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Purcell-enhanced dipolar interactions in nanostructures
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Strong light-induced interactions between atoms are known to cause nonlinearities at a few-photon level,
which are crucial for applications in quantum information processing. Compared to free space, the scattering
and the light-induced dipolar interaction of atoms can be enhanced by a dielectric environment. For this Purcell
effect, either a cavity or a waveguide can be used. Here, we combine the high densities achievable in thermal
atomic vapors with an efficient coupling to a slot waveguide. In contrast to free-space interactions, atoms aligned
within the slot exhibit repulsive interactions that are further enhanced by a factor of 8 due to the Purcell effect.
The corresponding blueshift of the transition frequency of atoms arranged in the essentially one-dimensional
geometry vanishes above the saturation, providing a controllable nonlinearity at the few-photon level. The
experimental results are in good agreement with Monte Carlo simulations that include the dielectric environment,
dipolar interactions, and motional effects. The results pave the way towards a robust scalable platform for
quantum nonlinear optics and all-optical quantum information processing at room temperature.

DOI: 10.1103/PhysRevResearch.4.023073

I. INTRODUCTION

The theory of atom-light interaction has to be revised
as soon as two or more atoms can exchange photons at a
non-negligible rate. The corresponding dipole-dipole inter-
action is relevant in dense media or if a radiation mode
is enhanced to couple distant atoms within this mode. The
marked differences between such cooperative effects [1] and
the individual atom were investigated in Dicke’s pioneering
paper, where he introduced the notion of super(sub)-radiant
states [2] leading to extensive studies on ultracold atomic
gases in free space [3–8]. Guided modes have the advantage
of diffraction-free propagation while providing mode con-
finement with an effective area that can be smaller than the
free-space diffraction limit. These properties allow the use
of waveguides to efficiently interconnect many emitters via
a shared mode [9]. The photon exchange between atoms is
related to photon exchange between an atom and a cavity
or waveguide, which are altered by the Purcell effect [10].
It can modify [11] and enhance [12] the optical response of
a medium. Cold atoms trapped and coupled to a nanofiber
[13,14] or cavity [15,16], ions inside a cavity [17], quantum
dots coupled to a photonic crystal waveguide [18–20], and or-
ganic molecules interfaced with photonic waveguides [21–23]
are various platforms that benefit from interfacing emitters
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with nanostructures. The advantage of thermal atoms over
most platforms is that very high densities can be switched on
and off on a nanosecond timescale via a process called light
induced atomic desorption [24]. Thermal atoms are therefore
the most flexible nonlinear medium as far as scalability and
integrability are concerned. So far, high-density cooperative
effects were exclusively studied in thermal 2D systems, e.g.,
by probing atoms close to the surface via selective reflection
spectroscopy [25,26] or in nanometer thin cells [27–29] where
attractive interactions manifest themselves as a redshift and
a broadening of the transmission spectrum consistent with
the Lorentz-Lorenz scaling [30]. In this paper, we report the
observation of Purcell-enhanced cooperative effects in a 1D
dense thermal rubidium vapor inside a deep subwavelength
slot waveguide. We investigate the transition from the many-
body regime, where the cooperative effects dominate, to the
single-body dynamics by changing the driving field intensity
from well below to above saturation [4,31]. Moreover, we
observe the effect of a repulsive all-to-all dipolar interaction
mediated via the waveguide mode by measuring the blueshift
of the transmission spectrum. We compare our results with a
dynamical Monte Carlo simulation that allows one to include
the motion of the atoms, the Casimir-Polder surface effect, the
time-dependent interaction among moving atoms via both the
vacuum and the waveguide, and the transit broadening due to
the inhomogeneity of the waveguide mode hence the driving
Rabi frequency.

II. EXPERIMENTAL SETUP

Our experimental platform consists of thermal Rb vapor
immersed in a silicon slot waveguide cell as depicted in
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FIG. 1. Measurement scheme and principles of 1D dipolar in-
teractions. (a) Sketch of the atomic cloud interfaced with the
nanostructure. The 780-nm pump laser (red) is illuminating the de-
vice from the top populating the 5P3/2 state. The 1529-nm probe
laser is coupled in and out of the slot waveguide via grating couplers.
The atom-light interaction takes place in the uncovered slot area in
the middle of the device. (b) Simplified level scheme of rubidium
atoms excited by the pump laser at 780 nm and the probe laser at
1529 nm. (c) Magnified image of the interaction region, denoted with
the white box in (a). The guiding mode (purple) is strongly confined
inside the 50-nm slot. Excited atoms (red) can emit a photon either
into free space or the waveguide mode. Thicker lines mean stronger
interactions mediated via the waveguide mode-coupled photons.

Fig. 1(a). The slot waveguide is composed of two ridge waveg-
uides (w = 300 nm, h = 250 nm, l = 200 μm) separated by
a distance of g = 50 nm similar to our previous experiment
[32]. This arrangement leads to a strong 1D confinement of
the guided mode within the gap creating a maximum Purcell
factor of ≈35 (cf. Appendix B). The whole device is covered
by SiO2 except a L = 200 μm long interaction area. This
open region allows for interactions between thermal atoms
and the guided mode. In order to excite the atoms, a resonant
pump laser at 780 nm, locked to the 5S1/2 F = 3 to 5P3/2 F′ =
4 transition, is focused onto the interaction region from the
above. Note that the lifetime in the 5P3/2 state (27 ns [33])
is much longer than the transient time set by the waveguide
geometry. Therefore, the 780-nm pump laser can be used to
vary the density of atoms excited to the intermediate state.

Since the probing of atoms only happens in about 1 ns in the
vicinity of the slot waveguide, we do not observe noticeable
optical pumping. A probe laser at λ = 1529 nm excites the
waveguide mode via a grating coupler. Atoms are further
excited to the 4D5/2 state by the guided probe laser that is
scanned over all 4D hyperfine states with a detuning � from
resonance [see Fig. 1(b)]. Each atom can emit a photon either
into free space (thin wavy line) or into the slot mode (thick
wavy line), with probabilities depending on the position of
the atoms, as depicted with wavy lines for one particular
atom (red sphere) at the front of the waveguide in Fig. 1(c).
Hence, the transmitted probe contains information about the
dipole-dipole interaction inside the slot (cf. Appendix B).

III. RESULTS AND DISCUSSION

In Figs. 2(a)–2(d) we show the lineshift of the slot trans-
mission signal for a broad range of probe intensities below
and above saturation, and at 4 different atomic densities.
The black data points represent the measured shift while
the blue stripes represent the theoretical predictions. These
shifts are obtained from the transmission spectrum by fitting
a Fano lineshape convoluted with a Voigt profile [34] (cf.
Appendix A). The additional Fano profile helps to cope with
interferences occurring at high intensities. We use this fit
function to capture the lineshape consistently in the weak
probe regime [Fig. 2(e)] and in saturation [Fig. 2(f)]. From
the density n we determine the mean interatomic distance
r = (4π/3 × n)−1/3 and define a normalized density (kr)−3

with the free-space wave vector k = 2π/λ of the probe
laser. The effect of interactions is negligible at low densi-
ties [Fig. 2(a)] and becomes more prominent as the density
increases [Figs. 2(b)–2(d)]. We observe a blueshift of the
transmission spectra in the weak-probe limit that is continu-
ously vanishing with increasing probe intensity as expected.
Due to the decoherence introduced by the short transient
time and Doppler broadening on the order of 1 GHz, the
probe intensity must be roughly 500 times larger than the
natural saturation intensity of Isat ≈ 0.14 mW/cm2 in order
to saturate the transition. The blueshift can be explained by
considering two interacting dipoles, which experience an at-
tractive interaction (redshift) in a head-to-tail arrangement and
a repulsive interaction (blueshift) for a side-by-side configu-
ration. Due to the strong horizontal (g < λ/30) and vertical
(h < λ/6) confinement of the slot, excited atoms are polarized
perpendicular to the waveguide axis and render a pseudo 1D
chain along the waveguide. Thus, the blueshift arises from a
dominantly side-by-side alignment of the dipoles within the
slot. We can gradually tune the transition from this interacting
many-body regime to a noninteracting one by increasing the
probe intensity [4]. As the intensity increases towards satu-
ration the photon exchange between excited atoms vanishes
leading to the suppression of their interaction. Nonlinearites
on a single-photon level, meaning a π -phase shift induced
by one photon, are a sought-after goal in quantum op-
tics [35]. In order to describe the nonlinearity we estimate
the length-independent single-photon phase shift φ/(keffL) =
n2Iphoton, with the effective wave vector keff = neffk obtained
from the effective mode index neff = 2.53 at 1529 nm, the
Kerr coefficient n2 and the single-photon intensity Iphoton
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FIG. 2. Optical nonlinearity and repulsive dipolar interactions as a function of density. [(a)–(d)] Transmitted signal shift as a function
of probe intensity for different normalized atomic densities (kr)−3. We compare the measured lineshifts (black diamonds) with Monte Carlo
simulations (blue). Vertical error bars are obtained from fit uncertainties of the measured data and horizontal error bars account for probe power
fluctuations during the measurement. For the dark-blue shaded area we assume an uncertainty of ±5 ◦C in the cell temperature corresponding
to a variation of the atomic density. The light-blue shaded area stand for a ± 20% variation of the Purcell factor as we retrieve this value only
from simulations. The horizontal zero line marks the vanishing point of the dipole-dipole shift. The vertical-dashed line marks the intensity
at which the maximum lineshift is reduced by 1/e2 (14%). [(e)–(f)] Measured absorption vs probe detuning at (kr)−3 = 6.7 (black dots) and
corresponding fit function. The traces are color-coded with the data points in (d) showing the lineshift below (e) and above (f) saturation.
Vertical error bars represent bin standard deviations.

(cf. Appendix A). For our largest measured nonlinearity at a
probe intensity of I = 22Isat and at a density of (kr)−3 = 6.7
[see Fig. 2(d)] we obtain n2Iphoton ≈ 3 × 10−5 (φ = 0.07 rad)
with a Kerr coefficient of n2 = 1.98 × 10−7 m2/W. Our
rough estimate of the phase shift per photon is about 3 orders
of magnitude larger than the reported values for an ultracold
sodium BEC n2Iphoton(Na) ≈ 4 × 10−8 with a Kerr coeffi-
cient of n2 = 1.80 × 10−5 m2/W [36] and ultracold rubidium
n2Iphoton(Rb) ≈ 2 × 10−9 [37]. Although, our attainable Kerr
coefficient is rather small compared to ultracold systems, we
benefit from a strong confinement of the guided mode leading
to a large single-photon intensity.

In Figs. 2(e)–2(f) we show the normalized probe absorp-
tion as a function of detuning in units of the natural decay
rate �0/(2π ) = 1.89 MHz, for the weak and strong probe
case, respectively. The black dots show the measured spec-
trum and solid lines correspond to the fits. The black vertical
line denotes the position of the cyclic transition (5S1/2 F =
3 → 5P3/2 F = 4 → 4D5/2 F = 5) of the hyperfine reference
spectrum (cf. Appendix A). Within the investigated density
regime 1 < (kr)−3 < 7 we expect a linear dependency of the
lineshift with density as summarized in Fig. 3. There, the
measured data (black dots) is obtained by averaging over the
data points in the weak probe regime in Figs. 2(a)–2(d). We

choose to cut off the weak probe region at an intensity at
which the dipolar lineshift is reduced by 1/e2 of the maximum
simulated value in the weak probe regime (dashed line in
Fig. 2). Overall the Purcell effect leads to an average factor
of roughly 8 enhancement of the dipole-dipole interactions
(black arrow in Fig. 3). Note that while the local Purcell factor
can be up to 35 right at the center of the gap (cf. Appendix B),
the flying atoms interact with the full mode, which leads to
an averaging of this effect due to their stochastic motions
and positions. The dashed line shows the expected lineshift
without the Purcell enhancement for comparison.

IV. THEORY

We investigate the system with a dynamical Monte Carlo
method, that has been developed in our group previously [32],
to explore the atom-light interaction. In our recent paper [38]
we studied all relevant single-body effects theoretically and
experimentally for a ridge waveguide in the dilute regime and
found good agreement between the measurement and simu-
lation. To describe the atom-atom interactions in this work
we simplify the atoms to two levels (5P → 4D). We perform
time-resolved simulations of an atomic ensemble each with
random velocity vm according to the Maxwell-Boltzmann
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FIG. 3. Purcell-enhanced interaction. Transmitted signal shift as
a function of the normalized density. We plot the averaged lineshift
over the data points at weak probe, i.e., lower than the dashed line in
Fig. 2 (black diamonds). Horizontal error bars stem from temperature
uncertainties of ±5 ◦C and vertical error bars are RMS error bars
from the corresponding data points in Fig. 2. The dashed line depicts
the expected free space behavior while the blue stripe shows the
shift obtained from Monte Carlo simulations including Purcell factor
uncertainties (20%) caused by potential fabrication imperfections.

distribution at location am(t ) starting from the ground state
at t = 0, i.e., 〈σ̂ (m)

gg (0)〉 = 1. Atoms obtain a Doppler shift
�D = neffkv along the waveguide. At every time step, the
atom experiences an effective Rabi frequency �m

eff as

�m
eff = �m

0 + 3π
∑
m �=m′

(
Gm,m′

FS + Gm,m′
WG

) 〈
σ̂ (m′ )

ge

〉
, (1)

where in the above equation, �m
0 is the Rabi frequency due

to the waveguide mode and the second term is the collective
mean-field of all other atoms m′ modifying the atom local
field [39]. Furthermore, 〈σ̂ (m′ )

ge 〉 is the m′th atom coherence

and Gm,m′
FS and Gm,m′

WG are the free-space and waveguide Green’s
functions, respectively, reading as

Gm,m′
FS =

(
¯̄I + 1

k2
∇∇

)
eik|am−am′ |

4πk|am − am′ | , (2)

and

Gm,m′
WG = i

�m,m′
WG

�0
eineffk|zm−zm′ |, (3)

where �WG stands for the position dependent coupling rate
to the waveguide and zm for the location of the atoms in
the direction of the probe propagation [see Fig. 1(c)]. It can
be shown that the Purcell factor at each point is related to
the waveguide Green’s function (cf. Appendix B). This ap-
proach ignores all correlations, which is a valid assumption
since they are quickly lost due to transient interactions on
a timescale of ≈1 ns [40]. Within the validity range of the
Born approximation it is reasonable to add the free-space
and waveguide Green’s functions to find the effective total
Green’s function. A detailed description of this model can

be found in the Appendix B. The simulated densities of the
N-atom ensemble is calculated via n = N/V where the probe
volume V is chosen such that the guiding mode vanishes at
the edges. At any collision with the slot waveguide or the
boundaries of the probe volume atoms are de-excited to the
ground state and the corresponding coherence is lost. In order
to obtain a spectrum we average the excited state population
〈σ̂ (m)

ee (t )〉, obtained from solving the generalized optical Bloch
equations at each time step, over all atoms and all time steps
at different detunings �. The traces in Fig. 2 are obtained by
calculating a spectrum for different driving field strengths �0.
The blue stripe in Fig. 3 is obtained from a simulation in the
weak-probe regime at different densities. For comparison, the
shift resulting from the free-space interaction, i.e., ignoring
the Purcell enhancement (�WG = 0), is plotted in Fig. 3 in
dashed lines. We find good agreement between the theory and
measurement without any free parameters.

V. CONCLUSIONS

This paper reports the observation of a Purcell-enhanced
dipole-dipole interaction in a dense thermal rubidium vapor
and a 1D arrangement set by a subwavelength slot waveg-
uide. By preparing a one dimensional chain of side-by-side
atoms we mostly harvest the repulsive dipolar interaction,
which leads to a blueshift of the transmission spectrum. Due
to an all-to-all interaction between the atoms inside the slot
it is possible to surpass the 1/r3 length scale of the free-
space interaction, which results in a strong enhancement of
the repulsion. Benefitting from the miniaturized system, we
have been able to achieve highly nonlinear behavior with an
estimated number of 45 photons required for a phase shift
of π out of which ≈8% are absorbed on resonance. Exclu-
sive to our scalable and integrated platform we can use in
future the effect of light induced atomic desorption in order
to switch the density by two orders of magnitude within a
nanosecond timescale [29]. Via coupling to the guided mode it
is also possible to increase the effective optical depth without
changing the actual density of emitters [41] useful for mem-
ory applications [42]. The ability to enhance or suppress the
emission into selected modes is highly interesting in topolog-
ical quantum systems. It gives one the opportunity to unite
chiral [43] and topological [44] structures with the inherent
strong nonlinearity of atoms. Equally, methods that increase
the Purcell factor to a regime where the shift overcomes the
broadening of the system could lead to a novel type of nonlin-
earity at a single-photon level [45]. This enhancement is not
only limited to atomic systems and can be further extended to
photon exchange between any quantum emitter as long as all
contributing particles interact with each other resonantly [46].

The data that support the findings of this study are available
from the corresponding authors upon reasonable request.
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APPENDIX A

1. Data aquisition

For the detection of the transmitted light we use an InGaAs
single-photon detector in combination with a time tagger.
Since a large fraction of the guided mode (76%) that is not
interacting with atoms creates a strong background signal,
we employ a virtual lock-in amplification: The 780-nm pump
laser is amplitude modulated at 10 kHz using an acousto-
optic modulator. That modulated signal is also sent to the
time tagger and synchronized with the detection channel. By
demodulating the transmitted probe we can reduce the noise
level of the signal and suppress the strong background light
level. This technique allows us to evaluate background-free
transmission signals at probe powers on the fW scale in the
telecom wavelength regime.

2. Density

The measured density is determined from the empirical
equation for the thermal vapor pressure [33]. We operate the
pump laser well above saturation and thereby assume that
50% of the ground state population is excited to the interme-
diate 5P3/2 state.

3. Shift measurement

Together with the nanodevice cell, we use a 10-cm long Rb
reference cell at a fixed temperature of 40 ◦C. Counterpropa-
gating pump and probe lasers are sent through this vapor cell
and by scanning the probe laser we obtain a reference signal
that consists of 9 hyperfine transitions from the 5P3/2 F = 2,
3, 4 states to the dipole allowed 4D5/2 states with an average
linewidth of �0/(2π ) ≈ 2 MHz as depicted in Fig. 4. Despite
locking the pump laser to the 5S1/2 F = 3 to 5P3/2 F = 4
transition we also excite the 5P3/2 F = 2 and F = 3 states
due to the Doppler detuning of thermal atoms. This reference
cell signal is used to measure lineshifts of the waveguide
transmission signal. Since we resolve all dipole-allowed 4D5/2

hyperfine states we can extract the type (attractive or repul-
sive) of dipolar interaction in the slot waveguide by comparing
the measured shift to the individual hyperfine transitions.

4. Data evaluation

There are two parameters that are not captured by the sim-
ulation: The coupling efficiency to the grating couplers and
an overall negative offset caused by the single-body Casimir-
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FIG. 4. Hyperfine reference spectrum of the 5S1/2 → 5P3/2 →
4D5/2 two-photon transitions. The numbers above each peak cor-
respond to the hyperfine levels of the 5P3/2 and 4D5/2 state,
respectively. The position of the cyclic transition (4–5) matches with
the dashed line in Figs. 2(e)–(f). Due to the inverted level structure
of the 4D5/2 state, smaller hyperfine levels are at higher energies.

Polder effect. Latter, shifts all measured data points in Fig. 2
by ≈ −70�0. We can measure the absolute transmitted power
on a fW scale but due to uncertainties in the coupling effi-
ciency the actual power within the slot is not exactly known.
This causes an overall shift on the logarithmic intensity axis.
We account for both of these uncertainties by fitting the simu-
lated traces to the measured data with the single-body redshift
and a global intensity factor as the only free fit parameters.
The data in Figs. 2 and 3 are corrected for those two global
offsets.

5. Kerr nonlinearity

In order to estimate a value for the Kerr nonlinearity n2

we first extract the refractive index from the transmission
spectrum of the slot waveguide in the weak probe regime.
We obtain the imaginary part of the susceptibility χ from
the transmission T = e−neffkLIm(χ ) with the wave vector k =
2π/λ, neff = 2.53, and the length of the interaction region
L = 200 μm. The real part of the susceptibility can be calcu-
lated from the Kramers-Kroning relation. With this we obtain
the refractive index from n = √

1 + Re(χ ). The transmission
spectrum and the extracted refractive index can be seen as a
function of probe detuning in the extended data Fig. 5. We use
the following expression [36] to calculate the Kerr coefficient:

n2 = s

I
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FIG. 5. Transmission data and the extracted refractive index
spectrum. (a) Fitted transmission spectrum at the lowest measured
intensity at (kr)−3 = 6.7. (b) Refractive index extracted from the
transmission spectrum in (a).
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where s = 100 MHz describes the lineshift of the spec-
trum, I = 22Isat the required intensity and |dn/d�| = 3.09 ×
10−8 MHz−1 is the slope of the refractive index on reso-
nance. We obtain n2 = 1.98 × 10−7 m2/W, which is about
two orders of magnitude smaller than the value reported for
electromagnetically induced transparency (EIT) in ultracold
sodium [36]. Note, that we used the probe intensity in the
equation above since the interactions can be reduced to an ef-
fective two-level system addressed by the probe laser whereas
the nonlinearity of the ultracold EIT system stems from the
AC stark shift created by the pump. Now that we have the
Kerr coefficient we can calculate the phase shift created by a
single photon

φ = keffLn2Iphoton. (A1)

The intensity of a single photon can be estimated from

Iphoton = Pphoton

Aeff
= h̄ω

TAeff
, (A2)

with the transition frequency ω = 2πc/λ, the inverse band-
width of a photon that can resolve the lineshift T = 1/s and
the effective mode area Aeff. We obtain Aeff from COMSOL
simulations by integrating the Poynting vector S over the cross
section dA

Aeff = 1

max(S)

∫
SdA = 7.68 × 10−14 m2. (A3)

For the calculation of n2Iphoton(Na) we used n2 = 1.80 ×
10−5 m2/W [36] and Iphoton was calculated with T =
1/(1.30 MHz) and Aeff = 1.77 × 10−10 m2. As for the esti-
mation of n2Iphoton(Rb) we used the reported value for the
single photon phase shift φ ≈ 2 × 10−5 rad [37] in a 1.4-mm
long sample probed at 780.24 nm.

6. Data fitting

As shown in previous studies [38], the asymmetry caused
by the Casimir-Polder potential is negligibly small for the
broadened spectrum. Moreover, at the measured densities the
lineshape is not significantly affected by the dipole-dipole
interactions. In order to capture the lineshape of the signal
across the whole intensity range consistently, we use a Voigt
profile modified with a Fano lineshape as

f (� − s) = 2
√

ln 2A

(q2 − 1)ωD
√

π
[(q2 − 1)�(w) − 2q�(w)].

(A4)
Here, w(� − s) is given by the complex Faddeeva func-
tion [47], A is the amplitude, s is the lineshift, and q is an
asymmetry parameter obtained from the Fano lineshape. The
asymmetry vanishes for q → ∞. The Doppler broadening is
given by the cell temperature. We fit the shift, the amplitude,
the asymmetry parameter, and the Lorentzian contribution
to the Voigt lineshape. At high probe intensities I � Isat we
notice Fano-like interference of the guided photons carrying
the atom-light information with strong background reflec-
tions. This behavior is captured by the asymmetry parameter
q without affecting the lineshift. Note that simulated traces
at densities exceeding the experimental conditions show line-
shapes that cannot be captured by this asymmetry parameter.

APPENDIX B

1. Spin Model

In this section we detail the spin model that has been
used to capture the single-body dynamics of the atom-laser
interaction as well as the many-body effect arising due to the
dipole-dipole interaction, mediated via both the free-space as
well as the waveguide mode. To include both the dispersive
as well as the dissipative dynamics we use the Lindblad mater
equation to describe the time evolution of the joint density
matrix of the atomic ensemble as (h̄ = 1)

˙̂ρ(t ) = −i[ĤF + Ĥint, ρ̂(t )] + D(ρ̂(t )), (B1)

where ĤF and Ĥint describe the free-atom and the interacting
atom ensemble unitary evaluations, respectively.

Let us consider an ensemble of N identical atoms with fre-
quency ωa that are coherently driven with a laser at frequency
ωL. For �m being the Rabi frequency of the mth atom, the
Hamiltonian of the free atoms reads as

ĤF = �0

N∑
m=1

σ̂ m
ee − (

�mσ̂ m
eg + �∗

mσ̂ m
ge

)
, (B2)

where �0 = ωa − ωL is the atom-laser detuning, σ̂ m
eg,ge are the

mth atom rising and lowering operators, respectively, and σ̂ m
ee

is the corresponding excited state projection operator. Here,
it has been assumed implicitly that the number of photons
are large enough that the laser field can be treated classically
hence, the Bloch equations give a proper description of the
system dynamics. Note that this assumption is also consistent
with the Born approximation we use later for the waveguide
fields where we ignore any back actions from the atom radia-
tions on the waveguide mode.

Aside from the free-atom part, there is a photon-mediated
excitation exchange between the atoms, which in the electric-
dipole approximation is given as [11]

Ĥint = −3π�0

N∑
m,n=1

�d∗
m · Real(Gmn) · �dn σ̂ (m)

eg σ̂ (n)
ge , (B3)

where �0 is the natural decay rate of atoms, Gmn is the Green’s
tensor of mth atom at the location of nth one, and vice versa,
and �dm is the transition dipole moment of the mth atom.

In addition to the coherent interaction the dipolar in-
teraction is accompanied with some incoherent dissipative
behavior in the Markovian limit given by the following dis-
sipator form:

D(ρ̂) = 3π�0

N∑
m,n=1

�d∗
m · Imag(Gmn) · �dn

× (
2σ̂ (m)

ge ρ̂ σ̂ (n)
eg − {

σ̂ (n)
eg σ̂ (m)

ge , ρ̂
})

. (B4)

In a homogeneous isotropic medium, the dyadic Green’s ten-
sor of an electric-dipole reads as

Gm,m′
FS =

(
¯̄I + 1

k2
∇∇

)
eik|am−am′ |

4πk|am − am′ | , (B5)

where am is the mth-atom location, ¯̄I is the unity tensor, and k
is the wave number.
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As can be seen, Real(Gm,m
FS ), i.e., Green’s function at

dipole location, is divergent leading to an effective energy
re-normalization. However, its imaginary part, describing the
self-action of the radiated field on itself, is the finite value of
1/(6π ). From Eq. (B4) it is apparent that one gets the decay
rate of �0/2 as expected for the spontaneous emission rate of
a free atom in vacuum.

Although the complete treatment of the interaction re-
quires the full dyadic Green’s tensor as can be inferred from
Eqs. (B3) and (B4), for the numerical results presented in this
work we only consider the diagonal terms, corresponding to
aligned atoms along the laser electric field. Note that ignor-
ing the off-diagonal entries is consistent with our previous
assumption about the strong driving laser.

2. Mean-Field Approximation

The exponential growth of the Hilbert space size as 2N

for an N-atom ensemble renders the exact solution of the
Lindblad master equation of Eq. (B1) impossible. In this
section, we first derive the Heisenberg-Langevin equations of
motion (EoM) for the spins and later employ the moment
factorization approximation to obtain the mean-field (MF)
EoM.

For an operator Ô(t ), the master equation can be employed
to find the EoM as

d

dt
Ô(t ) = i[Ĥ, Ô] + D(Ô). (B6)

From Eqs. (B3) and (B4) we have

Ĥ = �0

N∑
m=1

σ̂ (m)
ee − (

�mσ̂ (m)
eg + �∗

mσ̂ (m)
ge

)

+
∑
n �=m

Jmn

2

(
σ̂ (m)

eg σ̂ (n)
ge + σ̂ (n)

eg σ̂ (m)
ge

)
, (B7)

and

D(Ô) =
N∑

m,n=1

�mn

2

(
2σ̂ (n)

eg Ôσ̂ (m)
ge − {

σ̂ (m)
eg σ̂ (n)

ge , Ô
})

, (B8)

where we defined Jmn = −3π�0 Real(Gmn) and �mn/2 =
3π�0 Imag(Gmn) to write the operators in the symmetric form
and remove the dispersive self-effect in renormalizing the
energy.

Using these forms we can obtain the spin EoM as

d

dt
σ̂ (k)

ge = −i�0σ̂
(k)
ge − i�k

(
σ̂ (k)

ee − σ̂ (k)
gg

) + i
N∑

n �=k=1

Jnk
(
σ̂ (n)

ge σ̂ (k)
ee − σ̂ (n)

ge σ̂ (k)
gg

) − �0

2
σ̂ (k)

ge +
∑
n �=k

�nk

2

(
σ̂ (n)

ge σ̂ (k)
ee − σ̂ (n)

ge σ̂ (k)
gg

)
,

d

dt
σ̂ (k)

ee = i
(
�k σ̂

(k)
eg − �∗

k σ̂
(k)
ge

) + i
N∑

n �=k=1

Jnk
(
σ (n)

eg σ (k)
ge − σ̂ (n)

ge σ̂ (k)
eg

) − �0σ̂
(k)
ee −

N∑
n �=k=1

�nk

2

(
σ̂ (n)

ge σ̂ (k)
eg + σ̂ (n)

eg σ̂ (k)
ge

)
.

In the above forms we separated the self-terms from the mutual ones to emphasize the dipole-dipole interactions. As can be
inferred from these Langevin EoM such interactions lead to a hierarchy of moments, in general.

As the first approximation, one can ignore the quantum correlations and employ the factorization approximation as
〈σ̂ (m)σ̂ (n)〉 ≈ 〈σ (m)〉 〈σ n〉 to simplify the spin EoM to their MF form as

d

dt

〈
σ̂ (k)

ge

〉 = −i�0
〈
σ̂ (k)

ge

〉 − i�k
〈
σ̂ (k)

z

〉 − i
〈
σ̂ (k)

z

〉 N∑
n �=k=1

(
−Jnk + i

�nk

2

) 〈
σ̂ (n)

ge

〉 − �0

2

〈
σ̂ (k)

ge

〉
,

d

dt

〈
σ̂ (k)

ee

〉 = i�k
〈
σ̂ (k)

eg

〉 + i
〈
σ̂ (k)

eg

〉 N∑
n �=k=1

(
−Jnk + i

�nk

2

) 〈
σ̂ (n)

ge

〉 + c.c. − �0
〈
σ̂ (k)

ee

〉
,

where σ̂ (m)
z = σ̂ (m)

ee − σ̂ (m)
gg is the mth-atom inversion operator.

Note that the above equations resemble a two-level atom
Bloch equations if the mth-atom Rabi frequency is replaced
by an effective one as

�m
eff = �m

0 +
N∑

m �=n=1

(
−Jmn + i

�mn

2

) 〈
σ̂ (n)

ge

〉

= �m
0 + 3π

∑
m �=n=1

Gm,n
〈
σ̂ (n)

ge

〉
. (B9)

Recognizing that 〈σ̂ (n)
ge 〉 is related to the induced dipole of the

nth atom, the last equation has a simple interpretation: within
the mean-field treatment the effective field at the mth-atom
position is the summation of the incident laser field, i.e., �m

0 ,

and the field radiated by all other atoms whose contributions
are determined via Gmn, i.e., the electric field of nth atom
at location of the mth one. Note that the complex effective
Rabi frequency captures both the collective dispersive and
dissipative effects.

Finally, the self-effect of the atom radiated field is simply
described using the following dissipator:

D(ρ̂) = �0

2

N∑
m=1

(
2σ̂ (m)

ge ρ̂ σ̂ (m)
eg − {

σ̂ (m)
eg σ̂ (m)

ge , ρ̂
})

. (B10)

Figure 6 shows the simulated lineshift of an atomic ensemble
in free space confined in a simulation box of (�x,�y,�z) =
(0.3λ, 0.3λ, l ) as a function of the box length l , and driven
with a uniform weak laser field along the z direction. By
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FIG. 6. Transition from 2D to pseudo 1D dipolar interactions.
Dipolar interaction induced lineshift as a function of the cloud ge-
ometry, from a 2D to a pseudo 1D atomic cloud. Blue points show
the simulated data as a function of the box length in a probe volume
(box) of (�x,�y, �z) = (0.3λ, 0.3λ, l ). The density is kept constant
in all cases. The dashed line is as a guide to the eye.

changing the box length while keeping �x,�y fixed, the
cloud shows a transition from a 2D to a pseudo-1D case. In
the 2D scenario, where l � λ attractive interactions dominate
and we obtain a redshift of the spectrum. As we increase the
third dimension we cross the zero line when all dimensions
are equal in size. Further increase in the simulation box length
leads to a pseudo-1D case where l > λ. In this regime mainly

repulsive dipolar interaction contribute to the lineshift of the
spectrum.

As shown in this subsection the semiclassical MF approx-
imation of an interacting atomic ensemble is reduced to the
system Green’s function determination. While for the atoms
in a homogeneous medium one can use the analytic dyadic
Green’s tensor in Eq. (B5), there only a handful of other
problems that a closed-form Green’s function is attainable.
For the other problems, including the slot waveguide in our
case, the exact determination of the Green’s tensor relies on
numerical calculations. Due to the strong confinement of the
mode inside the slot-waveguide however, its Green’s function
can be approximated by some corrections to the free-space
case, as will be discussed in the next subsection.

3. Waveguide-Mediated Interaction

In order to derive an effective Green’s function for the slot
waveguide, in this section we employ the input-output formal-
ism to describe the dynamics of a 1D spin chain coupled to a
waveguide [48]. Note that due to the tight confinement of the
waveguide mode inside the deep subwavelength slot (w � λ)
the 1D spin chain is a proper approximation of our system.

Consider a 1D chain of N atoms at zi=1,...,N coupled to
a waveguide along the z direction. For each propagation
constant of β there are two modes, a forward propagating
mode (âR(β )) varying as eiβz and a backward-propagating one
[âL(β )] as e−iβz. Within the validity range of RWA, i.e., a
separate energy scale between the detuning and the resonance
frequency of the atoms (�0 � ωa), the unitary dynamics of
the atom-mode coupling is given as follows:

Ĥ =
∫ ∞

0
dβ ωph(β )

(
â†

R(β )âR(β ) + â†
L(β )âL(β )

) + ωa

N∑
n=1

σ̂ (n)
ee −

N∑
n=1

g(n)
0

∫ ∞

0
dβ σ̂ (n)

eg

(
âR(β )eiβzn + âL(β )e−iβzn

) + H.c.,

(B11)

where in the above equation ωph(β ) is the waveguide dispersion and g(n)
0 is the vacuum Rabi frequency of the nth-atom-mode

coupling. Due to the translational symmetry of the modes along the z direction, g0 only depends on the transverse coordinates of
the atom. Furthermore, as we separated the forward and backward propagating modes explicitly, β � 0.

If a Markovian process describes the coupling of the atoms to nonguided modes with a rate of �1, then we can describe this
process with the following dissipator:

D(ρ̂) = �1

2

N∑
n=1

(
2σ̂ (n)

ge ρ̂ σ̂ (n)
eg − {

σ̂ (n)
ee , ρ̂

})
. (B12)

Following a similar procedure as in the previous section, we can determine Langevin EoM for the waveguide modes and spins
as follows:

˙̂aR(β ) = −iωph(β )âR(β ) + i
N∑

n=1

g(n)
0 σ̂ (n)

ge e−iβzn ,

˙̂aL(β ) = −iωph(β )âL(β ) + i
N∑

n=1

g(n)
0 σ̂ (n)

ge e+iβzn ,

˙̂σ (n)
ge = −iωaσ̂

(n)
ge − ig(n)

0

(
σ̂ (n)

ee − σ̂ (n)
gg

) ∫ ∞

0
dβ

(
âR(β )eiβzn + âL(β )e−iβzn

) − �1

2
σ̂ (n)

ge . (B13)

As can be seen, in the absence of atoms the first two equations for the waveguide modes decouple and reduce to the time
harmonic evolution of the right and left propagating waves. The presence of the atoms however, couples these two modes as
captured by the last equation.
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To find the equations of motion for the spin degrees of freedom only, hence the effective spin model, we can integrate the
waveguide mode operators in terms of the spin operators. To arrive at a closed form for the spin dynamics, we need some
assumptions for the waveguide dispersion relation, i.e., ωph(β ). As there is not any dispersion engineering for the slot waveguide
we use the linear dispersion approximation with a fixed phase velocity as ωph(β ) = vpβ.

Using this approximation it is straightforward to show that the spins’ dynamics satisfy the following equation:

˙̂σ (n)
ge = −i

(
ωa − i

�1

2

)
σ̂ (n)

ge − ig(n)
0

√
2πσ̂ (n)

z ×
[(

â(in)
R (zn − vpt ) + â(in)

L (zn + vpt )
) + i

√
2π

vp

N∑
m=1

g(m)
0 σ̂ (m)

ge

(
t − |zn − zm|

vp

)]
,

(B14)

where â(in)
R,L are the input fields for the forward and backward

propagating modes, respectively.
Assume that at t = 0 we excite the β0 waveguide mode

only from the right, and with strong enough amplitude E0

such that the field operator can be approximated with its
MF as

â(in)
R (x, 0) ≈ E0eiβ0z. (B15)

Moreover, due to the small waveguide size hence the negligi-
ble retardation effect, we can use the Markov approximation
to simplify the delayed spin dynamics to an instantaneous one
as

σ̂ (n)
ge

(
t − |z − z′|

vp

)
≈ σ̂ (n)

ge (t ) + ˙̂σ (n)
ge (t )

|z − z′|
vp

≈ σ̂ (n)
ge (t )

(
1 + ω0|z − z′|

vp

)

≈ σ̂ (n)
ge (t )eiβ0|z−z′ |. (B16)

Finally, by rewriting the spin dynamics in the rotated frame
of the laser, i.e., ω0 = vpβ0, as σ̂ (n)

ge (t ) = ˆ̃σ (n)
ge (t )e−iω0t , we get

the following EoM for the slowly varying envelopes of the
spins as

˙̃̂σ (n)
ge = −i

(
δa0 − i

�1

2

)
ˆ̃σ (n)

ge − ig(n)
0

√
2π ˆ̃σ (n)

z , (B17)[
E0eiβ0zn + i

√
2π

vp

N∑
m=1

g(m)
0

ˆ̃σ (m)
ge eiβ0|zn−zm|

]
, (B18)

where in the above equation δa0 = ωa − ω0 is the atom-laser
detuning.

As can be seen, this equation resembles a lot to the EoM of
polarized atoms in a homogeneous medium where the atom-
light interaction is treated classically via Maxwell’s equations.
In particular, we can recognize the effect of other atoms
appearing in the summation, as an effective Lorentz field
correction modifying the incident laser field, i.e., E0eiβ0zn .

To develop a better understanding of this final form and
obtain the corresponding spin model similar to Eq. (B3), we
separate the atom-atom interaction to determine the interac-
tion Hamiltonian by inspection

˙̃̂σ (n)
ge = −i

(
δa0 − i

�1

2

)
ˆ̃σ (n)

ge − i ˆ̃σ (n)
z

×
(

g(n)
0

√
2πE0eiβ0zn + i

2πg(n)2

0

vp

ˆ̃σ (n)
ge

)

− i ˆ̃σ (n)
z

N∑
m �=n=1

i2πg(n)
0 g(m)

0

vp
eiβ0|zn−zm| ˆ̃σ (m)

ge . (B19)

When compared with the interacting ensemble dynamics in
Eq. (B9) we can deduce the effective 1D Green’s function as

Gm,m′
WG = i

�m,m′
1D

�0
eiβ0|zm−z′

m|, (B20)

where the waveguide coupling rate �m,m′
1D is defined as

�m,m′
1D = 2g(m)

0 g(m′ )
0

3vp
. (B21)

The physical meaning of the above equation is rather simple:
If g0 is the radiation of one dipole coupled to the waveguide
then the generated guided mode interacts with another atom
with the same rate hence the effective interaction rate between
the atoms should be proportional to g(m)

0 g(m′ )
0 . Moreover, this

is related to the available density of states related to the group
velocity as 1/vp, and finally the phase delay between the
atoms set by eiβ0|�z|.

As mentioned before the atom radiation may couple to the
nonguided modes with the rate of �1, a parameter whose exact
value requires an exact calculation of the Green’s function.
Here, we approximate the total Green’s function of the slot
waveguide perturbatively as

Gm,m′
total ≈ Gm,m′

FS + Gm,m′
WG . (B22)

This form allows us to capture both the dominant near-
field effect due to the free-space Green’s function as well
as infinite-range waveguide-mediated interaction via Gm,m′

WG .
With this approximation we can employ the MF EoM of the
previous section, where the Green’s function is now replaced
with Gm,m′

total .

4. Clarifying Case: Single Atom Coupled to the Waveguide

To better illustrate the waveguide modification of the
atomic radiation it is helpful to consider the single-atom case
where the effective Rabi frequency from Eq. (B19) is

�eff = g0

√
2πE0 + i

2πg2
0

vp
〈 ˆ̃σge〉 . (B23)

This modified rate is the coherent sum of the incident driv-
ing Rabi frequency (the first term) and the scattered field of
the atom coupled back to the waveguide (the second term).
A comparison with the waveguide-coupled results sheds the
light on the physical implication of the scattered term in �eff

in Eq. (B23) as i3π�1D 〈 ˆ̃σge〉. In general, this is a complex
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quantity that modifies the Rabi flopping rate as well as the
coherence decay rate. In the perturbative limit of the nonde-
pleted atom however, i.e., 〈σ̂z〉 ≈ −1, the spin dynamics reads
as

˙̃̂σge ≈ −iδa0 ˆ̃σge −
(

�1

2
+ 3π�1D

)
ˆ̃σge + ig0

√
2πE0. (B24)

When combined with the approximated Green’s function of
Eq. (B22), this leads to the total decay rate of

�D = �0 + 4πg2
0

vp
, (B25)

where �0 is the free space decay rate.
On the other hand, in this nondepleted regime one can

employ Fermi’s golden rule to estimate the waveguide effect
in modifying the decay rate as follows:

�WG = 2π |heg|2G(ωa), (B26)

where |heg| is the coupling rate, i.e., g0 in this case, and G(ωa)
is the local density of the optical states (LDOS) at the atom’s
position and the transition frequency of ωa.

Since the waveguide LDOS is inversely proportional to the
phase velocity vp we get

�WG = 2 × 2π
g2

0

vp
= 4π

g2
0

vp
, (B27)

where the prefactor 2 is due to the degeneracy of the left/right
propagating modes. That means the total decay rate of the
atom is �0 + �WG, which is identical to �D in Eq. (B25)
obtained from the effective Bloch equations. Finally, one can
determine the Purcell factor (PF) due to the waveguide cou-
pling as

PF = �D

�0
= 1 + 6π

�1D

�0
. (B28)

Figure 7 shows the cross section of the electric field profile
of the slot waveguide and its corresponding Purcell factor cal-
culated at the center of the slot where the electric field hence
g0 in the maximum. Right at the center a Purcell factor as
high as ≈ 35 can be achieved that decays almost exponentially
away from the waveguide following the mode profile.

Furthermore, by solving Eq. (B19) in the weak-probe
limit the scattering parameters, i.e., the reflected 〈âL(z)〉
and the transmitted 〈âR(z)〉 modes can be determined
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FIG. 7. Mode profile and Purcell factor. (a) Normalized electric
field profile of the slot waveguide mode. Due to the sub-wavelength
geometrical features the electric field is dominantly x polarized such
that the components along y and z directions are almost negligible.
White lines mark the silhouette of the waveguides. (b) Purcell factor
PF at the center of the waveguide and as a function of the vertical
position y.

as follows:

〈 ˆ̃σge〉ss = ig0

√
2πE0

iδa0 + PF�0
2

, (B29)

〈 ˆ̃aL(z)〉ss = i
g0

√
2π

vp
〈 ˆ̃σge〉ss e−iβ0z

= − �WG

i2δa0 + PF × �0
E0e−iβ0z, (B30)

〈 ˆ̃aR(z)〉ss = E0eiβ0z + i
g0

√
2π

vp
〈 ˆ̃σge〉ss eiβ0z

= E0eiβ0z

(
1 − �WG

i2δa0 + PF × �0

)
. (B31)

Notice the general Lorentzian lineshape of these quantities
with a broadening of PF × �0 and centered at δa0 = 0, cor-
responding to a resonance excitation. As expected for a fixed
coupling rates, the resonance is where the maximum reflection
and the minimum transmission is expected. As this is the
perturbative limit solution, there is not any power broadening
hence the saturation, due to the large E0. We would like to
emphasize that, this is only the weak-probe limit and in our
numerical simulations we used the complete form includ-
ing the population inversion dynamics and saturation for a
uniform treatment of the waveguide effect within the whole
power range.
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