and just after it b1 = 72, we see that the sharper decay phase for z>0 in the b1 = 72
solution pushes it back below π where it does not for b1 = 63. This occurs because the
sin(2θ) function, which is negative when nπ/2 < θ < (n + 1)π/2, n = 1, 3, 5 . . ., tends to
boost the decay of θ when θ takes values in these ranges. In the b1 = 72 case themaximum
decay rate (just after z = 0) is reached when sin(2θ) is negative (approx θ = 11.5), so it is
boosted at its peak rate of decay. This is by contrast to the b1 = 63 case, which peaks at a
valuewhen sin(2θ) is positive (approx θ = 10.5) so that itsmaximumdecay rate is reduced.
Eventually a sufficient b1 value ensures themaximal peak of θ is too large to overcome, thus
causing the permanent bifurcation.

We should stress this is a contrived example to demonstrate a mathematical property of
separator bifurcation rather than one wemight expect to see in reality. Developing amixed
bifurcation diagnostic in this case, however, should yield a robust bifurcation prediction
criterion.

We can additionally incorporate the information in the mean twisting Tw. We see in
figure 9(c) that when LM works as a bifurcation prediction criteria for monotonic twist-
ing/current, the twist is always greater than LM prior to bifurcation. For the twist/current
reversal model, the mean twist Tw captures the rotational reversal. In figure 9(d) we see
plots ofL,Lm mod 0.25 and Tw for the reversal model (11). The quantityLm mod 0.25
reaches numerous peaks where Tw is significantly below its value, indicating they are false
predictive signals.We see the intermittent bifurcation is not found whenLm is 0.25, but we
note the twist value gets very close to 0.25 at its onset. By contrast, the permanent bifur-
cation is reached when Lm reaches a multiple of 0.25, which is also the first bifurcation
where the mean twist is above 0.25. After this, there are a number of points at which Lm

reaches a multiple of 0.25 but which do not indicate a bifurcation. Again the value of Tw
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Figure 9. Using Lm and Tw to predict permanent bifurcations. Panel (a) plots pf L and Lm for the
sign reversal twist system (11). L shows a temporary bifurcation at b1 ≈ 62, then a more permanent
bifurcation at b1 ≈ 79 Panel (b) example solutions for θ(s) to 11) for various b1 before (b1 = 20) during
(b1 = 63) and after (b1 = 72) the intermittent bifurcation, and after the permanent bifurcation b1 = 89.
The dashed horizontal lines are π/2 and 3π/2, the solid one θ = π . Panel (c) a comparison of Tw and
Lm for the case shown in figure 8(b), we see Tw is consistently aboveLm at bifurcation. Panel (d) a com-
parison ofL,Lm mod 0.25 and Tw for the same solutions as panel (a). We, see, as discussed in the text,
Tw give an indication of when the bifurcation is likely to be permanent. (Colour online)

is providing a corrective here. The next bifurcation would require Tw just above 0.75 and
this has not been attained for any of the peaks in the quantity Lm mod 0.25.

So we conclude this section by proposing that the following procedure can be used
to infer if a separator is close to bifurcation in our model, when an increasing current is
developed along the separator (increasing in terms of its extremal value):

• Calculate LM . If LM mod 0.25 is close to 0.25, then we consider the separator might
be close to bifurcation.

• If further Tw > n − 1 + 0.25 when LM mod 0.25 is close to 0.25, for the nth poten-
tial bifurcation, then we conclude that the separator is indeed close to a permanent
bifurcation.

• If Tw gets close to n−1+ 0.25, but LM mod 0.25 is not too close to 0.25, we consider
that any separator bifurcation located might be intermittent or temporary.

We also note that if the axial currentB · ∇ × B is of one sign (chirality), then calculating
LM alone should be sufficient.
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Figure 10. An example of the general null structure Bg (12b), with b0 = L = 1 and a = 0.5, b = 1.2,
c = 3. (Colour online)

3. Amore general separator model

To test these criteria further, we now consider the following generalised null-separator
model introduced in (Stevenson et al. 2015) which is described by three scalar parameters
a, b, c

Bg = Bgxx̂ + Bgyŷ + Bgz ẑ, (12a)

Bgx = b0
L2

[−4axz0 + by(z + z0) + cx(z + z0)], (12b)

Bgy = b0
L2

[y(2a − c)(z + z0) + 2ayz0 + bx(z + z0)], (12c)

Bgz = b0
L2

y2
[(

a − 1
2
c
)

+ a(2z0(z + z0) − (z + z0)2) + bxy + 1
2
cx2

]
. (12d)

The expression here is scaled from that given in Stevenson et al. (2015), from [0, L] to
[−z0, z0], and corrects a typo on the first term of Bgx in that text. Varying the parameters a
and cmodifies the geometry of the field lines in the separatrix surfaces of both nulls. There
are some conditions on their values (see Stevenson et al. 2015). Varying the parameter b
rotates the z0 null’s separatrix surface relative to the lower null’s separatrix surface. The case
considered in the previous section corresponds to the parameter set a = c = 1, b = 0. So
that the default, b = 0, has the fan plane of one null aligned with the spine of the other null.
Altering b then breaks this alignment, as shown in figure 10, which, as we shall see shortly,
imparts a built in rotation to the system into the field lines in the local neighbourhood of
the separator even in the absence of a localised twist region.
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The cylindrical version of the field Bg + Bt is

dθ
dz

= 2{F + 2b1[L2/(at)] exp(−r2/(at) − z2/l2)}
b0{r2[(c − a) cos(2θ) + b sin(2θ)] + a(r2 − 2z2 + 2z20)}

, (13a)

dr
dz

= 2r{cos(2θ)[c(z + z0) − a(z + 4z0)] + az + b sin(2θ)(z + z0)}
r2[(c − a) cos(2θ) + b sin(2θ)] + a(r2 − 2z2 + 2z20)

, (13b)

where

F = b0{sin(2θ)[a(z + 4z0) − c(z + z0)] + b cos(2θ)(z + z0)}.

As with the previous case, the equation obtained by expanding in r around the separator
(r = 0) leads to a de-coupled angle equation

dθ
dz

= F + 2b1[L2/(at)] exp(−z2/l2)
ab0(z20 − z2)

. (14)

3.1. A built in rotation

As in the previous section, we first consider the twist-free case b1 = 0. As with (4) the
denominator tends to zero at the null points±z0, but, unlike that case there is an explicit z
dependence in the numerator. This z dependence arises from the fact that the fan plane of
the−z0 null no longer aligns with the spine direction of the z0 null. This leads to a rotation
of the field lines connecting the (local) fan plane of the z0 null to the spine directions s− (or
s+), as can be observed in figure 10. This angle can be characterised as follows. At z = −z0
the numerator is

a3b0z0 sin(2θ).

So the spine directions of the −z0 null are represented by θ = 0,π and the fan plane
π/2, 3π/2 as in the initial case. For general z>0 the four zeros of the numerator (when
taken mod 2π) are

1
2 arctan(A/B) + nπ/2, (n = 0, 1, 2, 3), (15a)

where

A = c(z + z0) − a(z + 4z0), B = −b(z + z0). (15b)

The development of these zeros for z ∈ [−z0, z0] are shown in figure 11(a) as dashed lines.
Also shown in this same figure are solutions to (14) beginning at θ = 0, π/2,π , 3π/2.
The field lines starting at 0, π/2 tend towards 1

2 arctanA(z0)/B(z0) + π/2, i.e. the field
lines tend to s+, and those starting at 3π/2,π and 3π/2 tend to 1

2 arctan(A(z0)/B(z0)) +
3π/2 (tending to s−). This leads to a natural inbuilt rotation, or linking L0(z) =
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Figure 11. Solutions of (14). Panel (a) solutions as a function of z for b0 = 1, m = 0.5, l = 1, L = 1,
z0 = 5, a = 0.5, b = 1.2, c = 2 and initial conditions beginning at the fan planes and spine direction
of the −z0 null. The dashed lines are the angles (15a) which are the zero values of the numerator (14).
Panel (b) the value of�θ for increasing b1 for the same parameters as in (a). (Colour online)

1
2π

−1 arctan(A(z)/B(z)). Thus it is the quantity

�L = L(z0) − L0(z0),

which must be tracked to locate bifurcations. We also modify the critical linking to take
the following value

LM = max
z∈[−z0,z0]

L(z) − L0(z).

As one would expect, there is a similar bifurcation structure to the system as studied in
the previous section. That is to say there is a series of jumps in end angle of π for increas-
ing applied twist b1, or jumps in L − L0 of 1

2 , as shown in figure 11(b). We confirm in
figure 12(a–d) that the jumps shown in figure 11(b) correspond to the same bifurcation
structure as in the previous section, that is the maps of the null fan surfaces at z0 pass
through several configurations where they are locally tangential at the initial separator,
thus generating regions of distinct topological linkage at the field’s interior.

Finally, as shown in figure 13 that the combination of Tw andLM can be used to predict
when the system is close to bifurcation as in last section (when L0(z) = 0 for all z).

4. General separator geometry

The winding L can be defined for pairs of curves with arbitrary geometry (Berger and
Prior 2006), so we can extend the bifurcation criteria to cases for which the separator is
not a straight line. To do so we first define a field with a separator which is curved. We use
an offset twist

Bto = 2b1
m

exp
(

− (x − x0)2 + (y − y0)2

m2 − z2

l2

)
[−yx̂ + xŷ], (16)

with (x0, y0) the location of the twisting core, away from the separator. The action of
this twist is to distort the initially straight (b1 = 0) separator. Then we consider the field
Bn + Bto with Bn given by (1). As b1 is increased the two fan planes distort and their inter-
section takes on a distorted geometry (figure 14(a)). Here we use the parameters b0 = 1,



GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 339

Figure 12. Separator bifurcations for the systemdefined by equations (13a) for b0 = 1,m = 0.5, l = 1,
L = 1, z0 = 5, a = 0.5, b = 1.2, c = 2. The parameters used to generate these plots as the same used
to generate the L plot shown in figure 11(b). The twist parameters for each panel are (a) b1 = 0, (b)
b1 = 4.06, (c) b1 = 9.08 and (d) b1 = 14.31. (Colour online)

Figure 13. Comparisons of the quantity �θ for b1 for solutions to 14 and the mean twist Tw. Panel
(a), parameters b0 = 1, m = 0.5, l = 1, L = 1, z0 = 5, a = 0.5, b = 1.2, c = 2. Panel (b), parameters
b0 = 1,m = 0.5, l = 0.5, L = 1, z0 = 5, a = 0.5, b = 1.2, c = 2. (Colour online)
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Figure 14. Properties of the distorted separator model. Panel (a) is the fan plane maps to z = 0 of the
initial field Bn + Bto. The separator’s distortion is clear by its off-axis location. Panel (b), the local axial
“current”B · ∇ × B for the field. Panel (c) the plot in (b) shownwith a smaller range to emphasise there
is a non-zero separator current in the neighbourhood of the second null at z0. (Colour online)

m = 0.5, l = 1, L = 1, z0 = 5, x0 = 0, y0 = 0.2 and b1 = 7 to create the fan plane inter-
section geometry shown in figure 14(a). This separator curve will be labelled as x(s) =
(xs(z), ys(z), z) and the applied current centred on this field line will take the following
form:

Bs = t exp(−10((x − xs)2 + (y − ys)2) − 1
2z

2)[−(y − ys)x̂ + (x − xs)ŷ], (17)

where the parameter t will control the strength of the applied current. In this case, for
variation, we apply a negative current, t<0. The field then takes the form Bn + Bs + Bto.
It should be pointed out this is not aimed atmodelling a specific phenomenon and is simply
derived to demonstrate the flexibility of the bifurcation criteria developed here. There are
a couple of reasons for this choice of field in particular. First, it is not a purely axial current
unlike the previous cases. The magnitude of the field Bs peaks along the separator curve
xs, but its axial component B · dxs/ds varies along the length of the separator, as shown
in figure 14(b). This, along with the separator geometry ensures there is a non-constant
current along the separator, including in the locality of the z0 null (figure 14(c)), a more
general scenario than previously considered. Second, since we do not have an analytical
form of the curve xs, we have to use standard field line tracing techniques to calculate the
quantity L. This is by contrast to the cases above where we had clear nonlinear o.d.e for
the linear behaviour of the angle θ , which would not in general be available.

The procedure for identifying separator bifurcations is as follows:

• Identify the separator field line xs bymapping out the two fan surfaces (we used bisection
to identify the start coordinates of the separator (xs0, ys0, z0)).

• Using an initial condition (xs0, ys0, z0) + δ with δ a small vector which points along the
fan plane of the chosen “launch null” (here we use |δ| = 1 × 10−8). Using this initial
condition trace out a second curve xsδ(t) which represents the local behaviour of the
fan plane map in the neighbourhood xs (this will change as t varies).

• Calculate the winding L(xs, xsδ(t)) of the two curves, this estimates the behaviour of
the function θ(s). The precise formula calculating L in the general case was derived in
Berger and Prior (2006) and is described in the appendix.
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Figure 15. Bifurcation figures for the field Bn + Bs + Bt . Panel (a), the bifurcation staircase diagram as
a function of the twisting parameter t of (17). Panel (b), the first bifurcation at t = −41.7604. Panel (b),
the second bifurcation at t = −67.599. Panel (c), the third bifurcation at t = −95.974. (Colour online)

• Repeat this procedure for steadily increased t (or increasing magnitude of the applied
current in the system modelled). When jumps of magnitude 0.5 in L are obtained one
has identified a bifurcation.

We see the results of this procedure in figure 15(a). The initial bifurcation requires a
larger change in value than the subsequent bifurcations as the local twisting structure is
significantly irregular. The increase (inmagnitude) of the parameter t allows twisting along
the axis of the curve to become dominant. After the first bifurcation, the bifurcations occur
at regular intervals with a gradual decrease in the parameter t. The first three bifurcations
are pictured in panels (b)–(d).

We applied this method of bifurcation analysis to all the previous fields and found
it recreated all the bifurcation staircase diagrams precisely. The aim now is to see
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Figure 16. A comparison of Linking/separator bifurcation plots for (21) and plots of Tw on the reduced
domain, given by (23) with C = 1, 10. (Colour online)

generalisations of the bifurcation prediction quantities Tw and Lm can be used to predict
how close the system is to separator bifurcation.

4.1. Extending the predictive criteria

4.1.1. Extension ofLm

The definition of Lm given in the previous section

LM = max
z∈[−z0,z0]

L(z) − L0(z),

needs only minor modifications. We can define subsections of the field lines xs and xsδ(t)
on [0, l] ⊂ [0, L], where L is the arclength of the field line xs.We label these subsets as xls and
xlsδ(t). One could use z rather than l if the field lines are monotonic in z, but an arclength
parameterisation l allows for more general curves. We define

L(l) = L(xls, x
l
sδ(t)), L0(l) = L(xls, x

l
sδ(0)), (18)

and

LM = max
l∈[0,L]

L(l) − L0(l). (19)

Note that the definition of LM is parameterisation independent, arclength parameterisa-
tion is simply a convenient one. We see in figure 17(a) this measure works almost exactly
as it did in the previous sections, rising to multiples of 0.25 continuously just before bifur-
cation. For the first bifurcation, LM = 0.25, the rise to 0.25 is relatively sharp, indicating
that the precise notion of “close” to bifurcation should not only take into account the value
of LM , but its rate of increase.

4.1.2. Mean twist Tw and avoiding its divergence
The idea is to calculate the quantity

Tw(xs).
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Figure 17. Applications of the predictive separator bifurcation criteria for the generalmodelBn + Bs +
Bto, Panel (a), the generalLMmeasure, defined by (18) and (19). Panel (b), the value of Tw for this system.
At the nth bifurcation the value of Tw is in the range (0.25 + 0.5(n − 1), 0.25 + 0.5n), as indicated by
the horizontal lines in panel (b). (Colour online)

But in this casewe need to be careful with the definition ofTw, more specifically the domain
of integration used to calculate it. A simple example shows why. In the simpler straight
separator model a current-carrying component of the field in the form

Btc = J(−yx̂ + xŷ) + b0
L2

(z20 − z2 + x2 + y2)ẑ, (20)

leads to a divergent mean twisting rate when evaluated on the separator, in the neighbour-
hood of the null’s,

Tw(xs) =
∫ z0

−z0

B · ∇ × B
B · B dz =

∫ z0

−z0

J
z20 − z2

dz,

and the integral itself is ill defined. This was not a problem in our exponentially decaying
twisting models (at least at machine precision), but, as discussed above, the general sepa-
rator geometry model we consider in this section has a non-zero current at the edge of the
separator. We also would like to be able to deal with a model where there is a current in the
form (20) and the prescription we detail here works in both cases.

This divergence in Tw is due to the rapid divergence of all neighbouring field lines
from the null point. In the limit we approach the null the rate of this divergence becomes
unbounded and, when there is current in the neighbourhood of the null, it leads to the
observed divergence of Tw. So we should be slightly wary of using the notation Tw to
describe this quantity. It is only the mean twisting when the local field lines at one point
on the separator remain within a local neighbourhood of the a separator, so that they can
twist around the separator (a detailed investigation as to when it represents the twisting
accurately in nonlinear force free extrapolations can be found in Liu et al. 2016).

We propose the following non-dimensionalised quantity to estimate when localised
twisting is dominant

L
B · ∇ × B

B · B
∣∣∣∣
x=xs

,

where L here is the arclength of the separator. As indicated, this is the fractional rate of
twisting on the separator. If wemake the reasonable assumption that the current is bounded
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and not excessively large, then this will only diverge when tending towards a nullB · B = 0
with a non zero current B · ∇ × B, exactly where the interpretation of this quantity as
measuring twisting becomes invalid. Thus to measure twisting, we would want only to
calculate the integral defining Tw(xs) when

L
B · ∇ × B

B · B
∣∣∣∣
x=xs

< C (21)

for some constant C. This is relatively straightforward to calculate, so the aim is to make
a sensible choice of C. For example, in figure 16 we see comparisons of Lm and Tw(xs)
calculated with cut-offs C = 1, 10 for the model

dθ
dz

= 3z0 sin(2θ) + 0.5 + (2b1/m) exp(−z2/l2)
z20 − z2

. (22)

The value C = 10 is the length of the separator L = 10 and the first just for comparison,
there is a small reduction in twisting with the more strict constraint, but in both cases,
the twisting gives the necessary bifurcation information, in that it is between 0.25n and
0.25n+ 0.5 for each bifurcation.

In figure 17(b), we see a comparison of Tw to the bifurcations in the general system
Bn + Bs + Bto under consideration in this section. We use the length of the separa-
tor for the value of the constant C to determine the integration domain of Tw. We see
that, for early bifurcations the Tw value is somewhat more of an overestimation than
in previous cases, but that, for each bifurcation number n, its value is between 0.25 +
0.5(n − 1) and 0.25+ 0.5n, so retains its predictive capability when used in conjunction
with Lm.

5. Discussion

We have investigated criteria for current-induced separator bifurcation in a variety of sys-
tems, which are composed of a pair of null points and a separator curve that represents
the fan plane intersection of the two separatrix surfaces. We have found the following
accurate criterion to predict when these separators are close to bifurcating to form new
separators.

5.1. The bifurcation predictorLm

First the quantity Lm the maximum linking of the local fan plane and the separator mea-
sured by comparison to its initial state. We showed that, if the quantity B · ∇ × B is
monotonic (or largely so) then Lm grows to a value of 0.25 when taken mod 0.25 then
the separator is close to bifurcation and bifurcates when it reaches 0.25. The value of 0.25
is crucial as it means a field line emanating from the fan plane of the first null has rotated
through a net angle nπ + π/2 around the separator (relative to the separator rotation in the
initial state). Every time this occurs, the separator crosses the fan plane of the second null
point, thus altering the direction along the spine which the field line tends when it reaches
the second null’s local neighbourhood. To calculate the quantity, one takes the following
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steps, which assume there is some initial state and then a sequence of states where the
current at the null point is varied/increased:

• Identify the null points and the associated fan planes using standard methods
(e.g.Haynes and Parnell 2007).

• Identify the separator field line xs by mapping out the two fan surfaces, using bisection
or a similar method to identify the start coordinates of the separator (xs0, ys0, z0).

• Using an initial condition (xs0, ys0, z0) + δ with δ a small vector which points along the
fan plane, adjacent to the separator (here we use |δ| = 1 × 10−8). Using this initial con-
dition trace out a second field line xsδ which represents the local behaviour of the fan
plane map in the neighbourhood xs.

• Split the field line curves xs and xsδ into n points of even arclength spacing, which we
label xjs and xjsδ . Then calculate L({xjs}ij=1, {xjsδ}ij=1), that is to say calculate the linking
for all subsets of the full curves xs and xsδ .

• Calculate the maximum difference of these linking values from their values calculated
on the initial field of the sequence. This maximum is Lm.

A visual depiction and description of this calculation is given in figure 18 to complement
the above description. We alert the reader to the fact code to calculate L(x, y) for any pair
of curves (x, y) is available in c++ at https://www.maths.dur.ac.uk/users/christopher.prior/
code.html. A Mathematica version is also available on request.

We also highlight the fact that the choice of the initial point of field line xsδ is critical.
In particular, it must satisfy the following two properties:

• The absolute value of δ needs to be small enough to genuinely capture the local
behaviour of the separator, we would recommend the value suggested above.

• The second is that it should be on the fan surface of the initial null, or as close as pos-
sible. The reason for this is that if not, the null structure will almost immediately rotate
the field line to lie along the fan plane (in the basic model (4) for example the term
sin(2θ)/(z20 − z2) does this when z is close to z0). Thus there will be an in-built rotation
which is not to do with the fan plane curves changing connectivity.

5.2. Mean twist and reversing currents

For situations where the current along the separator shows significant reversal, that is it
has period of opposing sign of similar magnitudes, we can use the mean axial current

Tw(x) = 1
2π

∫
γ

B · ∇ × B
B · B ds,

to predict when the (close to) bifurcation warnings given by the quantity Lm are correct.
This quantity is related to the parallel current and in resistive MHD the parallel electric
field. The integral of the latter is a measure of the reconnection rate of magnetic flux along
the separator and is a commonly calculated quantity in studies of these structures. Typically
Tw overestimates the total linkage (hence above 0.25) but also accounts for the current
reversal where Lm does not, hence its use as an additional guide. The idea is that one only
considers a bifurcation signal valid when:

https://www.maths.dur.ac.uk/users/christopher.prior/code.html
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Figure 18. A visual depiction of the algorithm used the calculate Lm (note the x̂ direction is into the
planeof view). The two launchpoints (xs0, ys0, z0)and (xs0, ys0, z0) + δ areused todrawout the separator
xs and the curve xsδ used to estimate its local linear behaviour. The vector function r(z)whose rotation is
used to calculateL(xs, xsδ) is shown. The curves are sampled at at a finite set of points xjs and x

j
sδ whose

joining vectors are shown by the blue vectors (note in practice we used a far finer discretisation ≈ 300
points ). Then we create subset curves ({xjs}ij=1, {xjsδ}ij=1)with these points, from the start of the pair up
to a given j, as indicated by the double ended arrow at the bottom left of the figure. We calculate the
linking for all of these subsets (there would be five such calculations in this figure). (Colour online)

• The value of T̄w is in the range [0.25 + 0.5(n − 1), 0.25 + 0.5n)] for the nth bifurcation.
• The bifurcation n has not already occurred, as we see in figure 9(d) Lm can still

give bifurcation signals when T̄w is still in this range, but they do not indicate actual
bifurcations.

We also found thatLm alone is a very accurate predictor of bifurcationwhen the current
is highly axial. Condition (a) can be checked by seeing if the ratio of the axial current and
the separator field strength remains bounded by some constant.

L
B · ∇ × B

B · B
∣∣∣∣
x=xs

< C. (23)

For example we found usingC to be the length of the separator itself to be a sensible choice.
In future studies we aim to see how the winding L can be used to characterise other

events such as the initial creation of separator structures and also whether it can be
generalised to also characterise the bifurcation of Hyperbolic Flux Tubes for which a
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similar process to separator bifurcation has recently been shown to occur (Wyper and
Pontin 2021).

5.3. Separator annihilation

Finally, we note that throughout our analysis, we have assumed that the current at the orig-
inal separator is growing via a progressive increase in the applied twist. This assumption
is justifiable if the separator system is assumed to be subject to some external forcing such
as flux emergence (Parnell et al. 2010) or the impact of the solar wind on the day side
magnetosphere (Dorelli and Bhattacharjee 2009), and indeed the bifurcations and changes
in topology are identical. However, if such forcing is removed, the system will relax with
the current in the system reduced via reconnection. In this case, any separators previously
formed via bifurcations will annihilate in pairs, reversing the bifurcation process by which
they formed. Such a scenario is simply modelled in our previous examples by consider-
ing how the linking changes as the twist parameter is reduced, e.g. how Lm changes from
right to left in figure 8. This gives one further prediction: in a relaxing separator system
a reduction of Lm to 0 mod 0.25 corresponds to a separator pair imminently annihi-
lating. Separator annihiliation would require the absolute value of the winding decrease
|L(t)| < |L0|, indicating the surfaces become unwound due to reconnection (and vice
versa for separator creation).
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Appendix. The net windingL of arbitrary curves

For general curves x and y, we define a vector r = y(z) − x(z) where both curves have the same z
coordinate. We then define

Θ(z) = arctan
(
r · ŷ
r · x̂

)
,

so that

dΘ
dz

= ẑ · (r × dr/dz)
r · r .
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Then we have

L(x, y) := 1
2π

∫ z0

−z0

dΘ
dz

dz.

To deal with curves whose height function is multi-valued, we split the curve via its turning points
for which dxz/dz. We mark each curve as rising or falling,

σ(xi) =
{
1 if dxz/dz > 0,
−1 if dxz/dz < 0.

Then we have

L(x, y) :=
n+1∑
i=1

m+1∑
j=1

σ(xi)σ (yj)
2π

∫ zmax
ij

zmin
ij

dΘ(xi(z), yj(z))
dz

dz,

where zmin
ij , zmax

ij is the mutual z range of sections of curve xi and yj (Berger and Prior 2006). This is
valid for combinations of curve which span the planes, are anchored on both planes and are closed
in the domain.
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